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Searches for ΔL ¼ 2 decays are crucial to disentangle the Dirac vs Majorana nature of neutrinos. While
neutrinoless nuclear double beta decays are the most promising tool to look for dielectron signals of
ΔL ¼ 2, searches of dilepton channels with other flavors are far less limited by statistics. We revisit the
calculation of ΔL ¼ 2 decays of hyperons B−

i → Bþ
f l

−l0−. We compute the rates of these decays by

including the hyperon form factors, which yields finite results in the one-loop model mechanism involving
Majorana neutrinos (long-range contributions). In addition, we study the short-range contributions to these
kinds of processes in two appealing scenarios. First, we consider the effects of heavyMajorana neutrinos in
low-scale seesaw models that involve a minimal parametrization with only two heavy Majorana states.
Second, we study an alternative model where ΔL ¼ 2 decays are induced by a scalar boson coupled to
dileptons to provide additional predictions.
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I. INTRODUCTION

The nature of neutrinos and the origin of their masses are
among the most intriguing questions in particle physics
since the discovery of neutrino oscillations. Unlike the
charged fermions, right-hand components of neutrino fields
required to give them an electroweak mass are not protected
by chirality, therefore, they can generate Majorana mass
terms. If Majorana masses are introduced, the accidental
lepton number symmetry in the original formulation of the
standard model is explicitly broken by two units ΔL ¼ 2.
Therefore, the observation of lepton number violating
(LNV) transitions is widely viewed as the cleanest test
of the Majorana nature of neutrinos.
The most extensive and sensitive laboratory to probe

LNV is neutrinoless double beta decay (ββ0ν) of nuclei.
The amplitude for such transitions is proportional to
the “effective Majorana neutrino mass” mee, which is
defined by

mll0 ≡
X
j

mνjUljUl0j: ð1Þ

Here the sum on j runs over all the neutrino mass
eigenstates, and U describes the mixing matrix in the
leptonic sector. The non-observation of ββ0ν decays in
nuclei has set direct strong limits on mee. Currently,
the most stringent limit given by the KamLAND-Zen
collaboration T0ν

1=2 > 1.07 × 1026 yr (90% C.L.) on the
136Xe ββ0ν decay half-time [1,2] implies the direct limit
jmeej≡ jPi Ueimij < ð61–165Þ meV. Direct bounds on
other entries of Eq. (1) are loose mainly because of the
limited statistics of experiments. From a theoretical point of
view, nuclear transitions are limited in precision due to the
model-dependent uncertainties of the nuclear matrix ele-
ments [3–7] and are sensitive only to the two electrons
channel. There is also a large amount of studies related to
ΔL ¼ 2 processes in decays of tau leptons [8–14], pseu-
doscalar mesons [15–31], and Λb baryons [32–35], mainly
motivated by the resonant effect produced by an inter-
mediate Majorana neutrino and their study in flavor-
factories experiments.1Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We refer the interested reader to Refs. [36–38] for excellent
reviews on extensive searches of LNV in colliders.
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In this work, we are interested in ΔQ ¼ ΔL ¼ 2 decays
of hyperons (B−

i → Bþ
f l

−l0−, lð0Þ ¼ e or μ). Their study is
complementary to those in nuclei, but with the advantage
that the hadronic matrix elements involved are well known
at low momentum transfer [39,40]. Further, ΔL ¼ 2
hyperon decays allow the possibility to study channels
involving equal-sign muon and electrons in the final state
that are not available in nuclear decays due to limited phase
space. Regarding the experimental side, the large dataset of
hyperons pairs produced in charmonium decays that has
been and is expected to be accumulated in the BESIII
experiment [41,42] has opened the opportunity to search
LNV hyperon decays at sensitivities on the order of 10−7

[42]. The first upper limit on the LNV decay was reported
very recently by BESIII BðΣ− → pe−e−Þ < 6.7 × 10−5.
Therefore, for the purposes of comparison, future searches
for other channels at BESIII will require the predictions in
the framework of reference models of LNV, which is one of
the purposes of this paper.
The first model of ΔL ¼ 2 decays of hyperons proposed

to estimate their branching fractions was reported in [39].
The mechanism advocated in Ref. [39] considers baryons
as the relevant degrees of freedom and involves a loop with
hyperons and Majorana neutrinos as intermediate states, as
shown in Fig. 1. As a first approximation the authors in [39]
neglected the momentum transfer dependence of the vector
and axial form factors describing the weak vertices, and
have kept the lowest lying hyperons as intermediate states.
As a consequence of this approximation, the resulting loop
functions exhibit a logarithmic ultraviolet divergence which
was regulated using a simple cutoff procedure.
A second approach used by the same authors was based

on the MIT bag model [40]. In this case, one starts from the
most general dimension-nine Lagrangian that involves six
fermion fields and violates lepton number in two units [43].
This approach requires the computation of the hadronic
matrix elements of four quark operators, which can be
evaluated, for instance, using the MIT bag model [44].
These two previous works are associated with different

underlying new physics effects, and the evaluations of their
decay amplitudes are also different. The results using the
MIT bag model in [40] use an effective six-fermion ΔL ¼
2 Lagrangian induced by heavy particles which effects are
encoded in the Wilson coefficients. On the other hand, the

results of the one-loop mechanism are attributed to light
neutrino contributions (long-range effects). According to a
numerical estimate in [40], by assuming “reasonable”
values for the Wilson coefficients and the new physics
scale of LNV yields a prediction for the branching ratio of
the Σ− → pe−e− decay in the MIT bag model of Oð10−23Þ
which is around ten orders of magnitude larger than its
prediction based on the loop model Oð10−33Þ [39].
Keeping in mind the current and expected experimental

searches for ΔL ¼ 2 decays of hyperons at BESIII [41,42],
the goal of the present work is to provide refined estimates
for ΔL ¼ 2 hyperon decays in the loop model mechanism
associated to long-range contributions of light neutrinos.
Our results avoid the undesired divergent behavior of the
loop integrals encountered in [39] by including the
dependence of the hadronic vector and axial form factors
on the momentum transfer. A similar approach was used
in Ref. [45] to estimate one of the long-distance contribu-
tions to Kþ → πþνν̄ decay. Further, we provide an esti-
mation of the short-range effects associated with two
concrete models, namely, heavy Majorana neutrinos con-
tributions in the so-called low-scale seesaw models, and
doubly charged Higgs boson H−− contributions in the
Higgs triplet model. Using current bounds for both scenar-
ios we derive similarly suppressed bounds on the branching
fractions.

II. ONE-LOOP MECHANISM FOR ΔL= 2
DECAYS OF HYPERONS INDUCED
BY LIGHT MAJORANA NEUTRINOS

ΔL ¼ 2 decays of hyperons occur when two down-type
quarks in the initial hyperon convert into two up-type
quarks to produce the final hyperon. The different hyperon
decay channels can be classified according to their change
in strangeness ΔS ¼ 0, 1, 2 as listed in Table I. These
processes violate lepton number in two units, and the
most plausible mechanism is the exchange of Majorana
neutrinos [39,40].
At the hadron level, this process can be viewed as

induced by the one-loop mechanism shown in Fig. 1
involving into the loop a neutral hyperon η and light
Majorana neutrino mass eigenstates νj. The corresponding
decay amplitude can be written as

FIG. 1. ΔL ¼ 2 decays of hyperons induced by intermediate
light Majorana neutrinos in the one-loop model involving an
intermediate neutral hyperon η.

TABLE I. 1=2-spin hyperon ΔL ¼ 2 decays allowed by
kinematics.

ΔS ¼ 0 ΔS ¼ 1 ΔS ¼ 2

Σ− → Σþe−e− Σ− → pe−e− Ξ− → pe−e−

Σ− → pe−μ− Ξ− → pe−μ−

Σ− → pμ−μ− Ξ− → pμ−μ−

Ξ− → Σþe−e−

Ξ− → Σþe−μ−
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iM ¼ −G2
X
j

mνjUl1jUl2j

×
X
η

Z
d4q
ð2πÞ4

Lαβ
1 ðp1; p2Þ
½q2 −m2

νj �
h1αβðpA; pBÞ
½Q2

1 −m2
η�

− ½l1ðp1Þ ↔ l2ðp2Þ�: ð2Þ

In the above expression mνj are the masses of Majorana
neutrinos and Ulj their mixings connecting flavor l and
mass eigenstates. The overall constant G2 ¼ G2

F ×
ðV2

ud; VudVus; V2
usÞ for ΔS ¼ 0, 1, 2, respectively, with

GF the Fermi constant. We have introduced Qi ¼ pA −
pi − q as the momentum carried by the hadronic neutral
state η with the appropriate quantum numbers to contribute
as an intermediate state; and l1ðp1Þ ↔ l2ðp2Þ stands for
the contribution of a similar diagram interchanging the final
external charged leptons. For the diagram depicted in Fig. 1
(see Appendix A for the amplitude with interchanged
leptons); we have that

Lαβ
1 ðp1; p2Þ≡ ūðp2Þγαð1 − γ5Þγβvðp1Þ; ð3Þ

h1αβðpA;pBÞ≡ ūðpBÞγα½fBηðq002ÞþgBηðq002Þγ5�
× ðQ1þmηÞγβ½fAηðq02ÞþgAηðq02Þγ5�uðpAÞ:

ð4Þ

fðA;BÞη and gðA;BÞη denote the vector and axial weak form
factors, respectively, for transitions A → η and η → B. They
depend on the squared momentum transfer at each weak
vertex, specifically, fAη and gAη depend on q02 ¼ ðp1 þ qÞ2,
whereas fBη and gBη depend on q002 ¼ ðp2 − qÞ2. Their
values at zero momentum transfer have been calculated by
different groups [46–48]with overall good agreement among
them (in Table II we quote the values reported in Ref. [47]).

The hadronic part h1αβ can be rearranged conveniently as
follows

h1αβ ¼ ūðpBÞγα½ðκvþ þ κaþγ5ÞQ1

þmηðκv− − κa−γ5Þ�γβuðpAÞ; ð5Þ

where

κv�ðq2Þ≡ fAηðq02ÞfBηðq002Þ � gAηðq02ÞgBηðq002Þ; ð6Þ

κa�ðq2Þ≡ fBηðq002ÞgAηðq02Þ � gBηðq002ÞfAηðq02Þ: ð7Þ

It turns out that it is convenient to define

H1αβ≡
X
η;j

mνjUl1jUl2j

Z
d4q
ð2πÞ4

h1αβ
½q2−m2

νj �½Q2
1−m2

η�
; ð8Þ

which, after the loop integration, it can be set into the
following general form

H1αβ ¼
X
η;j

mνjUl1jUl2jfūðpBÞγα½ðCηj
1v0

þ Cηj
1a0

γ5Þmη

þ ðCηj
1v1

þ Cηj
1a1

γ5Þp1 þ ðCηj
1v2

þ Cηj
1a2

γ5Þp2

þ ðCηj
1vA

þ Cηj
1aA

γ5ÞpA�γβuðpAÞg; ð9Þ

where the Cηj
1vr

and Cηj
1ar

(r ¼ 0; 1; 2; A) functions encode
the effects of the strong interaction relevant in the loop
computation. They will depend in general on the neutrino
masses and on the two independent Mandelstam variables
t≡ ðpA − p1Þ2, and u≡ ðpA − p2Þ2. In this way, the decay
amplitude (2) can be expressed just as the product of the
leptonic and hadronic tensor currents as follows

iM ¼ −G2ðLαβ
1 ðp1; p2ÞH1αβ − Lαβ

2 ðp1; p2ÞH2αβÞ; ð10Þ

where the second term in the above expression represents
the contribution of the diagram with the final charged
leptons interchanged (see Appendix A).

A. Hyperon form factors

The loop integration requires a proper modeling of
hyperon form factors in all the range of momentum transfer
scales. While SU(3) flavor symmetry considerations are
useful to fix the form factors at zero momentum transfer
ðq2 ¼ 0Þ, we ignore their behavior at finite and large values
of q2. From neutrino and electron scattering off nucleons it
has been found that the observed distributions can be
described by a dipole parametrization. An extrapolation to
the timelike region leads to the dipole form factors given by

fiðq2Þ ¼ fið0Þ
�
1 −

q2

m2
dfi

�−2
; ð11Þ

TABLE II. Vector and axial transition form factors for weak
hyperon decays at zero momentum transfer. Here η stands for the
intermediate baryon state, and the subscript A (B) represents the
initial (final) baryon [47].

Transition η fAη gAη fBη gBη

Σ− → Σþ Λ 0 0.656 0 0.656
Σ0

ffiffiffi
2

p
0.655

ffiffiffi
2

p
−0.656

Σ− → p n −1 0.341 1 1.267
Σ0

ffiffiffi
2

p
0.655 −1=

ffiffiffi
2

p
0.241

Λ 0 0.656 −
ffiffiffiffiffiffiffiffi
3=2

p
−0.895

Ξ− → Σþ Ξ0 −1 0.341 1 1.267
Σ0 1=

ffiffiffi
2

p
0.896

ffiffiffi
2

p
−0.655

Λ
ffiffiffiffiffiffiffiffi
3=2

p
0.239 0 0.656

Ξ− → p Σ0 1=
ffiffiffi
2

p
0.896 −1=

ffiffiffi
2

p
0.241

Λ
ffiffiffiffiffiffiffiffi
3=2

p
0.239 −

ffiffiffiffiffiffiffiffi
3=2

p
−0.895
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giðq2Þ ¼ gið0Þ
�
1 −

q2

m2
dgi

�−2
; ð12Þ

with mdfi ¼ 0.84 GeV and mdgi ¼ 1.08 GeV. Since these
pole masses corresponds to strangeness-conserving form
factors, a rescaling using the values of vector and axial
mesons masses allows to assume that mdfi ¼ 0.97 GeV
andmdgi ¼ 1.25 GeV would be a good guess for the dipole
masses in the strangeness-changing case [49]. The values of
the form factors at zero momentum transfer, fið0Þ and gið0Þ
are given in Table II and in the case of the vector form
factors they incorporate the effects of SU(3) flavor sym-
metry breaking [48–50].
In Ref. [39], the transition form factors ffA;Bgη and

gfA;Bgη were approximated by their values at zero momen-
tum transfers in Eqs. (6) and (7). Under such approxima-
tion, the relevant Cηj

vr and C
ηj
ar factors in Eq. (9) are given by

Cηj
v0 ¼ i

κv−ð0Þ
16π2

B0ðt; m2
νj ; m

2
ηÞ;

Cηj
vA ¼ −Cηj

v1 ¼ i
κvþð0Þ
16π2

½B0ðt; m2
νj ; m

2
ηÞ þ B1ðt; m2

νj ; m
2
ηÞ�;

Cηj
v2 ¼ 0; ð13Þ

and

Cηj
a0 ¼ −i

κa−ð0Þ
16π2

B0ðt; m2
νj ; m

2
ηÞ;

Cηj
aA ¼ −Cηj

a1 ¼ i
κaþð0Þ
16π2

½B0ðt; m2
νj ; m

2
ηÞ þ B1ðt; m2

νj ; m
2
ηÞ�;

Cηj
a2 ¼ 0; ð14Þ

where B0 and B1 are the two point scalar and vector
Passarino-Veltman functions, respectively (see
Appendix A). Analytical expressions for the loop functions
can be derived straightforwardly using Feynman para-
metrization. We have calculated these expressions and
have found good numerical agreement with the results
reported in [39] where, however, the mass of the neutrino in
the propagator term was neglected. The important point to
highlight here is that both B0 and B1 are ultraviolet
divergent and the resulting amplitude for ΔL ¼ 2 becomes
logarithmically divergent as it was found in Ref. [39] using
a simple cutoff procedure.
As discussed before, taking the form factors as constants

is just an approximation that leads to a divergent amplitude.
This bad behavior can be cured by a form factor that
vanishes at large q2. The dipole form factors shown in
Eq. (12) satisfy the low energy limits dictated by SU(3)
flavor symmetry and describe well electron and neutrino
scattering data [46–50]. In the limit of large momentum
transfer, both the vector and axial dipole form factors

behave as ∼1=q4. Considering the dipole approximation
would require evaluating an integral with six propagators
which, in general, are very difficult to evaluate even
numerically. Then, in analogy with the case of meson
form factors considered in Ref. [45] which behave as
∼1=q2 for large q2, we will use instead a monopolar
approximation. The approximation of the dipolar d by the
monopolar m form factors is achieved by comparing their
slopes at low momentum transfers; this leads to identify
mm ¼ md=

ffiffiffi
2

p
for the vector and axial poles of the

monopolar approximation in the ΔS ¼ 0, 1 cases.
Using monopolar expressions for the form factors, the

loop integrals become also finite. The expressions of the
relevant Cηj

vr functions are given by:

Cηj
v0 ¼

i
16π2

½fAη
ð0ÞfBη

ð0Þm2
mfA

m2
mfB

D0ðmmfA
;mmfB

Þ
− gAη

ð0ÞgBη
ð0Þm2

mgA
m2

mgB
D0ðmmgA

; mmgB
Þ�;

Cηj
vA ¼ i

16π2
½fAη

ð0ÞfBη
ð0Þm2

mfA
m2

mfB
½D1ðmmfA

; mmfB
Þ

þD0ðmmfA
; mmfB

Þ�
þ gAη

ð0ÞgBη
ð0Þm2

mgA
m2

mgB
½D1ðmmgA

; mmgB
Þ

þD0ðmmgA
; mmgB

Þ��

Cηj
v1 ¼ −

i
16π2

½fAη
ð0ÞfBη

ð0Þm2
mfA

m2
mfB

½D2ðmmfA
; mmfB

Þ
þD1ðmmfA

; mmfB
Þ þD0ðmmfA

; mmfB
Þ�

þ gAη
ð0ÞgBη

ð0Þm2
mgA

m2
mgB

½D2ðmmgA
; mmgB

Þ
þD1ðmmgA

; mmgB
Þ þD0ðmmgA

; mmgB
Þ��;

Cηj
v2 ¼

i
16π2

½fAη
ð0ÞfBη

ð0Þm2
mfA

m2
mfB

D3ðmmfA; mmfB
Þ

þ gAη
ð0ÞgBη

ð0Þm2
mgA

m2
mgB

D3ðmmgA
; mmgB

Þ�; ð15Þ

where (in GeV units) mmfA
¼ 0.84ð0.97Þ= ffiffiffi

2
p

and mmgA
¼

1.08ð1.25Þ= ffiffiffi
2

p
for ΔS ¼ 0ð1Þ transitions, as explained

previously. The Passarino-Veltman functions are given by

Df0;1;2;3gðmmfA
; mmfB

Þ≡Df0;1;2;3gðt; m2
A; s; m

2
2; m

2
1; m

2
B;

mνj ; mη; mmfA
; mmfB

Þ;
Df0;1;2;3gðmmgA

; mmgB
Þ≡Df0;1;2;3gðt; m2

A; s; m
2
2; m

2
1; m

2
B;

mνj ; mη; mmgA
; mmgB

Þ; ð16Þ

and s ¼ ðp1 þ p2Þ2 ¼ m2
A þm2

B þm2
1 þm2

2 − t − u is the
other Maldemstam variable. The functions Cηj

ar can be
obtained straightforwardly from the above expressions
considering the following replacements
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Cηj
a0 ¼ −Cηj

v0ðfAη ↔ gAη; mmfA
↔ mmgA

Þ;
Cηj
fa1;a2;aAg ¼ Cηj

fv1;v2;vAgðfAη ↔ gAη; mmfA
↔ mmgA

Þ: ð17Þ

Given that the four-point functions arising from the
monopolar form factors are not divergent, the amplitudes
are finite and physical.

B. Numerical analysis (one-loop mechanism)

The hadronic matrix element defined in Eqs. (9) and (10)
depends on the effective total form factors Cη

vr;ar ; for each
intermediate hadronic state η in the loop, they can be
written as

Cη
vr ≡

X
j

mνjUl1jUl2jC
ηj
vr ; ðvr ¼ v0;v1;v2;vAÞ;

Cη
ar ≡

X
j

mνjUl1jUl2jC
ηj
ar ; ðar¼ a0;a1;a2;aAÞ; ð18Þ

where the individual Cηj
vr;ar factors, determined from the

loop integration, depend in general upon the neutrino mass
mνj involved in the neutrino propagator (8). Figure 2 shows

the absolute value of the Cηj
vr (with η ¼ n) form factors as a

function of the intermediate neutrino mass mνj for the
specific Σ− → p transition, and using the monopolar
approximation described in equations (15) (similar results
are obtained for the rest of the decay channels listed in
Table II as well as for the analysis of the axial Cηj

ar form
factors). From this plot we observe that the dominant
contribution arises from the Cηj

v0 coefficient. Also, for light
neutrinos (mνj ≲ 100 MeV), all the Cηj

vr factors are insen-
sitive to the neutrino mass value. However, for heavier

neutrino states, the Cηj
vr one-loop functions describing the

ΔL ¼ 2 hyperon decays become strongly dependent on the
neutrino mass. When mν ∼ 100 MeV, the loop integral
becomes sensitive to the neutrino mass because this scale
starts to be comparable to the involved hadronic scales
(pole and baryon masses in the loop). Formally, one expects
that particles much heavier than the ones included as
explicit degrees of freedom in these loop calculations
should be considered as short-distance contributions.
This means that this loop mechanism is not valid for
particles much heavier than a few hundreds of MeV (see
below for the case of heavy Majorana neutrinos).
On the other hand, if we assume that only very light

neutrino states exist, the effective form factors in Eq. (18)
can be approximated by

Cη
vr ≡ml1l2

Cη0
vr ; Cη

ar ≡ml1l2C
η0
ar ; ð19Þ

where ml1l2 is the effective Majorana mass parameter, and
Cη0
vr (C

η0
ar ) are the one-loop functions in Eq. (16) evaluated at

mνj ¼ 0.2 We note that in Ref. [39] the valuesmee ¼ 10 eV,
and mμμ ¼ 10 MeV were used as arbitrary inputs for the
normalization of the decay rates; in addition, that reference
did not include the μe decay channels as we do in the present
calculation. Note that the direct upper limits formll0 reported
in [1,51] are given by3:

jmeej < 0.165 eV; jmeμj < 90 GeV;

jmμμj < 480 GeV: ð20Þ

By computing numerically the form factors in Eq. (19),
we have obtained the branching ratios listed in Table III.
We observe that channels involving two electrons are
strongly suppressed due to the strong limits imposed from
ββ0ν nuclear decay. On the other hand, by assuming the
direct upper limits in Eq. (20) for the eμ and μμ effective
masses, we would get BRðΣ− → pμμÞ ¼ 1.7 × 10−10 and
BRðΣ− → peμÞ ¼ 1.6 × 10−12 which appear to be close to
the projected sensitivity of BES-III.4 These large ratios
should be taken with care because the upper limits used for
meμ and mμμ lie beyond the range of validity of this
scenario, according to Fig. 2. If we assume the maximal
value jmeμj ¼ jmμμj ¼ 100 MeV consistent with the

FIG. 2. Individual Cnj
vr loop-factors as function of the neutrino

mass in the monopole form factors model for the decay chain
Σ− → n� → p. For illustration purposes, we have used the
maximum values for the Lorentz invariants ðt; sÞ that are allowed
by kinematics, as well as m1 ¼ m2 ¼ me in Eqs. (15) and (16).

2In Ref. [39] the masses of neutrinos in the loop integral are set
to zero from the beginning. In contrast, our results are rather
general and appropriate to evaluate the effects of new states until
1 GeV (see discussion in the main text).

3A recent work presented in [52] proposes that the study of the
nonresonant signature pp → l�l0� at the LHC can be used to
test mμμ to a sensitivity of jmμμj ∼ 7.3 GeV.

4In this “naive” approximation one also gets BRðΞ− →
ΣþμeÞ ¼ 1.8 × 10−14, BRðΞ− → pμμÞ ¼ 2.5 × 10−11, and
BRðΞ− → pμeÞ ¼ 2.3 × 10−12, which also look closer to the
experimental sensitivity of BES-III.
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approximation in Eq. (19) in the loop-model mechanism,
then we obtain the rates reported in Table III.

III. SHORT-RANGE CONTRIBUTIONS

If LNV is mediated by heavy particles, then an appro-
priate framework to deal with such effects corresponds to
an effective field theory analysis [53–59]. In this regard, we
will consider the most general six-fermion effective inter-
action describing ΔL ¼ 2 processes involving any leptonic
and hadronic state with second and/or third generation of
quarks [53–59], following the notation in [56] this can be
written as follows

LΔL¼2
eff ¼ G2

F

Λ

X
i;X;Y;Z

½CXYZ
i �αβOXYZ

i ; ð21Þ

where Ci are effective dimensionless couplings, and Λ is
the heavy mass scale of new physics. The dimension-9
operators are classified by

OXYZ
1 ¼ 4½ūiPXdk�½ūjPYdn�ðjZÞ;

OXYZ
2 ¼ 4½ūiσμνPXdk�½ūjσμνPYdn�ðjZÞ;

OXYZ
3 ¼ 4½ūiγμPXdk�½ūjγμPYdn�ðjZÞ;

OXYZ
4 ¼ 4½ūiγμPXdk�½ūjσμνPYdn�ðjZÞν;

OXYZ
5 ¼ 4½ūiγμPXdk�½ūjPYdn�ðjZÞμ; ð22Þ

and the leptonic currents are defined as

jZ ¼ l̄αPZlc
β; jνZ ¼ l̄αγ

νPZlc
β: ð23Þ

In the above expressions PX;Y;Z (X; Y; Z ¼ L; or R) are the
left and right proyectors PL;R ¼ 1=2ð1 ∓ γ5Þ, whereas α, β

denote one of three lepton flavors (e, μ, τ). Then, assuming
that short-range contributions are the dominant ones, the
decay amplitude of ΔL ¼ 2 hyperon decays is given by

MðB−
A → Bþ

Bl1l2Þ ¼ hBþ
Bl1l2jLΔL¼2

eff jB−
Ai;

¼ G2
F

Λ

X
i

½CX;Y;Z
i �l1l2F i; ð24Þ

where the F i functions describe the matrix elements
associated to the all different operators in Eq. (22).
Below we provide two concrete UV completions of the
local six-fermion effective Lagrangian described by
the Eq. (21).

A. Heavy neutrino contributions

We evaluate first the contribution of heavy neutrinos that
can appear in many low-scale seesaw models, for that, we
will consider the minimal parametrization presented in
reference [60,61]. In this model, the neutrino sector
contains 5 Majorana fields (χi ¼ χLi

þ χcLi
); after mass

matrix diagonalization one ends with three light (active)
neutrinos that determine the observed oscillation phenom-
ena and two heavy neutrinos N1;2 ¼ χ4;5 states. The
charged weak lepton current relevant for our computation
is described by the Lagrangian:

L�
W ¼ −

g

2
ffiffiffi
2

p W−
μ

X3
i¼1

X5
j¼1

Bijl̄iγ
μð1 − γ5Þχj þ H:c:; ð25Þ

where B is a 3 × 5 matrix

Bij ¼
X3
k¼1

δikUν
kj
; ð26Þ

and U is the matrix that diagonalizes the neutrino mass
matrix. The relevant point for our discussion is that all the
genuine effects of LNV due to presence of heavy N1;2

neutrino masses can be parametrized in terms of their mass
splitting (r ¼ m2

N2
=m2

N1
, with r ≠ 1) which determine their

Majorana characteristics. Note that, in this scenario, when
the two Majorana states are degenerate they form a Dirac
singlet neutrino and lepton number is exactly conserved.
Then the elements of the matrix B involving the heavy
states in eq. (26) can be expressed in terms of the heavy-
light mixings sνα (with α; β ¼ e, μ, τ) and the r parameter as
follows [60]

BαN1
¼−i

r1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1=2

p sνα ; BαN2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r1=2
p sνα : ð27Þ

For this parametrization, the contribution of heavy neu-
trinos to ΔL ¼ 2 hyperon decays is given by

TABLE III. Branching ratios of ΔL ¼ 2 hyperon decays
induced by Majorana neutrinos in the one-loop model mecha-
nism. We consider the upper limit of the effective Majorana mass
jmeej as given in Eq. (20), but we assume jmeμ;μμjmax ∼ 100 MeV
that is consistent with the approximation in Eq. (19) (see also
Fig. 2). Quoted errors (within parentheses) are estimated by
varying the pole mass mm by �15%.

Transition
Branching ratio
One-loop model

Σ− → Σþee 1.6ð0.4Þ × 10−41

Σ− → pee 2.2ð0.4Þ × 10−34

Σ− → pμμ 7.4ð1.6Þ × 10−18

Σ− → pμe 7.2ð1.6Þ × 10−17

Ξ− → Σþee 2.0ð0.7Þ × 10−36

Ξ− → Σþμe 2.8ð0.9Þ × 10−20

Ξ− → pee 7.1ð2.0Þ × 10−36

Ξ− → pμμ 1.1ð0.4Þ × 10−18

Ξ− → pμe 3.7ð1.2Þ × 10−18

HERNÁNDEZ-TOMÉ, CASTRO, and PORTILLO-SÁNCHEZ PHYS. REV. D 105, 113001 (2022)

113001-6



M ¼ −G2
X2
j¼1

Bl1Nj
Bl2Nj

2mNj

XμνLμν; ð28Þ

where

Xμν ≡ hB−
BðpBÞjΓμνjBþ

A ðpAÞi;
Γμν ¼ ½ūγμð1 − γ5ÞD� × ½ūγνð1 − γ5ÞD0�: ð29Þ

is the hadronic matrix element describing the transition
from B−

A to Bþ
B (D and D0 stands for down-type quarks d or

s according to the initial and final states). Because the
transition between quarks of initial and final states is via the
weak charged current, as depicted in Fig. 3(a), the tensor
hadronic current is given by the product of two bilinear
V − A structures. On the other hand, the leptonic part can
be simplified as follows

Lμν ≡ ūðpl2Þγμð1 − γ5Þγνvðpl1Þ − l1ðpl1
Þ ↔ l2ðpl2Þ;

¼ 2gμνūðpl2Þð1þ γ5Þvðpl1Þ;
≡ 4gμνðjl2l1

R Þ: ð30Þ

Fortunately, some of the hadronic matrix elements in
Eq. (29) have been computed in the framework of the
so-called MIT bag model in Ref. [40]. In the nonrelativistic
approximation, these hadronic matrix elements involving
fourth-quarks operators can be expressed in terms of only
two A and B functions, in such a way that after the
contraction of Lorentz indices, we have that

Xμνgμν ¼ ūðpBÞ½Aþ Bγ5�uðpAÞ; ð31Þ

where uðpAÞ and uðpBÞ denotes the spinors of initial and
final hadronic states, respectively. Thus, Eq. (28) becomes

M ¼ −2G2
X2
j¼1

Bl1Nj
Bl2Nj

mNj

ūðpBÞ½Aþ Bγ5�uðpAÞðjl2l1R Þ:

ð32Þ

Matching Eq. (24) for Λ ¼ mN1
with Eq. (32) we obtained

the particular realization of the relevant Wilson coefficient

½CLLR
3 �l1l2 ¼ −2VuDVuD0

X2
j¼1

Bl1Nj
Bl2Nj

;

¼ 2VuDVuD0sνl1 sνl2
ðr − 1Þ

ðrþ r1=2Þ : ð33Þ

From the above expressions it turns out clear that when the
two heavy states are degenerate (singlet Dirac case) lepton
number is exactly conserved as it is expected.
Now, in order to estimate the contributions of heavy

neutrinos, we consider as a benchmark the mass-indepen-
dent indirect limits for the relevant heavy-light mixing
angles coming from the latest global fits to electroweak
precision observables given in [62,63]:

sνe < 0.050; sνμ < 0.021; sντ < 0.075: ð34Þ

We also have to consider maximum perturbative values
for masses and mixings of the new states. In this para-
metrization, such condition translates into the following
relation [60,61]

mN1
r1=4 <

ffiffiffi
2

p
πv

maxfsνig
: ð35Þ

Therefore, assuming the maximal values in (34), the
perturbative condition reduces to mN1

r1=4 < 8.2 TeV.
Taking into account the above constraints we can

estimate the rates of ΔL ¼ 2 hyperon decays induced by
heavy neutrinos in low-scale seesaw models. Let us
consider the specific example of the Σ− → pll0 decays
for which the values A ¼ 3.56 × 105 MeV3 and B ¼ 0
were obtained using the eigenfunctions of quarks confined
within a baryon in the MIT bag model [40].
Considering maximal values for the heavy-light mixings

in Eq. (34) and the representative values MN1
¼1TeV;

r¼0.01 for the masses of the new heavy states consistent
with the perturbative limit, we have that (see Appendix B
for details)

BRðΣ− → peeÞ ¼ ½CLLR
3 �2ee · ð5.0 × 10−14Þ;

¼ 4.9 × 10−30;

BRðΣ− → peμÞ ¼ ½CLLR
3 �2eμ · ð4.5 × 10−14Þ;

¼ 7.0 × 10−31;

BRðΣ− → pμμÞ ¼ ½CLLR
3 �2μμ · ð4.5 × 10−15Þ;

¼ 1.1 × 10−32: ð36Þ

Bounds for the rest of hyperon decays can be computed in a
similar way if matrix elements of four-quark operators for
other channels become available.

(a) (b)

FIG. 3. Two possible UV completions for the effective lagran-
gian in Eq. (21). (a) Heavy neutrino contributions from low-scale
seesaw models. (b) Doubly charged scalar contributions in the
Higgs triplet model (HTM).
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B. Higgs triplet model contributions

Majorana neutrinos are the most appealing but not
unique mechanism to generate ΔL ¼ 2 transitions in
hyperons. As an alternative, we explore the possible effects
that can arise in the presence of doubly charged scalar
bosons coupled to dileptons, particularly, in the so-called
Higgs triplet model (HTM) [64]. Here, the scalar sector is
extended by including a complex SUð2ÞL Higgs triplet Δ
with Y ¼ 2 along with the SM doublet Φ. The scalar triplet
is parametrized by a 2 × 2 matrix as follows

Δ ¼
� 1ffiffi

2
p Δþ Δþþ

Δ0 − 1ffiffi
2

p Δþ

�
; ð37Þ

and the relevant Yukawa Lagrangian is given by

LY ¼ hijψT
i Ciσ2Δψ j þ H:c:; ð38Þ

where C is the charge conjugation matrix, ψT
i ¼ ðνTiL; eTiLÞ,

σ2 is the second Pauli matrix, and hij are the entries of a
3 × 3 symmetric Yukawa matrix. The neutral component of
Δ developes a vacuum expectation value vΔ, as a conse-
quence, neutrino masses are generated.
After the spontaneous symmetry breaking the physical

scalar spectrum is composed of seven states: two CP-even
scalarsH1 andH2, oneCP-odd scalarA, two charged scalars
H�, and two doubly charged scalars H�� (the H�� are
completely built out of the triplet fields H�� ¼ Δ��). For
the purposes of this work, we only focus on the phenom-
enology of the doubly charged states; a complete list of all
the new vertices in the HTM can be found in [65]. The
coupling for the interaction of the doubly charged scalar
H�� with a pair of W� gauge bosons needed to built the
amplitude in Fig. 3(b) is given by: i

ffiffiffi
2

p
g2vΔgμν. Note that

similar contributions replacing each of the weakW− bosons
with a singly charged H− scalar are suppressed due to
small couplings H−qdq̄u proportional to the light quark
masses.

The contribution of the HTM to ΔL ¼ 2 hyperon decays
is given by

M¼−4
ffiffiffi
2

p
G2

hl1l2vΔ
M2

H��
Xμνgμνūðp2Þð1− γ5Þvðp1Þ;

≡−8
ffiffiffi
2

p
G2

hl1l2
vΔ

M2
H��

ūðpBÞ½AþBγ5�uðpAÞðjl2l1L Þ: ð39Þ

Comparing the above expression with Eq. (24) for
Λ ¼ M2

H��=vΔ, the Wilson coefficient associated to the
HTM contribution is given by5

½CLLL
3 �l1l2 ¼ −8

ffiffiffi
2

p
VuDVuD0hl1l2 : ð40Þ

In order to evaluate this contribution we must consider
that vΔ is constrained from the correction to the ρ
parameter, which after the introduction of the Higgs triplet
becomes

ρ ¼ M2
W=M

2
Z cos

2 θW ¼ 1þ 2v2Δ=v
2

1þ 4v2Δ=v
2
; ð41Þ

where v ¼ 246 GeV is the v.e.v. of the SM doublet. Then,
considering the experimental value ρexp ¼ 1.00038ð20Þ [2]
one is lead to the upper limit vΔ ≲Oð1Þ GeV [66,67].
Furthermore,M��

H is constrained indirectly as a function
of the product of leptonic Yukawa couplings from several
processes [66–71], including Bhabha scattering, LFV
violating transitions, muonic oscillation, and the electron
and muon (g − 2) observables (see Table IV).6

Taking for simplicity non τ-flavored interactions, that is,
hτi ¼ 0 (i ¼ e, μ, τ) and the contrainsts from Table IV.

TABLE IV. Current experimental limits for (e, μ) flavor processes that constrain the product of Yukawa couplings
(h†h) as a function of the mass mH�� . A comprehensive and detailed analysis of all the limits including τ flavor
transitions can be found in [69].

Process Current data Constraint [GeV−2]

μ− → eeeþ <1.0 × 10−12 jh†eeheμj=M2
H�� < 2.3 × 10−12

μ → eγ <4.2 × 10−13
P

k¼e;μ;τ jh†ekhμkj=M2
H�� < 2.7 × 10−10

Electron g − 2 <5.2 × 10−13
P

k¼e;μ;τ jhekj2=M2
H�� < 1.2 × 10−4

Muon g − 2 <4.0 × 10−9
P

k¼e;μ;τ jhμkj2=M2
H�� < 1.7 × 10−5

Muonic oscillation <8.2 × 10−11 jh†eehμμj2=M2
H�� < 1.2 × 10−7

ee → ee (LEP) Λeff > 5.2 TeV jheej2=M2
H�� < 1.2 × 10−7

ee → μμ (LEP) Λeff > 7.0 TeV jhμμj2=M2
H�� < 6.4 × 10−8

5In Eq. (39) we have added the diagram with the external
charged leptons interchanged using that ūðp2ÞPfL;Rgvðp1Þ ¼
−ūðp1ÞPfL;Rgvðp2Þ.

6A recent study of the production of doubly charged Higgs
bosons at LHC can be found in [72].
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We adopt a conservative benchmark considering that
vΔ ¼ 3 GeV, and hmm ≃ 0.1 (m ¼ e, μ) for the rest of
diagonal Yukawa couplings. If we now consider the limits
from ll → ll (l ¼ e, μ) data which only involve diagonal
couplings hee and hμμ, then mH�� ≳ 395 GeV. Choosing
this lowest value for mH��, we obtain7

BRðΣ− → peeÞHTM ¼ 1.1 × 10−30;

BRðΣ− → peμÞHTM ¼ 1.3 × 10−39;

BRðΣ− → pμμÞHTM ¼ 1.0 × 10−31: ð42Þ

Note that for smaller Yukawa couplings hmm, the above
upper limit increases by a factor 1=h2mm if we still assume
the lower bound on mH�� from ee → μμ data quoted in
Table IV. Moreover, in this case, it is necessary to consider
heμ ≲ 3.5 × 10−6 to obey the strongly constraint coming
from μ → eeeþ, as a consequence, the prediction for the
(eμ) channel would be more suppressed.

IV. CONCLUSIONS

We have studied all the ΔL ¼ 2 decays of spin-1=2
hyperons B−

A → Bþ
Bl

−l0− that are allowed by kinematics
within a model involving a one loop mechanism with
baryons and light Majorana neutrinos as intermediate
states. This study improves previous estimates reported
in [39] in several ways. First, we have included the
momentum dependence of hyperons form factors using
a monopolar model which allows to cure the bad ultra-
violet behavior encountered in [39]. Second, because we
kept finite values for the Majorana neutrino masses in the
loop computation we realize that for mν ≳ 100 MeV, the
dependence on the neutrino mass of the relevant loop
functions that dictate the strength of ΔL ¼ 2 hyperon
decays becomes relevant. This indicates that the validity
of the loop mechanism for these long-distance contribu-
tions cannot be extended for neutrino states beyond a few
hundreds of MeV. Except for the overall effective
Majorana mass factor mll0, our calculation basically
confirms the strong suppression found in previous results
for light neutrinos (loop mechanism). In general, the
momentum dependence of the form factors yields results
for the branching fraction that are suppressed by three
orders of magnitude with respect to the case where this
momentum dependence is neglected (Ref. [39]). Given the
poor current limits on mμμ, obtained from Kþ → π−μþμþ

decays, the bounds obtained for the two muon decay

channels seems close to the sensitivities of future BESIII
searches where 1010 hyperon pairs produced in charmo-
nium decays are expected [41]. Notice however that the
loop-model is not valid for heavy neutrino mass scales.
The maximum rates for the eμ and μμ channels consistent
with this scenario are far away from any current or future
possible detection as it is shown in Table III. It is worth
mentioning that according to [52], searches for high pT
signals of LNV at the LHC may eventually be sensitive to
effective muon Majorana masses of the order of a
few GeV.
In addition, we also considered the study of short-range

contributions in two appealing scenarios. First, we con-
sider a specific low-scale seesaw model which includes
two Majorana neutrinos with masses in the TeV range and
not very suppressed mixings [60,61], and three light active
neutrinos. In this model, the lepton number violating
effects are encoded in the mass splitting of the heavy
neutrinos (r ≠ 1), while the heavy-light mixing angles are
bounded from the perturbative unitarity condition.
Second, we consider the contribution of the HTM, which
can generate neutrino masses through the type-II seesaw
mechanism, and contains a doubly charged scalar that
couples to equal-sign leptons. Using current bounds on
the parameters of both models, we find that the branching
fractions for Σ− → pee are less suppressed than in the
loop-mechamism discussed above, but still far below the
current and expected sensitivities at BESIII. We conclude
that, even if the sensitivities of BESIII are pushed to
their extreme expectations, results for the two electron
channels of neutrinoless doble beta hyperon decays will
not be competitive with nuclear neutrinoless doble beta
decays.
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APPENDIX A: ONE-LOOP FUNCTIONS

The one loop functions are verified with package Package-X [73]. For completeness, we report the definition and
decomposition of the two and four-point functions appearing in the computations described in the main text.

i
16π2

fB0; Bμgðp2
1; m

2
0; m

2
1Þ ¼ μ4−D

Z
dDq
ð2πÞD

f1; qμg
½q2 −m2

0�½ðqþ p1Þ2 −m2
1�
; ðA1Þ

i
16π2

fD0; DμgðargsÞ ¼ μ4−D
Z

dDq
ð2πÞD

f1; qμg
½q2 −m2

0�½ðqþ p1Þ2 −m2
1�½ðqþ p2Þ2 −m2

2�½ðqþ p3Þ2 −m2
3�
; ðA2Þ

where D ¼ 4 − 2ϵ, and we have defined ðargsÞ ¼ ðp10; p12; p23; p30; p20; p13; m2
0; m

2
1; m

2
2; m

2
3Þ. The decomposition of the

vectorial functions is given by

Bμðp2
1; m

2
0; m

2
1Þ ¼ p1μB1ðp2

1; m
2
0; m

2
1Þ; ðA3Þ

DμðargsÞ ¼
X3
i¼1

piμDiðargsÞ; ðA4Þ

with pij ¼ ðpi − pjÞ2, and p0 ¼ 0. Analytical expressions for the two point functions can be derived directly with
Package-X. Then, the relevant factors appearing in Eqs. (13) and (14) are given by

Cηj
v0 ¼

iκv−ð0Þ
16π2

�
1

2t
ðm2

νj −m2
η þ tÞ log

�
m2

η

m2
νj

�
þ Λðt; m2

η; m2
νjÞ þ 2 − log

�
m2

η

μ2

�
þ Δ

�
; ðA5Þ

Cηj
vA ¼ −Cηj

v1 ¼
iκvþð0Þ
16π2

�
1

4t2
ð2m2

ηm2
νj þ 2m2

νj tþ t2 −m4
η −m4

νjÞ log
�
m2

η

m2
νj

�

þ 1

2t
ðm2

η −m2
νjÞð1þ Λðt; m2

η; m2
νjÞÞ þ

1

2
Λðt; m2

η; m2
νjÞ þ 1 −

1

2
log

�
m2

η

μ2

�
þ Δ

2

�
; ðA6Þ

withΔ ¼ 1
ϵ − γE þ log ð4πÞ,Λða; b; cÞ ¼ λða;b;cÞ

2a

R
1
0 dx½ax2 þ ðbþ c − aÞxþ b�−1, and λ is the so-called Källen function. In

the limit mνj → 0, useful for the results in the scenario A, the above expressions reduce to

Cη0
v0 ¼

iκv−ð0Þ
16π2

�
2 −

ðt −m2
ηÞ

t
log

�
1 −

t
m2

η

�
− log

�
m2

η

μ2

�
þ Δ

�
; ðA7Þ

Cη0
vA ¼ −Cη0

v1 ¼
iκvþð0Þ
16π2

�
1þm2

η

t
−
ðt2 −m4

ηÞ
2t2

log

�
1 −

t
m2

η

�
−
1

2
log

�
m2

η

μ2

�
þ Δ

2

�
: ðA8Þ

Cumbersome analytical expressions in terms of Log and Dilog functions are obtained for the factors in Eqs. (15) and (17)
in the type-pole approximation. We have evaluated them numerically with the help of the package Collier [74].
Finally, the contribution of the diagram obtained from the exchange of final charged leptons in (10) is given by replacing

the leptonic and hadronic currents with the following:

Lαβ
2 ≡ ūðp1Þγαð1 − γ5Þγβvðp2Þ; ðA9Þ

H2αβ ¼
X
η;j

mνjUl1jUl2jfūðpBÞγα½ðCηj
2v0

þ Cηj
2a0

γ5Þmη þ ðCηj
2v1

þ Cηj
2a1

γ5Þp1

þ ðCηj
2v2

þ Cηj
2a2

γ5Þp2 þ ðCηj
2vA

þ Cηj
2aA

γ5ÞpA�γβuðpAÞg: ðA10Þ
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The Cηj
2vr and Cηj

2ar functions can be obtained from those
reported in Sec. II A with the replacements:

C2v0 ¼ C1v0ðt ↔ uÞ; C2a0 ¼ C1a0ðt ↔ uÞ;
C2vA ¼ C1vAðt ↔ uÞ; C2aA ¼ C1aAðt ↔ uÞ;
C2v1 ¼ C1v2ðt ↔ uÞ; C2a1 ¼ C1a2ðt ↔ uÞ;
C2v2 ¼ C1v1ðt ↔ uÞ; C2a2 ¼ C1a1ðt ↔ uÞ: ðA11Þ

APPENDIX B: KINEMATICS

The differential partial width for the short-range con-
tributions is given by

dΓ ¼ 1

ð2πÞ3
jM̄j2

32m3
A · z

dudt; ðB1Þ

where z ¼ 1 ð2Þ for l1 ≠ l2 (l1 ¼ l2) channels, and the
integration limits

tfmin;maxg ¼m2
Aþm2

B−uþ 1

2u
½ðm2

A−m2−uÞðu−m2
Bþm2

1Þ
∓ ½λðm2

A;m
2
2;uÞλðu;m2

B;m
2
1Þ�1=2�; ðB2Þ

with λ the triangle function, and

umin ¼ ðmB þm1Þ2; umax ¼ ðmA −m2Þ2: ðB3Þ

The amplitude squared can be written as follows

jMj2 ¼ G4
F

½CXYZ
3 �2l1l2
Λ2

FK; ðB4Þ

the above expression is valid for both CLLR
3 and CLLL

3

Wilson coefficients in Eqs. (33) and (40), respectively.

FK ¼ −2ðm2
Aþm2

B − t− uÞ½A2ðm2
1 þm2

2 − 2mAmB − t− uÞ
þB2ðm2

1 þm2
2 þ 2mAmB − t− uÞ�: ðB5Þ
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