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Vector boson fusion established itself as a highly reliable channel to probe the Higgs boson and an
avenue to uncover new physics at the Large Hadron Collider. This channel provides the most stringent
bound on Higgs’s invisible decay branching ratio, where the current upper limits are significantly higher
than the one expected in the Standard Model. It is remarkable that merely low-level calorimeter data from
this characteristically simple process can improve this limit substantially by employing sophisticated deep
learning techniques. The construction of such neural networks seems to comprehend the event kinematics
and radiation pattern exceptionally well. However, the full potential of this outstanding capability also
warrants a precise theoretical projection of QCD parton showering and corresponding radiation pattern.
This work demonstrates the relation using different recoil schemes in the parton shower with leading-order
and higher-order computation.
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I. INTRODUCTION

The discovery of the last missing piece [1,2] of the
Standard Model (SM) of particle physics opened up a
plethora of independent searches at the CERN Large
Hadron Collider. Apart from looking for new physics
signatures, it is paramount to verify whether the scalar is
“the Higgs” boson or its properties have some nonstandard
nature [3–8] different from those predicted in the SM.
With no direct evidence of new physics so far, there is still
scope that it can show up in the Higgs boson’s physical
properties. Hence, the precise determination of Higgs’s
intrinsic property and coupling with other fundamental
particles can provide subtle hints toward new physics.
Although with a relatively lower cross section, the vector

boson fusion (VBF) channel [9–13] has long been advo-
cated for as a cleaner alternative in hardon colliders among
different Higgs production mechanisms. Eventually, this
channel also showed promise in several new physics
searches [14–20]. The VBF channel provides the best
channel for constraining the Higgs invisible decays [14],
providing a strong bound in several dark matter [21–26]
scenarios. It is particularly important since the current

upper limit of 11% [8] is still significantly larger than the
one expected in the SM (≲0.1% with the decay chain
h → ZZ� → νν̄ν0ν̄0). In general, the VBF channel relies on
the production of color-neutral heavy states through the
collision of electroweak gauge bosons radiated from initial
partons and is always associated with two hard forward
jets tagged as its characteristic signature. In the absence of
colored particle exchange between two parton lines, very
little QCD jet activity [10,11] is seen in the detector’s
central part, in the region between two forward tagged jets.
The decay products of the heavy state (in the present case,
the Higgs) is expected to be in this region, retaining the
color quietness. These characteristic features are well
studied and greatly exploited to identify VBF processes
over various QCD backgrounds, exhibiting a different jet
formation pattern. In this respect, different high-level
variables are constructed as proxies for these features.
Among them, the rapidity gap, central-jet veto, invariant
mass of two forward jets, and Zeppenfeld variable (z�j3) are
some of the crucial ones. The precise theoretical prediction
[27–30] of additional jet formation patterns is as important
as the experimental measurements. This precise prediction
is even more significant in a data-driven paradigm where
different characteristics of both signal and background
distributions are minutely encapsulated to determine the
decision boundary.
The application of machine-learning algorithms has

shown immense promise at the LHC [31–36]. They have
significantly improved the performance compared to var-
iables motivated by our knowledge of physics. However,
this comes at the cost of a reduced understanding, which is
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even more profound when we use low-level data to train
deep neural networks (DNNs). Moreover, training with
simulated data can result in the networks learning features
specific to the imperfect simulation, not present in real
experimental data. The use of low-level inclusive event
information for searches brings a few unique challenges,
particularly due to the higher systematic uncertainties
associated with the simulations. Given the superior ability
of deep learning algorithms to extract features, it is
necessary to circumspect the effect of using simulations
which better resemble the actual physics.
It is well known that VBF processes receive modest

corrections from higher-order QCD corrections [27–30].
Using the full event information in an input image to a
convolutional neural network (CNN) for VBF searches has
shown a promising avenue [37], where the CNN exploits the
lack of central-jet activity in VBF processes. We note that it
is essential to scrutinize the differences in leading-order (LO)
and next-to-leading-order (NLO) simulations; the presence
of a third jet needs the proper introduction of real and virtual
corrections to the tree-level process. Another issue of central
importance in the simulation of VBF events is the inability of
a global-recoil scheme in initial-state radiations (ISRs) of
the parton showering algorithm to describe the central-jet
activity correctly [38]. This study systematically investigates
these issues for the VBF signal search with CNNs, taking
the invisible decay as a proxy. Although the preceding
arguments apply to the VBF production of weak bosons, we
presently ignore its effects as they are much less in
proportion (∼5% of the total background for the cuts used
here). We also neglect the contribution of the gluon-fusion
events in the signal. The global-recoil scheme correctly
produces the leading logarithmic behavior, already incorpo-
rated in our previous analysis. A precise determination of its
various effects demands a very high level of sophistication,
requiring much higher perturbative and logarithmic accu-
racy. Although the cuts used in the analysis have a sizable
amount of gluon-fusion contribution, the large amount of
data from high-luminosity LHC runs will provide ways to
do precision analysis with more stringent cuts, with negli-
gible contribution from gluon-fusion events. These do not
impede our final goal, as our intention is not to project
experimental sensitivities but to usher pragmatism and
careful examination while using inclusive event information
as inputs to DNNs.
Although DNNs generally perform better than machine

learning (ML) algorithms utilizing high-level variables, their
usability in phenomelogical analyses is determined by our
ability to simulate subtle aspects of the data accurately. To
this end, we show the possibility of CNNs learning inaccu-
rate representations of inclusive events due to a global recoil
used in the simulation of VBF events. We find the following:

(i) The training performance is greatly reduced when
we use signal simulated with a global recoil scheme
on parton-level events generated with leading-order

or next-to-leading-order accuracy and improves for a
dipole recoil, with events generated at next-to-lead-
ing-order accuracy showered with a dipole recoil
having the highest training accuracy.

(ii) For each set of signal simulations, the highest
validation accuracy is achieved for the network that
used the same type during the training process with
the same trend as the training accuracies. However,
the validation performance of the NLO events
showered with dipole recoil (which is the most
accurate description of the actual events among
the four signals used) is affected mildly by the kind
of data used during the training.

Our findings show that CNNs can learn the underlying
differences between VBF-type events and the dominant
QCD backgrounds, even when trained on suboptimal
simulated data.
The rest of this paper is organized as follows. In Sec. II,

we outline the CNN-based improvement over the existing
study and point out the significance of QCD radiation for
better accuracy. Section III discusses the parton shower
scheme and NLO effects in the simulation of VBF Higgs
signal. In Sec. IV, we examine the impact of the different
signal simulations on the trained network output and its
performance. We conclude in Sec. V.

II. DEEP LEARNING INVISIBLE HIGGS
PRODUCED VIA VBF

In this section, we summarize the VBF search of the
invisible Higgs decays proposed in Ref. [37] using deep
learning. Since the present study aims to scrutinize the
dependence of deep learning algorithms with low-level
inputs on the simulation, we focus on the analysis using
CNNs with tower images as the input.

A. Data simulation and selection criteria

The background class consists of non-VBF- and VBF-
type production of Z and W bosons with at least two hard
jets, with the Z boson decaying to neutrinos and the W
decaying to a charged lepton and a neutrino (contributes
when the lepton fails the identification criteria). The parton-
level events are generated using MadGraph5_aMC@NLO [39]
(version 2.6.5) at 13 TeV LHC. PYTHIA8 [40] (version
8.243) is used to shower these events in the default global-
recoil scheme for the ISR. We match parton-level cross
sections of processes where the additional jets arise from
QCD vertices via the Michelangelo L. Mangano (MLM),
procedure [41,42] (up to four jets for Z and two forW). The
showered events were passed through DELPHES3 [43]
(version 3.4.1) for simulating a parametrized response of
the CMS detector. Jets of radius R ¼ 0.5 and pT > 20 are
clustered with the anti-kt [44] algorithm implemented in the
FASTJET [45] package.
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To have a standard benchmark, we followed the exper-
imental search in Ref. [46] and replicated its shape
analysis1 on our simulated data. Except for the cut on
the missing transverse momentum (=ET > 200 GeV instead
of =ET > 250 GeV), we implemented the same baseline
selection criteria in the shape analysis, which is summa-
rized in the Appendix. Note that the analysis used weaker
cuts on the rapidity gap between the two tagging jets
jΔηjjj > 1, and the dijet invariant mass mjj > 200 GeV,
than is normally done in VBF searches, and had no central-
jet veto. We therefore expect a significant contribution from
gluon-fusion production of the Higgs with two additional
jets, along with an increase in selected backgrounds. Thus,
the signal class consisted of VBF and gluon-fusion con-
tributions in Ref. [37], decaying to two invisible dark matter
particles. The weaker cuts without any central-jet veto retain
a larger fraction of the VBF signal, which can be segregated
using powerful deep learning techniques. The background
and signal classes were formed by combining the different
processes according to their expected proportions after the
baseline selection criteria. We used 100,000 training and
25,000 validation events for each category. The background
class consists of 51.221% and 44.896% of non-VBF Z and
W� backgrounds, respectively, and 2.295% and 1.587% of
VBF-origin Z and W� backgrounds, respectively.

B. Input representation and preprocessing

Although the analysis consisted of various high-level
and low-level input representations with different prepro-
cessing steps, we concentrate on the low-level representa-
tion with better regularized preprocessing steps. We first
apply the following operations to the 4-momenta of each
particle in each event to regularize their spatial orientations:
(1) Rotate along z axis such that the leading jet’s center

resides on the z axis (ϕj1 ¼ 0).
(2) Reflect along the xy plane, such that the leading jet’s

η is always positive.
For inputs to CNNs, we form the tower image of the full
calorimeter in the ðη;ϕÞ plane, with the transverse energy
ET as the pixel values, with two resolutions: 0.08 × 0.08
and 0.17 × 0.17. It might look like the leftovers due to
imperfect divisibility by the pixel resolution from the full
range of ϕ can contribute to a boundary effect. However, it
is not detrimental to a CNN’s performance since the
pooling operations would effectively wash away its impact.
Moreover, the images formed after the preprocessing sets
ϕj1 ¼ 0 further reduce the importance of the boundary
by concentrating all useful information at the center.
Periodicity of the ϕ axis is enforced by padding these

images with a fixed number of rows from the opposite side.
Therefore, we get preprocessed high- and low-resolution
images represented by PHR

J and PLR
J , respectively.

C. Network architecture and training

The networks for the input images, PHR
J -CNN and PLR

J -
CNN, have three blocks of sequential convolution-pooling
operations. Each block consists of two convolutions with
64 4 × 4 filters and an average pooling layer with a 2 × 2
pool size. The flattened output of the final pooling layer is
fed to a dense network with three hidden layers containing
300 nodes each and an output layer with two nodes with a
SOFTMAX activation for binary classification. All convolu-
tional layers and the hidden dense layers have ReLu

activation. The network was trained for 20 epochs with
a NADAM [49] optimizer with a learning rate of 0.001, with
cross-entropy loss and a batch size of 300. All trainings
were implemented using KERAS (version 2.2.4) [50] with a
TensorFlow (version 1.14.1) [51] backend.
The exclusion limits on the invisible branching ratio of

the Higgs boson obtained from the network output was
compared to the shape analysis of mjj and jΔηjjj. The
expected upper limits for an integrated luminosity L ¼
300 fb−1 of the four scenarios are shown in Fig. 1. These
limits were obtained using the CLs method [52,53] in the
asymptotic approximation [54], with the RooStats [55]
package. The statistical model was built using
HistFactory [56]. The uncertainty bands are obtained by
incorporating the per-bin statistical uncertainty and the
normalization uncertainties of the total cross section,
Monte Carlo simulation, and the integrated luminosity.
The CNN-based approach has better performance, putting
stricter limits on the branching ratio. Moreover, it was
found that training and validation on events with pileup did
not impact the performance and upper bounds on the
branching ratio considerable, increasing it mildly within

FIG. 1. Expected upper limits on the invisible branching ratio
of the Higgs boson, for an integrated luminosity L ¼ 300 fb−1

from the analysis in Ref. [37].

1This study did not use any ML techniques for the final
analysis; recent analyses [47,48] on VBF searches have used ML
techniques with high-level variables. However, searches using
low-level detector information has not been performed for VBF
searches to the best of our knowledge.
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the one-sigma errors obtained from the one without pileup.
Our study [37] did not apply any pileup mitigation
technique on the pileup contaminated events and was
trained and validated with tower images contaminated with
pileup. With extensive research and progress into process
independent pileup contamination procedures, we expect
this pileup contribution to reduce further. The lower
transverse energy in the secondary pileup collisions sig-
nificantly affects the forward regions. In contrast, for VBF
processes, the parton-shower recoil schemes primarily
involve the soft radiation in the central rapidity gap
between the two (hard) forward jets. Moreover, as will
become clear from the results, CNNs primarily look at the
amount of hard radiation between the two jets. Therefore,
pileup effects would not conceal the impact of a third hard
jet in VBF events, thereby demanding an accurate descrip-
tion of such hard jets, which is achieved up to leading-order
in a next-to-leading-order simulation of the complete
process. Therefore, it is imperative to scrutinize these
factors when dealing with deep learning algorithms like
CNNs, which enhance the physics reach by setting more
stringent bounds on the invisible branching ratio of the
Higgs boson by utilizing the inclusive event information
efficiently.

III. IMPACT OF NLO CORRECTIONS AND
RECOIL SCHEMES

Although VBF processes have relatively lower higher-
order corrections, utilizing the hadronic activity between the
two tagging jets would use information not captured by a
leading-order simulation. This inadequacy is due to the
inherent assumption in parton shower generators, primarily
focusing on the soft and collinear regions. A next-to-leading-
order hard partonic simulation merged with a parton shower
algorithm would accurately describe the kinematics of the
third leading jet (if present) over the full range of transverse
momentum. Additionally, for event topologies with no color
flow between the two incoming partons from the colliding
protons, a parton shower algorithm with a global-recoil
scheme for the ISR is known to have a further inefficient
simulation of the wide-angle soft radiation patterns. The
cause for this inaccuracy is due to the incorrect assumption
of an II dipole in the global-recoil scheme [38], while VBF
processes have a double deep inelastic scattering topology
with an IF/FI dipole structure. The above phrasing
indicates whether the partons act as a radiator and recoiler
are in the final (F) or initial (I) state. Existing phenomeno-
logical studies [57,58] are consistent with this known
limitation of the global-recoil scheme, and recent exper-
imental results [59–61] have employed the dipole-recoil
scheme [62–65] for the relevant VBF topologies. The effects
of both higher-order virtual corrections and the recoil
scheme are even more important when using powerful deep
learning algorithms with low-level inputs.

A. Signal generation

Since VBF Higgs processes are our primary interest, we
do not include the gluon-fusion processes in the present
analysis. We, therefore, study the four different possible
combinations of the perturbative accuracy and the parton
shower’s recoil scheme for the VBF channel. These are
described as follows:
(1) Global LO.—Parton-level events simulated at

leading-order perturbative accuracy showered with
a global-recoil scheme for the ISR parton shower.
This recoil scheme is the default implementation in
PYTHIA8 and was used in Ref. [37] for the VBF
processes.

(2) Dipole LO.—Parton-level events simulated at
leading-order perturbative accuracy showered with
a dipole-recoil scheme.

(3) Global NLO.—Parton-level events simulated at
next-to-leading-order accuracy merged with parton
shower employing the global-recoil scheme for ISR.

(4) Dipole NLO.—Parton-level events simulated at
next-to-leading-order accuracy merged with parton
shower using the dipole-recoil scheme.

We use the same set of parton-level events for the LO and
NLO simulations to shower with the two recoil schemes.
The parton-level events at LO were generated with
MadGraph5_aMC@NLO, while the NLO events were generated
with POWHEG-BOX [66–69]. The renormalization and fac-
torization scales for both orders are set for each event as

μ20 ¼
mh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mh

2

�
2

þ p2
T;h

s
; ð1Þ

where mh ¼ 125 GeV is the mass of the Higgs and pT;h is
the transverse momentum of the Higgs boson in the event.
For the parton-level generation, we use the PDF4LHC15_

NLO_100_PDFAS [70] parton distribution function (PDF) set
implemented with LHAPDF6 [71] (version 6.1.6) package.
This PDF set is a combination [72] of CT14 [73], MMHT14

[74], and NNPDF3.0 [75] PDF sets using the Hessian
reduction method proposed in Ref. [76]. We use MadSpin

[77] to decay the Higgs boson at parton level to two scalar
dark matter particles for the NLO events, while we simulate
the full decay chain for the LO events. All parton showers
are performed in PYTHIA8.235. For the NLO events, we
perform the POWHEG merging with recommended values
from Ref. [78]. The switch to a dipole-recoil scheme is
done by setting “SpaceShower∶dipoleRecoil ¼ on” for the
parton shower. We note that the events generated at NLO
and showered with the dipole-recoil scheme should be the
most physically accurate simulation of the VBF Higgs
process. These four sets of showered events are then passed
through the same detector simulation and selection criteria2

2The details of the baseline selection are given in Appendix.
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described in Sec. II A. We divide the dataset of each of
these simulations into 100,000 training and 25,000 vali-
dation samples for the neural network analysis.

B. Characteristics of the third jet

To compare the different signal simulations, we plot
distributions of the Zeppenfeld variable z�j3 in Fig. 2 for
events passing the selection criteria and having a third jet
with pT > 20 GeV. It is defined as

z�j3 ¼
ηj3 − ðηj1 þ ηj2Þ=2

jΔηj1j2 j
; ð2Þ

where ηji is the pseudorapidity of the ith hardest jet and
Δηj1j2 is the rapidity gap between the two tagging jets. This
variable looks at the position of the third jet relative to the
tagging jets and is important when considering the addi-
tional information available beyond the two-jet system. We

set the normalization such that the cumulative sum of the
bins corresponds to the fraction of events that satisfy the
requirement on the third jet. The dipole-NLO signal has
the least proportion of events passing the additional criteria
at 30%, while the global NLO has 35%. The fraction for
LO events with dipole and global-recoil schemes are 37%
and 55%, respectively. From these values and the shape of
the distribution in Fig. 2, we can infer that out of the four
global LO should be most similar to the QCD-dominated
background and dipole NLO should be the least identical.
Consequently, we expect these to be reflected on the
performance of any statistical model utilizing radiative
information beyond the two jets. Although the proportion
of events with a third jet is very close for global NLO and
dipole LO, note that the former has more jets in the central
regions from the shape of jz�j3 j distribution. Hence, we
would expect better discrimination for dipole LO.
Even though z�j3 is a good variable, a model like a CNN

that uses the inclusive event information will use the third
jet’s position as well as its transverse momentum implicitly
to find the decision boundary. To this end, in Fig. 3, we plot
the two-dimensional (2D) histogram plot of the transverse
momentum Pj3

T of the third jet and jz�j3 j. Because of the
artificial enhancement from the II like the global shower-
ing scheme in the central regions, we can see that the third
jet in global cases are relatively harder than their dipole
counterparts for both orders. Moreover, since the third jet
results from the parton shower for LO, there is a drastic
difference between global LO and dipole LO relative to the
same comparison at NLO. From this, we can infer that
events that do not have a third reconstructed jet would still
follow the same pattern and expect the same effect on the
performance of the CNN.

IV. RESULTS

In this section, we examine the performance of CNNs in
identifying the different simulations of the same signal
from the same background dataset described in Sec. II A.
When trained with the same architecture, the relative

FIG. 2. Distribution of the absolute Zeppenfeld variable jz�j3 j for
the four signal simulations. To capture the relative occurrence of
the third jet, we set each event weight so that the total sum with or
without an additional jet in each signal simulation sum to unity.

FIG. 3. Two-dimensional histogram of events with the transverse momentum (Pj3
T ) of the third jet and jz�j3 j for four different cases of

signal simulations, such as dipole NLO, dipole LO, global NLO, and global LO of the VBF Higgs signal.
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discrimination power should reflect the physical intuition
we presented in the preceding section. The four sets of
signal events are preprocessed in the same manner as
described in Sec. II B for the lower resolution, and the
network PLR

J -CNN is trained with the procedure described
in Sec. II C. The performance on the higher resolution
should follow the same trend, and is hence unwarranted for
the aim of the present work.

A. Effects of central radiation on the network output

The two-dimensional histogram of the network output y0
(the probability of an event being a signal) of the signal
validation datasets with various variables quantifying the
additional information beyond the two-jet system are
shown in Fig. 4. The weight of each event is set such that
the total sum of all events with or without the third jet
corresponds to 1. Therefore, the total sum of the histogram

(c)

(a)

(b)

FIG. 4. Two-dimensional histogram of events of the network output y0 for each signal simulation with the (a) Pj3
T and (b) jηj3 j of the

third jet (when present) and (c) the HC
T between the two tagging jets.
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with the physical quantities of the third jet corresponds to
the fraction with at least one additional jet.3 The compa-
ratively lower concentration of events for the global LO
simulation is due to the lower performance of the network
(presented in Sec. IV B) compared to the other three
simulations.
In Fig. 4(a), in which the histogram is with the transverse

momentum of the third jet, we see that for the dipole recoil
both orders have the maximum concentration of events in
the top-left corner. The third jet has the least transverse
momentum in this region, and the network identifies the
event as most signal-like. For the case of the global recoil,
we see that the NLO simulation has a higher concentration
near the top-left corner. In contrast, the LO simulation has
significantly reduced events near the top left, with the shift
toward the bottom in the y axis more prominent. The
greater change in the network output can be understood by
recalling from Fig. 3 that the relative position of the third
jet is much more central for the global LO simulation event
if its transverse momentum is in a similar range. This
property is further confirmed in Fig. 4(b) where the
histogram is on the jηj3 j and y0 plane. The events for
the global LO simulation are closer to the left side implying

that the third jets are relatively central. At the same time,
they populate the histogram on the lower values of the y0
axis indicating that the network identifies the signal less
efficiently. Similarly, the same histogram for the dipole-
recoil scheme and different orders shows a concentration of
events in the top right corner, where the third jets are more
forward, and the network identifies the signal with greater
confidence.
To look collectively into the events with or without a

third jet, we define the scalar sum of pT between the two
tagging jets as

HC
T ¼

X

ηi∈½ηl;ηu�
pi
T; ð3Þ

where the range is determined by the pseudorapidity of the
two jets: ηj1 and ηj2 mapped such that ηl < ηu. We do not
remove the particles within the jets when calculating HC

T ,
thus giving a nonzero value for all events. As expected, we
see in Fig. 4(c) that the dipole-NLO simulation has the
highest proportion of events near the top-left corner,
followed by dipole LO and global NLO, with global LO
having a larger concentration in the central regions of the
ðHC

T ; y0Þ plane. Therefore, we see that events without
the third jet also follow a pattern similar to those with
the additional jet.

FIG. 5. Normalized binned distributions of the network output discriminating background from signal class for four different instances
of signal simulations.

3Because of the range of the variables, the total sum is not
equal to the fraction presented in Sec. III B.
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B. Dependence of deep learning performance
on the signal simulation

The normalized distribution of the network output y0
of each class are shown in Fig. 5 for the four different
signal simulation approaches. One can see that the CNN
trained and validated with the dipole-NLO simulation has
the highest separation from the background. To better
quantify the power, we look at the receiver operating
characteristic (ROC) curves between the signal acceptance
ϵS and the background rejection 1=ϵB and the area under the
ROC curve (AUC). These are shown in Fig. 6. As expected,
the highest discrimination is obtained for dipole NLO with
a validation AUC of 0.9355, followed by dipole LO with
0.9243 validation AUC. Inadvertently, the dipole-NLO
signal happens to be the most physically accurate simu-
lation. The hierarchy suggests that the recoil scheme is of
greater importance than the perturbative accuracy for the
CNN analysis with tower images. Looking at the global
recoil for each order, we see that global NLO has better
performance, with the CNN trained and validated with
global LO having the least discriminatory power. To
understand this relative power, we note that the third jet
in a NLO simulation has a leading-order accuracy.
Whereas, for the LO case, the third jet, if present, is a
consequence of the parton shower. The global-recoil
scheme enhances the radiation in the central regions for
both orders; however, it is partially controlled by the NLO
simulation of the first real emission, while there is no such
control for the LO case.
Although we have seen that the network trained and

tested with different signal simulations shows notable
differences, it is worth investigating how a CNN trained
on a specific simulation fares when tested on other signal
simulations. The validation AUC for all signal simulations
evaluated on each of the networks trained on the different
signal simulations is shown in Table I. For each signal type,
the network it was trained on has the maximum discrimi-
nation, which is unsurprising given that the purpose of the
training is to encode its behavior into the network.
Moreover, the trend of increasing performance is the same

regardless of the signal dataset used in training, pointing
toward all networks learning the underlying difference
between the signal and the background. Another feature
of interest is the relatively higher range of AUCs for the LO
datasets than NLO ones, pointing toward their relatively
high uncertainties. Interestingly, regardless of the nature of
the simulation used during the training, the most accurate
simulation among the four, dipole-NLO events, has a
very stable validation AUC with only a 1.6% deviation.
This stability shows that CNNs can learn the underlying
differences between VBF events and non-VBF events even
when the VBF simulation is suboptimal.
To gauge the possible improvement in using a dipole

scheme over the global scheme used in our previous work,
we train the CNN with the combined gluon-fusion signal
and the instance of dipole-NLO simulation of the VBF
process in the same proportion as described in Sec. II and
extract the bounds on the branching ratio. We find the
median upper limit on the invisible branching ratio for an
integrated luminosity L ¼ 300 fb−1 to be 2.22%.
In all preceding analyses, we have used LO samples

without any matching, and the third jet originates exclu-
sively from the parton shower, which is inaccurate in
describing harder emissions. It is worth examining how
a matching procedure between the hard matrix element
and the parton shower, which improves the description of
the third jet in the harder regions, influences the network

Validation

FIG. 6. Comparison of the performances in terms of ROC curves (left plot) on the validation dataset between the signal acceptance ϵS
and the background rejection 1=ϵB and the corresponding AUCs (right plot) for the training and validation data are shown for the four
different cases of signal simulations.

TABLE I. The table shows the test AUC evaluated for all
signal simulation for each CNN trained on the different signal
simulations.

Test signal dataset

Serial number
Train signal

dataset
Global
LO

Global
NLO

Dipole
LO

Dipole
NLO

1 Global-LO 0.8599 0.8956 0.9027 0.9201
2 Global-NLO 0.8486 0.9036 0.9112 0.9288
3 Dipole-LO 0.8036 0.8878 0.9243 0.9335
4 Dipole-NLO 0.8234 0.8922 0.9200 0.9355
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performance. To inspect the possible improvement of such
matching procedures, we generate VBF events matched
with an additional jet via the MLM procedure [41,42] for
both parton-recoil schemes. We found a continuous differ-
ential jet rate and transverse momentum distribution of
the different jet samples for an XQCUT value of 100.
As recommended for VBF processes, the AUTO_PTJ_MJJ

flag was set to false. All other aspects of the simulation
including the renormalization and factorization scale,
PDFs, and baseline selection criteria are the same as
described in Sec. III A. We generated about 25,000 events
after baseline selection for both recoil schemes. Testing
with these samples for the networks trained with the
leading-order unmatched samples with the same parton-
shower recoil against the validation background dataset, we
find an AUC of 0.8651 and 0.9261 for the global and dipole
matched LO samples, respectively. Compared to the full
NLO simulation values tested on these networks (Table I),
these values lie closer to the LO simulation, indicating that
the matching procedure does not help alleviate the issues of
the global parton shower. In contrast, the matched dipole
value is still relatively stable, although closer to the LO
value than the NLO value, signifying the relative impor-
tance of the virtual corrections of the NLO simulation.

V. CONCLUSION

The Large Hadron Collider, in its previous two runs, has
already accumulated enough data to establish the Standard
Model on strong footing, pinpointing different properties
of the Higgs boson and also setting strong constraints in
diverse beyond standard model (BSM) scenarios. The
vector boson fusion mechanism of production is unique
in many of these Higgs measurements and BSM searches.
The strongest upper limit on the Higgs’s invisible branch-
ing ratio comes from this channel, although a significantly
large window remains open above the SM prediction. An
improved constraint can enormously squeeze the parameter
space on many new physics scenarios, such as Higgs/scalar
portal dark matter.
In recent times, advancements in different machine-

learning tools have opened the possibility to revisit many
of these analyses with sophisticated data-driven methods.
Smartly designed neural networks demonstrate a capabil-
ity to comprehend event kinematics and the radiation
pattern to a great extent, even when the event topology is
rather simple. The invisible Higgs search in VBF is a
process where the phenomenological study relies on two
forward jets and a high missing transverse momentum.
Moreover, many studies in this direction established some
of the fundamental features of the event shape, which
has almost been a norm to control the extensive QCD and
electroweak backgrounds. Our previous work took the
invisible Higgs search in VBF as a case study. We
constructed CNN-based deep learning algorithms using
just the low-level calorimeter inputs from the entire event

topology without exclusive reconstructed objects. This
novel approach can indeed provide the most stringent
bounds on the invisible branching ratio of the SM-like
Higgs boson, significantly outperforming the existing
experimental search.
It is evident that deep learning algorithms with multiple

nonlinear hidden layers can efficiently characterize com-
plex distribution functions describing the feature space with
greater accuracy. This expressivity enhances their capabil-
ity to distinguish the signal region from the background,
exploiting maximal information, even if the event topology
is relatively simple. However, to exploit the full potential of
this extraordinary capability, a precise theoretical projec-
tion of the QCD parton shower and the corresponding
radiation pattern is required. The present work demon-
strates this interrelation utilizing different showering
schemes with leading-order and higher-order computation.
In this work, we carried out a quantitative analysis to

investigate the dependence of a CNN’s performance on the
recoil scheme of the parton shower and the perturbative
accuracy of the matrix element simulation for a VBF Higgs
signal decaying to invisible particles. The difference
between the leading order and next-to-leading order,
although present, is not very pronounced for the physically
correct dipole-recoil scheme. We found that the training is
highly dependent on the recoil scheme, with a better
performance coming for the physically accurate dipole
recoil. With this fortunate coincidence, a complete analysis
with all VBF processes showered with a dipole-recoil
scheme will possibly reduce the upper limits on the
invisible branching ratio even further than the projection
which used a global-recoil scheme.
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APPENDIX: BASELINE SELECTION CRITERIA

We use the same selection criteria used in the deep
learning analysis of Ref. [37]. This cuts except for the one
on missing transverse energy were based on the exper-
imental shape analysis of Ref. [46]. Here, we summarize
them for completeness:

(i) Jet pT .—We select events with at least two jets, with
the hardest (and second hardest) jet having at least
80 (40) GeV transverse momentum.

(ii) Lepton veto.—Events should not have any recon-
structed electron (muon) with minimum transverse
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momentum pT > 10 GeV within the tracker region,
i.e., jηj < 2.5ð2.4Þ.

(iii) Photon veto.—Reject events having any photon with
pT > 15 GeV within jηj < 2.5.

(iv) τ and b veto.—If an event has any tau-tagged jets in
jηj < 2.3 with pT > 18 GeV or b-tagged jets in
jηj < 2.5 with pT > 20 GeV, they are discarded.

(v) Minimum missing transverse energy =ET.—An event
must have a minimum transverse energy, =ET >
200 GeV to be selected.

(vi) Alignment of missing transverse energy/momentum
(MET) with respect to jet directions.—The jets
should have an azimuthal separation greater than

0.5 from =ET , i.e., minðΔϕðp⃗=ET
T ; p⃗j

TÞÞ > 0.5
for all jets up to the fourth leading jet satisfying
pT > 30 GeV and jηj < 4.7, This requirement re-
jects QCD multijet backgrounds arising due to
severe mismeasurement.

(vii) Jet rapidity.—The tagging jets should be well
within the calorimeter acceptance (jηjj < 4.7), and
at least one of them should be within the central
regions (jηji j < 3).

(viii) Jets in opposite hemisphere.—The tagging jets must
reside in opposite hemisphere in η. This is achieved
by imposing the condition ηj1 × ηj2 < 0.

(ix) Azimuthal angle separation between jets.—We re-
quire the azimuthal separation between the two
tagging jets to satisfy jΔϕj1j2 j < 1.5.

(x) Jet rapidity gap.—The rapidity gap between two
leading jets must satisfy jΔηj1j2 j > 1.

(xi) Dijet invariant mass.—The invariant mass of the
two-jet system should satisfy mjj > 200 GeV.

After weighting the different background processes by their
cross sections and the baseline selection efficiency, we get
almost 95% contribution from non-VBF-type production of
Z=W bosons, while remaining is of the VBF origin.
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