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Magnetic field dependent corrections for the coupling constant of the Nambu-Jona-Lasinio model are
calculated by considering the one-loop background field method. These coupling constants turn out to
break chiral and flavor symmetries and they lead to a slight improvement of the numerical values of the up
and down quark condensates when compared to results from lattice QCD. The corresponding magnetic
field dependencies of the neutral pion and kaon masses are also presented and compared with available
lattice QCD calculations. The resulting magnetic field correction to the η − η0 mixing angle is also
estimated.
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I. INTRODUCTION

Strong magnetic fields are expected to show up in
noncentral heavy ion collisions (h.i.c.) and also in astro-
physical systems such as dense stars or magnetars. In h.i.c.
they may reach eB0∼1018G∼m2

π or eB0∼0.04–0.3GeV2

from RHIC to LHC [1–4], even if this is within a short time
interval in a limited spatial region [5–7] with recent
indications that magnetic fields may be weaker than
previously estimated (although still strong) [8]. In the early
Universe [9,10] and in magnetars/neutron stars [11–13],
magnetic fields were estimated to have been of the order of
eB0 ∼ 1021 and 1015 G, respectively. Although the geom-
etry of the magnetic fields might be time dependent and
extremely complicated, a first theoretical analysis, by
considering constant magnetic fields, can be very useful
to understand their role in strong interactions systems,
which are themselves very complicated to be treated.
Strong magnetic fields might lead to many different effects
in different aspects of hadron dynamics, both at the quark
and gluon level and at the (lower energies) hadron and
nuclear levels, and experimental evidences are currently
searched in different types of experiments. The validity of
the semiclassical description of magnetic field in aspects of
h.i.c. has been tested for example in [14]. Among these
properties that might receive large contributions from the
presence of the magnetic fields, a mechanism of mass
generation was predicted earlier: the so-called magnetic
catalysis for which, even in the chiral limit, particles

develop mass and which has been identified with the high
degeneracy of the lowest Landau level [15–18].
Usually, global properties of low energies hadrons can be

suitably investigated by means of hadron effective models
and effective field theories whose use have been extended,
more recently, for hadrons in strong magnetic fields
[1,16,19–23]. Among the successful QCD effective mod-
els, the Nambu-Jona-Lasinio (NJL) model is known to
reproduce, and eventually to predict, many observables for
the hadron structure and dynamics under different con-
ditions [20,24–27]. Several approaches have been already
employed to describe how the NJL model coupling con-
stant might be obtained in terms of QCD degrees of
freedom in the vacuum [28–33] or to understand further
how those degrees of freedom contribute for the NJL-model
parameters [34–36]. Lately, lattice QCD provided results
for hadron observables in a finite strong magnetic field
were also used to test the predictions of NJL model in such
conditions and, eventually, this type of comparison may
favor an improvement of its the predictive power [37,38].
With such comparisons, one might also obtain knowledge
on how the parameters of the effective models might be
related to more fundamental degrees of freedom from
QCD. It has been envisaged that the NJL coupling constant
might receive magnetic field contributions, GðBÞ [39],
because of quark and gluon interactions [40]. This effect
contributes to the improvement of the description of the
quark-antiquark chiral condensate as a function of the
magnetic field [38]. Among important hadron observables,
the light pseudoscalar mesons have a special role in the
strong interactions since they are the quasi-Goldstone
bosons of the dynamical chiral symmetry breaking
(DChSB). Their masses in the vacuum are associated
basically to the explicit breaking of chiral symmetry and
its amplification due to the DChSB. Their behavior under
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strong magnetic fields was investigated in the last few
years. Several results were obtained from calculations
with the NJL model in strong magnetic fields by assuming
GðBÞ or not [39,41–50]. Lattice QCD has provided few
estimations for the behavior of hadron properties under
strong magnetic fields, being that a small difference was
found when comparing earlier different lattice fermions
[37,38,51]. Although this dependence of GðBÞ has been
attributed to the quark-gluon running coupling constant
dependence on the magnetic field [40], we believe that
other mechanisms can contribute. Besides that, one might
be interested in understanding more precisely the role of
needed degrees of freedom of the more fundamental theory
for defining the NJL-model parameters by articulating
further the model itself and their parameters.
In the present work we employ the background field

method [23,52] to compute the contribution of the quark
polarization under a strong magnetic field for the NJL-
coupling constant. This work extends the more restricted
calculation for weak magnetic field and SUðNf ¼ 2Þ
presented in [53] and, besides that, estimations for its
effects on the neutral pion and kaon masses are
presented. The dependencies of the u, d, and s quark
condensates and of the η − η0 mixing angle
[35,36,54,55] on the magnetic field are also calculated.
The auxiliary field method will be considered, as usual,
as that the scalar field allows for the DChSB although a
chiral rotation is performed to eliminate the correspond-
ing meson degree of freedom, which seems absent in the
light hadron spectrum. For zero magnetic field it has
been shown that the choice of the regularization method
is little important for the light hadron observables [56]
and an investigation for the role of different regulari-
zation schemes under finite B has also been carried out
[57,58]. A magnetic field independent regularization is
chosen for the covariant four-dimensional cutoff regu-
larization. We make use of the (more convenient)
proper-time representation for the magnetic field con-
tribution for the quark propagator that is ultraviolet
(UV) finite. The B dependence of the results are guided
strictly by the behavior of the effective masses from the
gap equations, and eventually B-dependent coupling
constants. However, since we are concerned with the
relative role of the magnetic field dependent coupling
constants with respect to the original NJL-coupling
constant, G0, i.e., to analyze the relative influence
due to the magnetic field, the role of the choice of
the regularization scheme (in particular for the vacuum
part of the equations) may be expected to be relatively
small. By resolving the coefficients of a large quark
mass expansion of the quark determinant in the back-
ground quark currents, for a zero order derivative
expansion, the magnetic-field dependent corrections
for the NJL-coupling constant, GijðBÞ, are obtained
mostly analytically. These coupling constants turn out
to be strongly flavor dependent. The fitting of the

parameters of the parameters of the resulting model,
with Gij, is done by means of the usual observables in
the vacuum, neutral mesons masses Mπ0 ;MK0 , and the
decay constants Fπ and FK . The work is organized as
follows. In the next section the sea-quark determinant is
presented in the presence of background scalar and
pseudoscalar quark currents and local pseudoscalar and
scalar auxiliary fields. In Sec. III the corrected NJL
model, with GijðBÞ, is considered for the calculation of
the neutral pion and kaon masses as functions of the
magnetic field. In Sec. IV numerical results are pre-
sented for the quark effective masses, scalar and
pseudoscalar magnetic field dependent (corrected) cou-
pling constants, quark-antiquark chiral condensates, and
neutral pion and kaon masses. Besides that, a magnetic
field correction to the η − η0 mixing angle will be also
calculated for different behaviors of the magnetic field
dependencies of the η − η0 mass difference that is,
currently, also unknown. Finally in Sec. V a summary
with a discussion is presented.

II. BACKGROUND FIELD METHOD, SEA-QUARK
DETERMINANT, AND GAP EQUATION

The following generating functional will be considered:

Z½J; J̄� ¼ N
Z

D½ψ̄ ;ψ �ei
R
x
ðLþψ̄JþJ̄ψÞ;

where the NJL-model Lagrangian density for the minimal
coupling for a background electromagnetic field can be
written as

L ¼ ψ̄ðiγ ·D −mfÞψ þG0

2
½ðψ̄λiψÞ2 þ ðψ̄iγ5λiψÞ2�; ð1Þ

where i; j; k ¼ 0;…ðN2
f − 1Þ stand for flavor indices in

the adjoint representation, mf stand for the current quark
mass matrix element wherein f ¼ u, d, and s for the
fundamental representation, and the sums in color, flavor,
and Dirac indices are implicit. The covariant quark deriva-
tive is D ¼ Dμ ¼ ∂μδij − ieQijAμ for the diagonal matrix
Q̂ ¼ diagð2=3;−1=3;−1=3Þ.
Next we apply the one loop background field method

[23,52] according to which bilinears of the quark field,
ψ̄Γψ where Γ stands for Dirac, color, or flavor operators,
are split into the (constituent quark) background field (ψ1)
that will become quasiparticles of the model and the
quantum quark field (ψ2) that will form mesons and the
chiral condensates and which will be integrated out. It can
be written as

ψ̄Γqψ → ðψ̄ΓqψÞ2 þ ðψ̄ΓqψÞ1: ð2Þ

This separation preserves chiral symmetry and it may not
correspond to a simple mode separation of low and high
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energies, which might be a very restrictive assumption and
would involve an energy separation scale. Whereas the
overall method employed is inspired in the usual constant
background field method, one step further can be given
with the derivative expansion that allows us to compute a
whole effective action [59–61].
The interaction term of the NJL model, Ω, is split into

separated terms for ψ1 and ψ2 (Ω1, Ω2) and those with
both bilinear of ψ1 and ψ2. The interaction Ω2 will be
treated by making use of the auxiliary field method by
introducing a set of auxiliary scalar and pseudoscalar
fields, Si ≡ SiðxÞ and Pi ≡ PiðxÞ for i ¼ 0; 1; ::N2

f − 1,
[28]. These auxiliary fields might be introduced by
multiplying the generating functional by the following
normalized Gaussian integrals:

1 ¼ N
Z

D½S�D½Pi�e−
i

2G0

R
x
½ðSi−G0jSi;ð2ÞÞ2þðPi−G0jPi;ð2ÞÞ2�; ð3Þ

where
R
x ¼

R
d4x and the scalar and pseudoscalar cur-

rents were defined as ji;ð2ÞS ¼ ψ̄λiψ and ji;ð2ÞP ¼ ψ̄λiiγ5ψ .
With these auxiliary fields, the quark field ψ2, ψ̄2

can be quantized, and an effective action for back-
ground quarks and auxiliary fields canonically norma-
lized is obtained. From here on, we can omit the
index for a quark background field. By considering the
identity detA ¼ exp Tr lnðAÞ, the resulting model can be
written as

Seff ¼ −iTr lnf−i½SB0 −1 þ Ξ

þ G0λ
i½ðψ̄λiψÞ þ iγ5ðψ̄ iγ5λiψÞ��g

þ
Z
x

�
ψ̄ðiγμDμ −mÞψ þG0

2
½ðψ̄λiψÞ2

þ ðψ̄iγ5λiψÞ2� −
1

2G0

½S2i þ P2
i �
�
; ð4Þ

where Tr stands for traces of discrete internal indices and
integration of space-time coordinates and the following
quantities have been defined:

SB0
−1 ¼ ði=D −mfÞ; ð5Þ

Ξ ¼ ðS · λþ iP · λÞ; ð6Þ

where SB0 is the free quark propagator with its coupling to
the electromagnetic field, with =D ¼ γμ ·Dμ. Therefore Ξ
provides the auxiliary fields coupling to quarks.
Since the auxiliary fields are unknown, an extremization

of Eq. (4) yields the usual gap equations and provides
a determination of the auxiliary fields at a mean field
level, S̄i. The solutions of the scalar fields for the gap
equations have been investigated in many works both in the
vacuum and under constant weak and strong magnetic

fields, to quote few works: [16,62–64]. The magnetic field
is known to increase the effective mass, even if the current
Lagrangian quark mass is zero, which is known as the
magnetic catalysis effect [15–18]. The resulting gap equa-
tions for the set of scalar auxiliary fields corresponding
to the diagonal flavor generators, S0, S3, and S8, can be
written as

Si ≡ S̄i ¼ −iG0TrλiSðBÞ; ð7Þ

where SðBÞ (defined below) takes into account possible a
nonzero expected value in the vacuum for the auxiliary
fields. The corresponding equations for the pseudoscalar
fields, at zero magnetic field, must be a trivial one to
enforce the scalar nature of the vacuum. The scalar
auxiliary field mean field makes possible the generation
of (effective) mass for the constituent quarks, such that in
the fundamental representation one has M�

f ¼ mf þ S̄f.
The quark propagator in a background magnetic field was
calculated by considering the Schwinger proper time
method and it is shown explicitly in Appendix A. In the
absence of (background) quark currents and auxiliary fields
for mesons the celebrated Euler Heisenberg effective action
can be recovered from Eq. (4) [64–67].

A. GAP equation in a magnetic field

The nontrivial solution for the scalar variables lead to
diagonal contributions for the fundamental representation,
i.e., S̄u, S̄d, and S̄s. From here on the quark masses become
effective masses such that one can write

SB−1f ¼ ði=Df −M�
fÞ; ð8Þ

where M�
f ¼ mf þ S̄f and the different minimal photon

couplings to u, d, and s quarks were written above in =Df.
The gap equation for the effective quark masses can be
written as

M�
f ¼ mf − 2G0hψ̄fψfi; ð9Þ

where hψ̄fψfi ¼ −itrDCSBf ð0Þ is the chiral condensate in
the mean field approximation. Here trDC denotes the
trace over Dirac and color indices, and SBf ðx − yÞ stands
for the quark propagator of flavor f in the presence of a
uniform magnetic field. A magnetic field independent
regularization will be adopted [57,58]. The UV diver-
gent part can be separated to correspond to the vacuum
contribution, whereas the explicitly magnetic field de-
pendent part is UV finite. The regularization scheme
considered for the UV divergent part will be the four-
momentum cutoff (Λ) in Euclidean space. By using the
proper time representation for the magnetic field de-
pendent part we find
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M�
f ¼ mf þ

G0NcM�
f

2π2

�
Λ2 −M�

f
2 ln

�Λ2 þM�
f
2

M�
f
2

��

þG0NcM�
f

2π2

�
M�

f
2

�
1 − ln

M�
f
2

2jqfBj
�

þ jqfBj ln
M�

f
2

4πjqfBj
þ 2jqfBj lnΓ

�
M�

f
2

2jqfBj
��

¼ M�
f;0 þ

G0NcM�
f

2π2

�
M�

f
2

�
1 − ln

M�
f
2

2jqfBj
�

þ jqfBj ln
M�

f
2

4πjqfBj
þ 2jqfBj lnΓ

�
M�

f
2

2jqfBj
��

: ð10Þ

We remark that the divergences were isolated into the
vacuum term before introducing the regularization para-
meter. Although our departure point was the proper time
representation for the propagator, isolating the diver-
gences into the vacuum contribution allowed us to use
other regularization schemes than the regularization in
proper time since the pure magnetic contribution intro-
duces no new divergences.

B. Magnetic field-dependent corrections
to the coupling constant

Since we are interested in the dynamics of quarks by
means of their currents, from here on the auxiliary fields
will be neglected. By expanding the quark determinant in a
large quark effective mass expansion in terms of the quark
field bilinears, in a zero order derivative expansion, we find
the first order term to be given by

Sð1Þdet ¼ −2G0

X
f¼u;d;s

Z
x
trDC½iSBf ðpÞ�ψ̄ψ ; ð11Þ

with SBf ðpÞ representing the quark propagator in momen-
tum space in the presence of the uniform magnetic field B,
which is exhibited in Appendix A. These terms produce a
correction to the quark masses that is the same as the gap
equation, Eq. (10).
The second order terms of the large quark mass expansion

provides fourth order quark interactions. After resolving
coupling constants in the very long-wavelength limit for the
zero order derivative expansion, results are the following:

L1loop ¼
Ḡij

s ðBÞ
2

ðψ̄λiψÞðψ̄λjψÞ

þ Ḡij
psðBÞ
2

ðψ̄iγ5λiψÞðψ̄iγ5λjψÞ; ð12Þ

where

Ḡij
s ðBÞ≡G2

0Πs
ijðBÞ ¼ iG2

0

Z
d4p
ð2πÞ4 tr½S

B
f ðpÞλiSBg ðpÞλj�;

ð13Þ

Ḡij
psðBÞ≡G2

0Π
ps
ij ðBÞ

¼ iG2
0

Z
d4p
ð2πÞ4 tr½S

B
f ðpÞλiiγ5SBg ðpÞλjiγ5�: ð14Þ

All these coupling constants are written as combinations of
integrals of each quark propagator for which a change of
representation for the coupling constants is presented in
Appendix B. These coupling constants obviously break
chiral and flavor symmetries and they have the same
dimension of the NJL-coupling constant, GeV−2. By using
the proper time representation for the quark propagator in
momentum space and considering only the polarization
functions that involve quark flavors with the same electric
charge, being that in those cases the Schwinger phases cancel
out, it is possible to separate the contributions from the
vacuum (zero magnetic field) and the B-dependent contri-
butions similarly to the quark propagator. By separating each
of the couplings for given i, j in terms of the related
contributions from internal quark propagators f, g it is
obtained for each component with equal electric charges
qf ¼ qg:

Π
s
ps

fgðBÞ ¼ Π
s
ps

fgðB ¼ 0Þ þ Π̃
s
ps

fgðBÞ ¼ Π
s
ps

fgðB ¼ 0Þ

þ NcjqfBj
2π2

Z
∞

0

Z
∞

0

dsdr
e−sM

�
f
2−rM�

g
2

sþ r

×

�
1 ∓ M�

fM
�
gðsþ rÞ

ðsþ rÞ tanh jðjqfBjðsþ rÞÞ

þ jqfBj
sinh2ðjqfBjðsþ rÞÞ −

2 ∓ M�
fM

�
gðsþ rÞ

jqfBjðsþ rÞ2
�
:

ð15Þ
The vacuum contributions for the flavor symmetric model
were analyzed in [33,68] and for nondegenerate quark
masses in [35,36].
By making the change of variables

s ¼ u
2
ð1þ vÞ; r ¼ u

2
ð1 − vÞ; ð16Þ

with 0≤ u<∞ and −1≤ v≤ 1, so that dsdr¼ ðu=2Þdudv,
we obtain the following:

Π̃
s
ps

fgðBÞ ¼
NcjqfBj
2π2

Z
∞

0

du
Z

1

−1
dv

e−
u
2
ð1þvÞM�

f
2−u

2
ð1−vÞM�

g
2

2

×

�
1 ∓ uM�

fM
�
g

u tanhðjqfBjuÞ
þ jqfBj
sinh2ðjqfBjuÞ

−
2 ∓ uM�

fM
�
g

jqfBju2
�

ð17Þ

for the pure magnetic contribution to the polarization
functions. The proper time integrals can be computed in
closed form for the diagonal couplings f ¼ g, yielding
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Π̃
s
ps

ffðBÞ ¼
NcM�

f
2

2π2

�
1þ jqfBj

M�
f
2
ln

�
M�

f
2

4πjqfBj
�
þ 2jqfBj

M�
f
2

lnΓ
�

M�
f
2

2jqfBj
�

þ ð1� 1Þψ
�

M�
f
2

2jqfBj
�
− ð2� 1Þ ln

�
M�

f
2

2jqfBj
�
þ ð1� 1Þ jqfBj

M�
f
2

�
:

Therefore, we have

Ḡs
ffðBÞ ¼

G2
0NcM�

f
2

2π2

�
1þ jqfBj

M�
f
2
ln

�
M�

f
2

4πjqfBj
�
þ 2jqfBj

M�
f
2

lnΓ
�

M�
f
2

2jqfBj
�

þ 2ψ

�
M�

f
2

2jqfBj
�
− 3 ln

�
M�

f
2

2jqfBj
�
þ 2

jqfBj
M�

f
2

�
; ð18Þ

Ḡps
ffðBÞ ¼

G2
0NcM�

f
2

2π2

�
1þ jqfBj

M�
f
2
ln

�
M�

f
2

4πjqfBj
�
þ 2jqfBj

M�
f
2

lnΓ
�

M�
f
2

2jqfBj
�
− ln

�
M�

f
2

2jqfBj
��

; ð19Þ

where ΓðxÞ is the gamma function and ψðxÞ is the Euler psi
function.
Another case of interest is the one of the couplings

Gs
dsðBÞ and Gps

dsðBÞ, which involve quarks of different
flavors but with the same electric charge. We have

Ḡ
s
ps

dsðBÞ¼
G2

0NcjqdBj
2π2

Z
∞

0

du
Z

1

−1
dv

e−
u
2
ð1þvÞM�

d
2−u

2
ð1−vÞM�

s
2

2

×

�
1∓uM�

dM
�
s

utanhðjqdBjuÞ
þ jqdBj
sinh2ðjqdBjuÞ

−
2∓uM�

dM
�
s

qdBu2

�
;

ð20Þ

where now the proper time integrals need to be solved
by using numerical methods. Note that the divergence of
the integrals above, parametrized in the UV cutoff Λ,
appears only in the vacuum contributions GðB ¼ 0Þ or
ΠðB ¼ 0Þ. The the difference between the scalar and
pseudoscalar couplings is directly a consequence of
chiral symmetry breaking effect in the coupling con-
stants at the one loop level. For the cases addressed
above it follows:

Ḡfg
csbðBÞ≡ Ḡfg

psðBÞ − Ḡfg
s ðBÞ;

¼ 2G2
0

NcjqfBj
2π2

Z
∞

0

Z
∞

0

dsdr
e−sM

�
f
2−rM�

g
2

sþ r

×

�
M�

fM
�
gðsþ rÞ

ðsþ rÞ tanhðjqfBjðsþ rÞÞ −
M�

fM
�
gðsþ rÞ

jqfBjðsþ rÞ2
�
:

ð21Þ

Although the magnetic field dependence of this quantity
is not necessarily small, it will be neglected in most of

calculations as explained below. The overall behavior of
the pseudoscalar coupling constants is very different
from the needed behavior that describes results from
lattice QCD.

C. Fitting of the model parameters at B= 0 and
contributions from B ≠ 0

The parameters of the model areG0; mu;md, andms with
the additional need of fixing the UV cutoff Λ. By adopting
a coupling constant G0 ¼ 9.76 GeV−2 the following
masses and weak decay constants were considered in the
vacuum to fix these parameters Mπ0 ;MK0 ; Fπ , and FK ,
which are written below.
The pseudoscalar mesons masses (Mps) in the framework

of the standard NJL model (1) are obtained from the Bethe
Salpeter equation at the Born approximation by means of
the following equation:

1 − G0Π
ij
psðP2ÞjP2¼M2

ps
¼ 0; ð22Þ

where neutral pion and kaon are obtained, respectively,
with ij ¼ 33 and ij ¼ 66, 77. The polarization tensor was
rotated back to the Minkowski space and it needs to be
computed for the on shell meson, in the limit of zero three-
momentum. The corresponding integrals are given by

Π33
ps ðP2Þ ¼ 1

2
½Πuu

ps ðP2Þ þ Πdd
ps ðP2Þ�; ð23Þ

Π66
ps ðP2Þ ¼ Πds

psðP2Þ: ð24Þ

These pseudoscalar polarization tensors as functions of the
energy of the meson can be written as
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Πfg
ps ðP2Þ ¼ 1

2

�
M�

f;0 −mf

M�
f

þM�
g;0 −mg

M�
g

�

þ Nc

4π2
½P2 − ðM�

f −M�
gÞ2�

Z
1

0

dx

�
ln

�Λ2 þD2
fgðP2Þ

D2
fgðP2Þ

�
þ D2

fgðP2Þ
Λ2 þD2

fgðP2Þ − 1

�

þ NcjqfBj
2π2

Z
∞

0

Z
∞

0

dsdr
e−sM

�
f
2−rM�

g
2þ sr

sþrP
2

sþ r

×

�
1þM�

fM
�
gðsþ rÞ þ sr

sþr P
2

ðsþ rÞ tanhðjqfBjðsþ rÞÞ þ
jqfBj

sinh2ðjqfBjðsþ rÞÞ −
2þM�

fM
�
gðsþ rÞ þ sr

sþr P
2

ðsþ rÞ3
�
; ð25Þ

where M�
f;0 was defined in Eq. (10) and D2

fgðP2Þ ¼
−xð1 − xÞP2 þ xM�

f
2 þ ð1 − xÞM�

g
2. Note that, again, the

UV divergent part is written separately, as the vacuum term,
from the magnetic field contributions.
The charged pion and kaon weak decay constants, for a

meson structure of quark antiquark f, g, are given by
[25,26]

Fps ¼
NcGqqPS

4

Z
d4q
ð2πÞ4

× TrF;D½γμγ5λiSfðqþ P=2ÞλjSgðq − P=2Þ�; ð26Þ

where i, j are the associated flavor indices as discussed for
Eq. (22). The meson-quark coupling can be obtained as the
residue of the pole of the bound state equation (BSE) will
be calculated in the limit of zero four momentum as

GqqPS ¼
�
∂ΠijðP2Þ

∂P2
0

�−2

ðP0;P⃗Þ≡0

; ð27Þ

where the flavor indices are tied with the quantum numbers
of the meson PS, πþ with i; j ¼ ð1; 1Þ; ð2; 2Þ and Kþ
with i; j ¼ ð4; 4Þ; ð5; 5Þ.

III. CORRECTED NJL MODEL

Now consider the NJL model corrected with magnetic
field dependent coupling constants found above as given by

L ¼ ψ̄ðiγ ·D −mÞψ þ G0δij þ Ḡij
s ðBÞ

2

× ½ðψ̄λiψÞðψ̄λjψÞ þ ðψ̄iγ5λiψÞðψ̄iγ5λjψÞ� þOchsb;

ð28Þ

where Ḡs
ijðBÞ and Ḡij

csbðBÞ were written in Eqs. (18) and
(19) and Ochsb are the chiral symmetry breaking correc-
tions for the pseudoscalar coupling constants discussed
above and neglected from here on. However, the zero
magnetic field limit of Gs;ps

ij ðB ¼ 0Þ contributes for G0

making the overall normalization of the coupling constant

ambiguous and this would have consequences for the
calculation of observables for which we are interested,
however, in investigating only the magnetic field depend-
ence. Therefore the B-dependent coupling constant con-
sidered in the Lagrangian above will be exclusively the B-
dependent part of Eq. (18). In principle the scalar inter-
actions contribute for the gap equations and the pseudo-
scalar couplings Gps

ij can be expected to be those by which
the bound state pseudoscalar mesons are formed according
to the BSE. Because of the completely different behavior of
the scalar and pseudoscalar couplings and the fact that the
scalar coupling constant helps to improve the behavior of
the quark-antiquark condensates with the B field shown
below, we decided to analyze rather the effects of the scalar
coupling by neglecting the difference between them. So we
assume that, for some unknown reason maybe related to the
level of approximation in which the one loop quark
determinant and its expansion rely, the different between
the scalar and pseudoscalar couplings Gs

ij and Gps
ij should

be considerably smaller, and the pseudoscalar coupling
constants would have its behavior changed considerably to
be similar to the scalar ones, i.e., Ḡs

ijðBÞ ∼ Ḡps
ij ðBÞ given by

Eq. (18). Next, the usual logics applied to the NJL model
must be used again and so the gap equations must be
recalculated. This procedure can be done repeatedly until
the resulting effective masses, M�

f, and coupling constants,
Gs;ps

ij , converge.
The auxiliary field method for the corrected model will

be presented by neglecting all the mixing-type interactions
Gi≠j that are considerably smaller than the diagonal ones.
The corresponding unit integral of the auxiliary fields can
be written as

1 ¼ N
Z

D½Si�D½Pi�

× e
− i
2Gij

R
x
½ðSi−GikjSkÞðSj−GjmjSj ÞþðPi−GikjPk ÞðPj−GjmjPmÞ�; ð29Þ

where Gij ¼ Gs
ij ¼ G0δij þ Ḡs

ijðBÞ. The resulting gap
equations for the scalar fields in the fundamental repre-
sentation can be written as
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M�
f ¼ mf − 2Gs

ffhψ̄fψfi; ð30Þ

where the relation of Gij with Gff and of Si with Sf are
presented in Appendix B. The resulting BSE for the neutral
and charged pion and kaon can be written as

π0∶ 1 −
G33

2
½Πuu

ps ðP2 ¼ M2
π0
Þ þ Πdd

ps ðP2 ¼ M2
π0
Þ� ¼ 0;

ð31Þ

K0∶ 1 −G66Πds
psðP2 ¼ M2

K0Þ ¼ 0: ð32Þ

To provide a more strict comparison with lattice calcu-
lations, below we also present the pion mass calculated
separately with ūu structure or d̄d structure. In these cases,
the coupling constant G33 was also redefined accordingly,
as obtained in Appendix B in Eq. (B1c). It yields

πūu∶ 1 −
Guu

2
Πuu

ps ðP2 ¼ M2
π0
Þ ¼ 0;

πd̄d∶ 1 −
Gdd

2
Πdd

ps ðP2 ¼ M2
π0
Þ ¼ 0: ð33Þ

A. Mixing angles

The mixing type interactions G08ðBÞ give rise to the η; η0
mesons mixings. This mixing emerges already by consid-
ering the contribution of nondegenerate quark masses
Mu ≠ Ms [35,36], and we will present exclusively the
effect of the magnetic field on the mixing angle.
For this the auxiliary fields must be introduced in such a

way to account for the mixing interactions. This will be
done by means of functional delta functions in the gen-
erating functional [69,70] such that in the limit of zero
mixing previous results are reproduced. This functional
delta function can be written as

1 ¼
Z

D½Pi�δðPi −GikjkpsÞ; ð34Þ

where jkps ¼ ψ̄λkiγ5ψ , i, k ¼ 0, 3, 8 provides components
that produce the mesons η; η0, and π0. Eventual nonfacto-
rizations [71] may be expected to be small. Consider the
following pseudoscalar auxiliary fields quadratic terms:

Lmix ¼ −
M2

88ðBÞ
2

P2
8 −

M2
00ðBÞ
2

P2
0

þ 2G08ðBÞḠ08P0P8 þOðP3; P2
3Þ…; ð35Þ

where M2
ii include the contributions from Gi¼j derived

above, and

Ḡ08ðBÞ ¼
2

G00ðBÞðG88ðBÞ − G08ðBÞ2
G00ðBÞ Þ

: ð36Þ

The flavor dependent coupling constants Gij ∝ Nc, as
Nc → ∞, η and η0 become degenerate [72].
A change of basis state can be done to the mass

eigenstates η; η0 by starting from the singlet flavor states
basis with jq̄q > (q ¼ u, d, s), P3, P8, P0. By neglecting
the neutral pion mixings, according to the convention from
[55], it can be written

jηi ¼ cos θpsjP8i − sin θpsjP0i;
jη0i ¼ sin θpsjP8i þ cos θpsjP0i: ð37Þ

To describe completely both masses, η; η0 one needs two
parameters/angles [73]; however, in this work only the
mass difference will be considered. By rewriting Lmix in
this mass eigenstates basis, the following magnetic field
induced deviation of the η − η0 mixing angle is obtained:

Δθps ¼ θppsðBÞ− θpsðB¼ 0Þ ¼ 1

2
arcsin

�
4G08ðBÞḠ08ðBÞ
ðM2

η −M2
η0 Þ

�
:

ð38Þ

Let us consider MηðB ¼ 0Þ ¼ 548 MeV and Mη0 ðB ¼
0Þ ¼ 958 MeV [55] Some results with the NJL method
suggest some difference in the magnetic field dependence
ofMηðBÞ andMη0 ðBÞ [49]. So wewill present an estimation
for the mixing angle as a function of the magnetic field by
assuming the following different behaviors for the η − η0
mass difference (ΔB):

D1 ≡ Δð1Þ
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ηðBÞ −M2
η0 ðBÞÞ

q

≃ 786 MeV is a constant;

D2 ≡ Δð2Þ
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ηðBÞ −M2
η0 ðBÞÞ

q

×

�
1þ eB

b0

�
; for b0 ¼ 2 GeV2;

D3 ≡ Δð3Þ
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

ηðBÞ −M2
η0 ðBÞÞ

q

×

�
1þ eB

b0

�
; for b0 ¼ 2 GeV2: ð39Þ

IV. NUMERICAL RESULTS

The result of the fitting procedure to fix the parameters of
the model with the coupling constant G0 is presented in
Table I, where these were the parameters found to repro-
ducemπ ¼ 135.0MeV,mK ¼ 498.0MeV, fπ ¼ 93.0MeV,
and fK ¼ 111.0 MeV at B ¼ 0. It is interesting to note that
the current quark masses fixed by the fitting procedure are,
as usual, somewhat different than the measured values in
Particle Data Group (PDG) tables [55]. In the NJL method
the Lagrangian quark masses are free parameters, and
therefore they are free to be varied. However, it turns
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out that the needed values for these parameters are close to
the measured values in PDG and this can be seen as a
feature of the model. The difference with respect to the
values of PDG can be attributed to, at least, two issues that
might be connected. First, the current quark masses in [55]
are fixed with respect to an energy scale of the Standard
Model and a different energy scale may be more suitable
for the dynamics of hadrons within the NJL. Second, the
mass generation mechanism in the NJL model involves
the solution of (transcendental) gap equations for which
the current quark masses contribute nonlinearly, and, in
this process, it might need a larger current quark mass
that somehow is modified by the presence of the quark
condensate.
The effect of the derived magnetic field dependence

of the NJL coupling constant, Eqs. (18) and (19), will be
compared to the effect of parametrizations considered in the
literature. For instance, the following two shapes will be
considered below [43,74]

G1ðeBÞ ¼ αþ βe−γðeBÞ2 ; ð40Þ

G2ðeBÞ ¼ G0

�
1þ aξ2 þ bξ3

1þ cξ2 þ dξ4

�
; ð41Þ

where α ¼ 6.70 GeV−2 and β ¼ 3.06 GeV−2 such that
G2ð0Þ ¼ G0, and γ ¼ 1.31 GeV−2—being that β and γ
have the same values as used in Ref. [43]. G0 is normalized
by the value presented in the Table I, ΛQCD ¼ 300 MeV,
ξ ¼ ðeBÞ=Λ2

QCD, and a ¼ 0.01088, b ¼ −1.0133 × 10−4,
c ¼ 0.02228, and d ¼ 1.84558 × 10−4 [74].
The quark effective masses, as solutions of the first gap

equations for G0, Eq. (10), and for Gs
ffðBÞ, the second gap

equation Eq. (30), are presented in Fig. 1. The corrected
gap equations, with Gs

ff, are solved self-consistently with
the coupling constants Gs

ijðBÞ. The magnetic field correc-
tions for the scalar coupling constants, which contribute in
the corrected gap equations, are shown in the following
figure. It is seen that the effect of the magnetic field
corrections to the coupling constants in the gap equations is
to reduce the effective masses. The deviation with respect
to the solution of the gap equations withG0 is progressively
larger for larger magnetic fields. The largest deviation in the
effective mass is obtained for the up quark effective mass

and independent of corresponding sign of the quark electric
charge.
The resulting magnetic field dependencies of some of

the scalar and pseudoscalar coupling constants, Gs;ps
uu ðBÞ,

Gs;ps
dd ðBÞ, Gs;ps

ss ðBÞ, and Gs;ps
ds ðBÞ, are shown in Figs. 2 and 3

for the set of parameters above. The pseudoscalar magnetic
field corrections are positive and they increase with the
magnetic field, whereas the corrections to the scalar
coupling constant are negative and decrease with the
magnetic field. Together with the scalar coupling con-
stants in Fig. 2, the following are also presented: the
parametrizations of Eqs. (40) and (41) from Refs. [43,74],

TABLE I. Set of parameters was fixed to describe correctly
neutral pion and kaon masses and decay constants in the vacuum
(B ¼ 0).

Parameters Set

Λ 914.6 MeV
G0 9.76 GeV−2

mud 6.0 MeV
ms 165.7 MeV
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FIG. 2. Magnetic field correction to the scalar NJL coupling
constant, Gs

ffðeBÞ, as functions of the magnetic field. The
parametrizations of Eqs. (40) and (41) from Refs. [43,74],
respectively, in dotted (yellow) and dot-dashed (green) lines—
and extrapolation GðBÞ from lattice QCD of Ref. [38] in a
continuous line with triangles are also shown.
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respectively, in dotted (yellow) and dot-dashed (green)
lines—and a set of points for a particular definition from
lattice QCD to make contact with the NJL model
from Ref. [38].
The resulting up and down quark-antiquark chiral scalar

condensates will be compared to results from lattice QCD
fromRef. [63] bymeans of their average and their difference.
To do this comparison, we define the following quantities:

ΣfðBÞ ¼
2mud

m2
πf2π

jhψfψfiB − hψfψfiB¼0j þ 1; f ¼ u; d; s;

ð42Þ

where mπ and fπ are the zero magnetic field pion mass and
decay constant, respectively, here taken as mπ ¼ 135 MeV
and fπ ¼ 86 MeV. In Fig. 4 the magnetic field dependent

part of the average of the up and down quark condensates
ðΣu þ ΣdÞðBÞ=2, without the vacuum contribution, is shown
as a function of the magnetic field. The curves present a
comparison for the results obtained with solutions of the two
gap equations, namely for the coupling constant G0 and for
coupling constantsGs

ff, respectively, Eqs. (10) and (30). Two
different lattice calculations [51,75] for these chiral con-
densates present the same behavior with a nearly linear
behavior with the magnetic field for stronger magnetic fields
[75]. Points obtained from lattice calculation from Ref. [63].
Besides that, estimations with two different parametrizations
for the magnetic field dependence of the NJL coupling
constant, Eqs. (40) and (41), are presented. The curve for the
magnetic field dependent coupling constant from polariza-
tion GffðBÞ is basically the same as the one from G1ðBÞ.
In Fig. 5 the magnetic field dependent part of the

difference between the up and down quark condensates
ðΣu − ΣdÞðBÞ, without the vacuum contribution, is shown
as a function of the magnetic field for the same cases
presented for the previous figure including the lattice
results from Ref. [63].
It is interesting that there is an improvement of the

difference between the up and down quark condensates due
to the use of Gs

ffðBÞ with respect to the use of G0 for the
regime of weak magnetic field, although overall there is no
systematic behavior. Points obtained from lattice calcula-
tion from Ref. [63] are also shown, being in agreement
other estimations [75]. Also, estimations with two different
parametrizations for the magnetic field dependence of the
NJL coupling constant, Eqs. (40) and (41), are presented.
The resulting curve for the coupling constant GffðBÞ is
between the curves for G1ðBÞ and G2ðBÞ.
In Fig. 6 the magnetic field dependence of the strange

quark-antiquark condensate by means of the quantities (42)
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FIG. 4. Magnetic field dependent part of the averaged up and
down quark condensates, ðΣu þ ΣdÞðBÞ=2 for the set of param-
eters shown above by using G0 and Gff, Eqs. (10) and (30), and
also points from lattice QCD from Ref. [63].

FIG. 5. Magnetic field dependent part of the difference between
the up and down quark condensates, ðΣu − ΣdÞðBÞ for the set of
parameters shown above, by using G0 and Gff, Eqs. (10) and
(30), and also points from lattice QCD from Ref. [63].
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is exhibited as functions of the magnetic field. The case in
which gap equation is solved with G0 (dashed lines), and
also the case in which the magnetic field dependent
coupling constant is used, Gs

ffðBÞ (solid lines), are shown.
For the sake of comparison, results for the two para-
metrizations (40) and (41), respectively, dotted (yellow)
and dot dashed (green), are also exhibited. The magnetic
field dependent coupling constant increases the quark
condensates, mostly because the effective masses are
slightly reduced as shown in the previous figures. The
parametrization (41) yields stronger enhancement due to
the magnetic field and parametrization (40) yields results
nearly compatible with the calculation with the magnetic
field dependent coupling constants Gfg

s .
The magnetic field dependence of the three definitions of

neutral pion mass are presented in Figs. 7–9—respectively,
for π0 (complete pion state), πuu, and πdd—see Eqs. (31)–
(33). The magnetic field behavior of the pseudoscalar
coupling constants does not lead to magnetic field behavior
of the neutral pion and kaon masses compatible with lattice
estimations for strong magnetic fields. This can be under-
stood by analyzing the very different behavior of GsðeBÞ
and GpsðeBÞ, the former is a decreasing function of the
magnetic field and the second an increasing function.
Therefore whereas GsðeBÞ yields a neutral pion mass that
decreases with eB, GpsðeBÞ yields an increasing neutral
pion mass, as shown below. To make possible a more
detailed comparison of the effect of the magnetic field
dependent coupling constants the pion mass was calculated
in different ways: First, for the effective mass from the gap
equations [GðG0Þ] and BSE [BðG0Þ] by considering G0.
Second, for the gap equations (G) with Gs

ffðBÞ and BSE
(B) with Gs

33ðBÞ. The same result obtained by considering
Gps

ffðBÞ was also plotted. The two parametrizations of
Eqs. (40) and (41) were also employed. Besides that, in

most lattice QCD the pion masses have been calculated for
the separated states πūu and πd̄d as discussed for Eq. (33).
Lattice QCD results from Refs. [37,51] are also shown in
the figures below. The magnetic field coupling constants
reduce the values of the pion mass in all cases. The pion
mass decreases also because of the behavior of the quark
effective masses. The considerable role of magnetic field
coupling constant for the complete neutral pion state mass
(thick solid line), which reduces the pion mass with respect
to the unique coupling constant G0 (thin solid line) in
Fig. 7, is noted. However, due to the nonlinearity of the
BSE and to the behavior of the quark effective masses with
eB, the pion mass (complete state) drops too fast for
magnetic fields stronger than eB ∼ 0.65 GeV2. Eventually
the pion mass go to zero by eB ∼ 1.3 GeV2, and there is no
more solution for the corresponding BSE. For the cases of
πūu and πd̄d states, exhibited in Figs. 8 and 9, respectively,
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for lower values of magnetic fields the magnetic field
dependent scalar Gs

ijðeBÞ improves the agreement with
lattice QCD. However the magnetic field dependent cou-
pling constants GffðBÞ are not enough to reproduce lattice
QCD data for quite strong magnetic fields, nearly at the
same point for the complete pion state and for the ūu or d̄d
states. Note that the BSE for the complete neutral pion state
is not consistent with an assumption such that the complete
neutral pion mass would be the average of the ūu and d̄d
states. When comparing the BSE Eqs. (31) and (33) for the
complete and ūu=d̄d pion states, it can be seen that G33 is
an averaged ofGuu andGdd, and alsoΠcompleteðP2 ¼ M2

πÞ is
an average of the separated polarization tensors for u and d
quarks. Since all the polarization tensors are nonlinear
functions of the pion mass (in the limit of zero pion
three-momentum), it turns out that the two averages
taken to compute the complete pion mass in G33ΠðM2

πÞ
varies considerably faster than the separated quantities
GuuΠuuðM2

πÞ and GddΠddðM2
πÞ. These behaviors lead to

the unexpected faster variation of the complete pion mass
with the magnetic field. Of course the separated depend-
encies of all the three polarization tensors on eB and on
P2 ¼ M2

π produce this unexpected behavior. However
further investigation is seemingly needed to certify, first
of all, that different lattice calculations provide results in
agreement with each other.
In Fig. 10 the magnetic field dependence of the neutral

kaon mass is presented for the different cases discussed
above: by using gap equations and BSE with G0 (thin solid
line) and gap equations with Gs

ff and BSE with Gs
66; G

s
77

(thick solid line) and also Gps
66; G

ps
77 (dashed line). The

parametrizations (40) and (41) were also used, respectively,
dotted (yellow) and dot-dashed (green) lines. The pseudo-
scalar coupling constant Gps

ij ðeBÞ does not make neutral
kaon mass to increase, as it happens in the neutral pion
case, although it makes results worsen when compared to

results with G0. It is seen that the magnetic field deviation
due to the magnetic field dependent coupling constant is
not enough to reproduce lattice QCD results although it
improves agreement when compared with results obtained
with G0.
In Fig. 11 the deviation of the η − η0 mixing angle due to

the magnetic field, Eq. (38), is presented for three different
ad hoc prescriptions for the behavior of the η − η0 mass
difference with the magnetic field shown in Eq. (39). Again
the coupling constants Gs

ij were used. The decrease of the
η − η0 mass difference, D3, contributes for a further
increase of the modulus of the mixing angle that is favored
by an increase of the coupling constant G08ðBÞ with the
magnetic field. The magnetic field dependencies of G00ðBÞ
and G88ðBÞ are less relevant than G08ðBÞ for the resulting
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mixing angle. Results with the use of prescription D3 are
more sensitive to the magnetic field becauseD3 considers a
reduction of the mass different with the magnetic field in
the argument of the arcsin in Eq. (38).

V. SUMMARY AND DISCUSSION

Effects of quark polarization in a constant background
magnetic field on the NJL-coupling constant were analyzed
firstly in the resulting gap equations, and therefore in the
quark-antiquark chiral condensates, and mass generation
for constituent quarks. Secondly their effects were analyzed
in the BSE for the neutral pion and kaon masses and the
η − η0 mixing angle. The one loop level calculation under
magnetic field breaks chiral and flavor symmetries induc-
ing different contributions for the scalar and pseudoscalar
channels and flavor dependency of the coupling constants.
Besides the diagonal coupling constants Gii, mixing type
interactions Gi≠j (for i, j ¼ 0; 3; 8) also emerge and they
contribute to neutral mesons mixings. These mixing inter-
actions have two sources: the magnetic field coupling to
quarks and the nondegenerate quark masses; this second
effect was also analyzed separately in Ref. [35]. The
resulting mixing-type interactions are proportional to the
different quark mass differences, ∝ ðMf −MgÞ and ðM2

f −
M2

gÞ for f ≠ g ¼ u, d, s, and they were mostly considered
for an estimate of the magnetic field correction to the η − η0
mixing angle. The magnetic field dependence of the up and
down quark-antiquark condensates from the gap equations
depend on the scalar coupling constants, G0 þ Gs

ii, and
these results can be said to be slightly improved with
respect to results available from lattice QCD calculations
although the averaged value may be well reproduced. It
indicates, however, that further flavor or magnetic field
dependencies of parameters may be needed mainly to
reproduce correctly the lattice results for the difference
of the up and down quark condensates. The strange quark-
antiquark condensate also receives corrections.
Although the corrected scalar coupling constants have a

magnetic field dependence with nearly the same behavior
of the coupling constant behavior needed to reproduce
lattice QCD results, the corrected pseudoscalar coupling
constants in this one loop fermion calculation, G0 þ Gps

ii ,
has the opposite magnetic field dependence and they do not
lead to results with the behavior found in lattice QCD
results. Therefore the pseudoscalar coupling constants were
not employed extensively for calculating observables. This
suggests that there may have a further different mechanism
in the pseudoscalar channel that could generate a strongly
decreasing behavior for Gps

ij ðBÞ that should compensate the
behavior obtained from polarization process. Therefore, by
simply adopting the scalar coupling constant to compute
the neutral pion bound states, results receive corrections
that somewhat improve the agreement with data from lattice
QCD. This comparison presents some subtleties because

lattice QCD calculations have few points for finite magnetic
field and they provided neutral pion mass mostly for
separated ūu or d̄d structures. Therefore, to make possible
amore detailed comparison among different calculations,we
presented calculations for the complete neutral pion state
mass and for the ūu or d̄d states. Neutral pion mass as
calculated forG0 and for the separated states ūu or d̄d present
a similar behavior: for lower magnetic fields there is a
decrease of the masses and NJL-predictions yield, for
eB ≥ 0.5–0.9 GeV2, an increase of masses. A different
behavior is obtained for the complete neutral pion structure
for Gs

ijðBÞ with a continuous decrease of its mass until there
is no more solution for the neutral pion BSE around
eB ∼ 1.3 GeV2. Note that the complete neutral pion mass
is not an average of themasses of states ūu and d̄d because of
the nonlinearity of the BSE but also due to the different up
and down quark effective masses. It is interesting to
emphasize that, whereas the current NJL predictions for
the up and down quark condensates are improved with
respect to the standardNJLmethod, the results for the neutral
mesons masses need further physical input in their BSE.
The neutral kaon mass calculated either with G0 or with

Gs
ij provide decreasing values with eB although the mag-

netic field dependent coupling constants provide stronger
decrease. By eB0 ∼ 1.0 GeV2, the difference between the
two estimates is of the order ofMK0ðG0Þ −MK0ðGijðBÞÞ∼
10 MeV, and larger for stronger magnetic fields. Finally
estimates for the magnetic field dependence of the η − η0
mixing angle were provided by considering the mixing type
interaction G08ðBÞ according to Refs. [35,36]. As shown in
Appendix B, G08ðBÞ ∼Guu þGdd − 2Gss is proportional
to the up/down-strange quark effective mass nondegener-
acy. For the η − η0 mixing angle, different behaviors of the
magnetic field dependence of the mass difference Mη0 −
MηðBÞ were considered.
These results suggest that the present magnetic field

corrections for the NJL coupling constant from quark
polarization might be enough to describe results for the
neutral pion mass from lattice QCD for not strong magnetic
fields, i.e., eB≲ 0.2; 0.4, or 0.6 GeV2, depending on the
definition of the pion structure according to Figs. 7–9.
Neutral kaon masses are also well reproduced for still
weaker magnetic fields. The higher order polarization
corrections should not provide large contributions because
they are suppressed by 1=M�n (n ≥ 2). Therefore, further
magnetic field dependencies might be needed for realistic
predictions of the NJL model. Further comparisons of NJL
predictions with first principles lattice QCD results will
make possible to understand better, and eventually to
improve, the predictive power of the model under finite
magnetic fields. For that it is also important to provide
further lattice calculations. Nevertheless, with calculations
presented in this work, it is possible to identify how the
NJL degrees of freedom exclusively come into play for the
corresponding hadron observables under finite magnetic
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fields. This procedure should help to disentangle somewhat
both the understanding of hadron dynamics in terms of the
fundamental degrees of freedom and in terms of hadron
effective (and observable) degrees of freedom by trying to
relate both levels of the description. Maybe this type of
comparisons also might eventually help to conclude further
which “sector” of QCD dynamics is at work for each
observable under these external conditions.
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APPENDIX A: QUARK PROPAGATOR IN A
CONSTANT MAGNETIC FIELD

By considering the proper time, representation for the
quark propagator with the minimal coupling to the photon
field is given by

S0ðx; yÞ ¼ Φðx; yÞS0ðx − yÞ; ðA1Þ

where

Φðx;yÞ≡ exp

�
iq
Z

x

y
dξμ

�
AμðξÞþ

1

2
Fμνðξ− yÞν

��
ðA2Þ

is the Schwinger phase factor, which is explicitly gauge
dependent and breaks the translation invariance of the
propagator, and

S0ðx − yÞ≡ −ð4πÞ−2
Z

∞

0

ds
s2

�
mþ 1

2
γ · ½qF coth ðqFsÞ þ qF�ðx − yÞ

�

× exp

�
−im2s −

1

2
tr ln ½ðqFsÞ−1 sinh ðqFsÞ�

�

× exp

�
−
i
4
ðx − yÞTqF coth ðqFsÞðx − yÞ þ i

2
qσμνFμνs

�
ðA3Þ

is the translational invariant term. Here the quark electric charge is denoted by q while m stands for its mass. The photon
field strength tensor is denoted by Fμν and σμν ¼ i

2
½γμ; γν�.

Now we consider the case in which the photon field correspond to a constant magnetic field along the ẑ direction,

B⃗ ¼ Bêz, such that F12 ¼ B. In this case, the translational invariant propagator becomes

S0ðx − yÞ ¼ −ð4πÞ−2
Z

∞

0

ds
s2

jqBjs
sin ðjqBjsÞ exp ð−im

2sþ isignðqBÞjqBjsσ3Þ

× exp

�
−

i
4s

½ðx − yÞ2k − jqBjs cot ðjqBjsÞðx − yÞ2⊥�
�

×

�
mþ 1

2s

�
γ · ðx − yÞk −

jqBjs
sin ðjqBjsÞ γ · ðx − yÞ⊥e−isignðqBÞjqBjsσ3

��
; ðA4Þ

where signðxÞ is the sign function and, for two arbitrary
four-vectors aμ and bμ, we are denoting

ða · bÞk ¼ a0b0 − a3b3;

ða · bÞ⊥ ¼ a1b1 þ a2b2:

The Fourier transformation of Eq. (A4) is found to be
given by

S0ðpÞ ¼ −i
Z

∞

0

ds exp

�
−is

�
m2 − p2

k þ
tanðjqBjsÞ
jqBjs p2⊥

��

× f½1 − signðqBÞγ1γ2 tanðjqBjsÞ�
× ðmþ γ · pkÞ − γ · p⊥½1þ tan2ðjqBjsÞ�g: ðA5Þ

APPENDIX B: COUPLING CONSTANTS IN
DIFFERENT FLAVOR BASIS AND INTEGRALS

The coupling constants of the NJL interaction in the
adjoint representation relates to the ones in the fundamental
representation by

G00 ¼ 1

3
½GuuðBÞ þ GddðBÞ þ GssðBÞ�; ðB1aÞ

G11ðBÞ ¼ G22ðBÞ ¼ GudðBÞ; ðB1bÞ

G33ðBÞ ¼ 1

2
½GuuðBÞ þ GddðBÞ�; ðB1cÞ
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G44ðBÞ ¼ G55ðBÞ ¼ GusðBÞ; ðB1dÞ

G66ðBÞ ¼ G77ðBÞ ¼ GdsðBÞ; ðB1eÞ

G88ðBÞ ¼ 1

6
½GuuðBÞ þGddðBÞ þ 4GssðBÞ�; ðB1fÞ

G03ðBÞ ¼ G30ðBÞ ¼ 1ffiffiffi
6

p ½GuuðBÞ −GddðBÞ�; ðB1gÞ

G08ðBÞ ¼ G80ðBÞ ¼ 1

3
ffiffiffi
2

p ½GuuðBÞ þ GddðBÞ − 2GssðBÞ�;

ðB1hÞ

G38ðBÞ ¼ G83ðBÞ ¼ 1

2
ffiffiffi
3

p ½GuuðBÞ −GddðBÞ�; ðB1iÞ

both for scalar and pseudoscalar interactions. All the other
couplings Gij vanish. Here we are denoting

Gs
fgðBÞ ¼ gþ g2Πs

fgðBÞ; ðB2aÞ

Gps
fgðBÞ ¼ gþ g2Πps

fgðBÞ; ðB2bÞ

where

Πs
fgðBÞ ¼ 2iNc

Z
d4p
ð2πÞ4 trD½S

B
f ðpÞSBg ðpÞ�; ðB3aÞ

Πps
fgðBÞ ¼ 2iNc

Z
d4p
ð2πÞ4 trD½S

B
f ðpÞiγ5SBg ðpÞiγ5�; ðB3bÞ

with SBf ðpÞ representing the quark propagator in momen-
tum space in the presence of the uniform magnetic field B
and trD representing the trace over Dirac indices.

[1] J. O. Andersen, W. R. Naylor, and A. Tranberg, Phase
diagram of QCD in a magnetic field, Rev. Mod. Phys.
88, 025001 (2016).

[2] D. Kharzeev, Parity violation in hot QCD: Why it can
happen, and how to look for it, Phys. Lett. B 633, 260 (2006).

[3] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The
effects of topological charge change in heavy ion collisions:
‘Event by event P and CP violation, Nucl. Phys. A803, 227
(2008).

[4] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,
Chiral magnetic and vortical effects in high-energy nuclear
collisions: A status report, Prog. Part. Nucl. Phys. 88, 28
(2016).

[5] K. Tuchin, Particle production in strong electromagnetic
fields in relativistic heavy-ion collisions, Adv. High Energy
Phys. 2013, 490495 (2013).

[6] V. Skokov, A. Yu. Illarionov, and V. Toneev, Estimate of the
magnetic field strength in heavy-ion collisions, Int. J. Mod.
Phys. A 24, 5925 (2009).

[7] V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,
V. P. Konchakovski, and S. A. Voloshin, (Electro-)Magnetic
field evolution in relativistic heavy-ion collisions, Phys.
Rev. C 83, 054911 (2011).

[8] Z. Wang, J. Zhao, C. Greiner, Z. Xu, and P. Zhuang,
Incomplete electromagnetic response of hot QCD matter,
Phys. Rev. C 105, L041901 (2022).

[9] T. Vachaspati, Magnetic fields from cosmological phase
transitions, Phys. Lett. B 265, 258 (1991).

[10] K. Enqvist and P. Olesen, On primordial magnetic fields of
electroweak origin, Phys. Lett. B 319, 178 (1993).

[11] R. C. Duncan and C. Thompson, Formation of very strongly
magnetized neutron stars-Implications for gamma-ray
bursts, Astrophys. J. 392, L9 (1992).

[12] A. Broderick, M. Prakash, and J. M. Lattimer, The equation
of state of neutron star matter in strong magnetic fields,
Astrophys. J. 537, 351 (2000).

[13] C. Giunti and A. Studenikin, Neutrino electromagnetic
interactions: A window to new physics, Rev. Mod. Phys.
87, 531 (2015).

[14] I. Danhoni and F. S. Navarra, Magnetic field in relativistic
heavy ion collisions: Testing the classical approximation,
Phys. Rev. C 103, 024902 (2021); I. Danhoni and F. S.
Navarra, Magnetic excitation in relativistic heavy ion
collisions, Phys. Lett. B 805, 135463 (2020).

[15] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Dimen-
sional reduction and catalysis of dynamical symmetry
breaking by a magnetic field, Nucl. Phys. B462, 249
(1996); I. A. Shovkovy and V. M. Turkowski, Dimensional
reduction in Nambu-Jona-Lasinio model in external chro-
momagnetic field, Phys. Lett. B 367, 213 (1996); V. A.
Miransky and I. A. Shovkovy, Magnetic catalysis and
anisotropic confinement in QCD, Phys. Rev. D 66,
045006 (2002).

[16] V. A. Miransky and I. A. Shovkovy, Quantum field theory in
a magnetic field: From quantum chromodynamics to gra-
phene and Dirac semimetals, Phys. Rep. 576, 1 (2015).

[17] I. A. Shovkovy, Magnetic catalysis: A review, Lect. Notes
Phys. 871, 13 (2013).

[18] F. Bruckmann, G. Endrödi, M. Giordano, S. D. Katz, T. G.
Kovacs, F. Pittler, and J. Wellnhofer, Landau levels in QCD,
Phys. Rev. D 96, 074506 (2017).

[19] J. O. Andersen, W. R. Naylor, and A. Tranberg, Phase
diagram of QCD in a magnetic field, Rev. Mod. Phys.
88, 025001 (2016).

[20] J. O. Andersen, QCD phase diagram in a constant magnetic
background, Eur. Phys. J. A 57, 189 (2021).

THIAGO H. MOREIRA and FABIO L. BRAGHIN PHYS. REV. D 105, 114009 (2022)

114009-14

https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1016/j.physletb.2005.11.075
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1155/2013/490495
https://doi.org/10.1155/2013/490495
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevD.105.L041901
https://doi.org/10.1016/0370-2693(91)90051-Q
https://doi.org/10.1016/0370-2693(93)90799-N
https://doi.org/10.1086/186413
https://doi.org/10.1086/309010
https://doi.org/10.1103/RevModPhys.87.531
https://doi.org/10.1103/RevModPhys.87.531
https://doi.org/10.1103/PhysRevC.103.024902
https://doi.org/10.1016/j.physletb.2020.135463
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1016/0550-3213(96)00021-1
https://doi.org/10.1016/0370-2693(95)01451-9
https://doi.org/10.1103/PhysRevD.66.045006
https://doi.org/10.1103/PhysRevD.66.045006
https://doi.org/10.1016/j.physrep.2015.02.003
https://doi.org/10.1007/978-3-642-37305-3
https://doi.org/10.1007/978-3-642-37305-3
https://doi.org/10.1103/PhysRevD.96.074506
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1103/RevModPhys.88.025001
https://doi.org/10.1140/epja/s10050-021-00491-y


[21] M. D’Elia, L. Maio, F. Sanfilippo, and A. Stanzione, Phase
diagram of QCD in a magnetic background, Phys. Rev. D
105, 034511 (2022).

[22] G. Cao, Recent progresses on QCD phases in a strong
magnetic field—views from Nambu-Jona-Lasinio model,
Eur. Phys. J. A 57, 264 (2021).

[23] F. L. Braghin, Low energy constituent quark and pion
effective couplings in a weak external magnetic field,
Eur. Phys. J. A 54, 45 (2018).

[24] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity I, Phys. Rev. 122, 345 (1961).

[25] U. Vogl and W. Weise, The Nambu and Jona-Lasinio model:
Its implications for Hadrons and Nuclei, Prog. Part. Nucl.
Phys. 27, 195 (1991).

[26] S. P. Klevansky, The Nambu-Jona-Lasinio model of quan-
tum chromodynamics, Rev. Mod. Phys. 64, 649 (1992).

[27] T. Hatsuda and T. Kunihiro, QCD phenomenology based
on a chiral effective Lagrangian, Phys. Rep. 247, 221
(1994).

[28] H. Kleinert, Erice Summer Institute 1976, in Understanding
the Fundamental Constituents of Matter, edited by A.
Zichichi (Plenum Press, New York, 1978), p. 289.

[29] J. L. Cortés, J. Gamboa, and L. Velásquez, A Nambu-Jona-
Lasinio like model from QCD at low energies, Phys. Lett. B
432, 397 (1998).

[30] K.-I. Kondo, Toward a first-principle derivation of confine-
ment and chiral-symmetry-breaking crossover transitions in
QCD, Phys. Rev. D 82, 065024 (2010).

[31] P. Costa, O. Oliveira, and P. J. Silva, What does low energy
physics tell us about the zero momentum gluon propagator,
Phys. Lett. B 695, 454 (2011).

[32] T. Hell, S. Rossner, M. Cristoforetti, and W. Weise,
Dynamics and thermodynamics of a nonlocal Polyakov–
Nambu–Jona-Lasinio model with running coupling, Phys.
Rev. D 79, 014022 (2009).

[33] A. Paulo, Jr. and F. L. Braghin, Vacuum polarization
corrections to low energy quark effective couplings, Phys.
Rev. D 90, 014049 (2014).

[34] P. Costa, C. A. de Sousa, M. C. Ruivo, O. Oliveira, P. J.
Silva, and H. Hansen, Some properties of two Nambu-Jona-
Lasinio -type models with inputs from lattice QCD, Acta
Phys. Pol. B Proc. Suppl. 5, 1083 (2012).

[35] F. L. Braghin, Flavor-dependent U(3) Nambu-Jona-Lasinio
coupling constant, Phys. Rev. D 103, 094028 (2021).

[36] F. L. Braghin, Strangeness content of the pion in the U(3)
Nambu-Jona-Lasinio model, J. Phys. G 49, 055101 (2022).

[37] G. S. Bali, B. B. Brandt, G. Endrodi, and B. Glaessle,
Meson masses in electromagnetic fields with Wilson fer-
mions, Phys. Rev. D 97, 034505 (2018).

[38] G. Endrodi and G. Markó, Magnetized baryons and the
QCD phase diagram: NJL model meets the lattice, J. High
Energy Phys. 08 (2019) 036.

[39] R. L. S. Farias, K. P. Gomes, G. Krein, and M. B. Pinto,
Importance of asymptotic freedom for the pseudocritical
temperature in magnetized quark matter, Phys. Rev. C 90,
025203 (2014).

[40] V. A. Miransky and I. A. Shovkovy, Magnetic catalysis and
anisotropic confinement in QCD, Phys. Rev. D 66, 045006
(2002); M. A. Andreichikov, V. D. Orlovsky, and Yu. A.

Simonov, Asymptotic Freedom in Strong Magnetic Fields,
Phys. Rev. Lett. 110, 162002 (2013).

[41] K. Xu, J. Chao, and M. Huang, Effect of the anomalous
magnetic moment of quarks on magnetized QCD matter and
meson spectra, Phys. Rev. D 103, 076015 (2021).

[42] K. Hattori, T. Kojo, and N. Su, Mesons in strong magnetic
fields: (I) General analyses, Nucl. Phys. A951, 1 (2016).

[43] S. S. Avancini, R. L. S. Farias, M. Benghi Pinto, W. R.
Tavares, and V. S. Timóteo, π0-pole mass calculation in a
strong magnetic field and lattice constraints, Phys. Lett. B
767, 247 (2017).

[44] S. S. Avancini, R. L. S. Farias, and W. R. Tavares, Neutral
meson properties in hot and magnetized quark matter: A
new magnetic field independent regularization scheme
applied to an NJL-type model, Phys. Rev. D 99, 056009
(2019).

[45] S. Mao, Pions in magnetic field at finite temperature, Phys.
Rev. D 99, 056005 (2019).

[46] M.Coppola, D. Gomez Dumm, S. Noguera, and N. N.
Scoccola, Neutral and charged pion properties under strong
magnetic fields in the NJL model, Phys. Rev. D 100, 054014
(2019).

[47] J. Li, G. Cao, and L. He, Gauge independence of pion
masses in a magnetic field within the Nambu-Jona-Lasinio
model, Phys. Rev. D 104, 074026 (2021).

[48] J. Chao, Y.-X. Liu, and L. Chang, Light charged pion in
ultra-strong magnetic field, arXiv:2007.14258.

[49] S. A. Avancini, J. C. Sodré, M. Coppola, and N. N.
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