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For current and future neutrino oscillation experiments using large liquid argon time projection
chambers (LAr-TPCs), a key challenge is identifying neutrino interactions from the pervading cosmic-ray
background. Rejection of such background is often possible using traditional cut-based selections, but this
typically requires the prior use of computationally expensive reconstruction algorithms. This work
demonstrates an alternative approach of using a 3D submanifold sparse convolutional network trained on
low-level information from the scintillation light signal of interactions inside LAr-TPCs. This technique is
applied to example simulations from ICARUS, the far detector of the short baseline neutrino program at
Fermilab. The results of the network, show that cosmic background is reduced by up to 76.3% whilst
neutrino interaction selection efficiency remains over 98.9%. We further present a way to mitigate potential
biases from imperfect input simulations by applying domain adversarial neural networks (DANNs), for
which modified simulated samples are introduced to imitate real data and a small portion of them are used
for adversarial training. A series of mock-data studies are performed and demonstrate the effectiveness of
using DANNs to mitigate biases, showing neutrino interaction selection efficiency performances
significantly better than that achieved without the adversarial training.
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I. INTRODUCTION

The current and next generation of neutrino oscillation
experiments offer a tantalizing opportunity to explore
physics beyond the Standard Model. However, as detectors
grow larger and neutrino beams more powerful, a pre-
filtering of relevant neutrino interaction data becomes
increasingly important for experiments to be computa-
tionally viable. This is particularly crucial for liquid argon
time projection chambers (LAr-TPCs), which are com-
monly used neutrino detectors (see e.g., [1–5]). LAr-TPCs
offer precise spatial and calorimetric measurements
based on the electron drift signal from ionization and
the scintillation photons from the excitation of argon
atoms caused by interacting particles. However, detecting

neutrino interactions with this technology becomes chal-
lenging due to the significant background of incoming
cosmic rays.
For example, at the ICARUS detector of the short

baseline neutrino (SBN) experiment, cosmic rays are
expected to outnumber neutrino interactions within the
booster neutrino beam’s (BNB’s) spill gate by more than
three to one [4]. Even located 1.5 km underground, the
DUNE far detectors will experience a comparable rate of
cosmic rays and neutrinos [5].
In LAr-TPCs, the ionization electrons, stimulated by

propagating charged particles, are drifted by an applied
electric field to be collected by TPC anode wires, whilst
the emitted LAr scintillation light is recorded by photo-
detectors, often using photomultiplier tubes (PMT). As
such, the TPC records charged particle trajectories as
images with a high spatial resolution (∼ mm=pixel) and
the photodetectors provide event timing information with
nanosecond resolution. The scintillation light signal
thereby provides an easily accessible means to classify
events requiring little or no processing, which may help
distinguish cosmic rays from neutrino interactions before
running any reconstruction algorithms.
The rejection of cosmic-ray backgrounds in LAr-TPCs

typically starts at the online stage. A trigger to record data is
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issued only if a fast signal from the photodetectors is
observed in the beam spill window, the time window
during which neutrino signal is expected. However, it does
not prevent the selection of background events caused by
an accidental coincidence of a beam spill window with
incident cosmic rays. More sophisticated filtering may be
achieved through multidimensional analyses, as discrimi-
nation power can be found by analyzing which PMTs
received light, at what time, and for how long relative to all
other PMTs inside the LAr-TPC.
Machine-learning methods, capable of analyzing such

high-dimensional information, are therefore excellently
suited to classifying events using the available PMT
information. In particular, when detector data is represented
as images, the use of convolutional neural networks
(CNNs) [6,7] are especially effective. The use of CNNs
for event classification is well established across the field of
neutrino physics [8–10]. Although CNNs are broadly used
in the neutrino community, images of neutrino interactions
are typically very sparse such that most of the pixels have
empty values which can render some standard methods
ineffective. A straightforward solution to this issue is to use
submanifold sparse convolutional networks (SSCNs) [11], a
variation of standard CNNs that use a new sparse convolu-
tional operator to efficiently handle sparse inputs, with
already a remarkable number of successful applications in
neutrino physics [12,13]. All the neural network architec-
tures shown in this paper belong to the class of SSCNs. Even
though the customization of the network architecture is not
the main purpose of this paper, further optimization of other
architectures, such as graph neural networks [14,15], may
have been able to provide similar results.
CNNs1 can be optimized to discriminate signal images

against backgrounds through a supervised training process.
This is often done using simulated images (e.g., simulated
neutrino and cosmic images) where the true labels are
available. However, when this model is applied to images
from the real detector, its performance is typically worse
than what is observed on simulated images because of
discrepancies between two data domains (i.e., physics of
the real world vs simulation) due to imperfect simulation.
To address this problem, the CNN classifier may rely on
domain adaptation (DA) techniques [16,17] so that the
classifier learned from the training domain (i.e., simulated
data) can also be applied to the testing domain (i.e.,
eventual experimental data). This DA can be achieved
through the application of domain adversarial neural net-
works (DANNs) [18], in which the detector data is used
in an unsupervised (or semisupervised) manner to prevent
the CNN exploiting features that differ between data
and simulation. DANNs were first used in neutrino physics
by the MINERνA experiment, where the bias of a

deep-learning-based neutrino vertex identification method
was mitigated using these techniques [19]. In this paper, we
present the first application of DANN for a CNN as an
event classifier for a LAr-TPC to discriminate neutrino
signal against cosmic backgrounds.
To test the effectiveness of CNNs and DANNs at

distinguishing cosmic-ray backgrounds from neutrino
interactions using only information from the scintillation
signal, we consider the ICARUS detector of the SBN
program [4] as a case study. ICARUS is currently the
world’s largest LAr-TPC employed in neutrino physics and
operates close to the surface, and so is subject to a
particularly challenging cosmic-ray background rejection.
The details of the ICARUS detector and simulation are
summarized in Sec. II. The CNN approach to event filtering
is detailed and demonstrated in Sec. III. The application of
DANNs to reduce the CNN sensitivity to input simulation
dependence, and a method of using mock-data studies to
test their effectiveness, is then described and applied in
Sec. IV. Finally, the results and the main conclusions of this
work are presented in Sec. V.

II. EVENT FILTERING AT THE ICARUS
DETECTOR

The ICARUS detector [20] is a 760-ton LAr-TPC,
serving as the far detector of the SBN program [4],
positioned 600 m away from the booster neutrino beam
at FNAL. The detector consists of two identical adjacent
modules, each housing two TPCs separated by a common
cathode used to generate the electric field that directs the
argon ionization signal to the anode. The prompt (order of
nanosecond) LAr scintillation light signal from charged
particles propagating within ICARUS is readout by 360
8 inch PMTs [21] arranged on the walls of the TPCs, placed
as shown in Fig. 1. The PMT system provides the means to
trigger the readout of signals within the 1.6 μs beam spill
windows whilst also enabling fast spatial localization of
neutrino beam associated events. The placement, perfor-
mance, and timing resolution of the PMTs are expected to
allow the localization of the associated charged particle

FIG. 1. A schematic view of a one wall segment of ICARUS
TPCs showing how the PMTs are distributed. The PMTs are
arranged in groups of 15 that are connected to the same digitizer
board. The hollow ellipses show the pairing system of
adjacent PMTs.

1We refer to CNNs and SSCNs indistinguishably in the rest of
this section.
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track with accuracy better than 1 m [21–23]. The signals of
all PMTs are continuously read out, where pairs of adjacent
PMTs are typically used together within the ICARUS
trigger system (the pairing scheme is shown in Fig. 1).
For each beam spill window, the ICARUS trigger system
can assess which PMTs have a signal exceeding a pre-
defined threshold, at what time that signal is recorded with
respect to the start of the beam window and how many
times the PMT recorded an opening above the threshold.
Note that a new opening is counted every 0.16 μs that the
PMT signal remains above a preset threshold and so the
number of openings acts as a discretized measurement of
the time over the threshold, which itself is highly correlated
with the signal amplitude.
The BNB delivers neutrinos in a bunch at the rate up to

5 Hz. The accelerator complex informs the trigger system
of the arrival time of each bunch, and hence the timing of
the beam spill window, during which the detector may issue
a trigger if there is a signal in photodetectors above the
threshold. This results in about 5% of beam spills being
recorded. Despite a large reduction factor, the recorded
events are still dominated by cosmic-ray backgrounds due
to an accidental coincidence of the beam-window and
optical signals produced by cosmic rays. Our goal is to
further reduce the cosmic-ray backgrounds via CNN-based
fast event filter that only requires optical data.
Given the possibility of better separation of neutrino

interactions from cosmic rays after full reconstruction of
the TPC signal, the primary aim of the low-level event filter
is to reduce the vast majority of cosmic rays while not
compromising neutrino selection efficiency. In this way, the
amount of data that needs to be processed for higher-level
analyses is greatly reduced while avoiding the risk of losing
the neutrino signal. In order to allow the possibility of
online event filtering, only the information available to the
ICARUS event trigger is used. This means that information
from each PMT pair is concatenated where the earliest
opening time from each pair is stored alongside the total
number of openings across both PMTs within the pair.

A. Simulation

The cosmic-ray particles impinging the ICARUS detec-
tor are generated with CORSIKA event generator [24]. These
particles are then propagated through the ICARUS detector
and the surrounding material using GEANT4 [25] imple-
mentation in LArSoft [26]. Scintillation photons are then
propagated to the PMTs using a parametrized model based
on precalculated tables (also derived from GEANT4). A
further parametrized PMT readout model, constrained from
test-beam data, is then used to simulate the digitized
datalike signal from the detector.
The incoming flux of neutrinos is modeled using a

GEANT4-based simulation of the BNB beamline [4,27]
whilst their interactions with the nuclei (and electrons)
within ICARUS are modeled using GENIE version 3 [28].

The particle propagation and detector response are simu-
lated identically to the case of cosmic rays.
For this study, we simulate 396,200 PMT readout

windows (events) containing cosmic rays and 120,000
containing a single neutrino interaction. For this work,
only one of ICARUS’ two cryostats is considered. Whilst it
is possible to have a PMT readout window containing
cosmic rays and a neutrino interaction or multiple neutrino
interactions, this is not particularly common, and such
details are beyond the scope of this study. The number of
events used in this work is reduced to those that passed the
ICARUS trigger conditions, resulting in 114,589 neutrino
and 46,115 cosmic events.

III. CNN EVENT FILTER

The goal of the CNN is to classify whether events are
from neutrino or cosmic-ray interactions. To train the CNN,
the simulated PMT data is presented as 3D images, where
the position of each PMT pair, alongside its opening time
and a number of openings, are stored. The image voxel size
is chosen to be 40 cm, which is the maximum distance such
that two PMT pairs do not appear within the same voxel.
An example of the image provided as input, divided into
two subimages representing the two PMT pair observable
for better visualization, is shown in Fig. 2. Each event
contains one image, which expresses both the opening time
and number of openings for each PMT pair, of which 80%
are used for training, 10% for validation, and the remaining
10% for testing. Each image in the training sample is
labeled as a cosmic-ray or neutrino event.
The main feature of CNNs is that they learn a series of

filters (using convolutions), applied in sequence to extract
increasingly powerful and abstract features that allow the
CNN to learn a mapping between input images and target
labels. Once the CNN is trained, it can be applied to new
images to make accurate predictions on unseen examples
during the training. The designed CNN architecture is
depicted in Fig. 3. As introduced in Sec. I, it is based on
3D submanifold sparse convolutions [11] to deal with the
sparse images used in this work. The CNN is trained2 for 50
epochs3—with a cross-entropy loss—using PYTHON3.6.9 and
PyTorch2.1.0 [29], as well as the MinkowskiEngine package,
version 0.5.4 [30], on an NVIDIA Tesla V100 GPUs.
Stochastic gradient descent (SGD) is used as the optimizer,
with a minibatch size of 32 events, a learning rate of 0.1
(divided by 10when the error plateaus, as suggested in [31]),
a weight decay of 0.0001, and a momentum of 0.9.4

2The rest of this paragraph applies to all the neural networks
analyzed in this article.

3Epoch: one forward pass and one backward pass of all the
training examples. In other words, an epoch is one pass over the
entire dataset.

4See Ref. [32] for a description of optimizers and associated
terminology.
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The model weights used for the analysis correspond to
those at the epoch that maximizes the overall accuracy on
the validation set. Figure 4 shows the evolution of the

cross-entropy loss and the accuracy (i.e., the proportion of
events correctly classified) within the validation and training
samples as a function of the epoch. Since these metrics
appear almost identical between the two samples, there is no
sign of overtraining. The accuracy curves look flat due to
the nearly identical shape of ∼19% of the neutrinos and
cosmics, making the separation task exceptionally compli-
cated for those events. Moreover, the loss function con-
verged over time, and the score distributions improved
accordingly. Besides, the same behavior was reported for
different configurations of optimizers and learning rates,
discarding any problems with the training. The final model
configuration is that obtained at epoch 33, whichmaximizes
the accuracy of the validation sample.

A. Performance

Once trained, the output of the CNN is a continuous
score for each event between 0 (neutrinolike) and 1
(cosmiclike). The distribution of CNN scores for each true
event type in the test sample is shown in Fig. 5. If a
selection of neutrino events is made by cutting at a CNN

FIG. 3. The sparse convolutional network architecture used for this analysis. It was developed using the MinkowskiEngine package
[30] to handle sparse inputs more efficiently.

FIG. 2. Example images of one ICARUS cryostat used as an input to the CNN. Each dot represents a PMT pair position (taken as the
pair’s barycenter) which are distributed across the walls of the TPCs. The color of the dots represents the number of openings (left) or the
opening time (right).
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score of 0.5, a 98.9% selection efficiency is maintained
whilst 76.3% of cosmic-ray backgrounds are rejected. The
charged-current selection efficiency is found to be flat (i.e.,
unbiased by kinematics) in various tested observables. An
example of an outgoing lepton angle is shown in Fig. 5.

IV. REDUCING MODEL-DEPENDENCE WITH
DANN-BASED TRAINING

Whilst the CNN presented in Sec. III A shows excellent
performance, the results assume perfect modeling of the
neutrino and cosmic-ray events, the particle propagation
and the detector response. If the CNN is trained with events
that do not suitably represent what is in the real data, then
the test sample’s performance will not be reliable. Modern
deep neural networks consist of millions (and sometimes
billions) of parameters and have a strong representative
capability with which they may exploit every detailed
feature present in the simulation, including those that

may not be present in data as well as others that may
not follow the true physics model behind real data. Thus, it
is not easy to ever be sure that the pertinent aspects of the
events are well modeled. To alleviate this issue, adversarial
training methods can be employed to prevent neural net-
works from exploiting features that are only present in one
of two domains. As a result, the performance can be made
consistent in both domains. In this analysis, we show that it
is possible to mitigate challenges associated with domain
discrepancies through the application of DANNs.
In DANNs, the neural network model is trained on

examples from two domains: (a) the source domain, which
consists of labeled simulated data; and (b) the target
domain, which consists of unlabeled true experimental
data. The goal is to learn a discriminator from the labeled
source domain examples and use the unlabeled target
domain examples to ensure the discriminator relies on
only domain-invariant features to perform the predictions.
Regarding the implementation of the neural network, the
classifier architecture remains identical, and it can be seen
as the combination of a feature extractor (i.e., the bulk of
the CNN, in our case) and a label predictor [i.e., the sparse
linear layer(s) at the end]. However, this alternative neural
network has a second path, which connects the output of
the feature extractor through a gradient reversal layer with a
few linear layers that form a domain classifier. The gradient
reversal layer performs an identity transformation during
the forward propagation process but multiplies the gradient
by a negative constant during the back-propagation, guar-
anteeing that the parameters learnt by the feature extractor
are made similar for the source and target distributions. In
other words, with this approach, the features learnt by this
model are simultaneously discriminative (thanks to the
label predictor), and domain-invariant (thanks to the
domain classifier). This behavior is shown in Fig. 6.
Furthermore, if some events from the target distribution
are labeled (e.g., experimental data cosmic rays produced
without a neutrino beam), those events might be used for
the feature extractor learning too, making the domain
adaptation semisupervised, in contrast to the unsupervised
case where all the events from the target distribution are
unlabeled.
In order to test the effectiveness of DANNs as a method

of reducing simulation dependence, we perform a series of
mock-data studies. For these studies, statistically indepen-
dent simulations of events (from neutrinos and cosmic rays)
are produced before being modified to simulate possible
mismodeling bias. Since the coarse PMT information used
in this analysis is likely not sensitive to the exact details of
the neutrino interaction or cosmic-ray production, we focus
primarily on applying distortions to the simulated detector
response. The details of the mock data are as follows:
“Global noise” data: in this mock data, noise, which is

uncorrelated with the event content, is randomly added to
each PMT with some prespecified ‘global’ probability that
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is common to all PMTs. The global noise probabilities
considered are 2%, 5%, and 10%. The timing of the noise is
modeled as uniform distribution. If noise is simulated to
arrive before a PMT is opened by a simulated signal, the
opening time recorded by that PMT is overwritten by time
of the noise.
“Local noise” data: similarly to the global noise data,

this mock dataset considers the addition of random noise to
each PMT but where the probability of producing noise is
different for every PMT. Noise probabilities per event for
each PMT were generated randomly using a uniform
distribution between 0 and either 2%, 5%, or 10%.
For each mock-data study, the DANN is trained as

described in Sec. III but with an addition of 22,778
cosmic-ray-mock-data events and 94,306 neutrino-mock-
data events (40% train, 10% validation, 50% test),5 which
are labeled by the domain (i.e., mock data or original
simulation), all the simulated events are labeled by event
type (i.e., cosmic or neutrino), and we consider three
scenarios for the event type of mock-data events: (1) none
of the events are labeled by event type (unsupervised
domain adaptation), (2) 10% of the cosmic-ray-mock-data
events are labeled (semisupervised domain adaptation), and
(3) 50% of the cosmic-ray-mock-data events are labeled
(semisupervised domain adaptation). This method could
equally be applied to real data instead of mock data, using

run periods with no neutrino beam to label the cosmic-ray
events.
Both the originally trained CNN (as described in

Sec. III) and the newly trained DANNs are used to attempt
to classify events from the original sample and from the
new mock-data sample. An example of the classification
scores for each model applied to the original and mock
datasets is shown for two mock-data studies in Fig. 7. A
summary of the neutrino selection efficiency and the
background rejection performance for the nominal sim-
ulation as well as for each mock dataset is shown in
Table I. The presented numbers are provided for a
selection cut set to 0.5 of the network classification score
in all cases. It should be noted that there is additional
freedom to optimize performance as desired by tuning the
cut value applied. For example, it is found that for the case
of mock data with global noise of 10%, the results using
an unsupervised domain adaptation improve with respect
to the original model by ∼14% for neutrino selection
efficiency and ∼1% for cosmic-background rejection by
setting a cut at 0.25. However, with the cut at 0.5, the
neutrino selection efficiency improves dramatically (by
∼22%), but the background rejection performance
decreases (by ∼8%). An alternative assessment of the
CNN and DANN performance where the cut is varied to
keep the background rejection factor constant is presented
in Appendix.
These results show that, without the adversarial training,

the original CNN can reject a sizeable portion of neutrino
interactions in the mock data. However, once the adversa-
rial training is used, the network is able to mitigate the bias

FIG. 6. Domain-adversarial neural network architecture. The feature extractor (blue) and the label predictor (green) form the standard
neural network classifier shown in Fig. 3. The domain classifier (purple) provides the domain adaptation part since it is connected to the
feature extractor through a gradient reversal layer, allowing the alignment of feature distributions across the source and target domains.
Figure adapted from [18].

5Following the suggestion in [19], we do not use all the
available mock-data events for training. Moreover, the large test
set size provides enough statistics for the analysis.
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and maintain a very high neutrino selection efficiency (the
main goal of the filter) whilst continuing to achieve a
significant rejection of cosmic-ray backgrounds. This
occurs for the unsupervised and the semisupervised domain
adaptations, and it is more visible for larger noises (i.e.,
10% of global noise and 10% of local noise). It can equally
be observed that the use of a DANN does not degrade
the performance of the baseline CNN when applied

to the nominal simulation. This demonstrates that even if
the simulation very well describes the data, the use of a
DANN over a CNN is not expected to degrade the
performance.
Concerning the unsupervised domain adaptation com-

pared to the semisupervised cases, we find a small but non-
negligible improvement in the rejection of mock-data
cosmic-ray backgrounds for some mock-data studies, while
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TABLE I. Efficiency (Eν) and proportion of rejected cosmic-ray background events (Rcos) using the original and adversarially trained
CNN/DANN to classify events in the nominal simulations and mock-data studies. Table II details the model-type nomenclature.

Domain adaptation

Unsupervised Semisupervised 10% Semisupervised 50%

Dataset Model type Eν[%] Rcos[%] Eν[%] Rcos[%] Eν[%] Rcos[%] Eν[%] Rcos[%]

Nominal

CNN 98.9 76.3 � � � � � � � � �
DANNG2 � � � 97.2 77.2 99.0 74.8 97.9 77.2
DANNG5 � � � 98.3 76.8 98.0 76.6 97.9 76.9
DANNG10 � � � 98.7 75.8 98.1 76.4 98.5 76.4

DANNL2 � � � 98.2 76.1 98.1 75.8 98.7 76.1
DANNL5 � � � 98.8 75.9 98.7 76.0 98.8 76.2
DANNL10 � � � 98.7 75.2 98.1 76.8 98.0 76.8

Mock data

Global noise

2% CNN 91.7 74.8 � � � � � � � � �
DANNG2 � � � 92.7 76.5 92.7 75.1 87.2 78.7

5% CNN 81.0 75.8 � � � � � � � � �
DANNG5 � � � 89.7 72.1 89.9 76.6 84.1 78.7

10% CNN 66.4 79.0 � � � � � � � � �
DANNG10 � � � 88.8 71.0 87.2 69.8 88.1 75.9

Local noise

2% CNN 95.5 75.1 � � � � � � � � �
DANNL2 � � � 97.6 74.2 98.2 74.8 96.5 76.6

5% CNN 90.2 74.8 � � � � � � � � �
DANNL5 � � � 89.9 75.0 90.2 75.9 90.3 78.9

10% CNN 81.9 75.7 � � � � � � � � �
DANNL10 � � � 90.2 73.3 88.7 77.9 88.4 78.9
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suffering a slight reduction in mock-data neutrino selection
efficiency. This behavior is expected since, for the semi-
supervised cases, the models have more labeled cosmic
events to learn to reject from (especially for the case where
50% of the mock-data cosmic rays are labeled). It is
possible that labeling a larger portion of the training sample
may allow improved performance from the semisupervi-
sion (recall that the majority of events in the training sample
are neutrino interactions, which cannot be labeled in
real data).

V. CONCLUSION

The studies presented in this paper demonstrate that easily
accessible information from LAr-TPC experiment’s light
detection systems, which requires very little processing,
may be used to effectively separate neutrino from cosmic-
ray induced signalswithin a neutrino beam spill. The use of a
specially adapted CNN ensures that the majority of cosmic-
ray interactions can be filtered out without the rejection of
almost any neutrino induced interactions.
Whilst the use of a CNN trained on simulated event

samples is susceptible to bias due to mismodeling, poten-
tially causing the inadvertent rejection of neutrino events, it
is demonstrated that adversarial training via a DANN can
mitigate the loss of efficiency at the cost of some reduced
background rejection. It is further shown that in some
cases, the background rejection performance may be
improved through semisupervised domain adaptation of
the DANN using labeled real cosmic ray events.
Overall the techniques presented in this manuscript

demonstrate a method for providing a significant rejection
of cosmic-ray events without the need for computationally
expensive reconstruction algorithms. These methods are

shown to be effective when applied to simulations from the
ICARUS experiment, but are easily adaptable and could
likely achieve similar success if applied to other LAr-TPC
experiments.
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APPENDIX: COMPLEMENTARY RESULTS

As discussed in Sec. IV, the performance of the CNN and
DANNs’ application to the mock datasets may be demon-
strated in alternative ways to as presented in Table I, which
shows the efficiency and background rejection achieved for
a fixed cut in the networks’ output classification score
distribution. As such, Table III instead changes the cut such
that the background rejection remains fixed (at 75%) so that
the efficiencies can be more directly compared. The
conclusions remain unchanged from those presented in
Sec. IV; the performance improvement offered by the
adversarial training of the DANNs is substantial with
respect to naively applying CNN trained only on the input
simulation. The improvement can be seen to be stronger for
more extreme fake data studies. Labeling some proportion
of the cosmic ray events in the mock-data samples to
provide a semi-supervised of the DANNs can offer a small
additional improvement in some cases.

TABLE II. Networks legend.

Network name Description

CNN Original neural network trained on the nominal simulation.
DANNG2 Adversarial network trained on nominal simulationþmock data (global noise ¼ 2%).
DANNG5 Adversarial network trained on nominal simulationþmock data (global noise ¼ 5%).
DANNG10 Adversarial network trained on nominal simulationþmock data (global noise ¼ 10%).
DANNL2 Adversarial network trained on nominal simulationþmock data (local noise ¼ 2%).
DANNL5 Adversarial network trained on nominal simulationþmock data (local noise ¼ 5%).
DANNL10 Adversarial network trained on nominal simulationþmock data (local noise ¼ 10%).
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