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In this work, we study the 1=~ double-gluon charmonium (¢ggc) and bottomonium (bggh) hybrids in
terms of QCD sum rules. We find that the mass of cggc hybrid lies in My = 5.33-5.90 GeV, while in the
bottom sector the mass of bggb hybrid may be situated in M u, = 11.20-11.68 GeV. The contributions up
to dimension eight at leading order of a, (LO) in the operator product expansion are taken into account in
the calculation. The double-gluon charmonium hybrid meson predicted in this work can decay into a pair of
charmed mesons or a pair of charmed mesons together with a light meson. Especially, we propose to search
for ¢gge hybrid with I6(JP€) = 0~(177) in their decay channels DD/D*D/D*D* with P wave and
D*D*n/D*D*n/DDp/DDw with S wave, which may be accessible in Belle II, PANDA, Super-B, GlueX,

and LHCb experiments.
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I. INTRODUCTION

Various hadronic structures beyond the normal mesons
and baryons are allowed in the framework of quantum
chromodynamics (QCD) [1-3] and quark model [4,5], such
as multiquark states, glueballs, and hybrids, which are
nominated as exotic states. A multiquark state is composed
of more than three quarks and antiquarks; a glueball is
composed of entirely gluons; a hybrid state contains
valence gluon(s), besides valence quarks. Exploring the
existence and properties of such exotic states is one of
the most intriguing research topics of hadronic physics.
In the past two decades, with the development of technol-
ogy, the research on multiquark states has made tremen-
dous developments, such as the observations of the
charmoniumlike/bottomoniumlike XYZ states [6—10]
and the hidden-charm pentaquarks (P, states) [11,12]
(see [13-16] for recent reviews), and new ones tend to
appear more frequently.

These successes of the XYZ and P,. states have inspired
the search for hybrids within the charmonium and botto-
monium sectors [17-20]. It is one of the most important
design goals to detect the existence of hybrids in many
experimental facilities such as BESIII, GlueX, PANDA and
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LHCb. However, although experimentally the existence of
hybrid states has not yet been proved, there are indeed some
good candidates observed both recently and in the past.
Very recently, the BESIII collaboration reported the first
observation of an abnormal state with the exotic quantum
number /¢JP¢ = 0+ 17+ in the 55 invariant mass spectrum
with a statistical significance larger than 196, named as
171(1855) [21,22]. In the past, there were three candidates
observed in experiments with the exotic quantum number
I6JPC = 171771, i.e., the &, (1400) [23], ; (1600) [24,25],
and 7, (2015) [26]. It is worthy to note that the 7, (1855) is
the isoscalar partner of the isovector states ;(1400)
and 7;(1600).

In the past several decades, there accumulated a lot of
theoretical studies on hybrids based on various phenom-
enological models. For example, they have been studied
through the MIT bag model [27-29], flux-tube model
[30-32], constituent gluon model [33-35], AdS/QCD
model [36,37], lattice QCD [38-49], and QCD sum rules
[50-70]. Among those techniques, QCD sum rules inno-
vated by Shifman, Vainshtein, and Zakharov (SVZ)
[71-75] turns out to be a remarkably successful and
powerful technique for the computation of hadronic proper-
ties [76-82]. It is a QCD based theoretical framework that
incorporates nonperturbative effects universally order by
order using the operator product expansion (OPE). In this
approach, to establish the sum rules, the first step is to
construct the proper interpolating current corresponding to
the hadron of interest, which possesses the foremost
information about the concerned hadron, such as the
quantum number, the constituent quarks and gluons. By
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using the current, one can then construct the two-point
correlation function, which can be investigated at both
quark-gluon and hadron levels, usually called the QCD and
the phenomenological representations, respectively. After
performing the Borel transformation on both representa-
tions, we can formally establish the QCD sum rules, from
which we can extract the mass of the concerned hadron.

Heavy quarkonium hybrids with one valence gluon
(QgQ) were originally studied in Refs. [52-54] by
Govaerts et al., where they analyzed the masses for various
JPC by considering the perturbative and dimension four
gluon condensate contributions. Including the tri-gluon
condensate contributions to the two-point correlation func-
tion, Qiao et al. revisited the vector (177) heavy quarko-
nium hybrids [61], and found that the tri-gluon condensate
contributions can stabilize the hybrid sum rules and allow
reliable mass predictions. Then, Chen et al. analyzed the
heavy quarkonium hybrids with various JP¢ quantum
numbers to include QCD condensates up to dimension
six, and drawn similar conclusions [64,65]. Recently, the
study of heavy quarkonium hybrid has been extended to
calculate the mixing effects between the pure quarkonium
hybrids and the quarkonium mesons [66—68].

Recently, Chen et al. studied a new hadron configura-
tion: the double-gluon hybrid state, which consists of one
light quark and one light antiquark together with two
valence gluons [83]. In this paper, we will study the double-
gluon heavy quarkonium hybrid, that is, a pair of heavy
quarks and two valence gluons (QggQ). Since a series of
newly observed ‘exotic’ states in the charmonium energy
region are J”¢ = 17~ hadrons (Y states), it is reasonable to
believe that there exist heavier Y states, which may be
composed of one charm quark and one anticharm quark
together with two gluons. In this work, we firstly construct
four vector (J¢ = 177) double-gluon heavy quarkonium
hybrid currents. Then, we apply the QCD sum rules method
to evaluating their masses. Our predictions can be used to
analyze the experimental data in the near future.

The rest of the paper is arranged as follows. After the
Introduction, in Sec. II we derive the formulas of the
correlation functions IT,, (¢) in terms of the QCD sum rules
with the interpolating currents for J*¢ = 1=~. The numeri-
cal analyses and results are given in Sec. III. Section IV is
devoted to the decay analyses of the predicted double-gluon
charmonium hybrids. The last part is left for conclusions
and discussion of the results.

II. FORMALISM

In the framework of QCD sum rules, the starting point is
to construct the correlation function, i.e.,

M,(q) =i / dx e (O[T, (). /50)}]0). (1)

where the interpolating current j, for the double-gluon
heavy quarkonium hybrids with the quantum number
JPC = 17~ are chosen to be

Jat(x) = @G, (x) G (x)[0i(x) (T9),;7,Q;(x)].

(2)
it (%) = GG ()G (x)[04(0)(T) 57, Q5(x).

(3)
it (x) = GG ()G ()] Qi(0)(T€) 7,750, ()],

(4)
i) = GG, ()G ()] 0i(x)(T€)y7,750; (x)].

(5)

where g, is the strong coupling constant, i/j = 1, 2, 3 and
a/b/c =1,2,...,8 are color indices, f¢° is the totally
antisymmetric SU(3) structure constants, 7¢ = 1°/2 where
2¢ is the Gell-Mann matrix, G4, (x) = €,,,sG*%(x)/2 is the
dual field strength of Gj,(x), and Q represents the heavy-
quark ¢ or b. Here, the superscripts A to D indicate four
different hybrid currents that will be analyzed in our paper.

Generally, the two-point function IT,,(¢) may contain
two distinct parts, the vector part ITy (¢*) and the scalar part
I1g(g?) which represent the contributions of the correlation
function to the vector channel J*¢ = 17~ and scalar channel
JPC = 07, respectively. It can be explicitly expressed as:

9.9, 9.9,
M, (q) = (—gw . )nv<q2>+ (). (6)

Since our aim of this work is to study the mass of the
vector (177) heavy hybrid, we only analyze the vector part
Iy (g?), which is written as I1(g?) in the following for
brevity. The correlation function I1(g?) can be investigated
at both quark-gluon and hadron levels, usually called the
QCD and the phenomenological representations, respec-
tively. Note that the QCD representation needs analytical
calculations, whereas, the mass and coupling constant of
the concerned hadron are introduced in the phenomeno-
logical representation. In QCD sum rules, the fundamental
assumption is the principle of quark-hadron duality, which
builds a bridge between the QCD representation and the
phenomenological representation, that is:

HQCD(qZ) _ /oo dspphen<s) (7)

s—q*’
where pP'"(s) represents the spectral function on the
phenomenological side of QCD sum rules, and the inte-
gration starts from the physical threshold. The spectral
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function, pP""(s), is usually described using some model
corresponding to an appropriate resonance shape. In this
work, we use the “one resonance + continuum” approxi-
mation for the quark-hadron duality.

At the quark-gluon level, the correlation function can be
calculated with the operator product expansion (OPE). As
explained in Ref. [73], it is convenient to introduce the
definition of the full propagator of QCD in order to include
the nonperturbative effects from QCD vacuum. In our
calculation, since we only take into account the contribu-
tions up to dimension eight at leading order of «, in the
OPE, it is enough to retain the heavy-quark (Q = ¢ or b)
full propagator Sg( p) up to single-gluon emission term in
momentum space [73], which is

§0(p) = iyt mg) i 17:Gap(0)
Jk pz_sz 4 s(pz_mé)z

x [P (P +mg) + (¥ +mg)o™].  (8)

SG,ab

where the first term is the perturbative quark propagator,
and the second term represents the contribution of the
single-gluon emission which forms the gluon condensates
(2G?), (g3G?), and (g2G?)? together with relevant gluon
emission terms from other quark/gluon propagators.

Moreover, the perturbative gluon propagator employed
in our analytical calculation is considered in coordinate
space, which can be expressed as [52]:

5% 1
SZIIZ,/JG(X) = 2—”2 X F {(gypxz - 4xyxp)gmr
- (g/wxz - 4x/4xo')gpv - (gpvxz - 4xpxl/)g/w
+ (gwxz - 4)6,,)65)9/),4}- (9)

Because we work at leading order of @, and consider
condensates up to dimension eight, we also need the gluon
propagator associated with single-gluon emission. For
simplicity, we shall use it in momentum space, which is
derived by ourselves followed Refs. [73,84] and has the
following expression:

i 1
wpo(P) = —Egsf“””‘ Gr*1(0) > {P?PuPp(=9aw) 90 + PuPpGan, v = PuPpYeg Iuo + PuPpJauIu,o

+ 9o (P (2P, Gup = PpGuy) + Pu(PpGusw = 2Pu, 9up)) + PuPo9ewup = Pul ooy, Jup
+ PuPo9o, Gup — PuPoYaup + 9ap(Po(PoGup, = 2Pu, Guo) + Pu(2Pu, 9o = Poluw)))

- 4p0tpﬂ] <pv(Pag;4p - ppg/w> + p/l(ppgl/o‘ - pagup))}'

We refer to Refs. [73,84] for the necessary formulas using
in the derivation of Eq. (10).

On the QCD side of QCD sum rules, based on the
dispersion relation, the correlation function I1(g?) can be
expressed as follows:

0 OPE
HQCD(qz) — / dslo (‘;)’
4

m2Q §—q

(11)

where pOPE(s) = Im[[T°PE(s)]/x, and

POPE(s) = pPi(s) + p'7 (s) + p' (s) + pC(s),  (12)
where pP(s), p(@)(s), p'@)(s), and p{G)(s) denote the
spectral densities of the perturbative part, the two-gluon
condensate contribution, the tri-gluon condensate contribu-
tion, and the four-gluon condensate contribution, respec-
tively. For instance, to calculate the perturbative part pP**(s),
we firstly combine two full propagators of heavy quarks
given in Eq. (8) and two full propagators of the gluons
shown in Egs. (9), (10), and then choose the perturbative
term which does not contain any condensate terms.
Eventually, we utilize the technique explicitly shown in

(10)

|
Refs. [73,84] to calculate pP*(s). The same procedure is
applicable to the calculations of other spectral densities that
contain gluon condensates. The typical LO Feynman dia-
grams of a double-gluon heavy quarkonium hybrid state that
contribute to the spectral densities in Eq. (12) are shown in
Fig. 1, where diagram I represents the contribution from
perturbative part, and diagrams II, III-V, and VI denote the
two-gluon condensate, trigluon condensates, and four-gluon
condensate, respectively. We note from Fig. 1 that diagram I
is proportional to a? x ¢°, diagrams II-VI are proportional to
a2 x g2, respectively. Note that the permutation diagrams are
implied in Fig. 1, so all the diagrams up to four-gluon
condensate at leading order of a; are depicted and calculated
in our work. The lengthy expressions of spectral densities in
Eq. (12) are deferred to the Appendix.

On the phenomenological side of QCD sum rules, the
spectral function pP""(s) is defined using the pole plus
continuum approximation

PPN (s) = 2y, 0(s — M) +p" (s). (13)

where the subscript Hy (Q = ¢ or b) denotes the lowest
lying hybrid state, My, represents its mass, p"(s) means
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FIG. 1.

VI

The typical LO Feynman diagrams of a double-gluon heavy quarkonium hybrid state that contribute to the spectral densities in

Eq. (12), where the permutation diagrams are implied. Diagram I represents the contribution from perturbative part, and diagrams II,
MI-V, and VI denote the two-gluon condensate, trigluon condensates, and four-gluon condensate, respectively. We note that diagram I is
proportional to a? x ¢°, diagrams II-VI are proportional to a2 x g2, respectively. So all the diagrams up to four-gluon condensate at

leading order of «; are depicted.

the spectral density which includes the contributions from
higher excited states and the continuum states above the
threshold sy. The coupling constant Ay is defined by
(0julHo) = An €4

After isolating the ground state contribution from the
hybrid state, we obtain the correlation function ITP""(g?) in
dispersion integral over the physical region, i.e.,

22 o h
Ho 2+/ dsp(s)z. (14)
So

then(q2> —
(My,)* —q s—q

For extracting reliable results from the comparison
between the two representations of the correlation function,
one should guarantee a good OPE convergence on the QCD
side and simultaneously suppress the contributions from
higher excited states and the continuum states on the
phenomenological side. A practical way of doing this is to
utilize the Borel transformation, whose definition is given by:

s =na) = jim SV () ey
0/}

(15)
where Q2 is the four-momentum of the particle in the

Euclidean space (Q = —¢?), and M% is a free parameter
of the sum rule.

Performing Borel transformation on the QCD side
Eq. (11) and the phenomenological side Eq. (14), and
using quark-hadron duality, we can establish the main
function of QCD sum rules, that is:

mg

s _M2 2
/opOPE(S)e—s/Méds :l%IQe MHQ/MB’ (16)
4

where the so-called quark-hadron duality approximation
[75] is used which has the following form:

® 2 o 2
/ pOFE(s)e™Mids ~ / pl(s)e™Msds.  (17)
So So
Then we can extract the mass of the hybrid state from the
main function (16), which reads:

. Li(so, M%)
Mi, (sg,M3) = |- L2 "B 18
HQ(SO B) Lo(So,M%) ( )

where the superscript i runs from A to D, respectively. The
moments L, and L are, respectively, defined as

Lo(s0. M}) = / " dspOPE(s)e My, (19)
4m2Q

Ly(s0.M3) = —2 — Lo(sy. M2 20

1 (S0, B)_a(MzB)_l o(s0, M3). (20)
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III. NUMERICAL ANALYSES

For numerical evaluation,
coupling constant

the leading order strong

4r
2
11 —2n,) In(-22
(11 =3ns) In(32)

ay(Mp) = ; (21)

is adopted with Agcp =300 MeV and ny being the
number of active quarks [85]. Additionally, in order to
yield meaningful physical results in QCD sum rules, as in
any practical theory, one needs to give certain inputs. These
input parameters are taken from [86—88], whose explicit
values read:

me(m,) = i, = (1.27 +0.02) GeV,
my(my) = iy, = (4.181565) GeV,
(a,G?) = ( 35+£0.35) x 1072 GeV*,
(2G3) = (8.2 4 1.0) x (a,G?) GeV2, (22)

where we use the “running masses” for the heavy quarks in
the MS scheme. It is important to note that the vacuum
saturation approximation is used in this work in the
calculation of (G*) contribution [89,90]. In order to take
into account the error due to the violation of the vacuum
approximation, we can introduce a parameter x,

(@,G?)? = Kk{a,G?)?, (23)

the value ¥ = 1 stands for the vacuum saturation approxi-
mation, while the value x # 1 parameterizes its violation.
We consider the result obtained by using the factorized
(G*) as the central value (x = 1), and consider the variation
due to the violation of the vacuum dominance (by a factor
of k = 2) as a source of errors.

In establishing the QCD sum rules, there are two
additional parameters s, and M3 represented the threshold
parameter and the Borel parameter, respectively. For a
given s, the Borel parameter M% will be constrained by
two criteria [75,79]. First, in order to extract the informa-
tion on the ground state of the double-gluon heavy hybrid
state, one should guarantee pole contribution (PC) is larger
than 40%, which can be formulated as

Lo(sosz)

RPC
Lo(OO M )

(24)

where the subscript i runs from A to D. Under this
constraint, the contribution of higher excited and con-
tinuum states will be suppressed. This criterion gives rise to
a critical value of M%, which is the upper limit of M%

nominated as (M%) ,.x-

To insure the convergence of Eq. (19), we should require
an OPE series decreasing order by order, for x = 1 and 2,
respectively. Then, one can determine another critical value
of M% from the ratios of various terms in Eq. (19) to the
entire moment L(s, M%), defined as

cond w (25)
l Lo(so, M3)
which corresponds to the lower limit of M?% called (M%) .-
Here, the subscript 7 runs from A to D, and the superscript
“cond” denotes the perturbative term and different con-
densate terms in Eq. (19), respectively. As a consequence,
we obtain the proper Borel window of M for a given s,
which is the region between (M%), and (M%) a-

In practice, to know whether the OPE convergence is
satisfied, we first restrict that the highest condensate
contribution, (G*), should be less than 15% and 25% of
the total OPE side for k = 1 and « = 2, respectively. Then,
we can select the one which has an OPE series decreasing
order by order.

It is obvious that the Borel window depends on the
threshold parameter s,. Therefore, we need to vary the
value of s, in a possible region, until we find an optimal
value of s, which corresponds to a smooth plateau for the
hybrid mass My, in its Borel window given by the two
criteria mentioned above. On the smooth plateau, the
hybrid mass My 0 should be in principle independent of

the Borel parameter M2, or at least only shows weak
dependence.

For case A with x = 1, we plot the two ratios Ric and
R;‘)“d as functions of the Borel parameter M% in Fig. 2(a) at
the proper value s, = 44 GeV?, and the mass curves as
functions of M% in Fig. 2(b). Two vertical lines in Fig. 2(b)
indicate the upper and lower bounds of the proper Borel
window for the central value of s, and the so-called stable
plateau between these two vertical lines exists, where the
proper Borel window refers to the one that fulfills the

constraint RgGA) < 15%. To estimate the uncertainty
introduced by s, we tentatively assign a 2 GeV? fluc-
tuation from the optimal value s, = 44 GeV?, as shown in
Fig. 2(b). A similar situation happens for case B with
k =1, shown in Fig. 3. For case C, since the tentative
restriction R<CG4> < 15% is satisfied in a wide range of the
Borel parameter, as shown in Fig. 4(a), the lower limit of
M3 is fixed by the requirement that the ratio RE™ is lager
than 60%. The mass figures in Figs. 3(b) and 4(b) also
exhibit stable plateau within their proper Borel windows,
respectively. However, for case D with k = 1, we find that
no matter what value of s, and M% are taken to be, no
proper Borel window for a stable plateau exists. That means
the current structure in Eq. (5) does not support the
corresponding hybrid.
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FIG. 2. The figures for current A with x = 1. (a) The pole contribution ratio RE and OPE convergence ratio R{™ as functions of the
Borel parameter M% with the central value of s,; (b) The mass Mﬁ( as a function of M3 for sy = 42 GeV?, 44 GeV?, and 46 GeV? from
down to up, respectively, and the two vertical lines indicate the upper and lower bounds of the proper Borel window with the central

value of s.
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FIG. 4. The same caption as in Fig. 2, but for current C.
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TABLE I. « = 1. The windows of the Borel parameter M3, threshold parameters s,, pole contributions, two-gluon contributions,
trigluon contributions, and four-gluon contributions of ¢ggc hybrid states for cases A, B, and C, respectively.

k=1 M3} (GeV?) s, (GeV?) PC Pert R\ RI9Y R

Case A 5.40-6.60 44 (60 —40)% (89 —94)% 0 [(-3.83) — (—3.20)]% (1472 = 9.17)%
Case B 5.70-6.40 44 (50 —40)% (107 — 108)% 0 [(=23) = (-19)]% (1520 - 11.27)%
Case C  5.30-6.50 42 (60 — 40)% (61 —63)% (64 —56)% [(=21) = (-16)]% [(-3.80) — (=3.02)]%
TABLE II. The same caption as in Table I, but for cases B and C with x = 2.

k=2 M3 (GeV?) s, (GeV?) PC Pert R RV RV

Case B 5.80-6.50 44 (52-40)% (94-97)% 0 (=19) = (-17)]% (25 -20)%
Case C 5.40-6.40 42 (57-40)% (63-65)% (65-=58)% [(-21)—=(=17)]% [(-7.72) — (-6.32)]%

The resulting windows of the Borel parameter M3,
threshold values s,, pole contributions (PC), two-gluon
contributions, trigluon contributions, four-gluon contribu-
tions for cases A, B, and C with k = 1 are shown explicitly
in Table I, respectively. From Table I, we can see that, for
case A, although the pole dominance of the phenomeno-
logical side is well satisfied in the proper Borel window,
the OPE convergence constraint is violated due to

|R/<f;4> /Rgc3>| > 1. Hence, we exclude case A when we
make further numerical analyses in the following text.

As already mentioned, we need to consider the variation
due to the violation of the vacuum dominance (by a
factor of x = 2) as a source of errors. Therefore, we list
the resulting windows of the Borel parameter M3,
threshold values s, pole contributions (PC), two-gluon
contributions, trigluon contributions, four-gluon contri-
butions for cases B and C with x =2 in Table II,
respectively.

From Table II, we find that, for case B, the OPE
convergence constraint is violated for x = 2 because of

|R§XG4> /R;G3>| > 1. Hence, we also exclude case B in the
following numerical analyses. Ultimately, we conclude that
both the pole dominance of the phenomenological side and
the OPE convergence are well satisfied for case C.

For case C, to safely neglect the contribution from
d > 10, where d represents the dimension of the conden-

sate term, it is necessary to guarantee |R<CG5> /R<CG4> < 1].
To this end, we should calculate the contribution for
(G®) condensate (d = 10), then test whether the size of

FIG. 5.

the d = 10 term is smaller than that from the d = 8 term in
the present Borel window listed in Table I. The leading
order Feynman diagrams of the d = 10 term are depicted in
Fig. 5, where the permutation diagrams are implied. We put
the details on the calculation and analytic expression of the
d =10 term in the Appendix.

From Fig. 6, we can conclude that the condensate
contribution from the d = 10 term is much less than the
d = 8 term in the present Borel window for « = 1, and we

1.0 —r 1T T 11111 1T

E - 2 4
0.9 s,=42 GeV” |
0.8 i

0.7 4 -

<G*
(¢

0.6 —

0.5

IR™/R

0.4
0.3 1 —
0.2 —

0.1 —

00t+——T— T T T T T T T T T T
53 54 55 56 57 58 59 60 61 62 63 6.4 6.5
2 2
M2(GeV?)

FIG. 6. k= 1. The ratio |R<CGj>/R<CG4>| as a function of the
Borel parameter M% in the valid Borel window with the central
value of s.

The typical LO Feynman diagrams that contribute to (G°) term, where the permutation diagrams are implied.
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TABLE III. Mass predictions for the 17~ double-gluon char-
monium hybrids both with x = 1 and x = 2, respectively. The
error bars are obtained by taking into account the uncertainties of
the Borel windows, sy, and the input parameters shown in
Eq. (22).

k=1 k=2

Case C  Mp' =(5.681030)GeV, My'" =(5.712017) GeV

can safely neglect it. Then, it is valid to truncate the OPE at
d =8, and the present Borel window is the valid Borel
window that satisfies all the constraints in the QCD sum

rules. Moreover, since the value of |R<CG5> / R<CG4>\ will
decrease as the parameter x increases, we can obtain a
better OPE convergence for k = 2. Therefore, we can make
a reliable mass prediction for case C.

Now, we can determine the masses of the vector double-
gluon charmonium hybrid state for current C with k = 1
and ¥ = 2, which are summarized in Table III, where the
subscript H . denotes the hybrid state in the c-quark sector;
the error bars stem from the uncertainties of the Borel
parameter M3, the threshold parameter s,, the condensate
parameters (g>G?) and (giG>), and the quark mass in,
listed in Eq. (22). It should be noted that the variations of
the Borel window in the region of (s{™" +2) GeV? have
been considered in our estimation of the uncertainties,
where s represents the central value of s.

Eventually, by considering all the uncertainties men-
tioned above, we obtain the mass prediction of the 17~
double-gluon charmonium hybrid state, which is

My = (5.681033) GeV. (26)

and find that it is in the region of 5.33 GeV <
My <590 GeV.

By replacing the mass of the charm quark with the
bottom quark in Eq. (11) and performing the same
numerical analyses, we can obtain the corresponding
prediction for the 17~ double-gluon bottomonium hybrid
state, whose mass is

My = (11.512503]) GeV., (27)

respectively, where the subscript H,, represents the hybrid
state in b-quark sector. By including the uncertainties of
this bottomonium hybrid mass, we find that it is in the
range of 11.20-11.68 GeV.

IV. DECAY ANALYSES

As shown in Fig. 7, the double-gluon heavy quarkonium
hybrids can decay into a pair of charmed/bottomed mesons
or a pair of charmed/bottomed mesons together with a light
meson by exciting two light quark (u, d, or s) pairs from the
two valence gluons. It should be noted that these two
possible decay modes are both at O(a,) order, though they
are OZlI-allowed processes.

As shown in Table IV, apart from the S-wave decays in
the two-meson decay patterns which violate the conserva-
tion of the parity, there exist P-wave decays in the two-
meson decay patterns, and both S-wave and P-wave decays
in the three-meson decay patterns. In order to select some
better decay channels, for a qualitative analysis, we only
consider two aspects that affect the decay branching ratios
of these predicted hybrids: the phase space factor and the
P-wave suppression. In view of these two aspects, we
notice that, the P-wave two-meson decay pattern has a
bigger phase factor than the three-meson case, whereas, it is
suppressed by the excited energy corresponding to the P-
wave interaction between its final states; the S-wave three-
meson decay pattern does not need the excited energy of
the P-wave interaction, but has a smaller phase factor
compared to the two-meson decay pattern. Therefore, each
type of these decay channels has an advantage and a
disadvantage. These behaviors will be useful for identify-
ing the nature of the double-gluon heavy quarkonium
hybrids.

Amongst them listed in Table IV, we suggest the decay
channels H. — DD/D*D/D*D* with P wave and H, —
D*D*n/D*D*n/DDp/DDw with S wave as the accessible
decay channels for the double-gluon charmonium hybrids,
which are expected to be measured in Belle II, PANDA,
Super-B, GlueX, and LHCb in the near future.

M,
P NIV,

Y ‘ M- 9
T

M3

FIG.7. Two possible decay processes of the double-gluon heavy quarkonium hybrids 0ggQ, where the final states are represented as
M, M,, and M;. The same figures have been given in Ref. [83] for explaining the possible decay processes of the double-gluon hybrids

in light quark sector.
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TABLE IV. Some possible two- and three-meson decay channels of the ¢ggc hybrids with the quantum number
I6(JPC) = 0~ (177) that is consistent with the Y states, where we only keep the channels up to P-wave decays. Here,
for brevity, the notation D™ D™ denotes both DD and D*D*, and the notation D*D represents not only D*D but

also DD*.

S-wave

P-wave

Two-meson
D*D*n, D*D*n, D
DY DWw, D*Dx,
D*Dp, D*Dw, D*Dn

Three-meson

1DUp,

p®pe, ppY Db, DD,

D )D()h ()D(*)bl ()D()ao12
D& D “fo.12. D*Dhy, D* Db,
D* Dao,la» D* Dfo,l,z

V. CONCLUSIONS

Since a series of newly observed “exotic” states in the
charmonium energy region possess the quantum number
JP€ = 17—, which are nominated as Y states. Therefore, it
is reasonable to believe that there will exist heavier Y states,
which may be composed of one charm quark and one
anticharm quark together with two gluons. In this work, we
first construct four currents of the vector (JF¢ =17")
double-gluon charmonium (cggc) hybrid. Then, we utilize
the method of QCD sum rules to evaluate their masses.
We find that the mass of cggc hybrid lies in My =
5.33-5.90 GeV, while in the bottom sector the mass of
bggb hybrid may be situated in M n, = 11.20-11.68 GeV.
The contributions up to dimension eight at leading order of
a, (LO) in the operator product expansion are taken into
account in our calculation.

We depict two possible decay processes of the double-
gluon heavy quarkonium hybrids in Fig. 7 and list
their allowed two- and three-meson decay channels in

pert

Fgﬂm%s(—a -p+1)*

Table IV, where we keep the channels up to P-wave
decays. As a result, we suggest the decay channels
H.— DD/D*D/D*D* with P wave and H, —
D*D*z/D*D*n/DDp/DDw with S wave as the accessible
decay channels of the double-gluon charmonium hybrids,
which are expected to be measured in Belle II, PANDA,
Super-B, GlueX, and LHCb in the near future.
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APPENDIX

In this appendix, we list the spectral densities p©FE(s) in

Eq. (12) for all currents shown in Egs. (2)—(5).
For case A, the expressions are summarized as follows:

N Fy(—a=p+1)*(=24(~a—=p+1)-18(a+p))

|
ade ﬂmdx
pAVI X 9” /amm //);mm a3ﬂ3

400 p*

F4 plma=p+1)2(=12afs(—a—f+1) +2mi(a+ B)(—a=f+1)) Fo(-a=p+1)(mi(-a=p+1))
8o’ f* 8o’ p* ’
(A1)
piai (5) = 0, (A2)
3
Paai(s) =0, (A3)
@) (5) = 7.G)g; / Poes {3F o Fap(250B + 6m%)} (A4)
AVIV 210 4 alﬂlﬂ ﬂmm aﬁ ’
<G3>(s) _ (PGP s /ﬁmax apd - mis(—a—pf+1) n Fo5(m*(—2a — 2 + 1) + 6aps) B Fly
PAN S A 3 12ap 8ap
<g?G3>g% /amax Hg
Ms = /I8 dad ——2 %, AS
+ 2074/, a (-1 + a)a (A5)
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2(32\2 and
4 K gSG Pmax
) =SS [ daf (3t~ 3+ (= V),
X 3% Jo 2
h n=—at (Al1)
(A6) ﬁmm - —m2Q + sa ’
where we have used the following definitions:
Poax = 1 —a. (A12)
F,; = m%(a+ p) — aps, A7
/ Q( ) (A7) For case B, we have:
H, =m? —sa(l —q) (A8)
a Q ’ €] C]
a1 (s) = pax (s), (A13)
1 4m2Q 2 2
- _ __9 G G
=5 (1-1-72). (A P (5) =PI (o) (A14)
GS G3
I 4, P (s) = Pina(s): (A15)
T = 5 L+4/1——=], (A10)
|
(G3> (53G”)gs / /ﬂmax 5(33a+336—13) n Fo5(=2sap(27a + 27 — 20) + 2m2(2a + 2 — 19))
B.IV 21% X 3ﬂ: (lmm ﬁmm aﬁ a’[)]
+—8aﬂm Zs(a+p—1)+ 8a*fs 2(a+ﬁ—1)}, (A16)
ap
3 3
P (5) = Py (), (A17)
G G
pavi(s) = PRvi(5)- (A18)
For case C, we obtain:
pm /amax /ﬂmx aﬂm%s(—a—ﬁ—f— 1)4+F(51/}(—a—ﬁ-|- 1)2(=60(—a—p+1)—45(a+p))
Fi/,( a—p+1)2(=30aps(—a—p+1)+5m2(a+p)(—a—p+1)) Fiﬂ( a—p+1)2(Tm?(—a—p+1)?)
16a*p* 16a*p* '
(A19)
@) () = () gs/ /,, gp{ “Famesza=p 1) Foylmia+p-atp) =~ 20ps(za=p+1)
pC.II 25 X 3ﬂ amm /jmm aﬁ 4a2ﬂ2
Fip(d(=a=p+1) +5(a+p))
- 232 ; (A20)
12a°p

(%) (53G)g; S e L os(—a=p+1)? (a+/)') Fop(a+p)(2mi(~a—p+1)(a+p) +2aps(~a—f+1))
pC,Ill(S) 27 % 377 lmm /ﬂmm dﬂ{ o A p

Fopla+p)(=4(-a—p+1)-5 (a+ﬁ))} (A21)

8ap

R > PGP / /ﬂ 11F§ﬂ(3a+3ﬂ—2) _ Fap(250p(=27a =275 +23) — 4mi(a + f - 5))
CIV 210 X 3” (lmn ﬁmn aﬁ aﬂ
_ 8apmls(a+p— 1)+ 8a*fs 2(a+ﬁ—1)}
aff 7

(A22)
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3 3 amdx ‘max 11F2 F (9 2 - 22aﬁs) 3G3 2 Qmax H2
(G%) gsG gs / /ﬂ ap\ T <gs >gs / d -35 a A23
pe () =503 [, M, af T, VP T waf AP

4 K g?(;2 2 Qmax
pEa(s) = ;Vsjﬁ / da{15H, + 15m% = 7(1 - a)as}. (A24)
G (GG NGRG) [
pi (5) =g o [ da{(3(1 - @)a)). (A25)
szta
202\ B3 2 2 2 T2
G (:G°)(g:G”) [V mz(2mg + 5SMya(a—1))e s
nE) (M) =20 da o , (A26)
2% X 37 0 ala—1)Myg
G (G ) (G G) [ e
p<C,II) (S) == 210 o 2 da, (A27)
mZQI(I
202 3 2, M2
(G > 2 <gSG ><gsG >/ mge B
I1 M d , A28
CII( ) 2 X3ﬂ' 0 aa(l—a) ( )

5 al
where 1, = ﬁ and the terms HéGI ) (M%) and l'I<CG_H> (M%) represent the contributions of the correlation function which
have no imaginary parts but have nontrivial value under the Borel transform.

For case D, the results are

o (s) = pey (s), (A29)
2 2
P (5) = =p il (s). (A30)
G G
P (s) = =), (A31)
3 G3 ﬂmn
G gs
pov(s) = 213 i / / dﬁ 5 {Fipl96a” + 3a(64f = 55) + 964 = 1656 + 53]
+ 48sap(a+ p—1)[m? + saﬁ(7a +7p —6)] = 2F 5[3mZ(4a +4p + 1)
+ sap(384a® + a(768 — 663) + 384> — 6635 + 280)]}, (A32)
fa/}ng
3 1- a _ 3, M
@) 1y - (GG me(a+p—1)*(a+p)’e "
HD,I ( 28 % 3” / / zﬂz ) (A33)
<G3> PGP /(xmax /ﬁm 19Faﬁ Fop(m 2@+ 17(1 —a—p) + B) — 38aps) 21— o —
PD,V 25 < 37 - . 64aff 32ap + mcs( a ﬁ)
(2G) g / max H;
= dad =5 ——— A34
* 20 x32% [, “ (-1+a)a)’ (A34)
G* G*
PoAi(s) = P (s), (A33)
where f 5 = (”/} and the term H]g 1\>/ (M%) denotes the contribution of the correlation function which has no imaginary part

but has nontr1v1a1 value under the Borel transform.
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