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Longitudinal dynamics for mesons on the light cone
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We survey a set of proposed light-front models for confinement in the valence quark sector of the mesons
and portray similarities as well as differences. We present the spectroscopies for the light mesons that result
from a selection of longitudinal confinement forms. We note that the Sturm-Liouville theory provides a
unifying framework for many elements of this comparison.
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I. INTRODUCTION

The light-front Schrodinger wave equation (LFSWE)
provides a relativistic semiclassical first approximation to
QCD for mesons represented as quark and antiquark bound
states [1],

/zi+m2

&+ m? - -
|y R = M B, (1)
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X 1—x

Here, the effective potential V encodes the nonperturbative
dynamics of QCD at low-energy resolution. Remarkably,
Brodsky and de Tramond discovered that the LEFSWE in the
chiral limit (m, = m; =0) can be identified with the
equation of motion of strings in the fifth dimension of
anti—de Sitter (AdS) space thus establishing an extraordinary
connection between light-front QCD and AdS/QCD, a
bottom-up approach known as light-front holography
(LFH) [2]. LFH has been successfully applied to describing
the hadron spectroscopy, including the spectra of mesons
[2-6], the infrared behavior of the strong coupling [7], hadron
form factors [2,8—10] and parton distributions [11,12]. An
excellent review of this approach is found in Ref. [13].
Light-front holography addresses the chiral limit where
only the dynamics of the transverse degrees of freedom
(d.o.f.) are considered. Recently, attention has focused on
the role of longitudinal dynamics [14-24]. The longitudinal
dynamics is important for incorporating finite quark
masses, chiral dynamics and longitudinal excitations as
well as for identifying the physical states in the excitation
spectrum [25]. Unlike the transverse d.o.f., the longitudinal
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dynamics in the presence of transverse dynamics of the
LFSWE has not been posed from underlying principles.

In light of various proposals in the literature, it is
tempting to compare these longitudinal confining inter-
actions. Ahmady et al. compared the hadron spectra
employing the 't Hooft model and our model [20].
Shuryak and Zahed compared the effective light-front
Hamiltonian obtained from the Nambu-Goto string having
massive ends with a phenomenological model we (with
others) introduced [22]. Weller and Miller further compared
the longitudinal confining potentials of these three models
and the corresponding wave functions [26]. In this work,
we discuss the role of longitudinal dynamics in LFSWE. In
particular, we focus on the endpoint behavior of the wave
functions and the scaling of the eigenvalues. We show that
this behavior is closely related to the singularities of the
corresponding LFSWE. This observation enables us to
consider a broader class of longitudinal confining potentials
based on the Sturm-Liouville (SL) theory. We present
several concrete examples.

This perspective is consistent with the traditional quan-
tum many-body approach to self-bound systems, e.g.,
atoms, molecules, and nuclei. There, first approximations
are employed to chart out a set of “orbits” or “shells” of the
system. Then, the wave functions of these orbits are
adopted as the basis within which the full Hamiltonian
operator is diagonalized to obtain the “exact” results. In
light of this link to the quantum many-body treatment, basis
light-front quantization (BLFQ) [27], we referred to our
recent LESWE approach for light mesons as BLFQ. In the
heavy quark systems, the nonrelativistic potential model is
a valid first approximation [28]. This model is augmented
to the Hamiltonian QCD in Coulomb gauge to address the
full QCD dynamics [29] (see Ref. [30] for a recent review).
In the light hadron sector, light-front holography plays an
analogous role with its remarkable phenomenological
successes. Recently, it was argued that the endpoint

Published by the American Physical Society


https://orcid.org/0000-0001-9446-6503
https://orcid.org/0000-0002-3500-4314
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.114006&domain=pdf&date_stamp=2022-06-07
https://doi.org/10.1103/PhysRevD.105.114006
https://doi.org/10.1103/PhysRevD.105.114006
https://doi.org/10.1103/PhysRevD.105.114006
https://doi.org/10.1103/PhysRevD.105.114006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

YANG LI and JAMES P. VARY

PHYS. REV. D 105, 114006 (2022)

asymptotics of the longitudinal dynamics are essential for
implementing the Gell-Mann-Oakes-Renner (GMOR) rela-
tion—a direct consequence of chiral symmetry breaking in
the light sector [18,25].

The reminder of this work is organized as follows.
Section II introduces the LESWE within the separation
of variables ansatz and its application in QCD, the light-
front holographic QCD. We then discuss the need for a
longitudinal dynamics and compare various proposals from
the literature in Sec. III. In the next section, Sec. IV, we
construct a general class of longitudinal potentials based on
the Sturm-Liouville theory. Several specific cases are
investigated. Finally, we conclude in Sec. V.

)
+kl—|—mé+2§(l—x,

II. FORMALISM

Formally, the LFSWE is a low-energy effective theory
of QCD. Therefore, it may be obtained from a
Hamiltonian renormalization group evolution, either the
Okubo-Suzuki-Lee type [31-36] or the flow-equation
type [37-39]. Alternatively, it can be viewed as the
truncation up to the valence Fock sector; hence, the
Tamm-Dancoff type of approximation is applied
[40,41]. These formal connections to QCD make it
possible to systematically improve the LEFSWE, as shown
in Refs. [42-45]. In either approach, one can write down
the wave equation,

k)1 my) (6.%,)
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2, is the quark self-energy and needs to be solved from the
gap equation. In the first approximation, we can absorb the
self-energy in an effective quark mass. J is the total angular
momentum and m; is its magnetic projection. y is the wave
function which is normalized according to

> i

= 6hh'5m1,m'J' (3)
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Subscript 4 indicates the hadron species. This wave
equation corresponds to the effective Hamiltonian
Hy = (K + mg)/x + (k1 + mz)/(1 —x)+ V. The nor-
malization adopted here stems from the Lorentz invariant
phase space element,

a4 d?
[ ezt =)= | Gyt
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To associate the eigenvalues and eigenfunctions to
hadrons, we need to compute the discrete symmetries P
and C. They are represented as [46]

todx T
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where k, = (—k,.k,). The mirror parity (—1)’P is
employed here since it is a more convenient observable
on the light front [46]. Since the mirror parity flips the sign
of the spin, we can use the m; = 0 state to compute the
mirror parity.

A. Separation of variables
In the massless limit, the kinetic energy becomes
I:i/x(l —x), which depends only on a 2D variable

K=k, /A /x(1 —x). It is natural to assume the system
in the chiral limit also depends only on K| and its conjugate

coordinate ¢, = iV, =+/x(1 =x)7, [2]. In the more
general case, especially when the quark masses are not
zero, we can assume that the interaction is separable;
V=V, +V), an ansatz first explicitly introduced by
Chabysheva and Hiller [14] (cf. Ref. [9]). We note that
the separation of the transverse and longitudinal dynamics
is natural in light-front QCD [47]. Figure 1 shows two
representative light-front QCD interactions. Figure 1(a)
involves the exchange of the purely transverse gluons while
Fig. 1(b) involves the instantaneous interaction in the

(a) (b)

FIG. 1. Representative light-front QCD interactions contributed
to the (a) transverse and (b) longitudinal effective interactions,
respectively.
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FIG. 2. Entanglement entropy between the transverse and the longitudinal d.o.f. for charmonium states obtained from BLFQ. The
effective Hamiltonian adopts a separable confining (holographic confinement plus the LMZV longitudinal confinement) along with a

nonseparable one-gluon-exchange interaction [52].

longitudinal direction. The latter survives in 1 + 1D as the
Schwinger-"t Hooft type of interaction [48-50].

Of course, the true effective interaction between a quark
and an antiquark may not be separable; for instance, the
one-gluon-exchange interaction. A proper metric of the
separability is the entanglement entropy S, between the
transverse and the longitudinal d.o.f., which is defined as
the von Neumann entropy for the reduced density matrix,
S, = —tr[p, logp, | [51]. Figure 2 shows the entanglement
entropy between the transverse and the longitudinal d.o.f.
for charmonium states obtained from a nonseparable
interaction [52]. The effective Hamiltonian adopts a sepa-
rable confining interaction (holographic confinement plus
the Li-Maris-Zhao-Vary (LMZV) longitudinal confine-
ment) along with a nonseparable one-gluon-exchange
interaction. As one can see, S, is generally small for the
ground states—indicating that these states are physically
separable within this model. In this work, we adopt the
separation of variable ansatz, which should provide a good
description for the low-lying states.

With this ansatz, the mass eigenvalues M? = M? + Mﬁ
and the wave function are also separable,

w(xky) = Vazp(k, //x(1 = x)x(x). (7)

We obtain two LFSWEs [14],

i+ VELIp(EL) = MIp(EL), (8)
P B0 = M. )

Here, the longitudinal effective potential V| depends on the
boost invariant longitudinal coordinate 2:% pTx~ [or
other related longitudinal coordinate variables, e.g.,
(24)], introduced by Miller and Brodsky [53]. We note
that even in the massless limit, Eq. (9) is still required to
have nontrivial solutions. Hereafter, we consider specific
spin configurations (the leading-twist spin components)

and the explicit spin indices will be suppressed, except for
the purpose of state identification. Note that the separation

of variables ansatz requires that the variables Z | and Z (or
other related longitudinal coordinate variables) are inde-

pendent. Since Z‘L = /x(1l =x)7, depends on x, %
should be defined as a differential operator against E 1s
viz. 7 = ia—‘i|&.

It is convenient to normalize the transverse and longi-
tudinal wave functions,

de.'J_

/ GanlbEIR=1.

It is also useful to introduce a longitudinal wave function

Aldxl;((x)F — 1. (10)

X(x) = \/x(1 = x)y(x) with the normalization,

| e xor = 1. (1)
o X

1—x)

In our convention, X (x) is proportional to the distribution
amplitude. This is related to the alternative normalization

convention of the wave function ¥(x, ) or its transverse
Fourier conjugate,

. P oz
P(xR,) = / KL (1, et

(27)?
Ve ) (12)
Under this convention, the normalizations of the
wave functions are [recall K, :l;l/ Vx(1 =x),
é’L = x(l _x);)L]s
1 d’k, - )
| dx mm’(x,kl/\/x(l—x)ﬂ =1,
1 L dx -
— — | & Y, FE=1. 13
| i [ e (13)

114006-3



YANG LI and JAMES P. VARY

PHYS. REV. D 105, 114006 (2022)

With this convention, the separable wave function takes the

form, ¥(x,Z,) = VA (¢, )X (x), where ¢ is the Fourier
transform of ¢,

Beo =[S emtar).
1 (Zﬂ)z 1/

As an example, the pion wave function in LFH in the

massless limit is y(x) = 1 and X(x) = y/x(1 — x).

B. Light-front holography
In LFH, the transverse effective potential is determined
by the dilaton profile ®(z) in AdS/QCD, V|, = (1/2)®" +
(1/4)@"? + [(2J — 3)/27]®' [54]. For the soft-wall profile,
V) =«*?% +2%(J = 1). Here, « is the strength of the
confinement in mass dimension. J is the total angular
momentum. The parton transverse separation §| =
\/x(1 = x)r, is mapped to the fifth coordinate z in anti—

de Sitter space. The mass eigenvalues are

J
M3y =46 (4 ) (15)

where 1, and m are the radial and angular quantum numbers

in the transverse plane (£ ). The corresponding wave
functions are 2D harmonic oscillator functions,

P ! Kzg’i m ] .
Dum (CJ_) =K me_T(KCL)W\LL ‘(Kzgi)elmMgéi,

(16)

where n and m are the transverse radial and angular
quantum numbers. The ground state n =0, m = 0, and
J =0 describes the pion, whose mass is predicted to
vanish. Its wave function is Gaussian,

=

> 4z
P 2i%x(1 — x)

wale kL) = ex (17)

To incorporate the finite quark masses, Brodsky and de
Téramond employed a longitudinal wave function
without explicitly introducing the longitudinal dynamics
[9]. This ansatz, known as the invariant mass ansatz (IMA),
is based on the observation that with the presence
of finite quark mass, the light-front kinetic energy
becomes

K k| +my l;i—l—m%]
. 18
x(l—x)_) X + I—x (18)

Hence, it is instructive to make the substitution in the wave
functions. Then the pion wave function becomes

&+ m2
L+ my ] (19)

ki )=N—exp|—=—5—"|.
VB x P 2k%x(1 = x)

N is a normalization constant. In other words, the longi-
tudinal wave function becomes

o) = Nexp|[ -] o

The pion mass is also shifted to a nonzero value by

I dx a2k, R m?
M2 = / ST / SRR @)

In the vicinity of the chiral limit, the theory predicts a
near quadratic quark-mass dependence of the pion mass,
M2 ~2mk(Ink*/m2 — yg), where yg ~ 0.577216 is Euler’s
constant [18]. The scaling of the pion mass M, as a
function of the quark mass m, is inconsistent with the
results from chiral symmetry breaking, which predicts a
linear dependence instead, a result also known as the Gell-
Mann-Oakes-Renner (GMOR) relation [55],

faMz = 2m,(03q|0) + O(mg). (22)

Gutsche et al. suggested replacing the longitudinal wave
function (20) from IMA by a power-lawlike function to
generate the GMOR relation [25].

Another issue with IMA is the lack of longitudinal
excitations, which leads to inconsistencies in state identi-
fication [17,18]. For example, in LFH the mass of p(1D) is
degenerate with the mass of p(2S), and is 400 MeV lower
than the mass of p(1700), which is usually identified as

p(1D). Indeed, in LFH, p(1700) is identified as p(3S5)

instead. Similarly, K, (1400) in LFH is identified as 2°P; as
opposed to the conventional identification 1'P;. The result-
ing mass is higher than the experimental measurements.

For states identified with quantum numbers (n, m, S, J) in
LFHQCD with IMA, (=1)/P = (=1)"+5+1 C = (=1)"*5,
From these relations, quantum number assignments of the
scalars ay (071), the axial vectors b, (177), and the axial
tensors a, (271) etc., are not compatible with the discrete
symmetries. The source of the discrepancy is the lack of
longitudinal degrees of freedom in LFH with IMA. Indeed,
in the basis function approach to the same quantum
numbers, these states are excited in the longitudinal direc-
tion [52]. Indeed, Nielsen and Brodsky recently reinter-
preted the scalars 07 and axial vectors 17+ as tetraquark
states based on supersymmetric construction of light-front
holography [56].

A possible alternative is to invoke the total orbital
angular momentum L and to assume that the LFH wave
functions with IMA are only valid for states L, = |m| = L.
Note that L is not a good quantum number in relativistic
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quantum mechanics. The obtained wave function may not
be in leading twist (L, = 0), either. In contrast, incorpo-
rating the longitudinal dynamics will provide the complete
set of wave functions and the assignment of P and C does
not rely upon these interpretations.

ITII. LONGITUDINAL CONFINEMENT

The issues encountered in LFH point to the need for
longitudinal dynamics. Indeed, as we mentioned, the
decoupling of the transverse and longitudinal d.o.f. in
Eqgs. (8)—-(9) does not necessarily imply the absence of
the longitudinal dynamics. The presence of longitudinal
confinement naturally leads to longitudinal excitations
which ensure the correct state identification, similar to
the nonrelativistic cases but with exact discrete quantum
numbers on the light front. Now, the new set of quantum
numbers becomes (n, m, [, S, J), where [ counts the number
of nodes in the longitudinal direction. Under charge
conjugation, x <> (1 —x) generates an extra sign (—1).
Hence, the charge conjugation quantum number should
become C = (—1)"**5_ One can see that this resolves
discrepancies associated with state identification in
LFHQCD for states with longitudinal excitations. For
nonseparable states involving more than one eigenstate
of the effective Hamiltonian, one can always go back
Egs. (5)—(6). Hence, a longitudinal confinement is required
to maintain the 3D structure of hadrons.

Of course, the longitudinal dynamics is also needed to
incorporate the finite quark masses dynamically. This was
first done by Chabysheva and Hiller utilizing the "t Hooft
model [14],

Vaer)) = Lp [ @20 =20)

(x—y)?* ~ (23)

where the principle value prescription P(1/x?) =
(1/2)[1/(x* + ie) + 1/(x* — ie)] is applied to the pole in
the integrand. Chabysheva and Hiller focused on a specific
solution with m, = g/\/z. The ’t Hooft model as the
longitudinal confinement was recently revisited by
Ahmady et al. [20,21].

Another longitudinal confinement based on a construc-
tion of the harmonic oscillator potential was proposed by
Gtazek and Trawinski [15,16]. They introduce a third
momentum & = (m, + mg)(x —7ir,)//x(1 — x), where
i, = m,/(m, + m;). The longitudinal confining potential
is defined as the harmonic oscillator potential of the
conjugate coordinate ¢ of x, viz.

Var = K4§ﬁ- (24)
The resulting mass squared eigenvalues obey the linear

Regge trajectory, M7 = «*(I + 1). The ground-state wave
function is Gaussian,

ror(x) = Nexp|=(m, + mp2 )]
~ N'exp [-% (’%ﬁ%ﬂ (25)

Therefore, this model can be viewed as a generalization of
the IMA.

The quark masses adopted in Refs. [14-16] are of the
order of the constituent quark mass (~300 MeV). In
Ref. [17], Li, Maris, Zhao, and Vary proposed an analyti-
cally solvable longitudinal confining potential and applied
it to the quarkonium in the framework of BLFQ. In
Ref. [18], we further show that in the vicinity of the chiral
limit, the LMZV model reproduces the GMOR relation as
well as the signature power-law wave function. This is
sometimes termed BLFQ, to distinguish from the appli-
cations to the heavy flavors where the longitudinal coupling
o is chosen to match to the transverse confining strength in
the nonrelativistic (NR) limit. The longitudinal confine-
ment takes the form,

Viven) () = =5 (x(1 =0 3 ). 29

where o is the strength of the longitudinal confinement. The
same longitudinal confinement is adopted by de Tramond
and Brodsky in Ref. [19] to incorporate chiral symmetry
breaking. Both works note the close relation between
the LMZV/BLFQ, model and the 't Hooft model. The
latter is known to exhibit the chiral symmetry breaking via
the Kosterlitz—Thouless (KT) mechanics [57]. From the
ground state masses in the vicinity of the chiral limit
M%sz = G(mq + mq) + 0(’”3,,:7)’ and MtZH = 9\/%(’”(;4'
mg) + 0(my;), we can identify o= g,/5=(qq)|/f*
The longitudinal wave function of the LMZV/BLFQ,
model is

Ximzy (x) = Nx® (1 = x)*, (27)

where «; = m;/c. The ’t Hooft wave function is

Y () =N (1= x)P2. (28)
The exponents f; , satisfy zm?/g* = 1 — zf3; cot nf3;. The
solution in the vicinity of the chiral limit is,

Bi = (m;/9)(\/3/7) = @;, identical to those of the
LMZV/BLFQ, model. In other words, the ground-state
mass eigenvalue and eigenfunctions of the both models are
identical. These two models differ in the excited state
masses. For large excitation, the mass eigenvalues of the 't
Hooft model obey the linear Regge trajectory, M2 « n,
whereas those of the LMZV/BLFQ, model are quadratic,
M2 xn(n+1). A detailed comparison of the hadron
spectra using the ’t Hooft model and the LMZV/BLFQ,
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model with the original predictions from LFH with IMA is
reported by Ahmady et al. [21].

Note that Ahmady et al. effectively imposed a constraint
[ > n + m on the hadron spectra and eliminated low-lying
states without the required longitudinal excitations. For
example, the scalar (0"") a((980) is identified as
(n,m,S)=1(0,1,1) in LFH with IMA, with a predicted
mass Mpa = 0.76 GeV. In the LMZV/BLFQ, model,
this particle is identified as (n,m, [, S) = (0,0, 1, 1) with a
predicted mass Mjyzy = 0.91 GeV. Both models are
consistent with the quark model identification 1°P,, while
the latter improves the theoretical prediction. By contrast,
in Ahmady et al., this state is identified as a tetraquark [56].
The resulting mass is M apyrms = 1.39 GeV.

The pion wave functions of the LMZV/BLFQ, model
are similar to those adopted by Gutsche et al. [25]. The pion
mass is exactly two times the result of Gutsche et al. The
difference is caused by the presence of the confining
interaction in LMZV/BLFQ, model, which contributes
to the other half of the pion mass.

Figure 3 compares the mass spectra of unflavored light
mesons and kaons as predicted by LFH with IMA [13],
LFH with the power-law like wave function by Gutsche
et al. [25], LFH with LMZV /BLFQ, [18], and LFH with ’t
Hooft potential by Ahmady et al [21]. Overall,
LMZV/BLFQ, provides significant improvement of
LFH with IMA towards the experimental data.

In the NR limit, rotational symmetry requires that the
combination of the transverse and longitudinal confining
interactions is a rotational invariant. The transverse con-
finement reduces to a harmonic oscillator potential in this
limit k*¢3 — (k*/4)72 . Tt is expected that the longitudinal
confinement also reduces to the quadratic form.
The Glazek-Trawinski (GT) model satisfies rotational
symmetry in the NR limit by construction. The LMZV
model also satisfies this symmetry with the identification
o =«?/(m, 4+ my) in the NR limit. It is curious to note
that heavy quark effective theory requires x o /My~
\/mg + mg. Hence, the confining strength ¢ approaches
to a constant in the heavy quark limit. From the fits to the
physical quark masses, opg ~0.24 GeV, where “HQ”
stands for “heavy quark” [19]. Physically, this value is
determined by the gluon condensate (G,,G**), which is in
general different from the values in the light sector ¢ =
(Gq)/f%2~0.6 GeV determined by the quark conden-
sate [19].

In coordinate space, the 't Hooft interaction is (recall
Z=3P"x")

Viu = 92|Z|- (29)

In the NR limit, 7 - —2Mr,. The rotational symmetry is
not restored with the quadratic transverse confinement from
LFH. Note that in Ref. [21], Ahmady et al. argued that

95 S0 S P PPy Py %P, D, D, Dy R
i T T T T T T T T T T ]
20 A o]
[ 71800 A ]
[ & A Lol e o .k ]
— 1.5 e Wd2)) —&— A _
> + i e © —_ j
3 [ & A @ oa ]
= [ & A ]
= 10F wosy X .
+ U0 N == pDG «
[ —— LMZV/BLFQ,
0.5 C A LFH+MA 7]
r Gutsche —
[ ea- ® Anmady ]
0.0 1 1 1 1 1 1 1 1 1 1
. o+ 1-- 1+ o+t 1++ o+t 2+ 2-- 3 4+
”s 15, 3s P, 3, 3P, P, D, 3p, 3p,
S T T T T T T T T T ]
C - 1
20F o 3
r S
. X A -
151 - .
3 | ]
o [ ]
= 0L L vil N
+ == pDG «
[ —— LMZV/BLFQ,
0.5~ A LFHevA 7]
r Gutsche -
[ ® Ahmady ]
0.0 I I ! ! ! ! I
’ o 1= 1% ot 1** 2% 27 2™ 3"
25 So Sy P4 Po Py D, Dy Fs Fq
Sr T T T T T T T T T ]
20 A =)
[ A9 oA Rt S ]
[ o ]
— 1.5+ _
% r %= lo— TE&= oA E
o [ - —h— ]
= [ ° b ]
= 10f .
r ok A 1
L == ppG 1
[ —— LMzV/BLFQ, |
05 [ ox A LFHdMA 7]
r Gutsche A
: ® Ahmady :
0.0 I ! I ! ! ! I
0~ 1 1* 0* 2* 2” 3 3* 4*
FIG. 3. Comparison of unflavored light meson spectra and

kaons as predicted by LFH with IMA [13], with LMZV /BLFQ,
[18] and with ’t Hooft potential as implemented by Ahmady et al.
[21]. Results from Gutsche et al. which adopt LFH with a
longitudinal wave function similar to LMZV are also attached for
comparison [25].

rotational symmetry can be restored with the matching
g=k, as the transverse LFH confinement and the
’t Hooft interaction are equivalent to the c.m., instant form
potential V| = (k*/2)r, and V| = (¢*/2)r,, respectively,
based on an relation Upp = Vip+2(m, +mgz)Vip
proposed by Trawinski et al. [16]. Even if this relation
is held in the NR Ilimit, the corresponding potential
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FIG. 4. Comparison of the longitudinal wave functions of ground states from the IMA and from the LMZV model.

V=V, +V = (x*/2) (1 [ri+r2+ rz) is still not rota-

tionally invariant. Shuryak and Zahed proposed an alter-
native confining interaction that generalizes the 't Hooft
model to 3 4+ 1D while combining the light-front holo-
graphic interaction [22,23].

VSZ = 26]*\/22 + le"i.

The rotational symmetry is restored in the NR limit in
this model.

Figure 4 compares the ground-state longitudinal wave
functions X(x) = 1/x(1 — x)y(x) from the IMA and from
the LMZV model. The parameters of the IMA are adopted
from LFHQCD [5,13]. For ¢g and s5, the parameters of the
LMZV model are adopted from Ref. [18]. For cc, bb, the
parameters are matched to the IMA parameters with the NR
reduction, ¢ = k?/ (my + mg). As we can see, the main
difference between these two confining potentials is the
endpoint asymptotics. Despite the striking similarities of
the longitudinal wave functions from IMA and the LMZV
model shown in Fig. 4, we would like to emphasize that the
endpoint behaviors are dramatically different and this fact
has important physical consequences. In the 't Hooft and
LMZV models, the endpoint asymptotics is a direct
consequence of chiral symmetry breaking and the exponent
is related to the chiral condensate. The endpoint behavior
also has a dramatic impact on hadronic observables in high
energy collisions as hard kernels Ty are sensitive to the
endpoint singularities [40].

As an example, one may consider the pion form factor
[18]. In light-front holography, the pion form factor is
[8,13]

(30)

1 dx 1-—xQ?
F 0% = [ ——|X(x)]Pexp(-———=5). (31
(0= [ xwpen (-2 e
The large Q? behavior of F,(Q?) ~1/Q'% is directly
related to the endpoint asymptotics of the (normalized)
distribution amplitude X ~ (1 —x)? [40]. In ’t Hooft and

LMZV models, §=1/2+ m,/o. Hence, Q’F,(Q*)~
1/log Q% in the vicinity of the chiral limit. This is in
contrast to the LFH prediction Q*F ,(Q?) — const. [8] and
to the prediction from LFH with IMA, Q2F,(Q?) — e~<".
These results are shown in Fig. 5, where we adopt
parameters from the original LFH [8]. Of course, a
comprehensive investigation of the pion form factor in
holography requires the dressed holographic current [13],
which is beyond the scope of the present work. We only
point out that the confined current has similar dependence
on the endpoint behavior with the bare current at large
0 [58].

A similar example is the pion radiative transition form
factor' [58,59],

4 [ ¥
00 = [N

Its value at large Q7 is predicted to approach different
asymptotic values with different asymptotics at the
endpoints.

(Q=(1-x)Q). (32)

IV. STURM-LIOUVILLE THEORY

After a comparison of various models, a natural question
to ask is whether there is freedom for further proposals.
This task is not as easy as it seems. Because the con-
struction of a valid Hermitian operator in the functional
space may be jeopardized by the singularities in the light-
front kinetic energy term. Weller and Miller unified the
previous longitudinal potentials with Miller and Brodsky’s
spatial coordinate Z [26]. An alternative approach is the
momentum representation,

1
(Veox) (x) = A dyK (x. y)x(y). (33)

'Here we have neglected the evolution of the pion distribution
amplitude since the evolution is extremely slow for large but
finite Q?, say 1 GeV? < Q% <1000 GeV>.
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FIG. 5. Large-Q> asymptotics of the pion form factor

Q’F,(Q?) from LFH (solid), LFH with IMA (dotted), and
LMZV/BLFQ, (dashed), for the original parameters of LFH
with k = 0.375 GeV. The quark masses are my, 5y = 50 MeV
for LFH with IMA and my, 4y = 12 MeV for LMZV/BLFQ,.

The kernel K(x,y) may be related to the coordinate space
(2) potential,

K(X - x’) = /dZe"sz” (Z) (34)

The 't Hooft model K (x — x') o 1/(x — x’)? corresponds
to the linear potential Vg = |Z|, as mentioned. In general,
the power-law potential |Z|” leads to a kernel K (x — x') =

W (p & 2N). The kernel for the quadratic potential 7*
is the derivative of a Dirac 6, which is more convenient to
be expressed as differential operators. Due to the low
dimensionality, these constructions may be associated with
severe singularities.

Another useful tool is the Sturm-Liouville theory. The

corresponding interaction takes the form,

VL = —0,p(x)0x + 5(x). (35)

Clearly, the LMZYV interaction belongs to this category. The
longitudinal Schrodinger equation (9) becomes

2 2

g Mg _ a2
7+1—x+ VsL ;((X)—M”)((x). (36)

It may be written as a Sturm-Liouville problem

(2(0) =x(1) =0)
(37)

—(p(x)7' (%)) + q(x)x(x) = A (x).

where g(x) =mj/x+m3/(1—x)+ s(x)q. Note that the

derivative 0, is taken with respect to £, not 7, viz.
0, = (9/0x) 7, - In the NR limit, rotational symmetry can be
restored if p(x = i,) = «*/[4(m, + my)?].

We shall call this class of potentials as the SL-type, since
the longitudinal LESWE forms a Sturm-Liouville eigen-
value problem (SLEVP). The SL longitudinal confinement
is naturally compatible with the transverse holographic
confinement in the NR limit. The advantage of these
extensions is that the known properties of the SLEVP,
e.g., the distribution of eigenvalues can be applied to the
longitudinal LESWE.

To the first approximation, function p(x), stemming
from the interquark potential, should be symmetric with
respect to the interchange x <> 1 — x. Therefore, it can be

written as a function of x(1 —x) and (x —1)%. Unless the

quark masses are equal, (x — 1) is not consistent with the

NR reduction x ~ /i, and x ~ 7in;. Therefore, the natural

choice of p(x) is p(x) = 6?[x(1 — x)]”. A typical source of
s(x) is the self-energy correction. A dynamically generated
mass may have the asymptotics ~B/x(1 — x), which can be
absorbed into the quark mass. In general, we can assume
that s(x) is no more singular than the light-front kinetic
energy. A convenient choice is s(x) = 0.

A comment on the normalization is in order. If, instead,
the following normalization is adopted,

1 dx 5
| ke =1, (9)

where a nontrivial weight function w(x) = 1/[x(1 — x)] is
introduced, the Sturm-Liouville problem for X(x)
should be

—(P(x)X'(x)) + Q(x) X (x) = Aw(x)X (x),

(X(0) = X(1) = 0) (39)
where
P = Pl = (f)x)’ (40)
pW/2 N
0(x) = glaw() = 2=+ L (pw)
~ gq(x)  8x*—8x+3 w-1
“xi-x ae(—xp P9 et
(41)

For example, the corresponding interaction for the LMZV
model reads
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62

Uj=—-02@ +—2
I ° X+4x2(1—x)2

(42)

Now let us turn to the general properties of the SLEVP,
which is covered by the Sturm-Liouville theorem [60,61].
The SL problem (37) is called singular if either p(x) = 0 at
the endpoints or ¢(x) has singularities. Otherwise, the SL
problem is called regular. Clearly, the light-front kinetic
energy term in g(x) leads to a singular SLEVP. We remind
that the Sturm-Liouville theorem is only applicable to the
regular SLEVP or the singular SLEVP in limit circle
nonoscillation (LCNO) [60,61]. For other singular
SLEVPs, including the limit-circle-oscillation case and
the limit-point cases, the properties of the eigenvalues
and eigenfunctions are not known in general. For example,
the eigenvalues may not be bounded from below; the
eigensolutions may have infinite oscillations near the
endpoints. Such pathological solutions are known in finite
truncations of relativistic bound-state equations, such as the
Bethe-Salpeter equations. What is worse is that the clas-
sification of singular SLEVP generally relies on the
solution. Mathematically, only a finite number of cases
are classified. A catalog of the singular SLEVP is given
by Ref. [62].

In fact, the most famous SLEVP of the LCNO case on
the finite interval [0, 1], is the familiar Legendre function,
corresponding to p(x) = x(1 — x) and ¢g(x) = 0. Here, we
have applied a shift x = (r+1)/2. The eigenvalues
lp =7¢(¢+ 1) and the eigenfunctions are the Legendre
polynomials P,(2x — 1). The longitudinal confinement
V| = —6%0,(x(1 —x)d,) covers a number of well-known
special functions, the Legendre function, the Chebyshev
function and the Gegenbauer function. The most general
case is the Jacobi function which is applicable to the
general unequal quark mass case,

2 2

7q+ . _qx - 62%)6(1 - x) %}){(X) =Mix(x).  (43)

The associated SL problem is

1= + (B s Je = e

(2(0) = x(1) = 0) (44)

where a = 2mg /o, p = 2m,/c. The solution are the Jacobi
polynomials

Fn(x) = N5 (1 = x)5PP (2x — 1). (45)

The  eigenvalues are A,=n+a+p)(n+ 1+

a+ ) ocn®. The mass eigenvalue Mj = (m, +m;)’+

o(m, +mg)(2n + 1) 4+ 6*n(n + 1). The ground state mass
obeys the GMOR relation, M? = (m,+ m;)*+

o(m, +my). The ground state wave function is power-
lawlike.

The Jacobi function belongs to an even broader class of
special functions, the hypergeometric function [63,64]. It is
expected that a broader class of longitudinal confining
potentials may be constructed there with hypergeometric
functions as the solutions. Unfortunately, the classification
of the general hypergeometric differential equation on the
interval [—1, 1] is not known.

A similar situation occurs for another large class of
second order differential equations on [0, 1], the Heun
equation [62,65]. There are at least two special cases of the
Heun equation that are related to the LMZV interaction.
The first one stems from the azimuthal part of the three-
body Schrodinger equation that describes the hydrogen-
molecule ion H; (two protons plus one electron) [65]. It
corresponds to a longitudinal potential V| = —o?[d, (x(1—
x)0,) +n(2x — 1)?]. The eigensolutions are shown to
acquire additional exponential factors; exp(=+c|2x — 1])
[66]. The second case is the Teukolsky equation that
describes the stability of the Kerr black hole. It corresponds
to a longitudinal potential V| = —c?[d,(x(1 —x)d,) +
a*(2x —1)? +4a(2x — 1)] and a mass function M = m +
b(2x — 1) [65]. The mass correction can also be absorbed
into the potential.

The scaling of the eigenvalues is given by the Atkinson-
Mingarelli theorem [67]. For large n, 4, scales quadrati-
cally,

n*n?

Ay~ (46)
(=)

From this theorem, the eigenvalues of the SL confining
potentials are generally quadratic, unless the integral in the
denominator diverges.

A natural generalization of the LMZV model is to
consider p(x) = 6?x’(1 —x)". Except for y =1, the
obtained SLEVPs are not well studied in mathematics.
However, as we will see, at least some of these problems
(e.g., y = 0) are physically well defined. We will inves-
tigate the longitudinal potentials with y =0, 1, 2, 3. The
results are summarized in Table I. Note that for
y > 2,y € Z, the estimate Eq. (46) is not applicable and
other distributions of the eigenvalues are possible.

A. Case I: p(x)=c6*

In the first case, we take p(x) = 62, s(x) = 0. This is in
fact one of the simplest cases. The longitudinal confining
potential V| = ¢%z* is quadratic in the longitudinal coor-
dinate space. Then the longitudinal LFSWE becomes

m_é mg , &

X +1—x_0 @Z(x)zMﬁ)((x). (47)
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TABLE I. Summary of several longitudinal interactions discussed in this work.

Interaction Z-space M3 M3 7(x)

2P o232 ~n? ~x(1 —x)
—620,x(1 — x)0, (my +my)* + o(m, + my) ~n? NxWTq(l _ x)Tq
—620,x%(1 — x)20, ~n? ~exp (_% ng N lni)
~00°(1 = %)%, ~n ~exp(= 1 (3 + 1)
~7 oy 7Iz VEg(my +myg) ~n ~ (1= x)f

The associated Sturm-Liouville problem, for the equal
mass case m, = mg, is

12

x(1=x)

=" (x)+ ¥ (x) =42 (x),

where y = m, /o, and A = M?/c>.

This is a 1D Schrédinger equation with a potential
V o 1/(x(1 = x)). In the chiral limit (u = 0), the potential
well becomes an infinite square potential well. The
solution in this case is the trigonometry function
Zn(x) = \/2sinnzx, and the n-th eigenvalue 1, = n’z?,
(n=1,2,...)." The ground-state energy is the zero-point
energy, M?> = o%n’.

For m, >0, no analytic solution is known so far,
although in special cases, the solution is related to the
(regularized) hypergeometric function ,F; [63,64].
Numerical solutions are shown in Fig. 6. The nth eigen-
value, again, scales as 1, « n’. At the endpoints x — 0,
the wave function y(x) ~ x. Since there is no singularity
in the integral of the kinetic energy, the quark mass
contribution can be estimated as, AM? = [yg + In27—
Ci(2z)lmZ + O(mj), where, yg is Euler’s constant,

Ci(27) ~ —0.0225607 is the cosine integral. [63,64].

B. Case II: p(x)=c*x(1-x)
This case is the LMZV model discussed above.

C. Case III: p(x) =6*x*(1-x)*

In this case, we choose p(x) = o*x*(1 — x)2. Then the
longitudinal LFSWE becomes

m2 m2 d d
a2 7 201 )2 a2
L TTos 0 ot Um0 g jr) = Mix(x). - (49)

The associated SL problem is

The massless solution A = 0, x(x) = a+ bx, is eliminated by
the boundary condition.

(1 =x)x) + <f—x + 4(10‘7_x)>;( =X,
(x(0) = x(1) = 0). (50)

The analytical solutions are not known. By matching to the

singularities, it can be shown that at the endpoints, the wave
m

functions scales as y(x) ~ exp[—%(% + \/l"Tx)] Numerical

solutions show the eigenvalues 1, < n for low n and 1, «
n?* for large n.

D. Case IV: p(x) =6*x*(1-x)3

In this case, we choose p(x) = 6?x*(1 — x)3. Then the
longitudinal LEFSWE becomes

My 4 ix]m)—wz(x). (s1)

The associated SL problem is

(31 =x)3) + <'fx+4(1a_ x)>)( = Iy,

(2(0) =x(1) = 0). (52)

20

15/\/\/

X

FIG. 6. Solutions of the SL problem (48).
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The analytical solutions are not known. By matching to the
singularities, it can be shown that at the endpoints, the wave
functions scale as y(x) ~exp[—1 (%4 4+ {)]. Numerical
calculations show that the eigenvalues 4, « n.

This case is closely related to the Gtazek-Trawifiski
potential introduced above. To see this, we can express
the longitudinal coordinate ) = iV,q of Gtazek and

Trawifiski in terms of Z = id,. Recall, in the equal mass

J \/2;21—;), or equivalently, x = (1/2) (1 +x/

4m?]+;<ﬁ)_ Then, we can obtain (= (2/m,)

V/x*(1 = x)3i0,. Therefore, the longitudinal confinement
in this model becomes

case, K| = m

oty 4x

-T2
mg

Yt

i 0, x°(1 — x)%a,. (53)

The confining strength ¢ = % With this identification, the
q

wave function at the endpoints becomes, y(x)~

with Glazek and

2 .
exp(—%), in

Trawifiski’s wave function. .
There is a caveat here since x;, =k, /+/x(1 — x) con-

tains the longitudinal coordinate x. Therefore, k L=

agreement

K/ /44 Kﬁ /mj also depending on k. To obtain the third

coordinate ¢, we can apply the chain rule,

0
=i— 54
=5 (54)
ok | ox
=— -7, +—P" 55
()K.'H rL+01<|| T+ ( )
1 I\ . L7 = 3 I
=-5\*—3 x2(1—x)imy 'k, -7 +2x2(1 = x)my'Z.
(56)

Here 7, = ia/aiél, rp=1id/ok",and PTr, =%z =id,is
Brodsky and Miller’s frame-independent longitudinal coor-
dinate. Since 0k | /dk) # 0, in general {| depends on 7i.In

other words, ¥ and Z’ are notindependent conjugate pairs, and
the longitudinal interaction constructed here may not be
exactly the same as the Glazek-Trawifiski model.

V. SUMMARY AND OUTLOOKS

In this work, we discussed the role of longitudinal
dynamics in semi-classical light-front Schrodinger wave
equations. Based on a separation of variables ansatz, we
relate the longitudinal confining interaction to the end-
point asymptotics of the resulting wave function as well as
to the scaling of the eigenvalues. This enables us to

compare longitudinal interactions proposed in the recent
literature as well as a broader class of longitudinal
interactions based on the Sturm-Liouville theory. We
analyzed several concrete cases V|~ —0d.x"(1 —x)"0,
(y =0, 1, 2, 3). We also pointed out the challenges for
constructing valid longitudinal interactions due to the
presence of the endpoint singularities in the light-front
kinetic energy.

Our motivation is to search for a plausible first
approximation to mesons in conjunction with light-front
holography. Both the 't Hooft interaction « |Z| and the
LMZV interaction « d,(x(1 — x))0, implement the chiral
symmetry breaking for the pion. They both produce
power-lawlike wave functions at the endpoints. On the
other hand, interactions of quadratic form naturally match
the transverse holographic confining potential in the
nonrelativistic limit. We further expect that the resulting
wave functions can be used as a basis for the full quantum
many-body calculations. In this regard, the LMZV
interaction is useful for its computational convenience.
Indeed, the longitudinal wave functions from this inter-
action, the power-law weighted Jacobi polynomials, form
a standard basis for wave functions with power-law
behavior, such as the solution of the ’t Hooft model.
Other longitudinal interactions may be useful in different
contexts.

We focused on the light mesons. The reason is that the
hyperfine structure of the heavy systems, including
the heavy-light mesons are dominated by the one-
gluon-exchange interaction [17,28]. A single confining
interaction is not sufficient. Indeed, the works on
heavy systems have to introduce additional parameters.
Moreover, the restoration of the 3D rotational
symmetry in the nonrelativistic limit puts strong con-
straints on the confining interactions.” As such, different
forms of the longitudinal confinement become nearly
identical.

One of the interesting questions is how to generalize the
present investigation to the multiparton sectors, including
notably the baryons. There have been several proposals in
the literature, including the pairwise longitudinal inter-
actions [68,69], the quark-diquark model [21,70], and the
orthogonal basis over a k-simplex (triangle, tetrahedron,...)
[24,71-73].
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