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We introduce a method for the separation of soft and collinear logarithms in QCD parton evolution at
Oðα2sÞ and at leading color. Using an implementation of the technique in the DIRE parton shower, we analyze
the numerical impact of genuine triple-collinear corrections from quark pair emission in eþe− → hadrons.
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I. INTRODUCTION

Monte Carlo event generators have become an indis-
pensable part of the numerical toolkit needed to interpret
high-energy physics experiments at colliders [1,2]. They
extend the reach of analytic or numeric fixed-order
calculations by providing detailed simulations of QCD
parton evolution and hadronization. Both aspects are vital
in order to understand the features of experimentally
accessible analysis objects such as jets or photons, and
to link the picture of QCD perturbation theory to the
complicated reality of measurements. Due to the large
dynamic range of observables at the Large Hadron
Collider (LHC), the accurate description of QCD evolu-
tion plays a particularly important role. It is implemented
in fully differential form by Monte-Carlo algorithms
called parton showers.
The high statistical precision of data from the Large

Hadron Collider experiments, as well as the promise of yet
more detailed and accurate measurements over the coming
years, have spurred the development of various improved
parton shower algorithms. A number of works have
revisited questions on the logarithmic accuracy [3,4] of
parton showers [5,6] and dipole showers [7,8] and have
led to the development of new and improved algorithms
[9–13]. The resummation of logarithms at higher orders in
the 1=Nc expansion [14–24], and the possibility to
include genuine higher-order matrix elements [25–28]
has become a focus of interest recently. The combination
of these various ingredients could soon enable the for-
mally more precise simulation of QCD parton evolution,

and allow to consistently estimate systematic uncertainties
from missing higher-order effects in the perturbative
expansion.
In this note we will focus on the implementation of

higher-order splitting kernels in parton showers. Our
numerical implementation is based on a dipole shower,
but the method itself is applicable to any parton shower
with on-shell intermediate states. The possibility of adding
next-to-leading order corrections for more inclusive
observables to parton showers has been explored early
on [29–34] and was revisited recently [35,36]. A differ-
ential approach based on modern shower algorithms was
first discussed in [25,26]. The link to DGLAP evolution
[37–40] at next-to-leading order [41–46] was explored in in
[27], and the connection to soft-gluon resummation [47,48]
was established in [28]. Here we will address the question
of how higher-order corrections obtained from hard matrix
elements in the triple-collinear and double-soft limits can
be combined consistently. Our procedure relies on the
numerical techniques developed in [27,28], which treated
the two different limits individually. We propose a sub-
traction method that removes soft double counting at the
level of the fully differential evolution kernels for two-
parton emission, and we identify the corresponding end-
point contributions, which are related to the two-loop cusp
anomalous dimension [49–52]. We apply the method to
quark pair emission in the process eþe− → hadrons as an
example.
The manuscript is structured as follows: Section II

introduces the basic concepts. In Sec. III we review the
techniques for the simulation of triple collinear and double
soft emissions. Section IV introduces the removal of
overlapping singularities, and Sec. V presents the modified
subtraction needed for a computation in four dimensions.
The endpoint contributions and their relation to the soft
gluon coupling and the Catani-Marchesini-Webber (CMW)
scheme [6] are discussed in Sec. VI. Section VII presents a
first numerical analysis, and Sec. VIII contains an outlook.
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II. STRATEGY FOR CONSTRUCTING AN NLO
PARTON SHOWER

In this section we provide a heuristic introduction to the
main ideas behind a fully differential parton evolution at
next-to-leading order. To this end, it is useful to revisit the
basic principles of a leading-order algorithm.
The one-loop matrix elements for gluon emissions off a

color dipole exhibit two types of singularities [53,54]: soft
gluon singularities and collinear poles. Most of the existing
leading-order parton shower algorithms treat these two
effects in a unified way: They either employ one splitting
kernel to describe the complete antenna radiation pattern, or
two splitting kernels that capture the collinear monopole
radiation pattern. In the first case, the collinear radiator
function is matched to the soft, while in the second case the
soft radiator function is matched to the collinear, while at

the same time removing potential double counting through
partial fractioning of eikonal terms or angular ordering.
To construct a parton shower at next-to-leading order

accuracy, it is useful to discard this picture and instead
recall that the soft gluon limit has a semiclassical origin and
is thus structurally different from the collinear limit.
However, the two do of course overlap in the soft-collinear
region. An improved leading-order parton-shower can
therefore be constructed by working with three different
radiator functions for each color dipole, one capturing the
soft emission pattern, and one each for capturing the
remainder of the collinear radiators, after subtracting the
overlap with the soft function. This strategy allows to cover
the complete phase space with each evolution kernel, and it
furthermore allows to choose different evolution variables
in the soft and collinear regions. Representative squared
diagrams for a process with two hard partons are

ð1Þ

where the dots stand for diagrams with permutations of the
hard partons. The left figure indicates a collinear emission,
and the right indicates coherent soft gluon radiation. At
second order in the strong coupling, the perturbative
fragmentation functions will contain real-virtual and dou-
ble-real corrections. We will use the emission of a quark
pair as an example for the construction of a soft-collinear
overlap removal in these contributions. The triple-collinear
q → qq0q̄0 splitting function can be factorized into a

collinear one-loop q → g times a collinear one-loop g → q
splitting in the strongly ordered limit, while the soft
function for quark-pair emission cannot be factorized into
lower-order soft functions. However, it can be factorized
into a product of eikonal currents times a spin-dependent
collinear one-loop g → q splitting, in fact it is given entirely
in terms of their product [55]. Effective diagrams for
double-real corrections at two loops may thus be approxi-
mated by iterated branchings,

ð2Þ

In analogy to fixed-order computations in the dipole method, the calculation of the double-real corrections to this
approximate picture proceeds by subtracting the approximate result in Eq. (2) from the complete matrix elements. In
addition, an endpoint contribution is required, which originates in the difference between the integrated subtraction terms
and the corresponding collinear mass factorization counterterms. The result is finite in four dimensions and can therefore be
computed with Monte-Carlo methods [27]. Using the double-real quark-pair emission triple-collinear (tc) and double-soft
(ds) kernels as an example, we can write, schematically
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ð3Þ

where the black blobs indicate the complete matrix ele-
ments in the triple collinear and double soft limits.
Equation (3) is valid independently for both the differential
and the endpoint contributions. For an appropriately
defined leading-order parton shower, this subtraction must
remove all infrared singularities associated with the van-
ishing of intermediate propagators. This puts stringent
requirements on the leading-order shower, in particular
that it must implement spin correlations and a suitable
kinematics mapping [27,28].
The above subtraction ensures that the correct splitting

probabilities are reproduced in the collinear and soft region
individually, but it is insufficient to guarantee the correct
two-loop radiation pattern in multiple limits simultane-
ously, because the individual two-loop splitting functions

have overlapping singularities. Each triple-collinear matrix
element contains the complete double-soft result. This is
reminiscent of the overlap of the double collinear and single
soft matrix elements in the leading-order case. To remove
the overlap, a solution similar to the leading-order case can
be adopted: A combination of triple-collinear and double-
soft corrections at leading color requires (1) removing the
endpoint-subtracted double-soft splitting function from the
endpoint-subtracted triple-collinear splitting function, and
(2) adding the double-soft splitting functions for all pairs of
hard partons and the soft-subtracted collinear splitting
functions for all partons in order to obtain the complete
radiator function for the multipole. In the case of quark pair
emission, the genuine triple collinear contributions to this
combined splitting function are given by

ð4Þ

Again, this is valid independently for both the differential
and the endpoint contributions. The subtraction has to be
applied for every possible occurrence of the double-soft
limit in the triple-collinear splitting functions. In the
following sections, we will first discuss the individual
triple collinear and double soft limits of the QCD matrix
elements, and then develop the above described procedure
in detail for quark pair emission. The gluon emission case is
structurally identical to the quark pair emission case, but
technically more involved. While the double-soft calcu-
lation has been done and implemented in [28], the triple-
collinear implementation of [27] remains to be extended by
the gluon emission case before the numerical effect can be
studied. We thus postpone its discussion to a forthcoming
publication.

III. PARTON EVOLUTION IN THE TRIPLE
COLLINEAR AND DOUBLE SOFT LIMITS

In this section we summarize the ingredients needed for
the consistent simulation of triple collinear and double soft
splittings in a dipole-like parton shower. We note that this
type of parton shower is affected by the problems discussed
in [4], but the structure of our calculation is generic and can
therefore be applied to any parton shower for which the
phase-space factorization and splitting functions are known
in D ¼ 4 − 2ε dimensions.
In the triple collinear limit of partons 1, 2 and 3, any

QCD associated matrix element with more than 3 external
partons factorizes as [55,56]

jM1;2;3;…;k;…ðp1; p2; p3;…Þj2 →
123−coll

�
8πμ2εαs
s123

�
2

T ss0
123;…ðp123;…ÞPss0

123ðp1; p2; p3Þ: ð5Þ

The corresponding spin-averaged, triple-collinear splitting functions, δss0Pss0
123=2, are given in [55,56]. The simplest of them

are the quark to quark splitting kernels with quark pair emission. They read
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Pq̄1 0q02q3
¼ 1

2
CFTR

s123
s12

�
4z3 þ ðz1 − z2Þ2

z1 þ z2
−

t212;3
s12s123

þ ð1 − 2εÞ
�
z1 þ z2 −

s12
s123

��
;

Pq̄1q2q3 ¼ ½Pq̄1 0q02q3
þ Pq̄1 0q03q2

� þ ½PðidÞ
q̄1q2q3 þ PðidÞ

q̄1q3q2 �; ð6Þ

where sij ¼ 2pipj are the scalar products of the (lightlike) parton momenta, s123 ¼ s12 þ s13 þ s23, and where zi ¼
pin=p123n is the light-cone momentum fraction of particle i with respect to an arbitrary auxiliary vector n, which must not

be parallel to the collinear momentum, p123 ¼ p1 þ p2 þ p3. The interference term, PðidÞ
q̄1q2q3 , is given by

PðidÞ
q̄1q2q3 ¼ CF

�
CF −

CA

2

��
ð1 − εÞ

�
2s23
s12

− ε

�
−

s2123
s12s13

z1
2

�
1þ z21

ð1 − z2Þð1 − z3Þ
− ε

�
1þ 2

1 − z2
1 − z3

�
− ε2

�

þ s123
s12

�
1þ z21
1 − z2

−
2z2

1 − z3
− ε

�ð1 − z3Þ2
1 − z2

þ 1þ z1 −
2z2

1 − z3

�
− ε2ð1 − z3Þ

��
: ð7Þ

Following [55], we have defined

t12;3 ¼ 2
z1s23 − z2s13

z1 þ z2
þ z1 − z2
z1 þ z2

s12: ð8Þ

We can interpret the triple collinear branching of the combined parton (123) as two subsequent splittings, ð123Þ → ð12Þ3
and ð12Þ → 12. Integration over the final-state phase space of the second splitting, renormalization and collinear mass
factorization in the MS scheme then lead to the integrated double-collinear timelike splitting functions at next-to-leading
order (NLO) accuracy [41–46]

PðTÞ
qq0 ðzÞ ¼ CFTR

�
ð1þ zÞ log2ðzÞ −

�
8

3
z2 þ 9zþ 5

�
logðzÞ þ 56

9
z2 þ 4z − 8 −

20

9z

�
;

PðTÞ
qq̄ ðzÞ ¼ PðTÞ

qq0 ðzÞ þ CF

�
CF −

CA

2

�
ð2pqqð−zÞS2ðzÞ þ 2ð1þ zÞ logðzÞ þ 4ð1 − zÞÞ; ð9Þ

where pqqðzÞ ¼ ð1þ z2Þ=ð1 − zÞ, and where the auxiliary function S2 is defined as

S2ðzÞ ¼ −2Li2
1

1þ z
þ 1

2
ln2z − ln2ð1 − zÞ þ π2

6
: ð10Þ

In the double soft limit, the hard matrix element for emission of a quark-antiquark pair factorizes as [55,56]

jM1;2;3;…;nðp1; p2; p3;…; pnÞj2 →
12−soft ð4πμ2εαsÞ2

Xn
i;j¼3

I ijðp1; p2ÞjMði;jÞ
3;…;nðp3;…; pnÞj2; ð11Þ

where the color-correlated tree-level matrix element
squared is given by

jMði;jÞ
3;…;nðp3;…; pnÞj2 ¼ −hM3;…;nðp3;…; pnÞj

× T̂iT̂jjM3;…;nðp3;…; pnÞi: ð12Þ
The corresponding double-soft splitting function,
I ijðp1; p2Þ, is given by [55,56]

I ijðp1; p2Þ ¼ TR
si1sj2 þ si2sj1 − sijs12
s212ðsi1 þ si2Þðsj1 þ sj2Þ

: ð13Þ

In contrast to the one-loop case, the i ¼ j contributions to
the soft matrix element in Eq. (11) do not vanish. In the

following section, we will discuss the combination of
Eqs. (5) and (11) in a fully differential parton-shower
simulation.

IV. OVERLAP REMOVAL AND GENUINE
COLLINEAR ANOMALOUS DIMENSION

Following the general arguments outlined in Sec. II, we
need to remove the collinear limit of the double-soft matrix
element, Eq. (11), from the triple-collinear matrix element,
Eq. (5), in order to obtain a purely collinear remainder. In
this limit, we can perform the sum over spectator partons, j,
in Eq. (11), while holding i ¼ 3 fixed. This yields the
collinear limit of the soft factorization formula
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jM1;2;3;…;nðp1; p1; p3;…; pnÞj2 →
12−soft

123−coll

�
8πμ2εαs
s123

�
2

T ss
123;…ðp123;…ÞPðdsÞ

123 ðp1; p2; p3Þ; ð14Þ

where the double soft splitting function, PðdsÞ
123 , is given

by [28]

PðdsÞ
q̄1

0q0
2
a3
¼ 1

2
CaTR

s2123
ðs13 þ s23Þ2

�
4z3

1 − z3

s13 þ s23
s12

−
�
t12;3
s12

−
z1 − z2
z1 þ z2

�
2
�
: ð15Þ

This function can be integrated using the phase-space
parametrization of [57]. Following [27], we factor out
the two-particle phase space, the integration over the three-
particle invariant yaij ¼ saij=q2 and the corresponding
factors ðyaijð1 − yaijÞÞ1−2ε as well as the integration over
one of the light-cone momentum fractions, which is chosen
to be z̃ ¼ sak=q2=ð1 − yaijÞ. We also remove the square of
the normalization factor ð4πÞε=ð16π2Γð1 − εÞÞðq2Þ1−ε. The
remaining one-emission phase-space integral reads

Z
dΦðFÞ

þ1 ¼ ð1 − z̃Þ1−2εz̃−ε
Z

1

0

dτðτð1 − τÞÞ−ε
Z

1

0

dvðvð1 − vÞÞ−εΩð1 − 2εÞ
Ωð2 − 2εÞ

Z
1

0

dχ2ð4χð1 − χÞÞ−1=2−ε; ð16Þ

where ΩðnÞ ¼ 2πn=2=Γðn=2Þ. The variables τ and v are given by the transformation [27]

sai ¼ saijð1 − z̃jÞv; z̃j ¼
sjk=q2

1 − yaij
¼ ð1 − z̃Þτ: ð17Þ

The azimuthal angle integration is parametrized using χ, which is defined as sij ¼ sij;− þ χðsij;þ − sij;−Þ, with sij;� being

the two solutions of the quadratic equation cos2 ϕj;k
a;i ¼ 1 [57]. The result is

1

CaTR

Z
dΦðFÞ

þ1P
ðdsÞ
aq0 ¼ −

1

ε

�
4

3z̃
− 2z̃þ 2z̃2

3
þ 2 ln z̃

�
− 2ðLi2ðz̃Þ − ζ2Þ þ 3ln2z̃þ 2

3z̃
ð1 − 7z̃þ 10z̃2 − 4z̃3Þ

þ
�
8

3z̃
− 2z̃þ 2z̃2

3

�
ln z̃þ

�
4

3z̃
− 2z̃þ 2z̃2

3

�
lnð1 − z̃Þ þOðεÞ: ð18Þ

Upon including the propagator term from Eq. (14) and the
phase-space factor y1−2εaij , the leading pole is multiplied by
an additional factor −δðyaijÞ=2ε. The 1=ε2 coefficient thus
generated is removed by the renormalization of the soft
component of the fragmentation function. This renormal-
ization term is obtained as

PðdsÞ
aq0 ðz̃Þ ¼

Z
1

z̃

dx
x
Pð0;sÞ
ag ðxÞPð0Þ

gq

�
z̃
x

�

¼ CaTR

�
2 ln z̃þ 2z̃2

3
− 2z̃þ 4

3z̃

�
; ð19Þ

where Pð0;sÞ
ag ðzÞ ¼ 2Cað1 − zÞ=z is the soft limit of the

double-collinear splitting function for gluon emission,
and the superscripts (0) indicate the leading order in the
strong coupling. In order to extract the analog of the next-
to-leading order splitting function Pqq0 , we employ the
two-loop matching condition for the fragmenting jet
function [58].

Gið2Þ
a ðs; z; μÞ ¼ J ð2Þ

ai ðs; z; μÞ

þ
X
j

Z
1

z

dx
x
J ð1Þ

aj ðs; z=x; μÞDið1Þ
j ðx; μÞ

þ δðsÞDið2Þ
a ðz; μÞ: ð20Þ

The complete matching term is given in [27,58]. Its soft-

collinear analog needed for Gq0ð2Þ
a is given by

Z
1

z

dx
x
J ð1Þ

ag ðs; z=x; μÞDqð1Þ
g ðx; μÞjðdsÞ

¼ 2

Z
1

z̃

dx
x
2CF

1 − x
x

lnðxð1 − xÞÞPð0Þ
gq ðz̃=xÞ: ð21Þ

A detailed discussion will be given in Sec. VI. Using this
technique, we obtain the soft-collinear contribution to the
timelike NLO q → q0 splitting function
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Pðds;TÞ
qq0 ðz̃Þ¼CaTR

�
2ðLi2z̃−ζ2Þþ ln2z̃−ð8þ6z̃−2z̃2Þln z̃−

�
4

3z̃
−2z̃þ2z̃2

3

�
lnð1− z̃Þ−34

9
z̃2þ46

3
z̃−

28

3
−
20

9z̃

�
: ð22Þ

In the numerical simulation this term can be obtained from
the quark-pair contribution to the double soft splitting
function, taken in the triple collinear limit. The correspond-
ing methods have been discussed in detail in [28], and here
we will therefore focus on the difference to the complete
timelike NLO q → q0 splitting function only. This differ-
ence leads to a genuine two-loop timelike collinear anoma-
lous dimension that is given by

γðtc;TÞqq0 ¼
Z

1

0

dzzðPðTÞ
qq0 ðzÞ−Pðds;TÞ

qq0 ðzÞÞ¼
�
11

18
−
2π2

9

�
CFTR:

ð23Þ

Based on this result, we expect the genuinely triple
collinear configurations to generate a small negative
correction to the leading-order radiation pattern. Note
that, unlike the 1-loop anomalous dimensions, this result
is scheme dependent and holds only in dimensional
regularization and the MS scheme. In the following section
we will discuss how the above computation can be
implemented using a four-dimensional modified subtrac-
tion scheme.

V. COMPUTATION IN FOUR DIMENSIONS

The modified subtraction procedure needed to imple-
ment next-to-leading order corrections to the parton-shower
splitting kernels was outlined in [27]. This procedure relies
on casting the analytic calculation of higher-order splitting
kernels [41,42] into the notation of a fully differential NLO
calculation. To describe the double-real contributions
throughout the available phase space with the correct rate,
this fully differential NLO calculation needs to employ

the modified subtraction commonly used for “matched”
calculations [59]. As in the latter case, any mismatch
in the observable dependence of subtraction terms is
removed by the action of the leading-order parton
shower. The computation of the soft contributions
to the splitting function is performed according to the
formula

PðdsÞ
aq0 ðz̃Þ¼

�
Iþ1

ε
P−I

�ðdsÞ

aq0
ðz̃Þþ

Z
dΦþ1ðR−SÞðdsÞaq0 ðz̃;Φþ1Þ:

ð24Þ

Here, the function S is a differential subtraction term,
constructed from the spin-correlated leading-order splitting
functions for the parton shower. The term I is the integral of
this differential subtraction term over the emission phase
space, dΦþ1, and the terms P and I are collinear mass
factorization counterterms, cf. [27]. It is important to note
that the above splitting kernels enter in the real-emission
rate as well as in the exponent of Sudakov factors. In order
to implement the algorithm, we need the approximate spin-

independent splitting function, P̃1→3ðdsÞ
aq0 and the corre-

sponding spin correlation term, ΔP̃1→3ðdsÞ
aq0 , which define

the differential subtraction term according to

RðdsÞ
aq0 ðz̃;Φþ1Þ¼P1→3ðdsÞ

aq0 ðz̃;Φþ1Þ
SðdsÞaq0 ðz̃;Φþ1Þ¼ P̃1→3ðdsÞ

aq0 ðz̃;Φþ1ÞþΔP̃1→3ðdsÞ
aq0 ðz̃;Φþ1Þ: ð25Þ

The two contributions to the subtraction term are given by

P̃1→3ðdsÞ
aq0 ðz̃a; z̃i; z̃j; sai; saj; sijÞ ¼ CaTR

saij
sai

2z̃j
1 − z̃j

�
1 −

2

1 − ε

z̃az̃i
ðz̃a þ z̃iÞ2

�

ΔP̃1→3ðdsÞ
aq0 ðz̃a; z̃i; z̃j; sai; saj; sijÞ ¼ CaTR

saij
sai

4z̃az̃iz̃j
ð1 − z̃jÞ3

ð1 − 2 cos2 ϕjk
aiÞ: ð26Þ

We use the definition of the azimuthal angle in the soft-
collinear approximation [28]

4z̃az̃i cos2 ϕ
jk
ai ¼

ðz̃asij − z̃isajÞ2
saiz̃jðsaj þ sijÞðz̃a þ z̃iÞ

: ð27Þ

For sai → 0, this agrees with the definition of cos2 ϕi;k
a;j in

[27]. Away from the collinear limit, ϕjk
ai is not a physical

angle, as cos2 ϕjk
ai is not bounded by one. Equation (27) is

constructed such that it reproduces the soft matrix element,

hence the subtraction term SðdsÞaq0 ðz̃;Φþ1Þ provides a much
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better approximation of the triple collinear and double soft
matrix elements, leading to substantially smaller real-
emission contributions in Eq. (24).1 For comparison, the
strongly ordered limits of the triple collinear splitting
function are given by Eq. (6.50) of [60]:

CFTR

�
1þ z̃2j
1 − z̃j

− 2ð1 − z̃jÞ
z̃az̃i

ðz̃a þ z̃iÞ2
− 4

z̃az̃iz̃j
ð1 − z̃jÞ3

ðκpj;⊥Þ2
κ2p2

j;⊥

�

ð28Þ

where the transverse momentum is given by
κμ ¼ z̃ap

μ
i − z̃ip

μ
a, which can be shown to match Eq. (27).

In addition to the differential radiation pattern, the
endpoint contributions need to be simulated. This is
achieved by extracting the Oð1Þ contributions to the
NLO splitting functions that originate in the combination
of the −δðvÞ=ε term in the series expansion in v, and the
OðεÞ terms in the expansion of the differential forms of the
subtraction and matching terms. They are given by

ΔIðdsÞaq0 ðz̃a; z̃i; z̃jÞ¼ ĨðdsÞaq0 ðz̃a; z̃i; z̃j; z̃aÞ− Ĩ ðdsÞ
aq0 ðz̃a; z̃i; z̃j; z̃aþ z̃iÞ;

ð29Þ

where

ĨðdsÞaq0 ðz̃a; z̃i; z̃j; x̃Þ ¼ CaTR

�
2z̃j

1 − z̃j

2z̃az̃i
ðz̃a þ z̃iÞ2

þ 2z̃j
1 − z̃j

�
1 −

2z̃az̃i
ðz̃a þ z̃iÞ2

�
logðx̃z̃iz̃jÞ

�
;

Ĩ ðdsÞ
aq0 ðz̃a; z̃i; z̃j; x̃Þ ¼ Ca

2z̃j
1 − z̃j

logðx̃z̃jÞPð0Þ
gq

�
z̃a

z̃a þ z̃i

�
: ð30Þ

The implementation of the endpoint contributions for
q → q̄ transitions and the needed symmetry factors was
discussed in [27] and remains unchanged. The symmetry
factors are reviewed in the Appendix.

VI. RELATION TO THE EFFECTIVE
SOFT-GLUON COUPLING

In this section we provide an intuitive explanation for the
origin of the familiar soft singular term −20=9z in Eqs. (9)
and (22), and we explain how the two-loop cusp anomalous
dimension emerges naturally upon integration over the final
state phase space and summation over flavors. Since the
effective soft gluon coupling should be implemented as part
of the soft-collinear gluon radiation pattern [28], we
conclude that a separation of the triple collinear splitting
function into a double-soft component and a genuine triple

collinear remainder yields an appropriate algorithm for
parton shower evolution at the next-to-leading order.
We first note that the endpoint contributions of the next-

to-leading order splitting functions can be extracted by
means of a series expansion of the scaled propagator
virtuality, v

1

v1þε ¼ −
1

ε
δðvÞ þ

X∞
i¼0

εn

n!

�
logn v
v

�
þ
: ð31Þ

When this term is combined with the OðεÞ contributions in
the series expansion of phase-space factors and splitting
functions, it generates characteristic logarithms, which
contribute the leading transcendental terms to the anoma-
lous dimensions. In the triple collinear case we obtain

Z
dΦðFÞ

þ1

1

v
¼ z̃−ε

Z
1

0

dz̃jðz̃jz̃iÞ−ε
Z

1

0

dv
ð1 − vÞ−ε
v1þε

Ωð1 − 2εÞ
Ωð2 − 2εÞ

Z
1

0

dχ2ð4χð1 − χÞÞ−1=2−ε

¼ −
δðvÞ
ε

Z
1

0

dz̃jðz̃jz̃iz̃Þ−ε
Ωð1 − 2εÞ
Ωð2 − 2εÞ

Z
1

0

dχ 2ð4χð1 − χÞÞ−1=2−ε þ…; ð32Þ

where the dots stand for plus distributions in lnn v=v. If the
integrand does not depend on the azimuthal angle variable
χ, we can simplify this to

Z
dΦðFÞ

þ1

1

v
¼ −

δðvÞ
ε

Z
1

0

dz̃jðz̃jz̃iz̃Þ−ε þ…: ð33Þ

We can rewrite Eq. (33) as a convolution by measuring z̃
and integrating over τ̄ ¼ z̃=ð1 − z̃jÞ

1The leading-order parton shower algorithm should implement
spin correlations according to Eq. (26), in order to achieve a
consistent modified subtraction. While the parton shower we
employ in Sec. VII does not include these correlations in full
generality yet, it does implement spin correlations for four-parton
states exactly, as is necessary to achieve a fully local cancellation
of singularities in double-real emission matrix elements. We note
that the phenomenological impact of many-particle spin-corre-
lations is negligible except for dedicated observables, and we will
therefore postpone their general implementation to future work.
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Z
1

0

dτ̄
Z

dΦðFÞ
þ1

1

v
δðx − z̃Þ

¼ −
δðvÞ
ε

Z
1

x

dτ̄
τ̄

�
xz̃i

�
1 −

x
τ̄

��
−ε

þ…: ð34Þ

Let us now consider the matching term in Eq. (20). It is
given by a similar convolution, but includes only the d-
dimensional phase-space factors for the production of the
leading-order final state (for details, see Appendix E of [58])

Z
1

0

dτ̄
Z

dΦðF;JÞ
þ1

1

v
δðx − z̃Þ

¼ −
δðvÞ
ε

Z
1

x

dτ̄
τ̄

��
1 −

x
τ̄

�
x
τ̄

�
−ε

þ…: ð35Þ

Nextwe combine the complete result in four dimensions and
the integral needed for the matching term, and include a
relative factor 2 arising from the series expansion in powers
of αs [cf. Eq. (21)]. Note that x refers to the light-cone
momentum fraction of the quark which emerges from the
gluon splitting. In the double soft limit, this light-cone
momentum fraction tends to zero. Inserting the splitting
function in Eq. (26) in the strongly ordered limit, we can
reconstruct the leading soft enhanced term as a convolution

of the soft splitting function, Pð0;sÞ
ag ðzÞ ¼ 2Cað1 − zÞ=z, for

the transition a → g and the collinear splitting function,

Pð0Þ
gq0 ðzÞ, for the decay g → q0

Z
1

0

dτ̄

�Z
dΦðF;dsÞ

þ1 Pð0;sÞ
ag

�
x
τ̄

�
Pð0Þ
gq0 ðτ̄; εÞ − 2

Z
dΦðF;J;dsÞ

þ1 Pð0;sÞ
ag

�
x
τ̄

�
Pð0Þ
gq0 ðτ̄; 0Þ

�
1

v
δðx − z̃Þ

¼ O
�
1

ε

�
þ δðvÞ

Z
1

x

dτ̄
τ̄
Pð0;sÞ
ag

�
x
τ̄

�
½Pð0Þ

gq0 ðτ̄; 0Þðlnðτ̄ð1 − τ̄ÞÞ þ 1Þ − Pð0Þ
gq0 ðτ̄; εÞ� þ � � � þOðεÞ: ð36Þ

The dots stand for contributions that are finite in x, and for plus distributions in lnn v=v. The leading term of the soft splitting

function function PðsÞ
ag is given by 2Ca=z, such that we can extract the leading term in 1=x of the finite remainder as

δðvÞ 2Ca

x
TR

Z
1

x
dτ̄½ð1 − 2τ̄ð1 − τ̄ÞÞ lnðτ̄ð1 − τ̄ÞÞ þ 2τ̄ð1 − τ̄Þ� ¼ δðvÞ 2Ca

x
TR

�
−
10

9
þOðxÞ

�
: ð37Þ

The relation to the CMW scheme is now manifest: The
leading term on the right-hand side of Eq. (37) is simply the
contribution from the production of a single quark pair to
the nf term in the two-loop cusp anomalous dimension
[49–52]. The parentheses do not evaluate to a constant,
because we explicitly consider resolved partons, i.e. we
implement the measurement δðx − z̃Þ.
In summary, we find that the above contribution from the

soft-collinear splitting function correctly reproduces the
expected finite remainders in the soft limit, and therefore its
simulation in fully differential form induces the conven-
tional rescaling of the soft-gluon coupling (the CMW
scheme) [6] upon integration over x. As outlined in
Sec. II, it is therefore appropriate to implement the
corresponding endpoints as part of the soft gluon radiator
function [28].
We finally note that the above calculation serves only to

make the origin of the soft gluon coupling explicit. We do
not explicitly implement the resolved parton evolution in
our numerical simulations. Instead, following the deriva-
tion in [27,61], we obtain equivalent results from uncon-
strained parton evolution including tagging factors, which
allows us to implement the soft physical coupling using the
technique described in [28]. This method is reviewed in the

Appendix. As a direct consequence, we are not restricted to
interpreting the q → qq0q̄0 transitions that we implement as
a contribution solely to the NLO q → q0 splitting function.
The same splitting also contributes to the nf part of the
q → q splitting function. This is achieved by summing over
all possible ways to tag the final-state partons. We have thus
presented a generic technique to implement all real-emis-
sion type nf contributions to the next-to-leading order
splitting functions, as well as the corresponding CF − CA=2
interference terms.

VII. NUMERICAL RESULTS

In this section we present the first application of our
algorithm to the process eþe− → hadrons at Large Electron-
Positron Collider (LEP) energies. We implement a compu-
tation of the soft-subtracted q → qq0q̄0 and q → qqq̄ triple
collinear splitting functions into the DIRE parton showers,
which provide two entirely independent codes within the
event generation frameworks PYTHIA [62,63] and SHERPA

[64,65]. We employ the CT10nlo PDF set [66], and use the
corresponding form of the strong coupling. Following
standard practice, we implement the CMW scheme through
a rescaling of the soft gluon coupling by 1þ αsðtÞ=ð2πÞK,
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whereK ¼ ð67=18 − π2=6ÞCA − 10=9TRnf [6]. The imple-
mentation of this term in fully differential form has been
discussed in [28].
The left side in Fig. 1 shows a comparison between the

DIRE+SHERPA and DIRE+PYTHIA predictions for the soft-
subtracted triple-collinear q → qq0q̄0 splittings, when con-
sidering only a single branching. The lower panel shows the
deviation of the two results, normalized bin-wise to the
statistical uncertainty. We find perfect agreement, sug-
gesting that no technical problems are present. A single 1 →
3 branching populates both the 2 → 3 jet rate, y23, and the
3 → 4 jet rate, y34. The 3 → 4 jet rate is entirely given by the
R − S contribution in Eq. (24), while the 2 → 3 jet rate also
receives contributions from the I − I term. The contribu-
tions from the soft-subtracted triple-collinear branchings are
negative, as anticipated based on Eq. (23), and they are of
similar size for both rates. To be consistent with the
renormalization group evolution of the strong coupling,
we only produce b-quarks if the shower evolution variable is
above the quark mass, t > m2

b. The corresponding threshold
effects can be seen close to log10ð4.752=91:22Þ ¼ −2.6. A
similar effect for the charm quark is not visible, since the
threshold at log10ð1.32=91:22Þ ¼ −3.7 is too close to the
parton-shower cutoff placed at 1 GeV.

The right side of Fig. 1 shows the phenomenological
impact of the soft-subtracted triple-collinear branchings.
The upper panel displays the ratio between the pure
leading-order parton evolution and the LOþ 1 → 3 evo-
lution, indicating a difference of up to 4% in the 2 → 3 jet
rate. Compared to the triple-collinear q → q0 and q → q̄
corrections presented in [27], we find larger effects, since
we not only consider the contribution to the identified final
state, but the sum over all ways to tag the qq0q̄0 or qqq̄
final-state (cf. the last paragraph of Sec. VI). The middle
and bottom panels of the right side of Fig. 1 show the effect
of allowing for multiple 1 → 3 branchings as opposed to
single branchings on the left-hand side. The 3 → 4 jet rate
is only mildly affected, and still all negative. The 4 → 5 jet
rate, which is not filled by just one 1 → 3 branching,
receives a very small correction when allowing for multiple
1 → 3 branchings. Opposed to a single branching, iterated
branchings can also contribute with a positive sign.

VIII. CONCLUSIONS

This note introduced a method for the consistent combi-
nation of triple-collinear and double-soft corrections to
parton evolution at leading-order by means of subtraction at
the integrand level. We argue that a subtraction technique is

FIG. 1. Durham kT -jet rates in eþe− → hadrons at LEP. Left: validation of the simulation of soft-subtracted triple-collinear parton
splittings. Right: impact of the soft-subtracted triple-collinear simulation. The top panel shows the ratio between the leading-order result
and the leading-order simulation including soft-subtracted triple-collinear branchings. The middle and bottom panels show a
comparison between the simulation of up to one soft-subtracted triple-collinear splitting and arbitrarily many (both not including the
leading-order result).
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the most appropriate method for addressing the soft-
collinear overlap, as it allows to cleanly separate the
integrands into soft enhanced and soft finite contributions.
It is also supported by the fact that the effective soft-gluon
coupling generated by the radiative corrections in the triple
collinear limit can be obtained by including double soft
corrections alone.
In our algorithm, all higher-order corrections are

embedded in the parton shower in fully differential form,
using the appropriate transition matrix elements computed
in dimensional regularization and the MS scheme. The
method recovers known analytic results, such as the nf
contribution to the two-loop cusp anomalous dimension.
While we explicitly considered only the special case of
quark pair emission from quarks, we note that other triple
collinear splitting functions can be treated in the same
manner.
We have implemented our new method into two inde-

pendent Monte-Carlo programs in the general-purpose
event generators PYTHIA and SHERPA for the case of q →
q0q̄0 and q → qqq̄ transitions, proving the feasibility of the
algorithmic considerations for numerical studies. Overall,
the impact of the genuine triple-collinear corrections to the
parton cascade is small for standard observables—provided
that the leading-order shower correctly reproduces the
radiation pattern at Oðα2sÞ in ordered phase-space regions.
This supports previous findings that the main effect of the
Oðα2sÞ corrections is to reduce the uncertainties present in
the leading-order simulation.
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APPENDIX: IMPLEMENTATION OF
SYMMETRY FACTORS

In this appendix we review the techniques of [27], which
allow to consistently implement final-state parton evolution
by means of the Sudakov factor

Δaðt0; tÞ ¼ exp

�
−
Z

t

t0

dt̄
t̄

X
c¼q;g

Z
zþ

z−

dz z
αs
2π

PacðzÞ
�
: ðA1Þ

Here, z− and zþ stand for the lower and upper integration
limit on the splitting variable, and we highlight the addi-
tional factor z multiplying the splitting function, which
corresponds to using the momentum sum rule in order to
satisfy the unitarity constraint on the parton shower
evolution [61]. At the next-to-leading order, we are
required to multiply the real-emission correction to the
splitting functions in Eq. (24) by two such splitting
variables in order to obtain the correct sum over flavors.
This can be interpreted as an identification, or “tagging” of
the identified parton whose evolution is considered. More
precisely, we find

X
b¼q;g

Z
1−ε

0

dz1

Z
1−ε

0

dz2
z1z2
1−z1

Θð1−z1−z2ÞPa→abb̄ðz1;z2;…Þ¼
X
b¼q;g

Z
1−ε

ε
dz1

Z
1−z1

ε
dz2Sabb̄Pa→abb̄ðz1;z2;…ÞþOðεÞ;

X
b¼q;g
b≠a

Z
1−ε

0

dz1

Z
1−ε

0

dz2
z1z2
1−z1

Θð1−z1−z2ÞðPa→bab̄ðz1;z2;…ÞþPa→bb̄aðz1;z2;…ÞÞ

¼
X
b¼q;g
b≠a

Z
1−ε

ε
dz1

Z
1−z1

ε
dz2Sabb̄Pa→bab̄ðz1;z2;…ÞþOðεÞ; ðA2Þ

where Sabb̄ ¼ 1=ðQc¼q;g nc!Þ, with nc the number of partons of type c, is the usual symmetry factor
for the final-state abb̄. Thus, the subtracted real-emission corrections in Eq. (24) should be multiplied by the final-
state symmetry factor (or tagging factor) SðFÞ ¼ z1z2=ð1 − z1Þ.
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