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In this work, we study the 1−− double-gluon charmonium (c̄ggc) and bottomonium (b̄ggb) hybrids in
terms of QCD sum rules. We find that the mass of c̄ggc hybrid lies inMHc

¼ 5.33–5.90 GeV, while in the
bottom sector the mass of b̄ggb hybrid may be situated inMHb

¼ 11.20–11.68 GeV. The contributions up
to dimension eight at leading order of αs (LO) in the operator product expansion are taken into account in
the calculation. The double-gluon charmonium hybrid meson predicted in this work can decay into a pair of
charmed mesons or a pair of charmed mesons together with a light meson. Especially, we propose to search
for c̄ggc hybrid with IGðJPCÞ ¼ 0−ð1−−Þ in their decay channels DD̄=D�D̄=D�D̄� with P wave and
D�D̄�π=D�D̄�η=DD̄ρ=DD̄ω with S wave, which may be accessible in Belle II, PANDA, Super-B, GlueX,
and LHCb experiments.
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I. INTRODUCTION

Various hadronic structures beyond the normal mesons
and baryons are allowed in the framework of quantum
chromodynamics (QCD) [1–3] and quark model [4,5], such
as multiquark states, glueballs, and hybrids, which are
nominated as exotic states. A multiquark state is composed
of more than three quarks and antiquarks; a glueball is
composed of entirely gluons; a hybrid state contains
valence gluon(s), besides valence quarks. Exploring the
existence and properties of such exotic states is one of
the most intriguing research topics of hadronic physics.
In the past two decades, with the development of technol-
ogy, the research on multiquark states has made tremen-
dous developments, such as the observations of the
charmoniumlike/bottomoniumlike XYZ states [6–10]
and the hidden-charm pentaquarks (Pc states) [11,12]
(see [13–16] for recent reviews), and new ones tend to
appear more frequently.
These successes of the XYZ and Pc states have inspired

the search for hybrids within the charmonium and botto-
monium sectors [17–20]. It is one of the most important
design goals to detect the existence of hybrids in many
experimental facilities such as BESIII, GlueX, PANDA and

LHCb. However, although experimentally the existence of
hybrid states has not yet been proved, there are indeed some
good candidates observed both recently and in the past.
Very recently, the BESIII collaboration reported the first
observation of an abnormal state with the exotic quantum
number IGJPC ¼ 0þ1−þ in the ηη0 invariant mass spectrum
with a statistical significance larger than 19σ, named as
η1ð1855Þ [21,22]. In the past, there were three candidates
observed in experiments with the exotic quantum number
IGJPC ¼ 1−1−þ, i.e., the π1ð1400Þ [23], π1ð1600Þ [24,25],
and π1ð2015Þ [26]. It is worthy to note that the η1ð1855Þ is
the isoscalar partner of the isovector states π1ð1400Þ
and π1ð1600Þ.
In the past several decades, there accumulated a lot of

theoretical studies on hybrids based on various phenom-
enological models. For example, they have been studied
through the MIT bag model [27–29], flux-tube model
[30–32], constituent gluon model [33–35], AdS=QCD
model [36,37], lattice QCD [38–49], and QCD sum rules
[50–70]. Among those techniques, QCD sum rules inno-
vated by Shifman, Vainshtein, and Zakharov (SVZ)
[71–75] turns out to be a remarkably successful and
powerful technique for the computation of hadronic proper-
ties [76–82]. It is a QCD based theoretical framework that
incorporates nonperturbative effects universally order by
order using the operator product expansion (OPE). In this
approach, to establish the sum rules, the first step is to
construct the proper interpolating current corresponding to
the hadron of interest, which possesses the foremost
information about the concerned hadron, such as the
quantum number, the constituent quarks and gluons. By
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using the current, one can then construct the two-point
correlation function, which can be investigated at both
quark-gluon and hadron levels, usually called the QCD and
the phenomenological representations, respectively. After
performing the Borel transformation on both representa-
tions, we can formally establish the QCD sum rules, from
which we can extract the mass of the concerned hadron.
Heavy quarkonium hybrids with one valence gluon

(Q̄gQ) were originally studied in Refs. [52–54] by
Govaerts et al., where they analyzed the masses for various
JPC by considering the perturbative and dimension four
gluon condensate contributions. Including the tri-gluon
condensate contributions to the two-point correlation func-
tion, Qiao et al. revisited the vector (1−−) heavy quarko-
nium hybrids [61], and found that the tri-gluon condensate
contributions can stabilize the hybrid sum rules and allow
reliable mass predictions. Then, Chen et al. analyzed the
heavy quarkonium hybrids with various JPC quantum
numbers to include QCD condensates up to dimension
six, and drawn similar conclusions [64,65]. Recently, the
study of heavy quarkonium hybrid has been extended to
calculate the mixing effects between the pure quarkonium
hybrids and the quarkonium mesons [66–68].
Recently, Chen et al. studied a new hadron configura-

tion: the double-gluon hybrid state, which consists of one
light quark and one light antiquark together with two
valence gluons [83]. In this paper, we will study the double-
gluon heavy quarkonium hybrid, that is, a pair of heavy
quarks and two valence gluons (Q̄ggQ). Since a series of
newly observed ‘exotic’ states in the charmonium energy
region are JPC ¼ 1−− hadrons (Y states), it is reasonable to
believe that there exist heavier Y states, which may be
composed of one charm quark and one anticharm quark
together with two gluons. In this work, we firstly construct
four vector (JPC ¼ 1−−) double-gluon heavy quarkonium
hybrid currents. Then, we apply the QCD sum rules method
to evaluating their masses. Our predictions can be used to
analyze the experimental data in the near future.
The rest of the paper is arranged as follows. After the

Introduction, in Sec. II we derive the formulas of the
correlation functionsΠμνðqÞ in terms of the QCD sum rules
with the interpolating currents for JPC ¼ 1−−. The numeri-
cal analyses and results are given in Sec. III. Section IV is
devoted to the decay analyses of the predicted double-gluon
charmonium hybrids. The last part is left for conclusions
and discussion of the results.

II. FORMALISM

In the framework of QCD sum rules, the starting point is
to construct the correlation function, i.e.,

ΠμνðqÞ ¼ i
Z

d4x eiq·xh0jTfjμðxÞ; j†νð0Þgj0i; ð1Þ

where the interpolating current jμ for the double-gluon
heavy quarkonium hybrids with the quantum number
JPC ¼ 1−− are chosen to be

jA;1
−−

μ ðxÞ ¼ g2sfabcGa
μνðxÞGbνρðxÞ½Q̄iðxÞðTcÞijγρQjðxÞ�;

ð2Þ

jB;1
−−

μ ðxÞ ¼ g2sfabcG̃
a
μνðxÞG̃bνρðxÞ½Q̄iðxÞðTcÞijγρQjðxÞ�;

ð3Þ

jC;1
−−

μ ðxÞ ¼ g2sfabcGa
μνðxÞG̃bνρðxÞ½Q̄iðxÞðTcÞijγργ5QjðxÞ�;

ð4Þ

jD;1−−
μ ðxÞ ¼ g2sfabcG̃

a
μνðxÞGbνρðxÞ½Q̄iðxÞðTcÞijγργ5QjðxÞ�;

ð5Þ

where gs is the strong coupling constant, i=j ¼ 1, 2, 3 and
a=b=c ¼ 1; 2;…; 8 are color indices, fabc is the totally
antisymmetric SUð3Þ structure constants, Tc ¼ λc=2 where
λc is the Gell-Mann matrix, G̃a

μνðxÞ ¼ ϵμναβGa;αβðxÞ=2 is the
dual field strength of Ga

μνðxÞ, and Q represents the heavy-
quark c or b. Here, the superscripts A to D indicate four
different hybrid currents that will be analyzed in our paper.
Generally, the two-point function ΠμνðqÞ may contain

two distinct parts, the vector part ΠVðq2Þ and the scalar part
ΠSðq2Þ which represent the contributions of the correlation
function to the vector channel JPC ¼ 1−− and scalar channel
JPC ¼ 0þ−, respectively. It can be explicitly expressed as:

ΠμνðqÞ ¼
�
−gμν þ

qμqν
q2

�
ΠVðq2Þ þ

qμqν
q2

ΠSðq2Þ: ð6Þ

Since our aim of this work is to study the mass of the
vector (1−−) heavy hybrid, we only analyze the vector part
ΠVðq2Þ, which is written as Πðq2Þ in the following for
brevity. The correlation function Πðq2Þ can be investigated
at both quark-gluon and hadron levels, usually called the
QCD and the phenomenological representations, respec-
tively. Note that the QCD representation needs analytical
calculations, whereas, the mass and coupling constant of
the concerned hadron are introduced in the phenomeno-
logical representation. In QCD sum rules, the fundamental
assumption is the principle of quark-hadron duality, which
builds a bridge between the QCD representation and the
phenomenological representation, that is:

ΠQCDðq2Þ ¼
Z

∞

s<

ds
ρphenðsÞ
s − q2

; ð7Þ

where ρphenðsÞ represents the spectral function on the
phenomenological side of QCD sum rules, and the inte-
gration starts from the physical threshold. The spectral
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function, ρphenðsÞ, is usually described using some model
corresponding to an appropriate resonance shape. In this
work, we use the “one resonanceþ continuum” approxi-
mation for the quark-hadron duality.
At the quark-gluon level, the correlation function can be

calculated with the operator product expansion (OPE). As
explained in Ref. [73], it is convenient to introduce the
definition of the full propagator of QCD in order to include
the nonperturbative effects from QCD vacuum. In our
calculation, since we only take into account the contribu-
tions up to dimension eight at leading order of αs in the
OPE, it is enough to retain the heavy-quark (Q ¼ c or b)
full propagator SQijðpÞ up to single-gluon emission term in
momentum space [73], which is

SQjkðpÞ ¼
iδjkð=pþmQÞ
p2 −m2

Q
−
i
4
gs

tajkG
a
αβð0Þ

ðp2 −m2
QÞ2

× ½σαβð=pþmQÞ þ ð=pþmQÞσαβ�; ð8Þ

where the first term is the perturbative quark propagator,
and the second term represents the contribution of the
single-gluon emission which forms the gluon condensates
hg2sG2i, hg3sG3i, and hg2sG2i2 together with relevant gluon
emission terms from other quark/gluon propagators.
Moreover, the perturbative gluon propagator employed

in our analytical calculation is considered in coordinate
space, which can be expressed as [52]:

Sabμν;ρσðxÞ ¼
δab

2π2
×

1

x6
fðgμρx2 − 4xμxρÞgνσ

− ðgμσx2 − 4xμxσÞgρν − ðgρνx2 − 4xρxνÞgμσ
þ ðgνσx2 − 4xνxσÞgρμg: ð9Þ

Because we work at leading order of αs and consider
condensates up to dimension eight, we also need the gluon
propagator associated with single-gluon emission. For
simplicity, we shall use it in momentum space, which is
derived by ourselves followed Refs. [73,84] and has the
following expression:

SG;abμν;ρσðpÞ ¼ −
i
2
gsfabc1Gc1;αμ1ð0Þ 1

p3
fp2½pμpρð−gανÞgμ1σ þ pμpρgαμ1gνσ − pνpρgαμ1gμσ þ pνpρgαμgμ1σ

þ gασðpνð2pμ1gμρ − pρgμμ1Þ þ pμðpρgμ1ν − 2pμ1gνρÞÞ þ pμpσgανgμ1ρ − pμpσgαμ1gνρ

þ pνpσgαμ1gμρ − pνpσgαμgμ1ρ þ gαρðpνðpσgμμ1 − 2pμ1gμσÞ þ pμð2pμ1gνσ − pσgμ1νÞÞ�
− 4pαpμ1ðpνðpσgμρ − pρgμσÞ þ pμðpρgνσ − pσgνρÞÞg: ð10Þ

We refer to Refs. [73,84] for the necessary formulas using
in the derivation of Eq. (10).
On the QCD side of QCD sum rules, based on the

dispersion relation, the correlation function Πðq2Þ can be
expressed as follows:

ΠQCDðq2Þ ¼
Z

∞

4m2
Q

ds
ρOPEðsÞ
s − q2

; ð11Þ

where ρOPEðsÞ ¼ Im½ΠOPEðsÞ�=π, and

ρOPEðsÞ ¼ ρpertðsÞ þ ρhG2iðsÞ þ ρhG3iðsÞ þ ρhG4iðsÞ; ð12Þ

where ρpertðsÞ, ρhG2iðsÞ, ρhG3iðsÞ, and ρhG4iðsÞ denote the
spectral densities of the perturbative part, the two-gluon
condensate contribution, the tri-gluon condensate contribu-
tion, and the four-gluon condensate contribution, respec-
tively. For instance, to calculate the perturbative part ρpertðsÞ,
we firstly combine two full propagators of heavy quarks
given in Eq. (8) and two full propagators of the gluons
shown in Eqs. (9), (10), and then choose the perturbative
term which does not contain any condensate terms.
Eventually, we utilize the technique explicitly shown in

Refs. [73,84] to calculate ρpertðsÞ. The same procedure is
applicable to the calculations of other spectral densities that
contain gluon condensates. The typical LO Feynman dia-
grams of a double-gluon heavy quarkonium hybrid state that
contribute to the spectral densities in Eq. (12) are shown in
Fig. 1, where diagram I represents the contribution from
perturbative part, and diagrams II, III-V, and VI denote the
two-gluon condensate, trigluon condensates, and four-gluon
condensate, respectively. We note from Fig. 1 that diagram I
is proportional to α2s × g0s , diagrams II-VI are proportional to
α2s × g2s , respectively. Note that the permutation diagrams are
implied in Fig. 1, so all the diagrams up to four-gluon
condensate at leading order of αs are depicted and calculated
in our work. The lengthy expressions of spectral densities in
Eq. (12) are deferred to the Appendix.
On the phenomenological side of QCD sum rules, the

spectral function ρphenðsÞ is defined using the pole plus
continuum approximation

ρphenðsÞ ¼ λ2HQ
δðs −M2

HQ
Þ þ ρhðsÞ; ð13Þ

where the subscript HQ (Q ¼ c or b) denotes the lowest
lying hybrid state, MHQ

represents its mass, ρhðsÞ means
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the spectral density which includes the contributions from
higher excited states and the continuum states above the
threshold s0. The coupling constant λH is defined by
h0jjμjHQi ¼ λHQ

ϵμ.
After isolating the ground state contribution from the

hybrid state, we obtain the correlation functionΠphenðq2Þ in
dispersion integral over the physical region, i.e.,

Πphenðq2Þ ¼
λ2HQ

ðMHQ
Þ2 − q2

þ
Z

∞

s0

ds
ρhðsÞ
s − q2

: ð14Þ

For extracting reliable results from the comparison
between the two representations of the correlation function,
one should guarantee a good OPE convergence on the QCD
side and simultaneously suppress the contributions from
higher excited states and the continuum states on the
phenomenological side. A practical way of doing this is to
utilize the Borel transformation, whose definition is given by:

B½ΠðQ2Þ�≡ΠðM2
BÞ¼ lim

Q2;n→∞
Q2=n¼M2

B

ð−1ÞnðQ2Þnþ1

n!

�
∂

∂Q2

�
n
ΠðQ2Þ

ð15Þ
where Q2 is the four-momentum of the particle in the
Euclidean space (Q2 ¼ −q2), and M2

B is a free parameter
of the sum rule.

Performing Borel transformation on the QCD side
Eq. (11) and the phenomenological side Eq. (14), and
using quark-hadron duality, we can establish the main
function of QCD sum rules, that is:Z

s0

4m2
c

ρOPEðsÞe−s=M2
Bds ¼ λ2HQ

e
−M2

HQ
=M2

B ; ð16Þ

where the so-called quark-hadron duality approximation
[75] is used which has the following form:Z

∞

s0

ρOPEðsÞe−s=M2
Bds ≃

Z
∞

s0

ρhðsÞe−s=M2
Bds: ð17Þ

Then we can extract the mass of the hybrid state from the
main function (16), which reads:

Mi
HQ

ðs0;M2
BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
L1ðs0;M2

BÞ
L0ðs0;M2

BÞ

s
; ð18Þ

where the superscript i runs from A to D, respectively. The
moments L1 and L0 are, respectively, defined as

L0ðs0;M2
BÞ ¼

Z
∞

4m2
Q

dsρOPEðsÞe−s=M2
B ; ð19Þ

L1ðs0;M2
BÞ ¼

∂

∂ðM2
BÞ−1

L0ðs0;M2
BÞ: ð20Þ

FIG. 1. The typical LO Feynman diagrams of a double-gluon heavy quarkonium hybrid state that contribute to the spectral densities in
Eq. (12), where the permutation diagrams are implied. Diagram I represents the contribution from perturbative part, and diagrams II,
III-V, and VI denote the two-gluon condensate, trigluon condensates, and four-gluon condensate, respectively. We note that diagram I is
proportional to α2s × g0s , diagrams II-VI are proportional to α2s × g2s , respectively. So all the diagrams up to four-gluon condensate at
leading order of αs are depicted.
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III. NUMERICAL ANALYSES

For numerical evaluation, the leading order strong
coupling constant

αsðM2
BÞ ¼

4π

ð11 − 2
3
nfÞ lnð M2

B
Λ2
QCD

Þ
; ð21Þ

is adopted with ΛQCD ¼ 300 MeV and nf being the
number of active quarks [85]. Additionally, in order to
yield meaningful physical results in QCD sum rules, as in
any practical theory, one needs to give certain inputs. These
input parameters are taken from [86–88], whose explicit
values read:

mcðmcÞ ¼ m̄c ¼ ð1.27� 0.02Þ GeV;
mbðmbÞ ¼ m̄b ¼ ð4.18þ0.03

−0.02Þ GeV;
hαsG2i ¼ ð6.35� 0.35Þ × 10−2 GeV4;

hg3sG3i ¼ ð8.2� 1.0Þ × hαsG2i GeV2; ð22Þ

where we use the “running masses” for the heavy quarks in
the MS scheme. It is important to note that the vacuum
saturation approximation is used in this work in the
calculation of hG4i contribution [89,90]. In order to take
into account the error due to the violation of the vacuum
approximation, we can introduce a parameter κ,

hαsG2i2 → κhαsG2i2; ð23Þ

the value κ ¼ 1 stands for the vacuum saturation approxi-
mation, while the value κ ≠ 1 parameterizes its violation.
We consider the result obtained by using the factorized
hG4i as the central value (κ ¼ 1), and consider the variation
due to the violation of the vacuum dominance (by a factor
of κ ¼ 2) as a source of errors.
In establishing the QCD sum rules, there are two

additional parameters s0 and M2
B represented the threshold

parameter and the Borel parameter, respectively. For a
given s0, the Borel parameter M2

B will be constrained by
two criteria [75,79]. First, in order to extract the informa-
tion on the ground state of the double-gluon heavy hybrid
state, one should guarantee pole contribution (PC) is larger
than 40%, which can be formulated as

RPC
i ¼ L0ðs0;M2

BÞ
L0ð∞;M2

BÞ
; ð24Þ

where the subscript i runs from A to D. Under this
constraint, the contribution of higher excited and con-
tinuum states will be suppressed. This criterion gives rise to
a critical value of M2

B, which is the upper limit of M2
B

nominated as ðM2
BÞmax.

To insure the convergence of Eq. (19), we should require
an OPE series decreasing order by order, for κ ¼ 1 and 2,
respectively. Then, one can determine another critical value
of M2

B from the ratios of various terms in Eq. (19) to the
entire moment L0ðs0;M2

BÞ, defined as

Rcond
i ¼ Lcond

0 ðs0;M2
BÞ

L0ðs0;M2
BÞ

; ð25Þ

which corresponds to the lower limit ofM2
B called ðM2

BÞmin.
Here, the subscript i runs from A to D, and the superscript
“cond” denotes the perturbative term and different con-
densate terms in Eq. (19), respectively. As a consequence,
we obtain the proper Borel window of M2

B for a given s0,
which is the region between ðM2

BÞmin and ðM2
BÞmax.

In practice, to know whether the OPE convergence is
satisfied, we first restrict that the highest condensate
contribution, hG4i, should be less than 15% and 25% of
the total OPE side for κ ¼ 1 and κ ¼ 2, respectively. Then,
we can select the one which has an OPE series decreasing
order by order.
It is obvious that the Borel window depends on the

threshold parameter s0. Therefore, we need to vary the
value of s0 in a possible region, until we find an optimal
value of s0 which corresponds to a smooth plateau for the
hybrid mass MHQ

in its Borel window given by the two
criteria mentioned above. On the smooth plateau, the
hybrid mass MHQ

should be in principle independent of
the Borel parameter M2

B, or at least only shows weak
dependence.
For case A with κ ¼ 1, we plot the two ratios RPC

A and
Rcond
A as functions of the Borel parameterM2

B in Fig. 2(a) at
the proper value s0 ¼ 44 GeV2, and the mass curves as
functions ofM2

B in Fig. 2(b). Two vertical lines in Fig. 2(b)
indicate the upper and lower bounds of the proper Borel
window for the central value of s0, and the so-called stable
plateau between these two vertical lines exists, where the
proper Borel window refers to the one that fulfills the

constraint RhG4i
A < 15%. To estimate the uncertainty

introduced by s0, we tentatively assign a 2 GeV2 fluc-
tuation from the optimal value s0 ¼ 44 GeV2, as shown in
Fig. 2(b). A similar situation happens for case B with
κ ¼ 1, shown in Fig. 3. For case C, since the tentative

restriction RhG4i
C < 15% is satisfied in a wide range of the

Borel parameter, as shown in Fig. 4(a), the lower limit of
M2

B is fixed by the requirement that the ratio RPert
C is lager

than 60%. The mass figures in Figs. 3(b) and 4(b) also
exhibit stable plateau within their proper Borel windows,
respectively. However, for case D with κ ¼ 1, we find that
no matter what value of s0 and M2

B are taken to be, no
proper Borel window for a stable plateau exists. That means
the current structure in Eq. (5) does not support the
corresponding hybrid.
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FIG. 2. The figures for current Awith κ ¼ 1. (a) The pole contribution ratio RPC
A and OPE convergence ratio Rcond

A as functions of the
Borel parameterM2

B with the central value of s0; (b) The massMA
Hc

as a function ofM2
B for s0 ¼ 42 GeV2, 44 GeV2, and 46 GeV2 from

down to up, respectively, and the two vertical lines indicate the upper and lower bounds of the proper Borel window with the central
value of s0.

FIG. 3. The same caption as in Fig. 2, but for current B.

FIG. 4. The same caption as in Fig. 2, but for current C.
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The resulting windows of the Borel parameter M2
B,

threshold values s0, pole contributions (PC), two-gluon
contributions, trigluon contributions, four-gluon contribu-
tions for cases A, B, and C with κ ¼ 1 are shown explicitly
in Table I, respectively. From Table I, we can see that, for
case A, although the pole dominance of the phenomeno-
logical side is well satisfied in the proper Borel window,
the OPE convergence constraint is violated due to

jRhG4i
A =RhG3i

A j > 1. Hence, we exclude case A when we
make further numerical analyses in the following text.
As already mentioned, we need to consider the variation

due to the violation of the vacuum dominance (by a
factor of κ ¼ 2) as a source of errors. Therefore, we list
the resulting windows of the Borel parameter M2

B,
threshold values s0, pole contributions (PC), two-gluon
contributions, trigluon contributions, four-gluon contri-
butions for cases B and C with κ ¼ 2 in Table II,
respectively.
From Table II, we find that, for case B, the OPE

convergence constraint is violated for κ ¼ 2 because of

jRhG4i
A =RhG3i

A j > 1. Hence, we also exclude case B in the
following numerical analyses. Ultimately, we conclude that
both the pole dominance of the phenomenological side and
the OPE convergence are well satisfied for case C.
For case C, to safely neglect the contribution from

d ≥ 10, where d represents the dimension of the conden-

sate term, it is necessary to guarantee jRhG5i
C =RhG4i

C < 1j.
To this end, we should calculate the contribution for
hG5i condensate (d ¼ 10), then test whether the size of

the d ¼ 10 term is smaller than that from the d ¼ 8 term in
the present Borel window listed in Table I. The leading
order Feynman diagrams of the d ¼ 10 term are depicted in
Fig. 5, where the permutation diagrams are implied. We put
the details on the calculation and analytic expression of the
d ¼ 10 term in the Appendix.
From Fig. 6, we can conclude that the condensate

contribution from the d ¼ 10 term is much less than the
d ¼ 8 term in the present Borel window for κ ¼ 1, and we

TABLE I. κ ¼ 1. The windows of the Borel parameter M2
B, threshold parameters s0, pole contributions, two-gluon contributions,

trigluon contributions, and four-gluon contributions of c̄ggc hybrid states for cases A, B, and C, respectively.

κ ¼ 1 M2
B (GeV2) s0 (GeV2) PC Pert RhG2i

i RhG3i
i RhG4i

i

Case A 5.40–6.60 44 ð60 − 40Þ% ð89 − 94Þ% 0 ½ð−3.83Þ − ð−3.20Þ�% ð14.72 − 9.17Þ%
Case B 5.70–6.40 44 ð50 − 40Þ% ð107 − 108Þ% 0 ½ð−23Þ − ð−19Þ�% ð15.20 − 11.27Þ%
Case C 5.30–6.50 42 ð60 − 40Þ% ð61 − 63Þ% ð64 − 56Þ% ½ð−21Þ − ð−16Þ�% ½ð−3.80Þ − ð−3.02Þ�%

TABLE II. The same caption as in Table I, but for cases B and C with κ ¼ 2.

κ ¼ 2 M2
B (GeV2) s0 (GeV2) PC Pert RhG2i

i RhG3i
i RhG4i

i

Case B 5.80–6.50 44 ð52 − 40Þ% ð94 − 97Þ% 0 ½ð−19Þ − ð−17Þ�% ð25 − 20Þ%
Case C 5.40–6.40 42 ð57 − 40Þ% ð63 − 65Þ% ð65 − 58Þ% ½ð−21Þ − ð−17Þ�% ½ð−7.72Þ − ð−6.32Þ�%

FIG. 5. The typical LO Feynman diagrams that contribute to hG5i term, where the permutation diagrams are implied.

FIG. 6. κ ¼ 1. The ratio jRhG5i
C =RhG4i

C j as a function of the
Borel parameter M2

B in the valid Borel window with the central
value of s0.
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can safely neglect it. Then, it is valid to truncate the OPE at
d ¼ 8, and the present Borel window is the valid Borel
window that satisfies all the constraints in the QCD sum

rules. Moreover, since the value of jRhG5i
C =RhG4i

C j will
decrease as the parameter κ increases, we can obtain a
better OPE convergence for κ ¼ 2. Therefore, we can make
a reliable mass prediction for case C.
Now, we can determine the masses of the vector double-

gluon charmonium hybrid state for current C with κ ¼ 1
and κ ¼ 2, which are summarized in Table III, where the
subscript Hc denotes the hybrid state in the c-quark sector;
the error bars stem from the uncertainties of the Borel
parameter M2

B, the threshold parameter s0, the condensate
parameters hg2sG2i and hg3sG3i, and the quark mass m̄c
listed in Eq. (22). It should be noted that the variations of
the Borel window in the region of ðscenter0 � 2Þ GeV2 have
been considered in our estimation of the uncertainties,
where scenter0 represents the central value of s0.
Eventually, by considering all the uncertainties men-

tioned above, we obtain the mass prediction of the 1−−

double-gluon charmonium hybrid state, which is

MC;1−−
Hc

¼ ð5.68þ0.22
−0.35Þ GeV; ð26Þ

and find that it is in the region of 5.33 GeV <
MHc

< 5.90 GeV.
By replacing the mass of the charm quark with the

bottom quark in Eq. (11) and performing the same
numerical analyses, we can obtain the corresponding
prediction for the 1−− double-gluon bottomonium hybrid
state, whose mass is

MC;1−−
Hb

¼ ð11.51þ0.17
−0.31Þ GeV; ð27Þ

respectively, where the subscript Hb represents the hybrid
state in b-quark sector. By including the uncertainties of
this bottomonium hybrid mass, we find that it is in the
range of 11.20–11.68 GeV.

IV. DECAY ANALYSES

As shown in Fig. 7, the double-gluon heavy quarkonium
hybrids can decay into a pair of charmed/bottomed mesons
or a pair of charmed/bottomed mesons together with a light
meson by exciting two light quark (u, d, or s) pairs from the
two valence gluons. It should be noted that these two
possible decay modes are both at OðαsÞ order, though they
are OZI-allowed processes.
As shown in Table IV, apart from the S-wave decays in

the two-meson decay patterns which violate the conserva-
tion of the parity, there exist P-wave decays in the two-
meson decay patterns, and both S-wave and P-wave decays
in the three-meson decay patterns. In order to select some
better decay channels, for a qualitative analysis, we only
consider two aspects that affect the decay branching ratios
of these predicted hybrids: the phase space factor and the
P-wave suppression. In view of these two aspects, we
notice that, the P-wave two-meson decay pattern has a
bigger phase factor than the three-meson case, whereas, it is
suppressed by the excited energy corresponding to the P-
wave interaction between its final states; the S-wave three-
meson decay pattern does not need the excited energy of
the P-wave interaction, but has a smaller phase factor
compared to the two-meson decay pattern. Therefore, each
type of these decay channels has an advantage and a
disadvantage. These behaviors will be useful for identify-
ing the nature of the double-gluon heavy quarkonium
hybrids.
Amongst them listed in Table IV, we suggest the decay

channels Hc → DD̄=D�D̄=D�D̄� with P wave and Hc →
D�D̄�π=D�D̄�η=DD̄ρ=DD̄ω with S wave as the accessible
decay channels for the double-gluon charmonium hybrids,
which are expected to be measured in Belle II, PANDA,
Super-B, GlueX, and LHCb in the near future.

(a) (b)

FIG. 7. Two possible decay processes of the double-gluon heavy quarkonium hybrids Q̄ggQ, where the final states are represented as
M1,M2, andM3. The same figures have been given in Ref. [83] for explaining the possible decay processes of the double-gluon hybrids
in light quark sector.

TABLE III. Mass predictions for the 1−− double-gluon char-
monium hybrids both with κ ¼ 1 and κ ¼ 2, respectively. The
error bars are obtained by taking into account the uncertainties of
the Borel windows, s0, and the input parameters shown in
Eq. (22).

κ ¼ 1 κ ¼ 2

Case C MC;1−−
Hc

¼ð5.68þ0.20
−0.35 ÞGeV, MC;1−−

Hc
¼ð5.71þ0.19

−0.15 ÞGeV
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V. CONCLUSIONS

Since a series of newly observed “exotic” states in the
charmonium energy region possess the quantum number
JPC ¼ 1−−, which are nominated as Y states. Therefore, it
is reasonable to believe that there will exist heavier Y states,
which may be composed of one charm quark and one
anticharm quark together with two gluons. In this work, we
first construct four currents of the vector (JPC ¼ 1−−)
double-gluon charmonium (c̄ggc) hybrid. Then, we utilize
the method of QCD sum rules to evaluate their masses.
We find that the mass of c̄ggc hybrid lies in MHc

¼
5.33–5.90 GeV, while in the bottom sector the mass of
b̄ggb hybrid may be situated in MHb

¼ 11.20–11.68 GeV.
The contributions up to dimension eight at leading order of
αs (LO) in the operator product expansion are taken into
account in our calculation.
We depict two possible decay processes of the double-

gluon heavy quarkonium hybrids in Fig. 7 and list
their allowed two- and three-meson decay channels in

Table IV, where we keep the channels up to P-wave
decays. As a result, we suggest the decay channels
Hc → DD̄=D�D̄=D�D̄� with P wave and Hc →
D�D̄�π=D�D̄�η=DD̄ρ=DD̄ω with S wave as the accessible
decay channels of the double-gluon charmonium hybrids,
which are expected to be measured in Belle II, PANDA,
Super-B, GlueX, and LHCb in the near future.
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APPENDIX

In this appendix, we list the spectral densities ρOPEðsÞ in
Eq. (12) for all currents shown in Eqs. (2)–(5).
For case A, the expressions are summarized as follows:

ρpertA;I ðsÞ ¼
g4s

29 × 9π6

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−
F3
αβm

2
csð−α− βþ 1Þ4

α3β3
þF5

αβð−α− βþ 1Þ2ð−24ð−α− βþ 1Þ− 18ðαþ βÞÞ
40α4β4

−
F4
αβð−α− βþ 1Þ2ð−12αβsð−α− βþ 1Þ þ 2m2

cðαþ βÞð−α− βþ 1ÞÞ
8α4β4

−
F4
αβð−α− βþ 1Þ2ðm2

cð−α− βþ 1Þ2Þ
8α4β4

�
;

ðA1Þ

ρhG
2i

A;II ðsÞ ¼ 0; ðA2Þ

ρhG
3i

A;IIIðsÞ ¼ 0; ðA3Þ

ρhG
3i

A;IVðsÞ ¼
hg3sG3ig2s
210π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
3F2

αβ

αβ
−
Fαβð2sαβ þ 6m2

cÞ
αβ

�
; ðA4Þ

ρhG
3i

A;V ðsÞ ¼
hg3sG3ig2s
27π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−
m2

csð−α − β þ 1Þ
3

þ Fαβðm2
cð−2α − 2β þ 1Þ þ 6αβsÞ

12αβ
−
F2
αβ

8αβ

�

þ hg3sG3ig2s
210π4

Z
αmax

αmin

dα

�
H2

α

ð−1þ αÞα
�
; ðA5Þ

TABLE IV. Some possible two- and three-meson decay channels of the c̄ggc hybrids with the quantum number
IGðJPCÞ ¼ 0−ð1−−Þ that is consistent with the Y states, where we only keep the channels up to P-wave decays. Here,
for brevity, the notation Dð�ÞD̄ð�Þ denotes both DD̄ and D�D̄�, and the notation D�D̄ represents not only D�D̄ but
also DD̄�.

S-wave P-wave

Two-meson � � � Dð�ÞD̄ð�Þ, Dð�Þ
s D̄ð�Þ

s , D�D̄, D�
sD̄s

Three-meson
D�D̄�π, D�D̄�η, Dð�ÞD̄ð�Þρ,

Dð�ÞD̄ð�Þω, D�D̄π,
D�D̄ρ, D�D̄ω, D�D̄η

Dð�ÞD̄ð�Þh1, Dð�ÞD̄ð�Þb1, Dð�ÞD̄ð�Þa0;1;2,
Dð�ÞD̄ð�Þf0;1;2, D�D̄h1, D�D̄b1,

D�D̄a0;1;2, D�D̄f0;1;2
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ρhG
4i

A;VIðsÞ ¼
κhg2sG2i2
29× 3π2

Z
αmax

αmin

dαf−ð3Hα − 3m2
cþðα− 1ÞαsÞg;

ðA6Þ

where we have used the following definitions:

Fαβ ¼ m2
Qðαþ βÞ − αβs; ðA7Þ

Hα ¼ m2
Q − sαð1 − αÞ; ðA8Þ

αmin ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Q

s

s �
; ðA9Þ

αmax ¼
1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Q

s

s �
; ðA10Þ

and

βmin ¼
m2

Qα

−m2
Q þ sα

; ðA11Þ

βmax ¼ 1 − α: ðA12Þ

For case B, we have:

ρpertB;I ðsÞ ¼ ρpertA;I ðsÞ; ðA13Þ

ρhG
2i

B;II ðsÞ ¼ ρhG
2i

A;II ðsÞ; ðA14Þ

ρhG
3i

B;IIIðsÞ ¼ ρhG
3i

A;IIIðsÞ; ðA15Þ

ρhG
3i

B;IVðsÞ ¼
hg3sG3ig2s
213 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
F2
αβð33αþ 33β − 13Þ

αβ
þ Fαβð−2sαβð27αþ 27β − 20Þ þ 2m2

cð2αþ 2β − 19ÞÞ
αβ

þ −8αβm2
csðαþ β − 1Þ þ 8α2β2s2ðαþ β − 1Þ

αβ

�
; ðA16Þ

ρhG
3i

B;V ðsÞ ¼ ρhG
3i

A;V ðsÞ; ðA17Þ

ρhG
4i

B;VIðsÞ ¼ ρhG
4i

A;VIðsÞ: ðA18Þ

For case C, we obtain:

ρpertC;I ðsÞ ¼
g4s

28 × 9π6

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
F3
αβm

2
csð−α− βþ 1Þ4

α3β3
þF5

αβð−α− βþ 1Þ2ð−60ð−α− βþ 1Þ− 45ðαþ βÞÞ
80α4β4

−
F4
αβð−α− βþ 1Þ2ð−30αβsð−α− βþ 1Þþ 5m2

cðαþ βÞð−α− βþ 1ÞÞ
16α4β4

−
F4
αβð−α− βþ 1Þ2ð7m2

cð−α− βþ 1Þ2Þ
16α4β4

�
;

ðA19Þ

ρhG
2i

C;II ðsÞ ¼
hg2sG2ig2s
25 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−Fαβm2

csð−α − β þ 1Þ2
αβ

þ F2
αβðm2

cðαþ β − 1Þðαþ βÞ − 2αβsð−α − β þ 1ÞÞ
4α2β2

−
F3
αβð4ð−α − β þ 1Þ þ 5ðαþ βÞÞ

12α2β2

�
; ðA20Þ

ρhG
3i

C;IIIðsÞ¼
hg3sG3ig2s
27×3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
m2

csð−α−βþ1Þ2ðαþβÞ
αβ

þFαβðαþβÞð2m2
cð−α−βþ1ÞðαþβÞþ2αβsð−α−βþ1ÞÞ

4α2β2

−
F2
αβðαþβÞð−4ð−α−βþ1Þ−5ðαþβÞÞ

8αβ

�
; ðA21Þ

ρhG
3i

C;IVðsÞ ¼
hg3sG3ig2s
210 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−
11F2

αβð3αþ 3β − 2Þ
αβ

−
Fαβð2sαβð−27α − 27β þ 23Þ − 4m2

cðαþ β − 5ÞÞ
αβ

−
8αβm2

csðαþ β − 1Þ þ 8α2β2s2ðαþ β − 1Þ
αβ

�
; ðA22Þ
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ρhG
3i

C;V ðsÞ ¼ hg3sG3ig2s
210 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−
11F2

αβ

2αβ
−
Fαβð9m2

c − 22αβsÞ
αβ

�
þ hg3sG3ig2s
211 × 3π4

Z
αmax

αmin

dα

�
−35

H2
α

ð1 − αÞα
�
; ðA23Þ

ρhG
4i

C;VIðsÞ ¼
κhg2sG2i2
210 × 3π2

Z
αmax

αmin

dαf15Hα þ 15m2
c − 7ð1 − αÞαsg: ðA24Þ

ρhG
5i

C;I ðsÞ ¼ hg2sG2ihg3sG3i
28 × π2

Z
αmax

αmin

dαfð3ð1 − αÞαÞg; ðA25Þ

ΠhG5i
C;I ðM2

BÞ ¼
hg2sG2ihg3sG3i

28 × 3π2

Z
1

0

dα
m2

cð2m2
c þ 5M2

Bαðα − 1ÞÞe−
m2
Q
tα

M2
B

αðα − 1ÞM2
B

; ðA26Þ

ρhG
5i

C;II ðsÞ ¼ −
hg2sG2ihg3sG3i

210 × π2

Z
αmax

αmin

dα; ðA27Þ

ΠhG5i
C;II ðM2

BÞ ¼
hg2sG2ihg3sG3i

29 × 3π2

Z
1

0

dα
m2

ce
−
m2
Q
tα

M2
B

αð1 − αÞ ; ðA28Þ

where tα ¼ 1
αð1−αÞ and the terms ΠhG5i

C;I ðM2
BÞ and ΠhG5i

C;II ðM2
BÞ represent the contributions of the correlation function which

have no imaginary parts but have nontrivial value under the Borel transform.
For case D, the results are

ρpertD;I ðsÞ ¼ ρpertC;I ðsÞ; ðA29Þ

ρhG
2i

D;II ðsÞ ¼ −ρhG
2i

C;II ðsÞ; ðA30Þ

ρhG
3i

D;IIIðsÞ ¼ −ρhG
3i

C;IIIðsÞ; ðA31Þ

ρhG
3i

D;IVðsÞ ¼
hg3sG3ig2s
213 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ
1

αβ
fF2

αβ½96α2 þ 3αð64β − 55Þ þ 96β2 − 165β þ 53�

þ 48sαβðαþ β − 1Þ½m2
c þ sαβð7αþ 7β − 6Þ� − 2Fαβ½3m2

cð4αþ 4β þ 1Þ
þ sαβð384α2 þ αð768β − 663Þ þ 384β2 − 663β þ 280Þ�g; ðA32Þ

ΠhG3i
D;IVðM2

BÞ ¼
hg3sG3ig2s
28 × 3π4

Z
1

0

dα
Z

1−α

0

dβ
m6

cðαþ β − 1Þ2ðαþ βÞ3e−
fαβm

2
Q

M2
B

α2β2
; ðA33Þ

ρhG
3i

D;V ðsÞ ¼
hg3sG3ig2s
25 × 3π4

Z
αmax

αmin

dα
Z

βmax

βmin

dβ

�
−
19F2

αβ

64αβ
−
Fαβðm2

cðαþ 17ð1 − α − βÞ þ βÞ − 38αβsÞ
32αβ

þm2
csð1 − α − βÞ

�

þ hg3sG3ig2s
211 × 3π4

Z
αmax

αmin

dα

�
−5

H2
α

ð−1þ αÞα
�
; ðA34Þ

ρhG
4i

D;VIðsÞ ¼ ρhG
4i

C;VIðsÞ; ðA35Þ

where fαβ ¼ αþβ
αβ and the term ΠhG3i

D;IVðM2
BÞ denotes the contribution of the correlation function which has no imaginary part

but has nontrivial value under the Borel transform.

MASS PREDICTIONS OF VECTOR (1−−) DOUBLE-… PHYS. REV. D 105, 114004 (2022)

114004-11



[1] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973).

[2] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[3] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[4] M. Gell-Mann, Phys. Lett. 8, 214 (1964).
[5] G. Zweig, Report No. CERN-TH-401 (CERN, Geneva,

1964).
[6] S. K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91,

262001 (2003).
[7] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95,

142001 (2005).
[8] A. Bondar et al. (Belle Collaboration), Phys. Rev. Lett. 108,

122001 (2012).
[9] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.

110, 252001 (2013).
[10] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110,

252002 (2013); 111, 019901(E) (2013).
[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,

072001 (2015).
[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,

222001 (2019).
[13] H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rep. 639,

1-121 (2016).
[14] F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao,

and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018).
[15] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod.

Phys. 90, 015003 (2018).
[16] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P.

Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, Phys. Rep.
873, 1 (2020).

[17] S. L. Olsen, Nucl. Phys. A827, 53C (2009).
[18] S. L. Olsen, arXiv:0909.2713.
[19] S. Godfrey and S. L. Olsen, Annu. Rev. Nucl. Part. Sci. 58,

51 (2008).
[20] F. E. Close, Contemp. Phys. 49, 343 (2008).
[21] M. Ablikim et al. (BESIII Collaboration), arXiv:

2202.00621.
[22] M. Ablikim et al. (BESIII Collaboration), arXiv:2202.00623.
[23] D. Alde et al. (IHEP-Brussels-Los Alamos-Annecy(LAPP)

Collaboration), Phys. Lett. B 205, 397 (1988).
[24] E. I. Ivanov et al. (E852 Collaboration), Phys. Rev. Lett. 86,

3977 (2001).
[25] M. Alekseev et al. (COMPASS Collaboration), Phys. Rev.

Lett. 104, 241803 (2010).
[26] J. Kuhn et al. (E852 Collaboration), Phys. Lett. B 595, 109

(2004).
[27] T. Barnes, Nucl. Phys. B158, 171 (1979).
[28] P. Hasenfratz, R. R. Horgan, J. Kuti, and J. M. Richard,

Phys. Lett. 95B, 299 (1980).
[29] M. S. Chanowitz and S. R. Sharpe, Nucl. Phys. B222, 211

(1983); B228, 588(E) (1983).
[30] F. E. Close and P. R. Page, Nucl. Phys. B443, 233 (1995).
[31] P. R. Page, E. S. Swanson, and A. P. Szczepaniak, Phys.

Rev. D 59, 034016 (1999).
[32] T. Barnes, F. E. Close, and E. S. Swanson, Phys. Rev. D 52,

5242 (1995).
[33] D. Horn and J. Mandula, Phys. Rev. D 17, 898 (1978).
[34] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65,

025012 (2001).

[35] P. Guo, A. P. Szczepaniak, G. Galata, A. Vassallo, and E.
Santopinto, Phys. Rev. D 77, 056005 (2008).

[36] O. Andreev, Phys. Rev. D 87, 065006 (2013).
[37] L. Bellantuono, P. Colangelo, and F. Giannuzzi, Eur. Phys.

J. C 74, 2830 (2014).
[38] C. Michael, Nucl. Phys. B259, 58 (1985).
[39] P. Lacock, C. Michael, P. Boyle, and P. Rowland (UKQCD

Collaboration), Phys. Lett. B 401, 308 (1997).
[40] C. W. Bernard, J. E. Hetrick, T. A. DeGrand, M. Wingate, C.

DeTar, C. McNeile, S. Gottlieb, U. M. Heller, K.
Rummukainen, B. Sugar, and D. Toussaint (MILC Col-
laboration), Phys. Rev. D 56, 7039 (1997).

[41] K. J. Juge, J. Kuti, and C. Morningstar, Phys. Rev. Lett. 90,
161601 (2003).

[42] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G.
Richards, and C. E. Thomas, Phys. Rev. Lett. 103, 262001
(2009).

[43] J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas
(Hadron Spectrum Collaboration), Phys. Rev. D 88, 094505
(2013).

[44] L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P.
Vilaseca, J. J. Dudek, R. G. Edwards, B. Joó, and D. G.
Richards (Hadron Spectrum Collaboration), J. High Energy
Phys. 07 (2012) 126.

[45] S. Perantonis and C. Michael, Nucl. Phys. B347, 854
(1990).

[46] K. J. Juge, J. Kuti, and C. J. Morningstar, Phys. Rev. Lett.
82, 4400 (1999).

[47] Y. Liu and X. Q. Luo, Phys. Rev. D 73, 054510 (2006).
[48] X. Q. Luo and Y. Liu, Phys. Rev. D 74, 034502 (2006); 74,

039902(E) (2006).
[49] L. Liu, S. M. Ryan, M. Peardon, G. Moir, and P. Vilaseca,

Proc. Sci. LATTICE2011 (2011) 140.
[50] I. I. Balitsky, D. Diakonov, and A. V. Yung, Phys. Lett.

112B, 71 (1982).
[51] J. Govaerts, F. de Viron, D. Gusbin, and J. Weyers, Phys.

Lett. 128B, 262 (1983); 136B, 445(E) (1984).
[52] J. Govaerts, L. J. Reinders, H. R. Rubinstein, and J. Weyers,

Nucl. Phys. B258, 215 (1985).
[53] J. Govaerts, L. J. Reinders, and J. Weyers, Nucl. Phys.

B262, 575 (1985).
[54] J. Govaerts, L. J. Reinders, P. Francken, X. Gonze, and J.

Weyers, Nucl. Phys. B284, 674 (1987).
[55] L. S. Kisslinger and Z. P. Li, Phys. Rev. D 51, R5986

(1995).
[56] S. L. Zhu, Phys. Rev. D 60, 031501 (1999).
[57] H. Y. Jin, J. G. Korner, and T. G. Steele, Phys. Rev. D 67,

014025 (2003).
[58] S. Narison, Phys. Lett. B 675, 319 (2009).
[59] P. Z. Huang, H. X. Chen, and S. L. Zhu, Phys. Rev. D 83,

014021 (2011).
[60] H. X. Chen, Z. X. Cai, P. Z. Huang, and S. L. Zhu, Phys.

Rev. D 83, 014006 (2011).
[61] C. F. Qiao, L. Tang, G. Hao, and X. Q. Li, J. Phys. G 39,

015005 (2012).
[62] D. Harnett, R. T. Kleiv, T. G. Steele, and H. y. Jin, J. Phys. G

39, 125003 (2012).
[63] R. Berg, D. Harnett, R. T. Kleiv, and T. G. Steele, Phys. Rev.

D 86, 034002 (2012).

TANG, ZHAO, and TANG PHYS. REV. D 105, 114004 (2022)

114004-12

https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1103/PhysRevLett.95.142001
https://doi.org/10.1103/PhysRevLett.95.142001
https://doi.org/10.1103/PhysRevLett.108.122001
https://doi.org/10.1103/PhysRevLett.108.122001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252001
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.110.252002
https://doi.org/10.1103/PhysRevLett.111.019901
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.nuclphysa.2009.05.018
https://arXiv.org/abs/0909.2713
https://doi.org/10.1146/annurev.nucl.58.110707.171145
https://doi.org/10.1146/annurev.nucl.58.110707.171145
https://doi.org/10.1080/00107510802607804
https://arXiv.org/abs/2202.00621
https://arXiv.org/abs/2202.00621
https://arXiv.org/abs/2202.00623
https://doi.org/10.1016/0370-2693(88)91686-3
https://doi.org/10.1103/PhysRevLett.86.3977
https://doi.org/10.1103/PhysRevLett.86.3977
https://doi.org/10.1103/PhysRevLett.104.241803
https://doi.org/10.1103/PhysRevLett.104.241803
https://doi.org/10.1016/j.physletb.2004.05.032
https://doi.org/10.1016/j.physletb.2004.05.032
https://doi.org/10.1016/0550-3213(79)90194-9
https://doi.org/10.1016/0370-2693(80)90491-8
https://doi.org/10.1016/0550-3213(83)90635-1
https://doi.org/10.1016/0550-3213(83)90635-1
https://doi.org/10.1016/0550-3213(95)00085-7
https://doi.org/10.1103/PhysRevD.59.034016
https://doi.org/10.1103/PhysRevD.59.034016
https://doi.org/10.1103/PhysRevD.52.5242
https://doi.org/10.1103/PhysRevD.52.5242
https://doi.org/10.1103/PhysRevD.17.898
https://doi.org/10.1103/PhysRevD.65.025012
https://doi.org/10.1103/PhysRevD.65.025012
https://doi.org/10.1103/PhysRevD.77.056005
https://doi.org/10.1103/PhysRevD.87.065006
https://doi.org/10.1140/epjc/s10052-014-2830-6
https://doi.org/10.1140/epjc/s10052-014-2830-6
https://doi.org/10.1016/0550-3213(85)90297-4
https://doi.org/10.1016/S0370-2693(97)00384-5
https://doi.org/10.1103/PhysRevD.56.7039
https://doi.org/10.1103/PhysRevLett.90.161601
https://doi.org/10.1103/PhysRevLett.90.161601
https://doi.org/10.1103/PhysRevLett.103.262001
https://doi.org/10.1103/PhysRevLett.103.262001
https://doi.org/10.1103/PhysRevD.88.094505
https://doi.org/10.1103/PhysRevD.88.094505
https://doi.org/10.1007/JHEP07(2012)126
https://doi.org/10.1007/JHEP07(2012)126
https://doi.org/10.1016/0550-3213(90)90386-R
https://doi.org/10.1016/0550-3213(90)90386-R
https://doi.org/10.1103/PhysRevLett.82.4400
https://doi.org/10.1103/PhysRevLett.82.4400
https://doi.org/10.1103/PhysRevD.73.054510
https://doi.org/10.1103/PhysRevD.74.034502
https://doi.org/10.1103/PhysRevD.74.039902
https://doi.org/10.1103/PhysRevD.74.039902
https://doi.org/10.22323/1.139.0140
https://doi.org/10.1016/0370-2693(82)90908-X
https://doi.org/10.1016/0370-2693(82)90908-X
https://doi.org/10.1016/0370-2693(83)90405-7
https://doi.org/10.1016/0370-2693(83)90405-7
https://doi.org/10.1016/0370-2693(84)92038-0
https://doi.org/10.1016/0550-3213(85)90609-1
https://doi.org/10.1016/0550-3213(85)90505-X
https://doi.org/10.1016/0550-3213(85)90505-X
https://doi.org/10.1016/0550-3213(87)90056-3
https://doi.org/10.1103/PhysRevD.51.R5986
https://doi.org/10.1103/PhysRevD.51.R5986
https://doi.org/10.1103/PhysRevD.60.031501
https://doi.org/10.1103/PhysRevD.67.014025
https://doi.org/10.1103/PhysRevD.67.014025
https://doi.org/10.1016/j.physletb.2009.04.012
https://doi.org/10.1103/PhysRevD.83.014021
https://doi.org/10.1103/PhysRevD.83.014021
https://doi.org/10.1103/PhysRevD.83.014006
https://doi.org/10.1103/PhysRevD.83.014006
https://doi.org/10.1088/0954-3899/39/1/015005
https://doi.org/10.1088/0954-3899/39/1/015005
https://doi.org/10.1088/0954-3899/39/12/125003
https://doi.org/10.1088/0954-3899/39/12/125003
https://doi.org/10.1103/PhysRevD.86.034002
https://doi.org/10.1103/PhysRevD.86.034002


[64] W. Chen, R. T. Kleiv, T. G. Steele, B. Bulthuis, D. Harnett, J.
Ho, T. Richards, and S. L. Zhu, J. High Energy Phys. 09
(2013) 019.

[65] W. Chen, H. y. Jin, R. T. Kleiv, T. G. Steele, M. Wang, and
Q. Xu, Phys. Rev. D 88, 045027 (2013).

[66] R. T. Kleiv, B. Bulthuis, D. Harnett, T. Richards, W. Chen, J.
Ho, T. G. Steele, and S. L. Zhu, Can. J. Phys. 93, 952
(2015).

[67] A. Palameta, J. Ho, D. Harnett, and T. G. Steele, Phys. Rev.
D 97, 034001 (2018).

[68] A. Palameta, D. Harnett, and T. G. Steele, Phys. Rev. D 98,
074014 (2018).

[69] S. H. Li, Z. S. Chen, H. Y. Jin, and W. Chen, Phys. Rev. D
105, 054030 (2022).

[70] H. X. Chen, N. Su, and S. L. Zhu, Chin. Phys. Lett. 39,
051201 (2022).

[71] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 385 (1979).

[72] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl.
Phys. B147, 448 (1979).

[73] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[74] S. Narison, World Sci. Lect. Notes Phys. 26, 1 (1989).
[75] P. Colangelo and A. Khodjamirian, in At the Frontier of

Particle Physics / Handbook of QCD, edited by M. Shifman
(World Scientific, Singapore, 2001).

[76] Z. G. Wang, Phys. Rev. D 102, 014018 (2020); 102, 034008
(2020); X. W. Wang, Z. G. Wang, and G. l. Yu, Eur. Phys. J.

A 57, 275 (2021); Z. G. Wang, Nucl. Phys. B973, 115592
(2021).

[77] H. X. Chen, W. Chen, and S. L. Zhu, Phys. Rev. D 100,
051501 (2019).

[78] C. Y. Wang, C. Meng, Y. Q. Ma, and K. T. Chao, Phys. Rev.
D 99, 014018 (2019); R. H. Wu, Y. S. Zuo, C. Meng, Y. Q.
Ma, and K. T. Chao, Chin. Phys. C 45, 093103 (2021).

[79] L. Tang, B. D. Wan, K. Maltman, and C. F. Qiao, Phys. Rev.
D 101, 094032 (2020); B. D. Wan, L. Tang, and C. F. Qiao,
Eur. Phys. J. C 80, 121 (2020); B. C. Yang, L. Tang, and
C. F. Qiao, Eur. Phys. J. C 81, 324 (2021).

[80] R. M. Albuquerque, S. Narison, and D. Rabetiarivony, Phys.
Rev. D 103, 074015 (2021).

[81] Y. J. Xu, Y. L. Liu, C. Y. Cui, and M. Q. Huang, Phys. Rev.
D 104, 094028 (2021); Y. J. Xu, Y. L. Liu, and M. Q.
Huang, Eur. Phys. J. C 81, 421 (2021).

[82] J. R. Zhang, Phys. Rev. D 103, 014018 (2021).
[83] H. X. Chen, W. Chen, and S. L. Zhu, Phys. Rev. D 105,

L051501 (2022).
[84] R. M. Albuquerque, arXiv:1306.4671.
[85] B. D. Wan and C. F. Qiao, Phys. Lett. B 817, 136339 (2021).
[86] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[87] S. Narison, Phys. Lett. B 706, 412 (2012).
[88] S. Narison, Int. J. Mod. Phys. A 33, 1850045 (2018).
[89] M. A. Shifman, Nucl. Phys. B173, 13 (1980).
[90] E. Bagan, J. I. Latorre, P. Pascual, and R. Tarrach, Nucl.

Phys. B254, 555 (1985).

MASS PREDICTIONS OF VECTOR (1−−) DOUBLE-… PHYS. REV. D 105, 114004 (2022)

114004-13

https://doi.org/10.1007/JHEP09(2013)019
https://doi.org/10.1007/JHEP09(2013)019
https://doi.org/10.1103/PhysRevD.88.045027
https://doi.org/10.1139/cjp-2014-0589
https://doi.org/10.1139/cjp-2014-0589
https://doi.org/10.1103/PhysRevD.97.034001
https://doi.org/10.1103/PhysRevD.97.034001
https://doi.org/10.1103/PhysRevD.98.074014
https://doi.org/10.1103/PhysRevD.98.074014
https://doi.org/10.1103/PhysRevD.105.054030
https://doi.org/10.1103/PhysRevD.105.054030
https://doi.org/10.1088/0256-307X/39/5/051201
https://doi.org/10.1088/0256-307X/39/5/051201
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90022-1
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0550-3213(79)90023-3
https://doi.org/10.1016/0370-1573(85)90065-1
https://doi.org/10.1016/0370-1573(85)90065-1
https://doi.org/10.1142/0647
https://doi.org/10.1103/PhysRevD.102.014018
https://doi.org/10.1103/PhysRevD.102.034008
https://doi.org/10.1103/PhysRevD.102.034008
https://doi.org/10.1140/epja/s10050-021-00576-8
https://doi.org/10.1140/epja/s10050-021-00576-8
https://doi.org/10.1016/j.nuclphysb.2021.115592
https://doi.org/10.1016/j.nuclphysb.2021.115592
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.99.014018
https://doi.org/10.1103/PhysRevD.99.014018
https://doi.org/10.1088/1674-1137/ac0b3c
https://doi.org/10.1103/PhysRevD.101.094032
https://doi.org/10.1103/PhysRevD.101.094032
https://doi.org/10.1140/epjc/s10052-020-7701-8
https://doi.org/10.1140/epjc/s10052-021-09096-7
https://doi.org/10.1103/PhysRevD.103.074015
https://doi.org/10.1103/PhysRevD.103.074015
https://doi.org/10.1103/PhysRevD.104.094028
https://doi.org/10.1103/PhysRevD.104.094028
https://doi.org/10.1140/epjc/s10052-021-09211-8
https://doi.org/10.1103/PhysRevD.103.014018
https://doi.org/10.1103/PhysRevD.105.L051501
https://doi.org/10.1103/PhysRevD.105.L051501
https://arXiv.org/abs/1306.4671
https://doi.org/10.1016/j.physletb.2021.136339
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/j.physletb.2011.11.058
https://doi.org/10.1142/S0217751X18500458
https://doi.org/10.1016/0550-3213(80)90440-X
https://doi.org/10.1016/0550-3213(85)90233-0
https://doi.org/10.1016/0550-3213(85)90233-0

