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In this work, we study the jet momentum broadening in an inhomogeneous dense QCD medium. The
transverse profile of this nuclear matter is described within a gradient expansion, and we focus on the
leading gradient contributions. The leading parton is allowed to interact multiple times with the background
through the soft gluon exchanges. We derive the associated final particle distribution using both the GLV
opacity series and the BDMPS-Z formalism. We further discuss the modified factorization of the
broadening process and the initial distribution of partons produced in a hard scattering, as well as its
consequences for phenomenological applications in the context of heavy-ion collisions and deep inelastic
scattering. Finally, we present the broadening probability (describing the final state effects) in several
limiting regimes, and give its numerical estimates for phenomenologically motivated sets of parameters.
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I. INTRODUCTION

Jets are collimated sprays of particles, produced by
hadronization and branching of an energetic quark or gluon
(parton), which are often found in the final state of
experiments on ultrarelativistic particle collisions. If before
the hadronization stage the parton cascade develops in the
presence of an underlying medium, produced in the same
collision, the jet substructure gets modified due to the
interactions with the background. The simplest manifesta-
tion of this process is the suppression of jet energy by
matter, commonly referred to as jet quenching, which has
attracted significant attention in the literature [1], for a more
recent review see [2–5]. Due to their high sensitivity to the
spacetime structure of the medium, jets provide a promising
tomographic tool to study the real-time evolution of nuclear
matter both in heavy-ion collision (HIC) and deep inelastic
scattering (DIS) experiments, see, e.g., [6–17] and refer-
ences therein.
The jet-medium interaction can be successfully described

within perturbative QCD (pQCD) supplemented with a
medium model, which is usually based on a collection of
medium-induced stochastic color fields [18–32]. In this

picture, an energetic parton interacts with the matter through
multiple t-channel gluon exchanges. Although such inter-
actions lead to a negligible energy depletion of the hard
parton, they induce gluon bremsstrahlung resulting in an
energy loss. Description of these processes within pQCD is
in general a complex problem, and some simplifying
assumptions are usually needed. However, the commonly
considered eikonal or static source approximations lead to a
decoupling of the medium evolution from the jet energy loss
and substructure modification observables, for a discussion
see [15]. Thus, to extract the properties of the underlying
medium evolution and information about its structure from
jet observables one needs the associated theoretical frame-
work to be extended beyond the simplest physical regimes.
Earlier attempts to include the effects of the medium flow

into the jet energy loss calculations go back to [33–35],
where the medium dilution was considered, and to [36,37],
where the flow was described within a phenomenologically
motivated model with an additional momentum transfer.
Transverse flow effects could also be partially accounted for
from purely kinematic arguments, see, e.g., [38–40]. Only
more recently, the medium evolution effects on the jet-
medium interactions were formally included into the
Gyulassy-Levai-Vitev (GLV) opacity expansion framework
[15]. It was shown that the medium flow and variation of its
properties in the transverse directions can be treated within
the same medium model of stochastic color fields induced
by in-medium sources, if the sources are allowed to move
and the medium properties encoded in their potentials and
density are changing from point to point. In the developed
formalism, the changes in the local properties of the matter
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are described within a gradient expansion analogous to the
one used in hydrodynamics, commonly applied to describe
the evolution of the quark-gluon plasma (QGP) produced
in HIC. In this way, [15] extends the idea to describe
interactions of a probe with a hydrodynamically evolving
matter within the same gradient expansion introduced in
holographic models for strongly interacting plasmas, see,
e.g., [41–46].

In the current manuscript, we further develop the jet-
tomography toolkit, and include the effects of the leading
hydrodynamic gradients at all orders in the opacity expan-
sion. The main result of this paper is the modification of the
single parton transverse momentum distribution due to the
evolution in a medium of finite longitudinal extension L.
In the limit of a longitudinally uniform matter1 it is given by
(16) or (41), and reads

ð2πÞ2 dN
d2pdE

¼
Z

d2xe−ip·xe−VðxÞL
�
1 − i

VðxÞL3

6E

�
V 0ðxÞ
VðxÞ ∇μ

2 þ 1

ρ
∇ρ

�
· ∇VðxÞ

þ i
VðxÞL2

2E

�
V 0ðxÞ
VðxÞ ∇μ

2 þ 1

ρ
∇ρ

�
· ∇

�
dN ð0Þ

d2xdE
; ð1Þ

where the potential VðxÞ describes the interaction of the
parton with the matter, and V 0ðxÞ≡ ∂

∂μ2
VðxÞ. This potential

is fixed by the medium model and can be related to an
effective dipole cross-section. Here, we model the matter
with a background field produced by color sources with
number density ρ and screened at distances of order 1

μ. The
formula (1) describes the momentum distribution for a final
state parton, after it has been produced from an initial hard
process (with large energy E), described by dN 0

d2pdE, and

propagated through a static longitudinally uniform medium
with finite transverse gradients ∇ρ and ∇μ2 of the medium
parameters. The primary effect of the gradient terms is to
generate a nontrivial angular dependence in the resulting
parton distribution.
The present manuscript details the derivation of (1) in

two commonly employed jet quenching formalisms and
discusses its properties. In Sec. II, following the previous
work done in [15], we provide a derivation of (1) in the
GLV framework, performing a resummation of the asso-
ciated opacity series. In Sec. III we show how the same
result can be obtained within the amplitude-level resummed
framework introduced by Baier, Dokshitzer, Mueller,
Peigné, Schiff, and Zakharov (BDMPS-Z) [20,21].
Finally, in Sec. IV we explore the properties of (1) in a
manner suitable for direct future applications2 in commonly
used jet quenching models [47–51]. We summarize our
findings and discuss future avenues of research in Sec. V.
Some additional technical details are included into two
appendixes.

II. THE GLV OPACITY SERIES

In this section, we derive the gradient corrections to the
jet broadening order by order in opacity expansion, and
resum the obtained series. As in [15], we will focus on the
spatial gradients of the source density and Debye mass at
zero medium velocity, using scalar QCD3 to describe the
underlying theory. Then, the medium-induced color field is
static and reads

gAλa
extðqÞ ¼ ð2πÞgλ0

X
j

e−iðq·xjþqzzjÞtaj vjðqÞδðq0Þ; ð2Þ

where we use bold font for vectors in the transverse 2D
space, vjðqÞ is a model-dependent medium potential of an
individual source numerated with j, while taj and ðxj; zjÞ
are its color generator and spatial position. Notice that the
particular form of the field is derived under an assumption
of large source mass. In what follows, we will consider the
Gyulassy-Wang (GW) model [18] for the potential

vjðqÞ≡ −g2

−q20 þ q2⊥ þ q2z þ μ2j − iϵ
; ð3Þ

where q⊥ ≡ jqj and μj is the Debye mass in the HIC
context defined by the local medium properties around the
ith source.
With this model for the medium, we can turn to the

details of the jet-medium interaction. We start with an
initial parton distribution

E
dN ð0Þ

d2pdpz
≡ 1

2ð2πÞ3 jJðpÞj
2; ð4Þ

produced by a hard-scattering event. To form a jet the
leading parton has to be highly energetic E ≃ pz, and wewill

1An extension of (1) to an arbitrarily z dependence of the
medium is given in (42).

2For a reader interested in immediate phenomenological
applications and not in the technical derivation, (1) [or its
generalization (42)] and Sec. IV contain all the necessary
information.

3At eikonal accuracy the spin flips can be ignored, justifying
the use of scalar QCD, see, e.g., [15].
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generally work in the eikonal limit, assuming that any
transverse momentum or in-medium characteristic energy
scale μ are much smaller than the energy E. Propagating
through the matter, jets get modified interacting with the
medium-induced color field, and the momentum distribution
is also affected. In the perturbative regime, the corresponding
change in the momentum distribution can be studied order
by order in the coupling g. One should also distinguish the
coupling entering the in-medium potential and the emission
vertex involving the energetic parton, see, e.g., [5].
After the amplitude is obtained, it should be squared and

averaged over quantum numbers before one can construct
the final momentum distribution. This procedure requires
one to further specify the medium model by defining the
multipoint correlations of external fields. Following the
prescription commonly used in the pQCD considerations of

the jet-medium interactions, we treat the medium color
field to be classical and stochastic. We also assume a color
neutrality condition requiring that

htai tbj i ¼
1

dtgt
trðtai tbj Þ ¼

1

2CR̄
δijδ

ab;

and take into account only pairwise averages, see, e.g., [15].
This approximation is motivated by the fact that interference
terms are suppressed in a random classical system. We leave
the color representation of the sources free, but assume that
all of them are in the same representation. Here dtgt is the
dimension of the color representation of the sources
(“target”), and CR̄ is the quadratic Casimir of the opposite
representation. The amplitude squared reads

hjMj2i ¼ hjM0j2i|fflfflffl{zfflfflffl}
N¼0

þ hjM1j2i þ hM2M�
0i þ hM0M�

2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N¼1

þ hjM2j2i þ hM3M�
1i þ hM1M�

3i þ hM4M�
0i þ hM0M�

4i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N¼2

þ � � � ; ð5Þ

where we have identified the first several orders in the opacity
expansion numerated with N, expressing them through the
terms in the perturbation series MðpÞ ¼ P

r Mr with r
counting the number of the in-medium field insertions.
One should notice that the contributions to hjMj2i involving
an odd number of external fields average to zero under our
assumptions. The contributionMr to the full amplitudewith r
external field entries, see Fig. 1, can be written as

iMrðpfÞ ¼
Yr
n¼1

�
ð−1Þ

X
jn

Z
d2qndqn;z
ð2πÞ3 taprojt

a
jn

× e−iðqn·xjnþqn;zzjn Þ 2E
p2
n þ iϵ

vjnðqnÞ
�
JðpinÞ; ð6Þ

where taproj is the parton (“projectile”) color generator,
pn ¼ pf −

P
N
m¼n qm, and pin ¼ p1 under this numeration.

The sums and integrals should be understood as acting on the

whole expression, including JðpinÞ, which depends on the
momentum transfers qn.
Assuming for a moment that all the source positions are

different, we can perform the qz integrals by residues,
noticing that only the small poles of the propagators
contribute. Indeed, the large qz poles scale as E, and when
one of such residues is substituted into the integrand that
leads to a subeikonal result going beyond our accuracy.
Similarly to the original GLV formalism, we also assume that
the potentials vjðqÞ are screened at some scales μj (varying
from point to point), resulting in exponentially suppressed
contributions for a sufficiently large and dilute medium
μjnðzjn − zjn−1Þ ≫ 1. Then,

iMr ¼
Yr
n¼1

�X
jn

Z
d2qn
ð2πÞ2 it

a
projt

a
jn
θjn;jn−1

× e−iqn·xjn e−iQnðzjn−zjn−1 ÞvjnðqnÞ
�
JðE; pinÞ; ð7Þ

FIG. 1. The contribution Mr with four field insertions (r ¼ 4) to the full amplitude.
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where JðE; pinÞ is the eikonal limit of the source function
with pin substituted from the corresponding pole,
θjn;jn−1 ≡ θðzjn − zjn−1Þ, the Landau-Pomeranchuk-Migdal

(LPM) phase Qn ≡ p2
n⊥−p2

f⊥
2E comes from the small pole of

the propagator p2
n ¼ 0, and without loss of generality we set

zi0 ¼ 0, which could be thought of as the center of the source
function. Notice that while the LPM phases are subeikonal,
they are enhanced by the large medium length, and, thus,
should be kept explicitly, cf. [5,15].
Now one has to square the full amplitude and average

over quantum numbers to obtain the momentum distri-
bution modified by the medium. However, looking at (5)
one should notice that two fields in the pair can come

from the same side of the cut. Then, due to the color
neutrality, the general expression (7) involves one or
more θð0Þ which should be defined. Thus, we have to re-
consider the derivation in the case when the amplitude
involves two consequent interactions on the same source,
or, in other words, we have to separately study the so-
called double-Born (DB) diagrams in addition to the ones
involving only direct single-Born (SB) interactions. The
former are needed to ensure unitarity. If such a contact
interaction takes place, involving two consequent inser-
tions n and nþ 1 in Mr, then the color averaging results
in jn ¼ jnþ1, and the corresponding qz integrals read

ð4E2Þ
Z

dqn;z
2π

dqnþ1;z

2π

vjnðqnÞvjnðqnþ1Þ
ðp2

n þ iϵÞðp2
nþ1 þ iϵÞ e

−iqn;zðzjn−zjn−1 Þe−iqnþ1;zðzjn−zjn−1 Þ

≃ −2iEθjn;jn−1e
−iðqðpÞn;zþqnþ1;zÞðzjn−zjn−1 Þ

Z
dqnþ1;z

2π

vjnðqn; qðpÞn;z Þvjnðqnþ1; qnþ1;zÞ
p2
nþ1 þ iϵ

≃ −
1

2
θjn;jn−1vjnðq2n⊥Þvjnðq2nþ1⊥Þe−iðq

ðpÞ
n;zþqnþ1;zÞðzjn−zjn−1 Þ; ð8Þ

where qðpÞn;z ¼Qn −
P

N
m¼nþ1 qz;m is the small pole of p2

n ¼ 0

solved for qn;z, the combination qðpÞn;z þ qnþ1;z is qnþ1;z
independent, and the final expression is written under an
assumption that

P
N
m¼nþ2 qz;m is subeikonal, as is the case

after the qnþ2;z integration, for additional details see Ap-
pendix A. It should be also mentioned that the full qnþ2;z
dependence of the integrand results only in additional
screened poles, and the corresponding integration is un-
affected by the presence of the contact interaction. Finally,
one should notice that we have omitted the qn;z-dependent

entry of the form vðqn−1; qðpÞn−1;zÞ in the integrand since it
cannot modify the qn;z integration, and after the first
integration over qn;z its qnþ1;z dependence disappears. Each
SB contribution to the amplitude squared should be sup-
plemented with all the corresponding contact terms.
When the amplitude is squared, each contribution to the

Nth order in opacity involves 2N sums over the in-medium
sources. The color averaging reduces the number of the
sums to N: only two gluon exchanges are allowed, happen-
ing either on different sides of the cut (SB interactions) or on
the same source on one of the sides (DB interactions).
Commonly, at this step, the discrete sums are replaced by
continuous averages with a source number density, i.e.,X

i

fi ¼
Z

d2xdz ρðx; zÞfðx; zÞ; ð9Þ

where the spatial integration goes over the medium volume,
and we assume that the medium is large but keep its finite
longitudinal length L explicitly.

If the system is uniform in the transverse directions, each
xn integral acts only on the corresponding Fourier factor,
resulting inZ

d2xne−iðqn�q̄nÞ·xn ¼ ð2πÞ2δð2Þðqn � q̄nÞ;

where qn and q̄n are the two momentum exchanges in the
averaged potential pair and the sign is different for SB
and DB interactions. Thus, the number of the transverse
momentum integrals is halved, while all the LPM phases
cancel out in the jet momentum distribution.
Collecting the SB and DB terms, one finds the well-

known result [27] for the amplitude squared at Nth order in
opacity:

hjMj2iðNÞ ¼
YN
n¼1

�
ð−1Þ

Z
znþ1

0

dzn

×
Z

d2qn
ð2πÞ2 Vðqn; znÞ

�
jJðE; pinÞj2 ð10Þ

with

Vðq; zÞ≡ −CρðzÞ
�
jvðq2⊥Þj2 − δð2ÞðqÞ

Z
d2ljvðl2⊥Þj2

�
;

where Vðq; zÞ is a specific combination of the in-medium
color potentials, which enters the distribution at all orders
in opacity, and zNþ1 ¼ L. We will refer to it as the dipole
potential, since it can be related to the forward scattering
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amplitude for a color dipole. Here, C ¼ Cproj
2CR̄

is the full color
factor with Cproj1 ¼ taprojt

a
proj, and the superscript (N)

indicates the order in the opacity expansion. Notably, the
opacity series can be now resummed, since the convolution
(10) reduces to a local product in the x space. Indeed,
introducing the jet distribution in the x space

E
dN

d2xdE
¼ 1

2ð2πÞ3
Z

d2p
ð2πÞ2 hjMðpÞj2ieip·x ð11Þ

we readily write

dN
d2xdE

¼
X∞
N¼0

Z
d2pd2r
ð2πÞ2 eip·ðx−rÞ

ð−1ÞN ½VðrÞL�N
N!

dN ð0Þ

d2rdE

¼ e−VðxÞL
dN ð0Þ

d2xdE
; ð12Þ

where for simplicity we set ρðzÞ ¼ const, and, conse-
quently, Vðq; zÞ ¼ VðqÞ.
On the other hand, if the medium is inhomogeneous in

the transverse directions, then the xn integrals cannot be
simplified without further assumptions. As in [15] we
focus on the leading corrections in the case of a slow x
dependence, when the thermodynamic parameters can be

expanded in their transverse gradients. Then, the leading
gradient corrections to the general transverse integral
appear due to linear terms, such asZ

d2xnxαne−iðqn�q̄nÞ·xn ¼ ið2πÞ2 ∂

∂ðqn � q̄nÞα
δð2Þðqn � q̄nÞ;

where α is a vector index in the transverse 2D space.
In the absence of medium flow, the two medium

parameters of interest are ρ and μ, and to the leading order
in gradients they can be written as

ρðx; zÞ ≈ ρðzÞ þ ∇ρðzÞ · x;
μ2ðx; zÞ ≈ μ2ðzÞ þ ∇μ2ðzÞ · x; ð13Þ

where for compactness we use ρðzÞ≡ ρð0; zÞ. Integrating
the δ-function derivatives by parts, one may find that they
act only on the LPM phases, while all other contributions
are either suppressed within the eikonal expansion or
cancel between complex conjugated contributions. This
generalizes the observation in [15] for the broadening at the
first order in opacity. We will discuss the details of this
derivation in a separate Appendix A using the N ¼ 2 case
as an example. Here we only present the squared amplitude
at Nth order in opacity:

hjMj2iðNÞ ¼
YN
n¼1

�Z
znþ1

0

dzn

Z
d2qn
ð2πÞ2

��
1þ 1

E

XN
m¼1

ðzm − zm−1Þpm ·
XN
k¼m

ĝk

�
× ð−1ÞNV1ðq1Þ…VNðqNÞjJðE; pinÞj2; ð14Þ

where we have introduced notations ρk, μk, and Vk to distinguish different sources of gradients, ĝk ≡ ð∇ρ δ
δρk

þ ∇μ2 δ
δμ2k
Þ is an

operator generating gradient contributions, and the ordering of the z integrals is enforced by the θn;n−1 in (7) and (8). After
the variations with respect to ρk and μk are performed, we again set the thermodynamic parameters of the same type to be
equal and constant in z.
Further simplifying (14) and transforming to the x space, we find

dN ðNÞ

d2xdE
¼

Z
d2pd2r
ð2πÞ2 eip·ðx−rÞð−1ÞN ½VðrÞL�N

�
1

N!
þ L
EðN þ 1Þ!

×
XN
m¼1

�
ðN þ 1 −mÞp ·

�
V 0ðrÞ
VðrÞ ∇μ

2 þ 1

ρ
∇ρ

�
þ iðN þ 1 −mÞ2 ∇VðrÞ

ρVðrÞ · ∇ρ

þ iðN þ 1 −mÞ
�
∇V 0ðrÞ
VðrÞ þ ðN −mÞV

0ðrÞ
VðrÞ

∇VðrÞ
VðrÞ

�
· ∇μ2

��
dN ð0Þ

d2rdE
; ð15Þ

and the opacity series can be again resummed, resulting in

dN
d2xdE

¼ e−VðxÞL
��

1 − i
VðxÞL3

6E

�
V 0ðxÞ
VðxÞ ∇μ

2 þ 1

ρ
∇ρ

�
· ∇VðxÞ

�
dN ð0Þ

d2xdE

þ i
VðxÞL2

2E

�
V 0ðxÞ
VðxÞ ∇μ

2 þ 1

ρ
∇ρ

�
· ∇

dN ð0Þ

d2xdE

�
; ð16Þ
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where V 0ðxÞ ¼ ∂

∂μ2
VðxÞ. Thus, we have derived (1), which

is one of the main results of this work. It gives the Fourier
transform of the momentum broadening distribution up to
the first order in gradients and to all orders in opacity. One
can further use it to study the jet momentum broadening,
which we proceed to do in Sec. IV.

III. THE BDMPS-Z FORMALISM

In this section, we rederive the leading gradient effects
on the jet momentum broadening within the BDMPS-Z
approach. From a practical point of view, in this formalism
the resummation of multiple field insertions is first per-
formed at the amplitude level by constructing the dressed
in-medium propagator. We obtain the in-medium propa-
gator for an inhomogeneous medium, including the leading
gradient contributions.
Since the interactions with the medium are dominated by

tree-level gluon exchanges, the dynamics of the background
field is dominated by the classical Yang-Mills equations,
and it can be treated as a stochastic variable. In the BDMPS-
Z approach, it is typically assumed that the statistics of the
field take a white-noise form due to the large number of
uncorrelated degrees of freedom in the medium, analogous
to the McLerran-Venugopalan model [32,52,53]. This is
equivalent to the assumption used in the previous section
that only pairwise averages are non-negligible.
Thus, we again start with a model for the in-medium

color field. The model commonly used in the BDMPS-Z
approach can be conveniently summarized with

gAμa
extðqÞ ¼ ð2πÞgμ0vaðqÞδðq0Þ; ð17Þ

where the scattering potential should be set to vaðqÞ ¼P
j e

−iðq·xjþqzzjÞtaj vjðqÞ to coincide with the GW model
used in the previous section. It should be also noticed that in
general the individual potentials of the scattering centers can
be left unspecified in both approaches, although one should
be careful treating the DB interactions.
Having the form of the scattering potential, we proceed

to rewrite the amplitude given in (7) in terms of an effective
dressed propagator. For that, we first write (6) using the in-
medium color field (17), then

iMrðpfÞ ¼
Yr
n¼1

�
ð−1Þ

Z
d2pndpn;z

ð2πÞ3 taprojv
a

× ðpnþ1 − pnÞ
2E

p2
n þ iϵ

�
JðpinÞ; ð18Þ

where the temporal components satisfy the constraint
p0
n ¼ E, indicating that there is no energy transfer between

the medium and the probe via soft gluon exchanges. It is
convenient to Fourier transform the potentials, simplifying
the pz integration. This is equivalent to working in a mixed

representation, where “time” dependence is made explicit,
commonly employed in the BDMPS-Z related literature
and analogous to old-fashioned perturbation theory.
Then, (18) can be rewritten as

iMrðpfÞ ¼
Yr
n¼1

�Z
d2pnd2xndzn

ð2πÞ2 θn;n−1itaprojv
aðxn; znÞ

× e−iðpnþ1−pnÞ·xne−i
p2
n⊥
2E ðzn−zn−1Þ

�
ei

p2
f⊥
2E zrJðE; pinÞ;

ð19Þ

where ðxn; znÞ denote the interaction points, and should not
be mixed with the source coordinates in the GW model,
now hidden in va.
Finally, noticing that p1 ¼ pin and prþ1 ¼ pf, we can

write the perturbative amplitude as a convolution between
the source and a contribution to an effective single particle
propagator Grðpf; L; pin; 0Þ:

iMrðpÞ ¼
Z

d2pin
ð2πÞ2 e

i
p2
f⊥
2E LGrðpf; L; pin; 0ÞJðE; pinÞ: ð20Þ

Notice that the in-medium potential va is screened by the
Debye mass μ, and thus has a finite spatial support of size
∼ 1

μ. As a consequence, the z integrals can be safely taken
to run from the production point z ¼ 0 to the end of
the medium at z ¼ L, which enters the single particle
propagator.
The full effective propagator can be obtained by sum-

ming over the number of interactions

Gðpf; L; pin; 0Þ ¼
X∞
r¼0

Grðpf; L; pin; 0Þ; ð21Þ

where it is simple to check that in the case of vacuum
propagation it reduces to the usual Feynman result

G0ðpf; L; pin; 0Þ ¼ ð2πÞ2δð2Þðpf − pinÞe−i
p2
f⊥
2E L: ð22Þ

Inserting this back in (20), we find that the amplitude
reduces to the initial source function, as expected.
Instead of dealing with the series in (21), one can

construct an evolution equation for G from (19) and
(20), which takes the usual Schrödinger-like form

∂

∂L
Gðpf; L; pin; 0Þ ¼ −i

p2
f⊥
2E

Gðpf; L; pin; 0Þ

þ
Z

d2ld2x
ð2πÞ2 itaprojv

aðx; LÞe−iðpf−lÞ·xGðl; L; pin; 0Þ: ð23Þ
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This equation should be supplemented with an “initial
condition,” which can be obtained from the fact that at
L ¼ 0 there is no modification to the amplitude sourced by
JðpinÞ. The solution to (23) with the corresponding initial
condition is well known [54], and its x space form can be
written as a path integral

GðxL;L;x0;0Þ ¼
Z

xL

x0

Dr exp

�
iE
2

Z
L

0

dτ _r2
�

×P exp

�
i
Z

L

0

dτ taprojv
aðrðτÞ; τÞ

�
; ð24Þ

where P indicates path ordering, and xL ≡ xðLÞ and
x0 ≡ xð0Þ are the boundary conditions for the trajectory.
This effective propagator can be thought of as describing a
massive nonrelativistic particle, moving from the initial
position x0 at “time” τ ¼ 0 to the final position xL at “time”
τ ¼ L in a (random) potential vaðr; τÞ.
With the further assumption that the QCD emission

vertices are unaltered in the medium, one can derive a set
of effective Feynman rules using the propagator above and
compute any quantum amplitude. As a consequence, in such
a path integral formulation of the BDMPS-Z formalism, in

practice one can just draw all the relevant time ordered
Feynman diagrams including themedium and directly obtain
the amplitudes, similar to more standard vacuum pQCD
calculations. The squared amplitude, already averaged over
the quantum numbers and medium configuration, can be
easily expressed through an in-medium correlation function
of two propagators, cf. (20),

hjMj2i ¼
Z

d2pind2p̄in
ð2πÞ4 hGðpf; L; pin; 0ÞG†

× ðpf; L; p̄in; 0ÞiJðE; pinÞJ�ðE; p̄inÞ; ð25Þ

as well as the distribution corresponding to the jet momen-
tum broadening itself.
In order to compute (25), we first have to revisit how

the averaging procedure is performed in the BDMPS-Z
approach. Since GðxL; L; x0; 0Þ is a functional of
vaðrðτÞ; τÞ, one first needs to consider the average of the
in-medium color fields. Since these are assumed to have
Gaussian statistics, only two-point functions of the potentials
are nontrivial. For instance, in the GW model, the corre-
sponding average reads

htaprojvaðr; τÞtbprojv†bðr̄; τ̄Þi ¼ Cg4
Z

dzd2xρðx; zÞ

×
Z

d2qdqzd2q̄dq̄z
ð2πÞ6

eiq·ðr−xÞe−iq̄·ðr̄−xÞeiqzðτ−zÞe−iq̄zðτ̄−zÞ

ðq2⊥ þ q2z þ μ2ðx; zÞÞðq̄2⊥ þ q̄2z þ μ2ðx; zÞÞ ; ð26Þ

where we have used the color neutrality condition and
taken the continuous limit of the distribution of scattering
centers in the medium (as in the previous section) in order
to make the dependence on the source density explicit.
Before we proceed, one should notice that only a particular
limit of this correlation function enters the amplitude (19)
when it is squared and averaged, see, e.g., [55]. In fact, the
average in (26) is Fourier transformed to the momentum
space in the amplitude squared, with the z component of the
momentum being subeikonal. Thus, the qz dependence in
(26) can be neglected without affecting the final result at the
accuracy level being considered. Using this simplification,
we find

htaprojvaðr; τÞtbprojv†bðr̄; τ̄Þi ≃
�
1þ rðτÞ þ r̄ðτÞ

2
· ĝ
�

× Cδðτ − τ̄Þρg4
Z

d2q
ð2πÞ2

eiq·ðr−r̄Þ

ðq2 þ μ2Þ2 ; ð27Þ

where x in ρðx; zÞ and μ2ðx; zÞ has been replaced with
−i ∂

∂ðq−q̄Þ acting on everything but the delta function

δð2Þðq − q̄Þ, and we assume that ρ and μ2 are constant in
the longitudinal direction. One should notice that all the
previous steps in this section are unaffected by the
inhomogeneity of the medium, and the gradient effects
enter solely through the potential averages.
The two-point correlator of the in-medium color poten-

tials now depends not only on the transverse size of the
effective color dipole formed by the propagating parton in
amplitude and conjugate amplitude (see Fig. 2), which is
proportional to the difference jr − r̄j, but also on its center
of mass transverse position rþr̄

2
. This is well expected, since

translation invariance is now violated by the transverse
gradients. The higher-order gradients will enter the
BDMPS-Z construction similarly, with higher powers of
the transverse position of the center of mass.
Given the leading gradient form for the pairwise average

of two in-medium potentials, we now turn to the average
entering (25). Using the two-point correlator (27), we can
write the average of two Wilson lines as4

4The exponentiation follows from the fact that the averaging
statistics is still Gaussian.
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P exp

�
i
Z

L

0

dτ taprojv
aðrðτÞ; τÞ

�
P exp

�
−i

Z
L

0

dτ̄ tbprojv
bðr̄ðτ̄Þ; τ̄Þ

�


¼ exp

�
−
Z

L

0

dτ

�
1þ rðτÞ þ r̄ðτÞ

2
· ĝ

�
VðrðτÞ − r̄ðτÞÞ

�
; ð28Þ

where the contact terms arise from the pairwise averages of potentials coming from the same exponential, and we use the
fact that the potential is Hermitian in the GW model. Notice that the exponential with the gradients in the argument should
be treated as a series valid up to the first order at the accuracy of our consideration.
The position space form of the relevant correlator of two propagators reads

hGðxL; L; x0; 0ÞG†ðx̄L; L; x̄0; 0Þi≡ hGðxL; x0ÞG†ðx̄L; x̄0Þi

¼
Z

xL

x0

Dr
Z

x̄L

x̄0

Dr̄ exp

�
iE
2

Z
L

0

dτ½_r2 − _̄r2�
�

× exp

�
−
Z

L

0

dτ

�
1þ rðτÞ þ r̄ðτÞ

2
· ĝ

�
VðrðτÞ − r̄ðτÞÞ

�

¼
Z

uL

u0

Du
Z

wL

w0

Dw exp

�Z
L

0

dτ½iE _u · _w − ð1þ w · ĝÞVðuðτÞÞ�
�
; ð29Þ

where u≡ r − r̄ and w≡ rþr̄
2
. The path integral is simple enough to be evaluated analytically, since the w dependence enters

only through the small gradient terms. At the first order in gradients the final answer is proportional to the value of the
integrand on the solution of the effective classical equation of motion5 (EOM). Thus, using the standard methods [54–56],
we can reduce this expression to

hGðxL; x0ÞG†ðx̄L; x̄0Þi ¼
�

E
2πL

�
2 exp fiEðw · _ucÞjL0 −

R
L
0 dτVðucðτÞÞg

1þ i
EL ĝ ·

R
L
0 dζ

R ζ
0 dξξ∇VðucðξÞÞ

; ð30Þ

where ucðτÞ is the classical solution satisfying

Eü ¼ iĝVðuðτÞÞ; ð31Þ

with appropriate boundary conditions. Notice that the
structure in the denominator of (30) is a part of a Jacobian
appearing in the path integral, along with the overall
multiple. In general, (31) does not admit an analytical
solution. However, since we are only interested in the
leading gradient terms, it can be solved in an expansion

uc ¼ uð0Þc þ uð1Þc , where uð0Þc has no gradient dependence

and uð1Þc is linear in gradients.6

At the zeroth order, the right-hand side of the EOM is
zero, and one readily finds that the separation vector can
only change linearly with “time”,

uð0Þc ðτÞ ¼ uL − u0
L

τ þ u0; ð32Þ

leading to the uniform broadening result in (12), see, e.g.,
[55,56]. In turn, the leading gradient correction to the
trajectory is purely imaginary,

uð1Þc ðτÞ ¼ i
E
ĝ

�Z
τ

0

dζ
Z

ζ

0

dξVðuð0Þc ðξÞÞ

−
τ

L

Z
L

0

dζ
Z

ζ

0

dξVðuð0Þc ðξÞÞ
�
; ð33Þ

and satisfies the trivial boundary conditions uð1Þc ðLÞ ¼
uð1Þc ð0Þ ¼ 0.
The momentum scale pf in (25) corresponds to a

measured quantity and has to be matched in the two
propagators. For this particular projection of the two-point
correlator (30) we find

5One should notice that this EOM involves a complex potential
term, which in fact should be understood as a perturbation around
the trivial trajectory, see Appendix B.

6Notice that the imaginary part of the classical EOM is propor-
tional to the gradient terms. Thus, substituting ucðτÞ into the
integrand is equivalent to acting on it with a shift operator changing
the zero acceleration of the leading order trajectory with a complex
function.
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hGðpf; L; pin; 0ÞG†ðpf; L; p̄in; 0Þi

¼
�

E
2πL

�
2
Z

d2u0d2w0d2uLd2wLe−ipf ·uLeiu0·
pinþp̄in

2
þiw0·ðpin−p̄inÞ

×
exp fiEðw · _ucÞjL0 −

R
L
0 dτVðucðτÞÞg

1þ i
EL ĝ ·

R
L
0 dζ

R ζ
0 dξξ∇VðucðξÞÞ

¼ ð2πÞ2
L2

Z
d2u0d2uLe−ipf ·uLeiu0·

pinþp̄in
2

×
δð2Þð _ucðLÞÞδð2Þðpin − p̄in − E _ucð0ÞÞ
1þ i

EL ĝ ·
R
L
0 dζ

R ζ
0 dξξ∇VðucðξÞÞ

exp

�
−
Z

L

0

dτVðucðτÞÞ
�
; ð34Þ

where again the delta functions of complex arguments
should be understood as a shift operator (with small
imaginary shift parameter) acting on the corresponding
delta function of the (leading) real part of the argument.
Contracting this with the initial source functions in (25),
one can find the corresponding squared amplitude

hjMj2i≃ 1

ð2πLÞ2
Z

d2Pind2u0d2uLe−ipf ·uLeiPin·u0

×
δð2Þð _ucðLÞÞ expf−

R
L
0 dτVðucðτÞÞg

1þ i
EL ĝ ·

R
L
0 dζ

R ζ
0 dξξ∇VðucðξÞÞ

jJðE;PinÞj2;

ð35Þ

where, as in the derivation of (10), we have assumed that
J has at most a constant imaginary phase, as it is for a
tree-level 2-to-2 process, and introduced the symmetric

momentum Pin ¼ pinþp̄in
2

. We have also used that the leading
shift of pin − p̄in in JðpinÞJðp̄inÞ is zero at the first order in
gradients, since the first derivative of this symmetric
function with respect to pin − p̄in is zero at pin ¼ p̄in.
Thus, we can write the corresponding Fourier trans-

formed distribution as

dN
d2xdE

≃
1

L2

Z
d2u0d2uLδð2Þðx − uLÞ

×
δð2Þð _ucðLÞÞ exp f−

R
L
0 dτVðucðτÞÞg

1þ i
EL ĝ ·

R
L
0 dζ

R ζ
0 dξξ∇VðucðξÞÞ

dN ð0Þ

d2u0dE
:

ð36Þ

The velocity constraint at τ ¼ L allows us to simplify the
form of uc. In particular, in the case of vanishing matter
gradients, it implies directly from (32) that the size of the
effective dipole is preserved during its evolution [4]. In the
present case, this constraint implies

uL − u0
L

þ i
E
ĝ

�Z
L

0

dξ Vðuð0Þc ðξÞÞ

−
1

L

Z
L

0

dζ
Z

ζ

0

dξ Vðuð0Þc ðξÞÞ
�

¼ 0; ð37Þ

and one can use it to relate u0 and uL.
At the leading order in gradients we find

uL − u0 þ
iL2

2E
ĝVðuLÞ ≃ 0; ð38Þ

and, consequently, uc takes a remarkably simple form

ucðτÞ ¼ uL þ i
E
ĝVðuLÞ

�ðτ − LÞ2
2

�
: ð39Þ

The leading order term is the well-known constant solution.
The net effect of including gradients is to change the
effective trajectory of the dipole separation with a constant

FIG. 2. Diagrammatic illustration of (27). Here, the amplitude
level process is depicted in the upper half of the plot while the
conjugate amplitude part is depicted in the bottom one, with the
dashed cut in between.
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(imaginary) shift in the acceleration which is fixed by the
form of VðxÞ. One should also notice that the delta function
constraining the velocity at τ ¼ L has a nontrivial depend-
ence on u0 which enters the argument also through

Vðuð0Þc ðξÞÞ, leading to an additional multiple:

L2

�
1 −

iL
E
ĝ ·

�Z
L

0

dξ −
1

L

Z
L

0

dζ
Z

ζ

0

dξ

�

×

�
1 −

ξ

L

�
∇V

�
uð0Þc ðξÞ

��
−1
: ð40Þ

Combining all the previous results and expanding in the
smallness of gradients, we conclude that the x space form
of the jet distribution reads

dN
d2xdE

≃ exp f−VðxÞLg
��

1 −
iL3

6E
∇VðxÞ · ĝVðxÞ

�
dN ð0Þ

d2xdE

þ iL2

2E
ĝVðxÞ · ∇ dN ð0Þ

d2xdE

�
; ð41Þ

and one can easily see that it exactly coincides with (16),
obtained from the opacity series resummation. It should
be mentioned that the two measure factors coming from
the path integral and velocity constraint cancel, resulting in
the simpler expression above. Thus, we have shown that the
usual BDMPS-Z formalism can be extended to inhomo-
geneous backgrounds to the leading order in gradient
expansion. Conceptually, the approach can be extended in
a straightforward manner to include higher order gradient
effects. However, we note that in such a situation the path
integrals to be solved are technically more involved [e.g., the
w dependence in (29) would no longer be linear].
Before we turn to the properties of the distribution (41),

it should be also mentioned that its extension to the case of
z-dependent medium profile can be readily obtained. After a

straightforward generalization of the derivation in the
longitudinally homogeneous case, one finds

dN
d2xdE

≃ exp

�
−
Z

L

0

dτVðx; τÞ
�

×

��
1−

i
E

Z
L

0

dτ∇Vðx; τÞ

·

�Z
τ

L
dζ

Z
ζ

0

dξþ ðL− τÞ
Z

L

0

dξ

�
ĝðξÞVðx; ξÞ

�

þ i
E

Z
L

0

dζ
Z

ζ

0

dξ ĝðξÞVðx;ξÞ ·∇
�
dN ð0Þ

d2xdE
; ð42Þ

where ĝðτÞ ¼
�
∇ρðτÞ δ

δρ þ ∇μ2ðτÞ δ
δμ2

�
.

IV. THE FINAL STATE DISTRIBUTION
AND ITS PROPERTIES

In this section, we proceed to discuss the properties of the
final jet momentum distribution given by (16) [or, equiv-
alently, (41)]. Heuristically, the leading effect of the matter
gradients is that the broadening becomes anisotropic, and
the final jet momentum distribution is direction dependent,
see Fig. 3. In other words, propagating through an inho-
mogeneous matter, probes pick up an additional transverse
momentum, and even on average it is nonzero due to the
nontrivial matter structure. The modifications to the jet
structure are thus qualitatively different from the ones
observed in the case of a homogeneous background. In
this section, we will analyze the properties of the distribu-
tion (16) and illustrate our results with simple numerical
estimates for the broadening probability, using phenom-
enologically relevant parameters. Let us first notice that the
broadening of the jet distribution has to be unitary—at a
fixed energy, the number of jets (partons) cannot be changed
and the in-medium propagation results only in a reshuffling

FIG. 3. An illustration of a single parton evolving in the presence of an inhomogeneous static slab of matter. The initial jet direction
gets modified due to the presence of the temperature gradient. This modification depends on the angle θ between ∇T and the transverse
momentum accumulated during the evolution, as shown by the dashed shape.
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of the underlying momentum modes. To check that, one can
consider the value of the x-space distribution at x ¼ 0,
which corresponds to the volume integral of the momen-
tum-space distribution. At this point, the x-space dipole
potential is zero Vð0Þ ¼ 0 as well as its transverse
gradient ∇Vð0Þ ¼ 0, and the full distribution (1) is equal
to

R
d2p dNð0Þ

d2pdE. Thus, the unitarity condition is satisfied by

the broadened jet momentum distribution even in an
inhomogeneous mediumZ

d2p
dN

d2pdE
¼ dN
d2xdE

����
x¼0

¼ dN ð0Þ

d2xdE

����
x¼0

¼
Z

d2p
dN ð0Þ

d2pdE
:

ð43Þ

One could also notice that in (41) the initial distribution
is not fully factorized from probe-medium interactions.
Indeed, in the uniform case, the x-space form of the final jet
distribution can be represented as a product of the initial
distribution with an interaction factor. The gradient effects
in turn enter not only through the probe-medium inter-
actions, but also through a shift of the argument in the
initial hard distribution dNð0Þ

d2pdE. Thus, the relation between the

final and initial distributions involves an operator

dN
d2xdE

¼ PðxÞŜðxÞ dN
ð0Þ

d2xdE
; ð44Þ

where

PðxÞ ¼ exp f−VðxÞLg
�
1 −

iL3

6E
∇VðxÞ · ĝVxÞ

�

is a transform of PðpÞ, the (broadening) probability for a
particle of energy E to acquire transverse momentum p due
to propagation in the medium for a distance L, and

ŜðxÞ ¼ 1þ iL2

2E
ĝVðxÞ · ∇ ≃ exp

�
iL2

2E
ĝVðxÞ · ∇

�

is a shift operator being an identity operator in the absence
of gradients. One can immediately see that PðpÞ is self-
normalized, and that ŜðxÞ does not change particle number
at a given fixed energy.
It is instructive to compare the resummed final state

distribution to the one obtained at the first order in opacity
by evaluating the leading moments:

hFðpÞi ¼
R
d2pFðpÞ dN

d2pdER
d2p dN ð0Þ

d2pdE

; ð45Þ

where FðpÞ is an arbitrary function. Following [15], we
focus on a Gaussian initial distribution

E
dN ð0Þ

d2pdE
¼ fðEÞ

2πw2
e−

p2⊥
2w2 ; ð46Þ

where fðEÞ is an unspecified energy dependence, and w is
the characteristic width. We also assume that the matter is
uniform in the longitudinal direction. One generally expects
that the terms linear in gradients cannot modify the scalar
moments, so hp2k⊥ i ¼ hp2k⊥ i∇ρ¼∇μ2¼0, and we may focus on
the odd moments hpp2k⊥ i sensitive to the anisotropy,7 see,
e.g., [15,17].
Starting with the simplest case of the averaged momen-

tum hpi at the given energy, we find it convenient to use the
opacity expanded form of the distribution (14) rather than
its resummed form. Doing so, one finds that the moment is
controlled by the following integral

1

2πw2

Z
d2ppαpβ

me
−
p2
in⊥
2w2 ¼ δαβw2 þ

XN
i¼1

qαi
Xm−1

j¼1

qβj ; ð47Þ

where pn ¼ pf −
P

N
m¼n qm, pin ¼ p1, and α and β are the

indices in the transverse 2D space. We also notice that in
the absence of the gradients the averaged momentum is
zero due to the lack of a preferred direction in the problem,
and the corresponding part of (14) gives zero. Thus, for the
contribution at the Nth order in opacity, we find

hpαiðNÞ ¼ LNþ1

EðN þ 1Þ!
YN
n¼1

�Z
d2qn
ð2πÞ2

�

×
XN
m¼1

��XN
i¼1

qαi
Xm−1

j¼1

qβj

�XN
k¼m

ĝβk

�
× ð−1ÞNV1ðq1Þ…VNðqNÞ; ð48Þ

where we have additionally used that
R
d2qnVnðqnÞ ¼ 0

removing the w2 term. For any N > 1 this expression is
zero due to the same property of VnðqnÞ, since the integrand
involves only two powers of qi, and at least one of the
dipole potential averages to zero. In turn, the N ¼ 1

contribution is zero since it involves only the w2 term.
Thus, we find that hpi ¼ 0 to all orders in opacity.
The first nonzero moment of the momentum broadening

distribution at the first order in opacity is hpp2⊥i [15]. We
can again perform the final momentum averaging, and find

7For an earlier attempt to study the matter anisotropy with
directional jet quenching, see [57].
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1

2πw2

Z
d2ppαpβ

mp2⊥e
−

p2
in

2w2 ¼
�
4w4 þ w2

�XN
i¼1

qi

�2�
δαβ þ 4w2

�XN
i¼1

qαi

��Xm−1

j¼1

qβj

�

þ 2w2

�XN
i¼1

qαi

��XN
j¼1

qβj

�
þ
�XN

i¼1

qαi

��Xm−1

j¼1

qβj

��XN
l¼1

ql

�2

: ð49Þ

Thus, one can see that the only nonzero contributions may
come at N ¼ 1

hpαp2⊥ið1Þ ¼ −
w2L2

E
ĝα

Z
d2q
ð2πÞ2 q

2⊥VðqÞ ð50Þ

and at N ¼ 2

hpαp2⊥ið2Þ ¼
L3

6E

Z
d2q1
ð2πÞ2 q

2
1⊥Vðq1Þĝα

Z
d2q2
ð2πÞ2 q

2
2⊥Vðq2Þ;

ð51Þ

while the higher orders in opacity decouple. In the case of
the GW potential, the terms proportional to ∇ρ are diver-
gent, and should be regularized at some scale. Comparing
with [15], we set jqmaxj ¼

ffiffiffiffiffiffi
Eμ

p
, and find

hpαp2⊥i ¼
w2L2μ2

Eλ
∇αρ

ρ
ln
E
μ
þ L3μ4

6Eλ2
∇αρ

ρ

�
ln
E
μ

�
2

; ð52Þ

where λ ¼ 1
ρσ0

with σ0 ¼
R d2q

ð2πÞ2 Cjvðq2⊥Þj2. The first term in

the expression above precisely agrees with the result
obtained in [15]. In turn, the second term is new and
indicates that the higher N contributions to the transverse
momentum moments with integer k ≥ 1 are generally
dominating as long as the potential integrals are diver-
gent. One should also notice that the second term is
independent of w, and can be identified as a purely final
state effect [described by the broadening probability
PðpÞ], since in the limit w → 0 the initial distribution
is constant in coordinate space and not affected by the

shift operator Ŝ. In general, nonzero odd moments are the
primary effect of the hydrodynamic gradients on the jet
broadening, and they can be used to learn about the
medium profile with jets. We leave the moments with
general real k and their phenomenological implications
for future studies.
We now turn back to the partial factorization, and focus

on the final state effects. The corresponding portion of (44)
is the self-normalized broadening probability PðpÞ, which
has multiple phenomenological applications [47,58–61]. Its

Fourier transform can be obtained from (41) if we set

E dN ð0Þ
d2xdE to be a constant in the transverse directions,

decoupling in this way the shift operator ŜðxÞ,

PðpÞ ¼
Z

d2xe−ip·xe−VðxÞL
�
1 −

iL3

6E
∇VðxÞ · ĝVðxÞ

�
: ð53Þ

At this point one has to specify the particular model for the
medium, fixing the dipole potential, and evaluate PðpÞ
explicitly. We consider the GW model, and in this case the
potential reads

VGWðx⊥Þ ¼
Cg4ρ
4πμ2

ð1 − μx⊥K1ðμx⊥ÞÞ: ð54Þ

However, even in this simple case and in the absence of
gradients, the Fourier transform cannot be written in a
closed form, restricting phenomenological applications.
By this reason, it is instructive to consider PðpÞ in some

limiting regimes. If the gradients are zero, then the
probability (53) is a function of two dimensionless combi-
nations of the parameters and momentum: p⊥

μ and

χ ≡ Cg4ρ
4πμ2

L, where χ is the opacity in the GW model. The

dipole potential Vðx⊥Þ tends to a constant at large μx⊥, and
the large x⊥ limit of the integration is controlled by the fast
oscillation of the Fourier exponential. For sufficiently large
momenta such that p⊥ ≫ μ, one can expand the dipole
potential in powers of μx⊥, and for the GW model it reads

4L
χ
VGWðx⊥Þ ¼ μ2x2⊥ log

4e1−2γE

μ2x2⊥
þOðμ4x4⊥Þ; ð55Þ

where γE is the Euler constant. One should notice that the
first term in the expansion is common between most of the
medium models, since it is fixed by the ultraviolet (UV)
Coulomb-like behavior for large momentum exchanges,
see, e.g., [62–64].
If we further require that p2⊥ ≫ χμ2, then the exponential

of the dipole potential itself can be expanded, and, after
expanding the in-medium potentials, we find
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PðpÞ ≃
Z

d2xe−ip·x
�
1 − Vðx⊥ÞLþ 1

2
V2ðx⊥ÞL2 −

iL3

6E
∇Vðx⊥Þ · ĝVðx⊥Þ

�

≃
4πμ2χ

p4⊥
þ 16πμ4χ2

p6⊥

�
log

p2⊥
μ2

− 2

�

þ 4πμ4χ2L
3E

�
∇ρ
ρ

�
log

p4⊥
μ4

− 4

�
−
∇μ2

μ2

�
·
p
p6⊥

; ð56Þ

where we have omitted terms proportional to δð2ÞðpÞ since
the argument is away from zero. The first two terms in
this expansion come from the homogeneous case, with the
first giving the dominant Coulomb tail expected at large
momentum transfers. In turn, the gradient term has an odd
(negative) power of p⊥ and can only be generated in an
inhomogeneous medium. In fact, one can compare the
asymptotic structure of (56) directly with the first nontrivial
moment (52) in the limit of infinitely narrow source (i.e.,
w → 0). The only contribution to (52) in this limit comes
from the N ¼ 2 term, which gets a double Coulomb
logarithmic enhancement. Indeed, looking at the last term
in (56), one may notice that its dominant contribution to
hpp2⊥i scales as j ∇ρEρ j

R
dp⊥ logp⊥

p⊥ , and with a similar UV

regularization it gives j ∇ρEρ jðlog E
μÞ2 in qualitative agreement

with the previous result.
Expanding the probability distribution P in two param-

eters, one has to pay a particular attention to the appli-
cability of the result. Indeed, if the large momentum
expansion parameter μ

p⊥ is too small, the gradient contri-
butions could take the leading role. Here we assume that this
is not the case, and that the first order gradient correction
appearing in the last term of (56) is at least smaller than the
dominant Coulomb tail contribution, although it can com-
pete with the second term in the expression.

Another kinematic regime commonly considered in the
literature [47,63] corresponds to the intermediate momen-
tum region μ2 ≪ p2⊥ ≤ χμ2. In this case, the exponential of
the dipole potential cannot be expanded, while the approxi-
mation (55) can still be utilized. Moreover, the weak
logarithmic dependence of the expanded dipole potential
on x can be neglected. Indeed, one can introduce a new
scale Q2 ≫ μ2 such that

4L
χ
VGWðx⊥Þ ≃ μ2x2⊥

�
log

Q2

μ2
þ log

4e1−2γE

Q2x2⊥

�

≃ μ2x2⊥ log
Q2

μ2
: ð57Þ

In practice, it can be fixed up to an overall coefficient based
on phenomenological arguments, see, e.g., [63,65] for
further discussion. In this regime, the dipole potential is
quadratic, and the leading broadening probability (53)
becomes Gaussian. This is a regime of multiple soft
interactions, which is widely used in phenomenological
models for jet quenching, see, e.g., [47,48,58], and often
referred to as BDMPS-Z/ASW approximation [22,66].
Taking into account the gradient effects, we find

PðpÞ ≃
Z

d2xe−ip·xe
−1
4
χμ2x2⊥ logQ

2

μ2

�
1 −

iμ4χ2L
48E

log
Q2

μ2
x2⊥x ·

�
∇ρ
ρ

log
Q2

μ2
−
∇μ2

μ2

��

¼ 4π

χμ2 logQ2

μ2

�
1þ L

6E

p2⊥ − 2χμ2 logQ2

μ2

χμ2 logQ2

μ2

�
∇ρ
ρ

−
1

logQ2

μ2

∇μ2

μ2

�
· p

�
e
−

p2⊥
χμ2 logQ

2

μ2 : ð58Þ

The usual Gaussian result gets an overall p-dependent
modulation by a new term containing all the gradient
effects. We note that the effect of this contribution should
be more important when p2⊥ ∼ χμ2 logQ2

μ2
, roughly at the

peak of the p⊥ distribution [63]. In this region, the leading
behavior of P is fully described neither by a single hard
scattering nor by the multiple soft scatterings, but rather

there is a competition between these two regimes. Thus,
one may expect a more pronounced deviation from the
homogeneous solution in this region. We numerically
verify this observation in Fig. 4.
Finally, for μ2 ≪ p2⊥ ≤ χμ2, we can also consider the

small logarithmic correction to the dipole potential,
neglected in (57), as a perturbation
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VGWðx⊥Þ ≃
χμ2

4L
x2⊥

�
log

Q2

μ2
þ log

4e1−2γE

Q2x2⊥

�
¼ V0ðx⊥Þ þ δVðx⊥Þ: ð59Þ

This approach to capture the leading effects beyond the
quadratic Gaussian approximation is known as the
improved opacity expansion (IOE), see, e.g., [62,70,71].
Substituting the potential into the broadening probability,
we write it as an expansion

FIG. 4. Numerical evaluation of (65) for six different medium parametrizations. Each setup is characterized by its values for the
opacity χ, the Debye mass μ, and a medium length L ¼ 5 fm. The values considered for the medium parameters are inspired by the ones
typically found in the literature [17,49,63,67–69].
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PIOEðpÞ ¼ P0þ1ðpÞ þ P1þ0ðpÞ þ P2þ0ðpÞ þ P1þ1ðpÞ
þ P2þ1ðpÞ þ P3þ1ðpÞ þ � � � ; ð60Þ

where the first number in the subscript corresponds to the
order in δV, and the second one counts the order in
gradients. The leading contribution P0þ1ðpÞ is given by
(58), the term P1þ0ðpÞ has been discussed in details in [63],
and we have to evaluate the mixed contributions. The full

derivation of the subleading terms goes beyond the scope of
this paper, and we focus on their large momentum regime.
That will allow us to see that the terms subleading in δV
give the correct large momentum limit (56) even in the
presence of gradients, cf. [63].
All the x-integrals entering (60) up to the second order

can be obtained from three master integrals if we act on
them with the appropriate number of momentum deriva-
tives. They read

I1ðp; aÞ ¼
Z

d2xe−ip·xe−ax
2⊥ ¼ π

a
e−

p2⊥
4a ;

I2ðp; a; bÞ ¼
Z

d2xe−ip·xe−ax
2⊥ log

1

b2x2⊥
¼ π

a
e−

p2⊥
4a

�
Ei

�
p2⊥
4a

�
− log

b2p2⊥
4a2

�

≃
4π

p2⊥
þ 16πa

p4⊥
þO

�
a2

p6⊥

�
;

I3ðp; a; bÞ ¼
Z

d2xe−ip·xe−ax
2⊥ log2

1

b2⊥x2⊥

≃
16π

p2⊥

�
γE þ log

p⊥
2b

�
þ 64πa

p4⊥

�
γE − 1þ log

p⊥
2b

�
þO

�
a2

p6⊥
log

p⊥
2b

�
; ð61Þ

where we omit the explicit form of I3 for brevity. In the
large p⊥ limit, the momentum derivatives acting on a term
reduce its contribution removing powers of p⊥. Conse-
quently, one can compare the relative importance of the
different contributions in (60) by counting the powers of x
entering through V and δV outside the Gaussian expo-
nential. However, since the structure of the gradient terms
in (53) involves gradients of the dipole potential, we have
to consider higher order terms in δV to be sure that we keep
all the relevant contributions.
We first notice that the leading term in the IOE

expansion P0þ1ðpÞ is exponentially suppressed for
p2⊥ ≫ χμ2, while P1þ0ðpÞ ∝ 1

p4⊥
gives the leading

Coulomb term in this limit. Similarly, the subleading
nongradient contribution satisfies P2þ0ðpÞ ∝ 1

p6⊥
logp⊥.

The mixed gradient terms in turn scale as P1þ1ðpÞ ∝ 1
p5
⊥

andP2þ1ðpÞ ∝ 1
p5⊥

logp⊥, while one can check that the next
contribution P3þ1ðpÞ ∝ 1

p6⊥
log2p⊥ is suppressed both by a

higher power of inverse momentum as well as by the
gradients, and can be omitted. Finally, we find

PIOEðpÞ ≃
4πμ2χ

p4⊥
þ 16πμ4χ2

p6⊥

�
log

p2⊥
μ2

− 2

�

þ 4πμ4χ2L
3E

�
∇ρ
ρ

�
log

p4⊥
μ4

− 4

�
−
∇μ2

μ2

�
·
p
p6⊥

; ð62Þ

which precisely agrees with the large momentum limit
(56), showing that the IOE covers both limits considered
above. It could be also noticed that the logarithmic terms in
PIOEðpÞ are sensitive to a cancellation of Q between terms
of different orders in the IOE, cf. [65].
Finally, to have a more quantitative understanding of

the broadening distribution PðpÞ, we evaluate (53) using
the full GW potential given in (54). We also assume that the
nuclear matter is near to equilibrium, and its properties are
controlled by a single parameter. For instance, in the case of
QGP in the large temperature limit, one can use parametric
scaling motivated by the equilibrium thermodynamics
μ ∝ gT and ρ ∝ T3, then

∇ρ
ρ

¼ 3
∇T
T

;
∇μ2

μ2
¼ 2

∇T
T

: ð63Þ

The probability PðpÞ is now a function of θ, the angle
between p and ∇T, and a dimensionless quantity
cT ≡ j ∇TET j ≪ 1, see Fig. 3. Performing the remaining
angular integration, we can write P as

PðpÞ ¼ 2π

Z
∞

0

dx⊥x⊥e−V
GWðx⊥ÞL

×

�
J0ðp⊥x⊥Þ−

χ2μ2L
6

cTx⊥K0ðμx⊥ÞJ1ðp⊥x⊥Þ

× ½1− 3μx⊥K1ðμx⊥Þþμ2x2⊥K2ðμx⊥Þ�cosθ
�
: ð64Þ
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For the particular case of the GW model, VGWðx⊥Þ
asymptotically tends to a constant. Therefore, the integral
in (64) needs to be regulated for values of x⊥ ≫ 1

μ. In
particular, one should remove the nonscattering probability
term associated with the asymptotic behavior of VGWðx⊥Þ,
so that only genuine broadening contributions are taken
into account. Thus, following e.g., [63,72], we consider a
regularized broadening distribution

PrðpÞ ¼ PðpÞ − 2π

Z
∞

0

dx⊥x⊥e−V
GWð∞ÞLJ0ðp⊥x⊥Þ; ð65Þ

which differs from (64) by a singular term (delta function)
at p ¼ 0.
In Fig. 4 we present numerical evaluations of (65) for

several sets of parameters inspired by the particular values
used for phenomenological estimates in the literature, see,
e.g., [17,49,63,67–69,73]. However, we have to additionally
stress here that (65) has been evaluated in the simplest limit
of a longitudinally uniform slab of nuclear matter with the
medium parameters varying in the transverse directions.
Thus, any realistic phenomenological applications would
require further generalizations of this broadening distribu-
tion. Each plot is characterized by a value for the medium
opacity χ, the medium length size L, and the Debye mass μ.
Gradient effects are controlled by θ and cT . We take the
medium size to be L ¼ 5 fm, the typical size of nuclear
matter, for all the plots. To explore the sensitivity of PrðpÞ
to the matter gradients, we chose to either take cT ¼ 0.02 or
cT ¼ 0.002 with the temperature gradient either parallel
(θ ¼ 0) or antiparallel (θ ¼ π) to p. The particular values of
cT should be understood in the following way. In the
hydrodynamic regime the temperature gradient is expected
not to be large, i.e., j∇Tj < T2, while the characteristic jet
energy E should be much larger than the temperature T. If
one takes j ∇TT2 j ∼ 1 and j ∇TT2 j ∼ 0.1, then the cT values
correspond to E ∼ 50 T, and one can further scale the value
of the gradient and jet energy together. Finally, when
numerically evaluating (65), we perform the remaining
integration up to a scale of the order of 1

μ. This ultraviolet
cutoff was systematically varied in order to ensure that the
final results do not depend on its particular choice.
At the qualitative level, we observe that the gradient

effects are small for lower opacity, since the gradient
corrections in (65) are proportional to χ2. Comparing all
the results shown, we also confirm the claim made above
that gradient effects should become more important around
the peak of the distribution. Indeed, for the higher opacity
scenarios, gradient effects lead to a sizable suppression of
the broadening peak (for cT ¼ 0.02 and θ ¼ 0), resulting in
an increase of the broadening probability at higher p⊥.
Conversely, in the case where p is antiparallel to ∇T, we
observe an increase of the distribution peak, leading to a
depletion of higher momentum modes. Another feature

shared by all the setups is the insensitivity of the result to
gradient effects at small p⊥, due to the fact that the
inhomogeneous term always couples to an odd power of
p. Finally, it should be also mentioned that the large
momentum tail of the distribution is not modified by the
gradient corrections, as seen from (62). This is indeed true
for the numerically evaluated distributions, but the corre-
sponding large p⊥ region is not presented in Fig. 4.

V. CONCLUSIONS AND OUTLOOK

In this work, we have derived the parton momentum
broadening distribution in an inhomogeneous dense
nuclear matter. The final distribution has been obtained
using both the GLV and BDMPS-Z formalisms. In the
homogeneous case, these two approaches considered above
were proven to agree order by order in opacity, see, e.g.,
[27,74–76]. Here we make the next step, showing that the
agreement holds even if the matter is not translationally
invariant in the transverse directions. Importantly, the
effects of the medium inhomogeneity only emerge once
the medium averaging is performed. As a consequence, all
the results for the jet-medium interactions that are inde-
pendent of the averaging procedure stay unmodified with
respect to the homogeneous case. Qualitatively, the modi-
fication of the resulting broadening distribution (comparing
to the homogeneous baseline) becomes relevant around and
above its characteristic peak, introducing a novel angular
dependence. As a consequence, the gradient effects can
have sizable impact in phenomenological applications,
even for momentum averaged quantities.
Our results for the jet broadening can be extended to

the case of inelastic energy loss in a dense inhomo-
geneous medium. Primarily, such an exercise will allow
us to study how the gradient effects alter the in-medium
gluon production rate, giving rise to a nontrivial angular
structure of the radiation. One may expect that the
effective time factorization of the emission spectrum
found in the limit of soft induced radiation in homo-
geneous media [58,77] would be modified in accordance
with (44). Understanding the resulting new factorized
form is critical for some aspects of jet quenching
phenomenology [47,48,58].
Another important goal we leave for future studies is to

design a jet observable sensitive to the matter effects
discussed in this manuscript, cf. [17]. Particularly, it would
be interesting to explore to what extent the jet substructure
grooming or tagging techniques, see, e.g., [78–83] could be
used to look for matter inhomogeneity effects on the angular
spectrum of the hardest substructures within the jet. Such
new observables would provide a window to further probe
the medium properties locally along the ideas of jet
tomography.
We also note that the presented results are independent

of the physical process which generates the background
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medium and, thus, they are, in principle, applicable to either
the QGP phase or the glasma phase in the HIC context
[84,85]. The latter one could be considerably anisotropic,
resulting in stronger directional effects. It would be interest-
ing to better understand the relation between the jet quench-
ing formalisms considered here and other approaches which
can describe jet evolution in inhomogeneous and evolving
media, see, e.g., [86–88]. In turn, extension to the DIS
context would require the present calculation to be updated to
the corresponding kinematical regime with particular focus
on the factorization of the jet production and its propagation
through the medium, see, e.g., [29,89–92] and references
therein.
Finally, it should be mentioned that the dependence of

the jet-medium interaction on hydrodynamic gradients
could be used to probe the strength of the interactions
in the underlying theory. Indeed, comparing the character-
istic transport properties and the general jet behavior in an
inhomogeneous matter between pQCD and holographic
models for jet-medium interactions, see, e.g., [48,93–98],
one may hope to identify a set of new observables
distinguishing the two regimes. We leave this intriguing
opportunity for future work.
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APPENDIX A: THE GRADIENT CORRECTIONS
AT THE Nth ORDER IN OPACITY

In this Appendix, we present the jet broadening distri-
bution in an inhomogeneous matter at leading orders in
opacity, and discuss the general structure of the opacity
series. While N ¼ 0 case is trivial, the leading gradient
corrections at N ¼ 1 have been obtained in [15], and we
only quote the result here,

hjMj2ið1Þ ¼ −
Z

L

0

dz
Z

d2q
ð2πÞ2

�
1þ

�ðp − qÞ
E

z

�
· ĝ

�
V1ðqÞjJðE; p − qÞj2; ðA1Þ

writing it in the notations of this work.
Turning to the N ¼ 2 case, we notice that there are five types of contributions, which we have to consider separately. We

start with the simplest diagram involving no contact interactions, and the corresponding amplitude reads

iM11 ¼
X
i1;i2

Z
d2q1d2q2
ð2πÞ4 ðitaprojtai1Þðitbprojtbi2Þθ2;1θ1;0e−iq1·xi1e−iq2·xi2vi2ðq2Þvi1ðq1Þ

× e−i
ðp−q1−q2Þ2⊥−p2⊥

2E zi1e−i
ðp−q2Þ2⊥−p2⊥

2E ðzi2−zi1 ÞJðE; p − q1 − q2Þ; ðA2Þ

where the subscript ofM indicates that there are two SB insertions. This amplitude has the same form as in the well-known
homogeneous case, and we omit its derivation. Squaring this contribution and averaging over the quantum numbers, we find

hjMj2ið2Þ11;11 ¼ C2
Z

L

0

dz2

Z
z2

0

dz1

Z
d2q1d2q2
ð2πÞ4

�
1þ p − q1 − q2

E
z1 · ĝ1 þ

p − q1 − q2
E

z1 · ĝ2

þ p − q2
E

ðz2 − z1Þ · ĝ2
�
ρ2ρ1v22ðq22⊥Þv21ðq21⊥ÞjJðE; p − q1 − q2Þj2; ðA3Þ

where the x dependence has been transformed to mo-
mentum space and we assumed that the matter is
longitudinally uniform. Notice that the momentum deriv-
atives of the form ∂

∂ðq−q̄Þα, where q̄ is the corresponding

momentum in the conjugated amplitude, can act only on

the LPM phases at the first order in gradients, since the
rest of the integrand is symmetric under exchange of the
two momenta in each pair.
Now we turn to the two mixed contributions in the

amplitude squared, which involve both SB and DB
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interactions. It is natural to consider them partially averaged (we choose the contact interaction pair and perform color
averaging), then

iM12 ¼ C
X
i1;i2

Z
d2q1d2q2d2q3

ð2πÞ6 ðtaprojtai1Þθ2;1θ1;0e−iq1·xi1e−iðq2þq3Þ·xi2vi1ðq1ÞI12
i2
ðq2; q3Þ

× e−i
ðp−q1−q2−q3Þ2⊥−p2⊥

2E zi1e−i
ðp−q2−q3Þ2⊥−p2⊥

2E ðzi2−zi1 ÞJðE; p − q1 − q2 − q3Þ; ðA4Þ
where the subscript indicates that the first and second insertions are SB and DB, correspondingly, and

I12
i2

¼ 2E
Z

dq3;z
ð2πÞ

vi2

�
q2;

ðp−q2−q3Þ2⊥−p2⊥
2E − q3;z

�
vi2ðq3; q3;zÞ

ðp − q3Þ2 þ iϵ

≃ −
i
2
vi2ðq22⊥Þvi2ðq23⊥Þ: ðA5Þ

At N ¼ 2 this diagram contributes to the amplitude squared multiplied by the diagram with a single SB insertion. Performing
the residual averaging, one finds

hM12M�
1i þ c:c: ¼ −C2

Z
L

0

dz2

Z
z2

0

dz1

Z
d2q1d2q2
ð2πÞ4

�
1þ p − q1

E
z1 · ĝ1 þ

p − q1
E

z1 · ĝ2

þ p
E
ðz2 − z1Þ · ĝ2

�
ρ2ρ1v22ðq22⊥Þv21ðq21⊥ÞjJðE; p − q1Þj2; ðA6Þ

where we have used that the momentum derivatives cancel between the complex conjugated contributions, unless they act on
the LMP phases.
Similarly, we can consider the opposite order of the SB and DB insertions, and the corresponding amplitude reads

iM21 ¼ iC
X
i1;i3

Z
d2q1d2q2d2q3dq3;z

ð2πÞ7 ðtaprojtai3Þθ1;0e−iðq1þq2Þ·xi1e−iq3·xi3I21
i1
ðq1; q2; q3; q3;zÞ

× e−i
ðp−q1−q2−q3Þ2⊥−p2⊥

2E zi1
2Evi3ðq3Þe−iq3;zðzi3−zi1 Þ

ðp − q3Þ2 þ iϵ
JðE; p − q1 − q2 − q3Þ: ðA7Þ

The integral appearing due to the contact interaction is given by

I21
i1

¼ 2E
Z

dq2;z
ð2πÞ

vi1

�
q1;

ðp−q1−q2−q3Þ2⊥−p2⊥
2E − q2;z − q3;z

�
vi1ðq2; q2;zÞ

ðp − q2 − q3Þ2 þ iϵ

≃ −
i
2
vi1ðq21⊥Þvi1ðq22⊥ þ q23;zÞ þ

μ̃1 þ 2μ̃2
μ̃1μ̃2ðμ̃22 þ q23;zÞððμ̃1 þ μ̃2Þ2 þ q23;zÞ

q3;z; ðA8Þ

exhibiting a nonzero real part even at the leading order in the eikonal expansion. Here μ̃2n ≡ μ2 þ q2
n, and we keep the

subscript i1 implicit in μ̃. One can notice that I21
i1

results only in q3;z poles, leading to exponentially suppressed
contributions, and we can easily perform the last qz integration. Then,

iM21 ¼ C
X
i1;i3

Z
d2q1d2q2d2q3

ð2πÞ6 ðtaprojtai3Þθ2;1θ1;0e−iðq1þq2Þ·xi1e−iq3·xi3I12
i1
ðq1; q2Þ

× e−i
ðp−q1−q2−q3Þ2⊥−p2⊥

2E zi1e−i
ðp−q3Þ2⊥−p2⊥

2E ðzi3−zi1 ÞJðE; p − q1 − q2 − q3Þ; ðA9Þ

where we have used that ReI21 is subeikonal after the q3;z is substituted (the two integrals I12 and I21 coincide in this
limit). Turning to the contribution to the squared amplitude, we find
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hM21M�
1i þ c:c: ¼ −C2

Z
L

0

dz2

Z
z2

0

dz1

Z
d2q1d2q2
ð2πÞ4

�
1þ p − q2

E
z1 · ĝ1 þ

p − q2
E

z1 · ĝ2

þ p − q2
E

ðz2 − z1Þ · ĝ2
�
ρ2ρ1v22ðq22⊥Þv21ðq21⊥ÞjJðE; p − q2Þj2; ðA10Þ

where we have adjusted the integration variables to match the form of the other contributions.
Finally, we have to consider two types of diagrams involving two DB interactions. The first of such amplitude reads

hiM22i ¼
1

4
C2
X
i1;i3

Z
d2q1d2q2d2q3d2q4

ð2πÞ8 θ2;1θ1;0e
−iðq1þq2Þ·xi1e−iðq3þq4Þ·xi3

× e−i
ðp−q1−q2−q3−q4Þ2⊥−p2⊥

2E zi1e−i
ðp−q3−q4Þ2⊥−p2⊥

2E ðzi3−zi1 Þ

× vi1ðq21⊥Þvi1ðq22⊥Þvi3ðq23⊥Þvi3ðq24⊥ÞJðE; p − q1 − q2 − q3 − q4Þ; ðA11Þ

where we have used the properties of the contact qz integrals from M12 and M21 omitting unnecessary details. Combining
with the conjugated amplitude, we write

hM22M�
0i þ c:c: ¼ 1

2
C2

Z
L

0

dz2

Z
z2

0

dz1

Z
d2q1d2q2
ð2πÞ4

�
1þ p

E
z1 · ĝ1 þ

p
E
z1 · ĝ2

þ p
E
ðz2 − z1Þ · ĝ2

�
ρ2ρ1v22ðq22⊥Þv21ðq21⊥ÞjJðE; pÞj2; ðA12Þ

where the numeration of momenta has been changed for convenience.
Similarly, one has to take into account the DB amplitude squared. Using the result of [15] we write

hM2M�
2i ¼

1

4
C2

Z
L

0

dz2

Z
L

0

dz1

Z
d2q1d2q2
ð2πÞ4

�
1þ p

E
z1 · ĝ1 þ

p
E
z2 · ĝ2

�
× ρ2ρ1v22ðq22⊥Þv21ðq21⊥ÞjJðE; pÞj2; ðA13Þ

and notice that the z-integration limits differ from the limits in other diagrams. In fact, in the case of a longitudinally
invariant matter, it can be easily seen that this pair of integrals is twice larger than the ordered pair of z integrals.
Thus, collecting all the contributions, we find the full amplitude squared at N ¼ 2, and it reads

hjMj2ið2Þ ¼
Z

L

0

dz2

Z
z2

0

dz1

Z
d2q
ð2πÞ2

�
1þ p− q1 − q2

E
z1 · ĝ1þ

p− q1− q2
E

z1 · ĝ2

þ p− q2
E

ðz2 − z1Þ · ĝ2
)
V1ðq1ÞV2ðq2ÞjJðE;p− q1− q2Þj2; ðA14Þ

in agreement with the general expression (14). Repeating
the same calculation for the higher orders in opacity, we
find that the structure of (14) is reproduced.
To understand the origin of the all order pattern, one

may consider the different classes of the contributions to
the amplitude squared, distinguished by the color pairing.
For the given pairing, one can consider three higher order
diagrams obtained by attaching two extra in-medium field
insertions in all possible ways—one extra SB interaction
on each of the sides of the cut and one extra DB

interaction on either one of the sides of the cut. Thus,
for each color pairing at N ¼ n we obtain a set of
contributions at N ¼ nþ 1. Comparing to the N ¼ 2
case, we can see that each of these contributions has
the same structure as in the case of the already studied
diagrams. Paying particular attention to the LPM phases,
we can see that at the first order in gradients, all the
phases may depend only on the momenta of the two
additional interactions that are responsible for the gra-
dient contributions arising at N ¼ nþ 1.
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APPENDIX B: SHIFT OPERATOR
AND δ FUNCTION

In this Appendix, we briefly discuss the imaginary term
in the EOMs (31), arising due to the gradient effects. This
term results in an imaginary shift of the zeroth order
trajectory, which enters, for instance, into the argument of δ
functions in the last line of (34). Since the δ functions are
originally defined in the real space, this notation is only
formal, and the functions should be redefined.
In the main text, the resulting delta functions are treated

as in the case of a real argument. To justify this treatment,
consider the following one-dimensional integral,Z

dxe−ipxeax ≡ ð2πÞδðpþ iaÞ: ðB1Þ

For a real a, one can understand it as a momentum

representation of the shift operator eax ¼ eia
∂

∂p with a purely
imaginary argument ia. Thus, we can write

Z
dxe−ipxeax ¼ ð2πÞeia ∂

∂pδðpÞ ¼ ð2πÞδðpþ iaÞ: ðB2Þ

This simple calculation shows that the imaginary term
entering the EOM will indeed give rise to a momentum-
space shift operator, and its effect can be formally written
with the complex argument of a δ-function. For instance,
the one-dimensional analog to the integral of interest in the
main text reduces to

Z
dpindp̄inδðp̄in − pin − iaÞJðpinÞJ†ðp̄inÞ

¼
Z

dpinjJðpinÞj2 þ ia
Z

dpindp̄inð2πÞδðp̄in − pinÞ
∂

∂ðp̄in − pinÞ
½JðpinÞJ†ðp̄inÞ�

¼
Z

dpinjJðpinÞj2 þ
ia
2

Z
dqdQð2πÞδðqÞ ∂

∂q

�
J

�
Q − q
2

�
J†
�
Qþ q

2

��

¼
Z

dpinjJðpinÞj2: ðB3Þ
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