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In perturbative thermal calculations, introducing nonzero quark masses causes considerable compli-
cations. In this article we describe an approximation scheme valid for sufficiently light masses which
significantly simplifies the relevant calculations with only a small loss in accuracy. We apply the scheme to
quantum chromodynamics, with two massless and one massive flavor, obtaining analytic results which are
in excellent agreement with numerical nonapproximated results. Our results are accurate to Oðg5Þ in the
strong coupling parameter g, as long as either the chemical potential μ of the quark species with nonzero
mass m satisfiesm ¼ OðgμÞ or if the temperature T satisfiesm ¼ OðgTÞ. We find that these conditions are
always satisfied for the three lightest quarks for the values of μ, T where quantum chromodynamics is
perturbatively convergent.
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I. INTRODUCTION

The pressure (or equation of state) of quantum chromo-
dynamics (QCD) is the most fundamental equilibrium
quantity in the study of strongly interacting matter.
Knowledge of the pressure is of fundamental importance
in studies of the early universe [1,2], heavy-ion collisions
[3], and neutron stars (NSs) [4]. At sufficiently large
temperatures T or chemical potentials μ, asymptotic free-
dom allows one to expand the pressure in a weak-coupling
series in the strong coupling g. Perturbative QCD (pQCD)
calculations making use of this property have been applied
to compute the pressure to partial next-to-next-to-next-to-
leading order (N3LO) at T > 0, μ ¼ 0 [5] and at T ¼ 0,
μ > 0 [6,7], and to complete next-to-next-to-leading order
(N2LO) at both T > 0, μ > 0 [8].
However, in many such calculations, the masses of

quarks m are neglected as small. While there is evidence
suggesting that the effect of quark masses to the pressure
are indeed small [9], there are also indications that they
could play a role in certain systems, such as hypothetical
strange quark stars [10]. In fact, even in NSs the quark-
mass effects have particularly interesting qualitative

implications: Without masses, QCD matter with equal
densities of up, down, and strange quarks is both β-
equilibriated and charge neutral, which are precisely the
conditions experienced for cold, isolated neutron stars.
Thus, in order to include leptons in β-equilibrium at high
densities, the strange-quark-mass effects are necessary.
Including quark masses in full generality within pQCD

calculations is a tedious process. It has been achieved at
T ¼ 0, μ > 0 to N2LO [9] and at T > 0, μ > 0 to next-to-
leading order (NLO) [11], but even in these relatively
low-order cases the resulting expressions are cumbersome
and involve complicated numerical integrals: Indeed, even
in the simplest leading order (LO) and NLO cases the
massive, nonzero-temperature one-loop integrals cannot be
expressed in terms of standard special functions and their
derivatives.
Here, we choose a different approach, and examine a

method of obtaining vastly simpler expressions by sacri-
ficing only very little accuracy. We start with the obser-
vation that at the values of T and μ where pQCD results are
reliable, the ratio m=ðπTÞ or m=μ is still small for the three
lightest quarks.1 For the more massive quarks, this approxi-
mation breaks down, and in particular one may not use this
approximation when studying quark decoupling [11].
However, in many situations of interest, only the three
lightest quarks are active. For instance, at high densities the
pQCD results are convergent for μq ≳ 0.9 GeV, which is
larger than the mass of the strange quark ms ≈ 0.1 GeV,
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1Note that with regards to temperature, the relevant scale is the
energy of the first fermionic Matsubara mode, which is πT.
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and the charm quark is not yet active at this density [12]. A
similar situation exists for temperatures T ≳ 0.3 GeV,
where ms=ðπTÞ is small, which approaches the regime
of relevance for heavy-ion collisions.
In this paper, we compute the pQCD pressure at non-

vanishing chemical potentials, temperatures, and quark
masses to Oðg5Þ by expanding it in the quark masses,
under the simplifying assumption that the masses are soft—
here defined as OðgμÞ or OðgTÞ. While there is no
fundamental mechanism to connect the quark mass and
coupling in this way, we observe that the mass of the
strange quark is indeed a soft quantity2 for the values of μ
and T discussed in the previous paragraph. Moreover, by
considering a more general scaling of the quark masses in
powers of the coupling, we can organize the relative
importance of the mass corrections and coupling correc-
tions within the same series expansion. Our result then
brings the massive pQCD result at both T; μ > 0 in line
with the m ¼ 0 counterpart.
The outline of our paper is as follows. In Sec. II, we start

by explaining how the assumption of soft masses allows us
to treat the quark-mass term in the Dirac Lagrangian as a
perturbation and expand expressions about the massless
limit, as well as outline the structure of the free energy after
an expansion in soft quark masses. Expanding in the masses
allows us to consider significantly simpler loop integrals and
obtain closed-form results in 3þ 1 dimensions, which we
explicitly demonstrate in Sec. III, giving additional details in
the appendixes. We next in Sec. IV examine the effect of
these mass corrections to the pressure by comparing our
simple results with the exact numerical expressions, finding
good agreement. We then provide some applications of our
results to the astrophysically relevant regime of high density
and small to moderate temperatures, evaluating quantities
which all become trivial in the limit of vanishing quark
masses. Finally, we conclude with a small discussion.

II. METHODOLOGY

Conceptually, our method to compute the (vacuum-
subtracted) QCD grand potential ΩQCD of matter with
nonzero μ, T, and m is as follows. For simplicity in this
section, let us assume only one quark flavor with mass m.
We consider the massive QCD Lagrangian, and separate off
the quark-mass part

LQCD;m ¼ LQCD;m¼0 þmψ̄ψ : ð1Þ

We will consider the quark-mass term in the above as a
perturbation δLm ≡mψ̄ψ and calculate corrections to the
grand potential as insertions of this mass term. Such a

calculational scheme is justified for massive particles for all
but the n ¼ 0 Matsubara mode of a massive boson; in
particular, it is always justified for fermions as long as m=μ
orm=ðπTÞ is small. This condition is always fulfilled in the
case of the three lightest quark flavors for the region of the
T, μ-plane where pQCD exhibits good convergence. Thus,
it is only in the vacuum subtractions where we must
compute expressions unexpanded in the mass, and every-
where else we can use simpler, expanded expressions.3 In
fact, only even powers of δLm will lead to nonzero
contributions, since one insertion of δLm adds one more
fermion propagator to a fermion loop without another γμ

from a new vertex, leading to a zero trace.
Let us now determine precisely what terms contribute to

the grand potential of QCD matter under the conditions
described above. The grand potential has contributions
from three dynamical scales: the hard [OðT; μÞ], soft
[Oðgμ; gTÞ] and ultrasoft [Oðg2TÞ] scales. Contributions
from the hard scale can be evaluated using unresummed
perturbation theory, while the soft and ultrasoft contribu-
tions for T > 0 can be treated using the dimensionally
reduced (denoted “DR”) effective field theories of electro-
static QCD (EQCD) and magnetostatic QCD (MQCD), the
latter of which does not enter until Oðg6Þ and as such will
not be needed explicitly here. Lastly, the soft contributions
from μ > 0 are associated with hard-thermal loop (HTL)
perturbation theory.
Gathering together the contributions from different

sources, we have the following expression, wherein we
must subtract out the unresummed (“naive”) contributions
from each of these theories to avoid potential double
counting [8]

ΩQCD ¼ Ωnaive
QCD þ ðΩres

DR −Ωnaive
DR Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Ωcorr
DR

þ ðΩres
HTL −Ωnaive

HTL Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ωcorr

HTL

; ð2Þ

where here Ωnaive
QCD is our notation for the unresummed full-

theory diagrams. These contributions have the following
expansions in g up to Oðg6Þ [8,13]4

Ωnaive
QCD ¼ Ωfree þ g2Ω2;QCD þ g4Ω3;QCD þOðg6Þ ð3Þ

Ωcorr
DR =T ¼ m3

EΩ1;DR þ g2Em
2
EΩ2;DR þ g4EmEΩ3;DR þOðg6Þ

ð4Þ

Ωcorr
HTL ¼ m4

EΩ1;HTL þOðg6Þ: ð5Þ

2Strictly speaking, we demand the ratio mq=mE to be at most
order unity, where mE [defined below in Eq. (13)] is the scale of
Debye screening of gluons, but we opt to use the conventional
notation for soft scales instead.

3These vacuum subtractions will all contribute at Oðgnm4Þ on
dimensional grounds (with the powers of the coupling present for
loop corrections).

4We have been notified by the authors of [8] that the zero-
temperature limit given in the publication has a minor error, and
the first term of the second line of their Eq. (B7) should have an
overall factor of 1=48 instead of 1=72. This only applies to their
zero-temperature results, which we have not directly used.
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For a general description of the dimensionally reduced
sector, see Ref. [5]. Above, the perturbative expansions of
the EQCD parameters are given (in d ¼ 3) by

m2
E ¼ g2αE4 þ

g4

ð4πÞ2 αE6 þOðg6Þ ð6Þ

g2E ¼ g2T þOðg4Þ; ð7Þ

where the αEi are matching parameters of EQCD, often
written at μ ¼ 0 but obtainable for μ > 0 via their general
definitions [14]. For massive quarks, the Ω and αE
functions appearing above will in general become functions
of this quark mass as well. Let us define

ΔΩðm; μ; TÞ ¼ ΩQCDðm; μ; TÞ −ΩQCDð0; μ; TÞ ð8Þ

as the contribution from the quark masses, with the
massless part in this expression being given in Ref. [8].
Due to the structure of the loop integrals at nonzero T, μ,
the nonzero-mass expressions are expected to be analytic in
the squared masses (beyond logarithms related to renorm-
alization). We use this assumption schematically in our
power-counting, and observe it a posteriori at low orders.
Hence, after expanding for soft m, we have the following
contributions to Ω up to Oðg5Þ. For the unresummed QCD
pressure:

(1) Ωfree to Oðg0m4Þ,
(2) g2Ω2;QCD to Oðg2m2Þ,

and for the DR term:

(1) m3
EΩ1;DR to Oðg3m2Þ.

As the mass corrections from the HTL sector will not
contribute until Oðg4m2Þ, they are not necessary here.

III. EVALUATING THE MASSIVE QCD FREE
ENERGY TO Oðg5Þ

We start by evaluating the unresummed contributions.
These come in two types. First, there are medium-correc-
tions to the one- and two-loop hard-theory diagrams, which
can be calculated perturbatively in the quark mass m.
Second, there are vacuum corrections from the quark mass,
which cannot be expanded in the quark mass m. The latter
is, by dimensional arguments, Oðm4Þ, so only the free
contribution is needed here.
At this point, we may also immediately generalize the

earlier discussion to Nf quarks with different masses mf

and chemical potentials μf. Using the superscripts “M” and
“V” to distinguish the matter and vacuum parts, we find the
following corrections in the quark masses, leaving the
details for Appendix A:

ΔΩM
free ≃ −2Nc

X
f

�
m2

fĨ
0
1 −

m4
f

2
Ĩ0
2

�
ð9Þ

ΔΩV
free ¼ −2Nc

X
f

Z
P
lnðP2 þm2

fÞ

¼ −
4Nc

D

�
eγEΛ̄2

4π

�
ϵ Γð1 − D

2
Þ

ð4πÞD=2

X
f

ðm2
fÞ

D
2

≃
X
f

Ncm4
f

ð4πÞ2
�
1

ϵ
þ 3

2
þ 2 ln

Λ̄
mf

þOðϵÞ
�
; ð10Þ

g2ΔΩ2;QCD ¼ −2dAg2
X
f

m2
f½T̃ þ ð1 − ϵÞðĨ0

1 − I0
1ÞĨ0

2�;

ð11Þ

where γE ¼ 0.5772… is the Euler–Mascheroni constant
and Λ̄ is the MS renormalization scale. The sums are over
all quark flavors, and we note that the integrals Ĩk

n as well
as the two-loop integral T̃ , whose explicit expressions are
given in Appendix B, each depend on a (single) chemical
potential μf as well as the temperature T. The one
remaining contribution at Oðg5Þ is the first correction to
mE from a nonzero quark mass, or equivalently the first
mass correction to the matching coefficient αE4.
We leave details of this computation to Appendix C,

including writing down expressions that can be used to
compute numerical results for any mf. In the end the
computation results in

Δðm3
EΩ1;DRÞ ¼

2dA
ð4πÞ3 mE;0g2

X
f

m2
f; ð12Þ

with the leading-order m2
E;0 given by [14]

m2
E;0 ¼ ðd − 1Þg2

�
ðd − 1ÞNcI0

1 þ
X
f

½2Ĩ2
2 − Ĩ0

1�
�
: ð13Þ

Note thatwe havewritten this definition ofmE;0 in a form that
is conveniently generalized to nonzero quarkmass, instead of
using zero-mass recurrence relations for the scalar integrals
Ĩk
n, which are commonly applied in similar contexts.

IV. RESULTS AND DISCUSSIONS

The sum of Eqs. (9)–(12) constitute our unrenormalized
result, with the masses mf appearing in these equations
being the bare quark masses mf;B. To carry out renorm-
alization and cancel the divergences present in ΔΩV

free in
Eq. (10), as well as in T̃ and Ĩ0

2, which can be derived from
Eqs. (B1)–(B3), we use the standard one-loop relation

mf;B ¼
�
1þ δ1g2

ð4πÞ2 þ � � �
�
mf;ren; ð14Þ
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with δ1 ¼ −3CF=ϵ, in the above equations, which is only
necessary in the terms proportional tom2

f. This removes the
remaining divergences, and we can then use our results
with one-loop running quark masses mfðΛ̄Þ and two-loop
running αsðΛ̄Þ. Two-loop running of the coupling is
necessary since our results are accurate beyond Oðg4Þ,
while one-loop running of the mass is sufficient since we
are only working to Oðm4Þ. We henceforth work with the
three lightest quarks only, taking mu ¼ md ¼ 0, and using
the one-loop running of the strange quark mass, with
msð2 GeVÞ ¼ 93.6 MeV, which is the central value from
Ref. [15], and we take ΛQCD ¼ 378 MeV in the two-loop
running of the coupling. This quark content is relevant for
the environment connecting to NS cores and the mergers of
NS-NS binaries.
We first compare our renormalized results to the full

results obtained without expanding in the quark mass.
Since we are only calculating contributions up to Oðg5Þ
assuming soft m, we can take as the full result the first two
terms of the unresummed Ωnaive

QCD in Eq. (3) and the leading
term in ΩDR=T in Eq. (4) both with the full quark-mass
dependence, since including the quark mass anywhere else
will only result in higher-order corrections. The unre-
summed contributions to this order were calculated for
all T in Ref. [11], with the simpler T ¼ 0 limit calculated
in Ref. [10]. The DR correction is calculated below in
Appendix C. The comparison with our results is shown
in Fig. 1, for quark matter at high quark chemical potential
and increasing temperatures, and in Fig. 2 for a hot quark-
gluon plasma at zero quark chemical potential. In
these figures, we show the usual renormalization-scale

variation in Λ̄ ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2μqÞ2 þ ð0.723 × 4πTÞ2

q
[5,8,9],

with X ∈ f1=2; 1; 2g, with the central dashed or solid lines

corresponding to X ¼ 1. As these figures illustrate, our
analytic perturbative results are in excellent agreement with
the full, numerical expressions at all temperatures and
densities where pQCD is applicable.
We next apply our results to investigate three quantities

of approximate astrophysical interest. When plotting these
quantities, we show results down to the density where the
calculated pQCD pressure diverges and becomes negative.
In Fig. 3, we show the strangeness fraction ns=nB as a
function of baryon chemical potential μB ¼ μu þ μd þ μs
for charge-neutral matter at high density in beta equilibrium
at three different temperatures. Here, and below ni is the
number density of the relevant particle i, and nB is the
baryon density nB ¼ nu þ nd þ ds. We take as the possible
matter content the three lightest quarks u, d, s and the two
lightest leptons e, μ, with the leptons being taken as
noninteracting beyond the condition of beta equilibrium.

FIG. 1. A comparison of the mass correction to the pressure Δp≡ −ΔΩ calculated with the full quark-mass dependence (dashed
lines) and within our perturbative scheme (solid lines) at T ¼ 0 (left panel), T ¼ 100 MeV (middle panel), and T ¼ 200 MeV (right
panel) for three quarks with the same chemical potential μq. We take the up and down quarks as massless, and the one-loop running
strange quark mass is used. In the leftmost panel, the comparison to the full results from Ref. [10] is used, while in all other panels, the
full result from Ref. [11] plus the full mass correction to the DR term, computed in the appendixes is shown. All panels show the mass
correction divided by the free massless pressure, and the shaded regions show the renormalization-scale variation, as explained in the
main text.

FIG. 2. A comparison of the mass corrections to the pressure
Δp≡ −ΔΩ calculated with the full quark-mass dependence
(dashed lines) and within our perturbative scheme (solid lines)
as a function of T at μq ¼ 0. See Fig. 1 for more details.
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We neglect the mass of the electron in the following, but we
include the mass of the muon (and do not expand in it). We
implement beta equilibrium and charge neutrality by the
usual two conditions

μd ¼ μs ¼ μu þ μlep; μe ¼ μμ ¼ μlep ð15Þ

2

3
nu −

1

3
nd −

1

3
ns − ne − nμ ¼ 0; ð16Þ

and so we explicitly ignore (i) the presence of neutrinos
and neutrino trapping, and (ii) any possible modifications
to the T ¼ 0 equilibrium conditions that may arise from
the blurring of the Fermi surfaces as the temperature is
increased [16]. The former condition can be easily weak-
ened by including neutrino chemical potentials in Eq. (15),
while the latter requires a careful calculation of rates. In
general, both of these conditions must be included to
correctly model the full astrophysical environment of
binary NS-NS mergers. We see from this figure that the
strangeness fraction deviates from its high-density limit of

1=3 by less than 2% at all of the densities and temperatures
shown. Additionally, the central value of the quantity
increases only very slightly as the temperature increases.
While quite small for these values of T, the effect has a
physical explanation in the increase of the thermal pop-
ulation of the particles.
In Fig. 4, we show the progression of the lepton chemical

potential as a function of baryon density under these
conditions. As expected, the lepton chemical potential
increases with decreasing baryon density, as the quark
chemical potentials decrease and the difference between d
and s quarks become more pronounced. However, like the
strangeness fraction above, μlep is only very modestly
dependent on the temperature for T ≲ 200 MeV at these
densities, and for T < 100 MeV, relevant for NS mergers,
thermal corrections to these quantities are negligible at
these densities. We note here that since the ratio mμ=μlep is
not small, the muon mass must indeed be fully included
within these computations, as has been done.
Finally, in Fig. 5, we show the lepton fraction nlep=nB,

with nlep ¼ ne þ nμ as a function of baryon density under

FIG. 3. Left: A comparison of the strangeness fraction ns=nB at T ¼ 0 (left panel), T ¼ 100 MeV (middle panel), and T ¼ 200 MeV
(right panel) for charge-neutral matter in beta equilibrium, ignoring neutrinos. Here, n0 ¼ 0.16 fm−3 corresponds to nuclear saturation
density. Note that ignoring the strange quark mass would set ns=nB ¼ 1=3 under these conditions.

FIG. 4. Left: a comparison of lepton chemical potential μlep at T ¼ 0 (left panel), T ¼ 100 MeV (middle panel), and T ¼ 200 MeV
(right panel) for charge-neutral matter in beta equilibrium, ignoring neutrinos. Note that ignoring the strange quark mass would set
μlep ¼ 0 under these conditions.
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the same conditions. In this case, we see that the quantity
deviates from its high-density limit of 0 by less than 10−6 at
all densities shown at T ¼ 0, and as the temperature
increases it grows quite strongly. This growth can be
explained by the form of the number density of a massless
lepton (for simplicity of explanation):

neðμe; TÞ ¼
μ3e
3π2

þ μeT2

3
: ð17Þ

The growth with temperature stems from the second term in
Eq. (17), coupled with the fact that the lepton chemical
potential is approximately temperature independent. We
note that the crossover between T ¼ 0 and T-dominated
behavior for the lepton fraction occurs when πT ≈ μlep,
which occurs for T ≈ 2 MeV for the values of the μlep
obtained here.
We turn now to a discussion of the results and methods

presented in this work. The methodology used above has
some significant advantages over fully including the quark-
mass effects.
First, the relevant loop integrals are significantly simpler:

Rather than containing the full mass dependence, they are
zero-mass integrals with increasing powers of momenta
in the denominator. This holds true to any finite-order
expansion in the masses. With this in mind, considering
masses larger in comparison to the density or temperature
poses no fundamental problems so long as they still scale
according to the coupling. For example, assuming the
masses to be of the order Oðg1=2μ; g1=2TÞ instead of the
usual soft scale Oðgμ; gTÞ considered here is a straightfor-
ward extension of our results. These improvements could
for instance be carried out in the context of beyond-the-
standard-model theories with additional heavy particles
at high temperatures. Similarly, extension to higher orders
in the coupling is relatively simple, as no fundamentally
new integrals are required: expanded massive corrections to

n-loop integrals are simply massless n-loop integrals with
denominators raised to a higher power. For example, the
1-loop integrals Ĩk

n in Eq. (B3) have a known closed-form
expression for all n and k, and in Appendix C we give
results for contributions to m3

E in a form that immediately
allows for evaluation to any order in the masses. Hence, as
further perturbative corrections beyond Oðg5Þ are calcu-
lated in the massless case, such as those following the
program at T ¼ 0 recently advanced in Refs. [6,7], cor-
rections from nonzero quark masses can then be included
following our approach.
Second, our results themselves can be presented in a very

simple form. Rather than involving complicated numerical
integrals which are often badly behaved in certain regions
of the parameter space, the results can be given in a closed
analytic form, or in a simple numerical approximation. For
this reason, our results have great potential for the com-
munity when it comes to applications to dense systems in
astrophysics and other fields: The results incorporate the
effects of a nonzero temperature and nonzero quark masses,
allowing the study of phenomenologically interesting
problems where these effects are necessary, yet they still
maintain a simple and convenient form. For instance, with
these results, one can extend the matching program of
Refs. [17,18] to constrain the NS equation of state to
nonzero temperatures while including the effects of the
strange quark mass.
As our numerical comparisons show, the advantages

of our methodology come with only a minimal drop in
accuracy compared to the full result, which we believe to be
a more than acceptable tradeoff.
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FIG. 5. Left: a comparison of lepton fraction nlep=nB at T ¼ 0 (left panel), T ¼ 10 MeV (middle panel), and T ¼ 100 MeV (right
panel) for charge-neutral matter in beta equilibrium, ignoring neutrinos. Note that ignoring the strange quark mass would set nlep=nB ¼
0 under these conditions.
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APPENDIX A: UNRESUMMED CONTRIBUTIONS

As explained in the text, there are both matter and
vacuum corrections from the unresummed QCD contribu-
tions, with the former being computable by expanding in
the quark massm. As each of the contributions computed in
this Appendix only depends on a single chemical potential
μf and mass mf, we will drop the subscripts. In the main
text, sums over flavors are displayed explicitly, and this will
also be done in Appendix C to maintain clarity.

1. Corrections from the free pressure

The corrections to Ωfree from the quark mass are
straightforward to compute by expanding

Ωfree ¼ −2Nc

XZ
fP̃g

ln ðP2 þm2Þ ðA1Þ

¼ −2Nc

XZ
fP̃g

�
lnP2 þ

X∞
k¼1

ð−1Þkþ1m2k

kðP2Þk
�

ðA2Þ

before integrating and are given in the main text. Here, we
follow the notation of Ref. [13], with the fermionic sum-
integral defined as

XZ
fP̃g

fðP0; p⃗Þ≡ T
X∞
n¼−∞

Z
p⃗
fðð2nþ 1ÞπT − iμ; p⃗Þ; ðA3Þ

Z
p⃗
≡
�
eγEΛ̄2

4π

�
ϵ Z ddp⃗

ð2πÞd ; ðA4Þ

with d ¼ 3 − 2ϵ and Λ̄ the MS renormalization scale. The
vacuum term simply comes from taking the unexpanded
sum-integral above as a vacuum integral.

2. Corrections from two-loop diagrams

The correction to Ω2;QCD requires dressing the one two-
loop diagram containing quark lines with a mass correction.
We find it easiest to first compute the scalarizations of this
diagrams before expanding in the quark mass and then
expand the scalar terms to the desired order in m.
The scalarization of the following diagram is a simple

generalization of the scalarization provided in Ref. [9]5

ðA5Þ

Here, the bosonic sum-integral is defined as

XZ
P
fðP0; p⃗Þ≡ T

X∞
n¼−∞

Z
p⃗
fð2nπT; p⃗Þ: ðA6Þ

The pure matter parts are easy to compute in this form,
where one must expand all terms to Oðm2Þ:

I1 ¼ −2g2m2dA
XZ

fP̃;Q̃g

1

P2Q2ðP −QÞ2 ðA7Þ

I2 ¼ −2g2m2dAð1 − ϵÞ
XZ

fP̃;Q̃g

1

P2ðQ2Þ2 ðA8Þ

I3 ¼ 2g2m2dAð1 − ϵÞ
XZ

P;fQ̃g

1

P2ðQ2Þ2 : ðA9Þ

This reproduces Eq. (11).

APPENDIX B: NECESSARY INTEGRALS

We use the notation of Ref. [13] and define in the MS
scheme in d ¼ 3 − 2ϵ dimensions

T̃ ≡XZ
fP̃;Q̃g

1

P2Q2ðQ − PÞ2

¼ −
T2

ð4πÞ2
��

μ

2πT

�
2 1

ϵ
þ
�

μ

2πT

�
2
�
2þ 4 ln

Λ̄
4πT

�

þ i
μ

πT
lim
s→0

∂

∂s

�
ζ

�
−s;

1

2
− i

μ

2πT

�

− ζ

�
−s;

1

2
þ i

μ

2πT

��
þOðϵÞ

�
; ðB1Þ

Ik
n ≡

XZ
Q

ðQ0Þk
ðQ2Þn

¼ Γðn − 3
2
þ ϵÞπ3=2

2ΓðnÞ
�
eγEΛ̄2

4π2T2

�
ϵ T4−2nþk

ð2πÞ2n−k
× ζð2n − k − 3þ 2ϵÞ; ðB2Þ5Note that Ref. [9] defines the diagrams as contributing to −Ω

COOL QUARK MATTER WITH PERTURBATIVE QUARK MASSES PHYS. REV. D 105, 114005 (2022)

114005-7



Ĩk
n ≡

XZ
fQ̃g

ðQ0Þk
ðQ2Þn

¼ Γðn − 3
2
þ ϵÞπ3=2

ΓðnÞ
�
eγEΛ̄2

4π2T2

�
ϵ T4−2nþk

ð2πÞ2n−k

×

�
ζ

�
2n − k − 3þ 2ϵ;

1

2
− i

μ

2πT

�

þ ð−1Þkζ
�
2n − k − 3þ 2ϵ;

1

2
þ i

μ

2πT

��
: ðB3Þ

The correct massive generalization of Eq. (B3) is

K̃k
n ≡

XZ
fQ̃g

ðQ0Þk
ðQ2 þm2Þn ; ðB4Þ

which appears in the generalization ofm2
E to nonzero quark

mass. Unlike the zero-mass counterpart, this integral admits
no closed-form representation in terms of standard special
functions.

APPENDIX C: SMALL-MASS EXPANSION OF
THE DIMENSIONALLY REDUCED SECTOR

Consider now the dimensionally reduced sector in more
detail. The relevant expansion parameter is m2

E, which is
related to the one-loop gluon polarization tensor Π00 via

m2
E ¼ lim

p→0
lim
p0→0

Π00ðp; p0;mÞ þOðg4Þ: ðC1Þ

It contributes to the pressure through the Oðm3
EÞ-term,

which reads

m3
EΩ1;DR ¼ −

dA
12π

g3α3=2E4 −
dA

2ð4πÞ3 g
5α1=2E4 αE6 þOðg7; ϵÞ:

ðC2Þ

The αE6-term here will contribute massive corrections only
at higher orders, and as such we only need the αE4-term at
nonzero quark masses. However, for reasons related to
regularization it is more convenient to, instead of working
with the matching parameter αE4, work withm2

E directly for
general d. This leads to the following definition for a
nonzero-mass generalization of mE to first order in g2, but
for any mf and d:

m2
E ≃ ðd − 1Þg2

�
ðd − 1ÞNcI0

1 þ
X
f

½2K̃2
2 − K̃0

1�
�
; ðC3Þ

with the integrals Im
n and K̃m

n defined in Appendix B. Here
and below, we use a “≃” to denote that the equations are
valid only to the lowest order in g2. That is to say, we use
m2

E obtained by truncating the expansion in Eq. (C1) to only
include the one-loop polarization tensor, which is all we

need for our calculations. When numerically evaluating the
contribution for arbitrary quark masses, it is convenient to
first perform the frequency sums in K̃2

2, K̃
1
0. This results in

the following (finite) one-dimensional integral expression
for m2

E in d ¼ 3:

m2
Ejd¼3 ≃

g2T2

2π2

Z
∞

0

dx

(
4Ncx
ex − 1

þ x2
X
f

e
ffiffiffiffiffiffiffiffiffi
x2þy2f

p

×

"
ezf

ð1þ e
ffiffiffiffiffiffiffiffiffi
x2þy2f

p
þzfÞ2

þ e−zf

ð1þ e
ffiffiffiffiffiffiffiffiffi
x2þy2f

p
−zfÞ2

#)
;

ðC4Þ

in which we have defined the dimensionless variables yf ≡
mf=T and zf ≡ μf=T, and one observes the appearance of
the distribution functions. Note that this expression is
consistent with the one given in Ref. [19] after taking
the limit given in Eq. (C1) for the latter.
We can see that m2

E is analytic in the squared quark
masses, so that the expansion will lead to an Oðg3m2Þ term
as expected. While it is possible to obtain at least the first
necessary correction to Δm2

E ≡m2
E −m2

E;0 by expanding
Eq. (C4) by taking a derivative with respect to the quark
masses and evaluating the resulting integrals analytically,
a simpler method is simply to expand the integrals in
Eq. (C3), allowing us to simultaneously do everything for
arbitrary d. In doing so, the zero-mass recurrence relation
Ĩmþ2
n ¼ ð2n − 2 − dÞĨm

n−1=ð2n − 2Þ is of great use.
The result of this procedure can be expressed in a

resummed form

Δm2
E≃g2T2

2ðd−1ÞΓð2−d
2
Þ

ðd−2Þ ffiffiffi
π

p

×
X
f

Re

�
ζ

�
2−d;

1

2
þ i

zf
2π

;
yf
2π

�
−ζ

�
2−d;

1

2
þ i

zf
2π

��

−g2T2
2Γð2−d

2
Þffiffiffi

π
p

X
f

�
yf
2π

�
2

Reζ

�
4−d;

1

2
þ i

zf
2π

;
yf
2π

�
;

ðC5Þ

where a generalization of the Hurwitz ζ function has been
defined as (an analytic continuation of)

ζðs; z; aÞ≡X∞
n¼0

1

½ðnþ zÞ2 þ a2�s=2

¼
X∞
n¼0

2nΓðnþ s
2
Þ

ð2nÞ!!Γðs
2
Þ ð−a

2Þnζðsþ 2n; zÞ: ðC6Þ

This series expansion allows one to directly compute the
result to any finite order in the masses in a closed form for
arbitrary d.
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Whether one works with the four-dimensional sum-integrals or other approaches, the eventual result becomes very
simple after neglecting the OðϵÞ corrections in d ¼ 3 − 2ϵ dimensions:

Δm2
E ¼ g2T2

Γð2 − d
2
Þ

2
ffiffiffi
π

p ðd − 3Þ
X
f

�
yf
2π

�
2

× Reζ

�
4 − d;

1

2
þ i

zf
2π

�
þOðg4; g2m4

fÞ

¼ −
g2

4π2
X
f

m2
f þOðg4; g2m4

f; ϵÞ: ðC7Þ

Upon substitution to Eq. (C2), we immediately obtain Eq. (12).
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[12] J. C. Jiménez and E. S. Fraga, Cold quark matter with heavy
quarks and the stability of charm stars, Phys. Rev. D 102,
034015 (2020).

[13] A. Vuorinen, The pressure of QCD at finite temperatures
and chemical potentials, Phys. Rev. D 68, 054017 (2003).

[14] M. Laine and Y. Schroder, Two-loop QCD gauge
coupling at high temperatures, J. High Energy Phys. 03
(2005) 067.

[15] B. Chakraborty, C. T. H. Davies, B. Galloway, P. Knecht,
J. Koponen, G. C. Donald, R. J. Dowdall, G. P. Lepage,
and C. McNeile, High-precision quark masses and QCD
coupling from nf ¼ 4 lattice QCD, Phys. Rev. D 91, 054508
(2015).

[16] M. G. Alford and S. P. Harris, Beta equilibrium in neutron
star mergers, Phys. Rev. C 98, 065806 (2018).

[17] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen,
Gravitational-Wave Constraints on the Neutron-Star-Matter
Equation of State, Phys. Rev. Lett. 120, 172703 (2018).

[18] E. Annala, T. Gorda, A. Kurkela, J. Nättilä, and A.
Vuorinen, Evidence for quark-matter cores in massive
neutron stars, Nat. Phys. 16, 907 (2020).

[19] N. Haque, Quark mass dependent collective excitations and
quark number susceptibilities within the hard thermal loop
approximation, Phys. Rev. D 98, 014013 (2018).

COOL QUARK MATTER WITH PERTURBATIVE QUARK MASSES PHYS. REV. D 105, 114005 (2022)

114005-9

https://doi.org/10.1002/andp.200310010
https://doi.org/10.1002/andp.200310010
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1146/annurev-nucl-101917-020852
https://doi.org/10.1086/319702
https://doi.org/10.1103/PhysRevD.67.105008
https://doi.org/10.1103/PhysRevD.67.105008
https://doi.org/10.1103/PhysRevLett.127.162003
https://doi.org/10.1103/PhysRevLett.127.162003
https://doi.org/10.1103/PhysRevD.104.074015
https://doi.org/10.1103/PhysRevLett.117.042501
https://doi.org/10.1103/PhysRevLett.117.042501
https://doi.org/10.1103/PhysRevD.81.105021
https://doi.org/10.1103/PhysRevD.71.105014
https://doi.org/10.1103/PhysRevD.73.085009
https://doi.org/10.1103/PhysRevD.102.034015
https://doi.org/10.1103/PhysRevD.102.034015
https://doi.org/10.1103/PhysRevD.68.054017
https://doi.org/10.1088/1126-6708/2005/03/067
https://doi.org/10.1088/1126-6708/2005/03/067
https://doi.org/10.1103/PhysRevD.91.054508
https://doi.org/10.1103/PhysRevD.91.054508
https://doi.org/10.1103/PhysRevC.98.065806
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1038/s41567-020-0914-9
https://doi.org/10.1103/PhysRevD.98.014013

