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We give a concise argument that supersymmetric anti–de Sitter type IIA DeWolfe-Giryavets-Kachru-
Taylor flux vacua on general Calabi-Yau’s have, interpreted holographically, integer conformal dimensions
for low-lying scalar primaries in the dual conformal field theory. These integers are independent of any
compactification details, such as the background fluxes or triple intersection numbers of the compact
manifold. For the Kähler moduli and dilaton, there is one operator with Δ ¼ 10 and h1;1− operators with
Δ ¼ 6, whereas the corresponding axions have Δ ¼ 11 and Δ ¼ 5. For the complex structure moduli, the
h2;1 saxions haveΔ ¼ 2, and the axionsΔ ¼ 3. We give a tentative discussion of the origin of these integers
and effects that would modify these results.
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I. INTRODUCTION

Moduli stabilization is one of the necessary prerequisites
for compactified string theories to describe a four-
dimensional world with a hierarchical separation of scales
between this and extra-dimensional physics. The traditional
tools to construct such vacua, effective field theory and
dimensional reduction, have come under close scrutiny
with the advent of the swampland program [1–3]. For this
reason, it was proposed in Refs. [4–7] that holography
might provide an independent approach to test the con-
sistency of anti–de Sitter (AdS) vacua, by analyzing
the properties of the putative dual conformal field theories
(CFTs).
One of the most studied scenarios of moduli stabilization

featuring scale separation is the type IIA DeWolfe-
Giryavets-Kachru-Taylor (DGKT) flux vacua [8], and scale
separated IIA vacua have received considerable attention
lately [7,9–14], as the scale separation property has been
conjectured to lie in the swampland [15–18].1 From a
holographic point of view, scale separated vacua also admit
a clear interpretation in terms of CFTs with a gapped
spectrum, which could also point towards inconsistencies
[19]. Therefore, DGKT provides a particularly interesting

example to study in this context (see Ref. [20] for an early
investigation).
In this paper we give a concise derivation of the mass

matrix for general IIA DGKT flux vacua and show that,
interpreted holographically, it has an extremely simple
form. In particular, the conformal dimensions of scalar
operators dual to the moduli are both integers and also
highly degenerate. These results are suggestive of a hidden
structure that is best understood from a dual CFT
perspective.
Our argument establishes in full generality results hinted at

in Refs. [6,7], where these results were found for simple
specific examples of DGKT. Although the argument here is
more concise, a derivation of the mass matrix for general
DGKT vacua (although without a link to conformal dimen-
sions) also appears spread across the two papers [21,22].

II. DGKT FLUX VACUA

In a type IIA setting, moduli stabilization with fluxes can
be achieved at tree level due to the simultaneous presence of
the Neveu-Schwarz-Neveu-Schwarz (NS-NS) B2 form and
theRamond-Ramond (R-R) oddp forms. In particular, this is
obtained by compactifying massive IIA string theory on
Calabi-Yau orientifolds with O6 planes (for which the
effective field theory was derived in Refs. [23,24]), which
allows for stable AdS4 vacua in the controlled limit of large
volumes and weak string coupling [8]. This was demon-
strated in Ref. [8] for a fully explicit example based on a
T6=Z3 × Z3 orientifold with no complex structure (CS)
moduli (h2;1 ¼ 0). There, the axio-dilaton, Kähler moduli
and axions were all stabilized by fluxes.
Similar results apply for a generic N ¼ 1 orientifold,

where it is again possible to fix all moduli (except for the
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1However, both the AdS moduli conjecture of Ref. [15] and a
refined version of the strong AdS distance conjecture [17]
presented in Ref. [18] are consistent with DGKT.
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flat directions corresponding to the complex structure
axions). Following the orientifold projection, one is left
with h1;1− Kähler moduli and h2;1 CS moduli, which can be
described with the formalism of N ¼ 1 supergravity. The
Kähler moduli can be expressed in terms of the complex
scalar fields

ta ¼ ba þ iva; a ¼ 1;…h1;1− ð1Þ
where the va are volumes of the 2-cycles (

R
J) and the ba

axions arise from dimensional reduction of the B2 form on
this cycle. Their Kähler potential is given by

KK ¼ − log
�
4

3
V
�
; ð2Þ

where the volume is2 V ¼ κabcvavbvc. This Kähler poten-
tial satisfies the well-known no-scale relations

KabKaKb ¼ 3; KabKb ¼ −va: ð3Þ
The complex structure moduli, together with the axio-
dilaton, can be packaged into h2;1 þ 1 complex fields

Nk ¼
ξk
2
þ iReðCZkÞ; k ¼ 0…h̃;

Tλ ¼ iξ̃λ − 2ReðCgλÞ; λ ¼ h̃þ 1…h2;1 ð4Þ

where the Zk, gλ and the ξk, ξ̃λ are the coefficients of the
holomorphic 3-form Ω and of C3

Ω ¼ ZK̂αK̂ − gL̂βL̂;

C3 ¼ ξK̂αK̂ − ξ̃L̂βL̂; ð5Þ

expanded in a symplectic basis fαK̂; βL̂g of H3. The basis
can be split into an odd part fαλ; βkg and an even part
fαk; βλg; it is only the components with respect to the latter
which survive the orientifold projection and appear in
Eq. (4). We have also introduced the compensator
C≡ e−DþKcs=2, where the four-dimensional dilaton D is
related to the ten-dimensional one by eD ¼ eϕ=

ffiffiffiffiffiffiffiffi
Vol

p
and

Kcs ¼ − log

�
i
Z

Ω ∧ Ω
�
: ð6Þ

Their Kähler potential is given by

KQ ¼ −2 log
�
2

Z
ReðCΩÞ ∧ �ReðCΩÞ

�
¼ 4D ð7Þ

and also satisfies a no-scale relation (see Appendix C of
Ref. [23]), namely

KNkN̄kKNk
KN̄k

þ KTλT̄λKTλ
KT̄λ

¼ 4: ð8Þ

In a generic setting, both the NS-NS 3-form field
strength H3 and the R-R field strengths F0, F2, F4, F6

can thread fluxes through the internal manifold. Following
the notation of Ref. [23], the background fluxes can be
expressed in a basis of the appropriate cohomologies as

H3 ¼ qλαλ − pkβk; F2 ¼ −mawa; F4 ¼ eaw̃a;

F0 ¼ m0; F6 ¼ e0: ð9Þ

The even 2-forms fwag span a basis of H1;1
þ , while their

duals fw̃ag are a basis of H2;2
þ . We briefly remark that the

presence of the F2 and F6 fluxes is not needed to achieve
moduli stabilization, but we nevertheless include them for
full generality.3

The resulting superpotential is given by

W ¼ e0 þ eata þ
1

2
κabcmatbtc −

m0

6
κabctatbtc

− 2pkNk − iqλTλ: ð10Þ
A crucial simplification is that the superpotential (10)

depends only on a linear combination of the complex
structure moduli which, after a (holomorphic) rotation in
field space, can be effectively taken to be a single modulus.
When h2;1 ¼ 0 this direction reduces entirely to the axio-
dilaton,4 and hence it will be denoted as

S≡ ξþ is; with W ⊃ −2pS ð11Þ

as the form for the superpotential. Combined with the fact
that the Kähler potential factorizes as a sum of two
independent terms, this ensures a decoupling between
the two sectors. Other than S, there will now be h2;1

complex structure moduli

Uα ≡ aα þ iuα; α ¼ 1;…h2;1 ð12Þ
which do not appear in the superpotential Wðta; SÞ.
Assuming the tadpole conditions are satisfied (as they

must be), the scalar potential then takes the standardN ¼ 1
supergravity form [8,23]

V ¼ eK
� X

ti;Uα;S

Kij̄DiWDj̄W − 3jWj2
�
: ð13Þ

Supersymmetric vacua occur with vanishing F terms,

DtiW ¼ 0; DSW ¼ 0; DUα
W ¼ 0; ð14Þ

2Our definition differs from the proper volume by Vol ¼ V=6.

3In fact, it usually leads to solutions which are either equivalent
or qualitatively similar to the ones without F2 or F6 flux.

4In that case, the imaginary part of S will be related to the four-
dimensional dilaton by s ¼ e−D=

ffiffiffi
2

p
.
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which also ensures extrema of the potential (13). For the
superpotential (10) and Kähler potential (2), these imply
the following relationships for the Kähler moduli at the
minimum [8]:

3m2
0κabcv

bvc þ 10m0ea þ 5κabcmbmc ¼ 0;

s ¼ −
2m0

15p
V; ba ¼

ma

m0

; ξ ¼ −
e0
2p

: ð15Þ

This implies that at the minimum [8]

W ¼ 2i
15

m0V: ð16Þ

Equations (15) and (16) imply the second derivatives of the
superpotential take the simpler form

∂va∂vbW¼−∂ta∂tbW

¼−κcabmcþm0κabctc ¼ im0κabcvc

¼ i
m0V
6

ðKaKb−KabÞ¼
5

4
ðKaKb−KabÞW ð17Þ

when Eq. (15) is satisfied. On the other hand, the F-term
condition for the complex structure moduli simply implies

KUα
¼ 1

2i
Kuα ¼ 0; ð18Þ

ensuring the absence of mixing with the Kähler moduli and
S for fluctuations around the minimum. In addition,
Eq. (18) turns the no-scale relation (8) into

KssKsKs ¼ 4: ð19Þ

III. MASS MATRICES FOR THE KÄHLER
MODULI AND DILATON

To obtain the mass matrix, we compute the second
derivatives of the potential (13),

∂m∂nV ¼ −3eKðKmnjWj2 þ Km∂njWj2 þ ∂m∂njWj2Þ
þ 2eKKij̄ð∂nDiWÞð∂mDj̄WÞ; ð20Þ

in which terms proportional to a first derivative of the
potential or DiW are dropped, and m, n denote saxions. To
evaluate the derivatives in the first line of Eq. (20), we note
that the conditions (14) imply that

∂mjWj2 ¼ −KmjWj2; ð21Þ

and the second derivatives of jWj2 equal

∂
2
s jWj2 ¼ 1

2
K2

s jWj2;

∂s∂bjWj2 ¼ 1

2
KsKbjWj2;

∂b∂ajWj2 ¼ 2ð∂va∂vbWÞW̄ þ 2ð∂vaWÞð∂vbW̄Þ

¼
�
3KaKb −

5

2
Kab

�
jWj2: ð22Þ

For the second line in Eq. (20), we have5

Kij̄ð∂nDiWÞð∂mDj̄W̄Þ ¼ Kij̄

�
Win þ KinW −

KiKn

2
W

��
W̄j̄m þ Kj̄mW̄ −

Kj̄Km

2
W̄

�

¼ Kij̄WinW̄j̄m þ 2Kij̄WinKj̄mW̄ − Kij̄WinKj̄KmW̄

þ
�
Kij̄KinKj̄m − Kij̄KinKj̄Km þ 1

4
ðKij̄KiKj̄ÞKnKm

�
jWj2

¼ Kij̄WinW̄j̄m þ 4WnmW̄ − Kij̄WinKj̄KmW̄ þ
�
Knm þ 3

4
KnKm

�
jWj2: ð23Þ

If n;m ¼ a, b are both size moduli,

Kij̄WinW̄j̄m ¼ 25

16
ðKaKb þ KabÞjWj2; ð24Þ

and if n ¼ a is a size modulus

5Note that because K ¼ Kðta þ t̄a; Sþ S̄Þ, the derivatives with respect to the complex moduli are ∂taK ¼ ∂vaK=2i, ∂SK ¼ ∂Ks=2i.
The superpotential is holomorphic and so ∂Wta ¼ −i∂vaW, ∂SW ¼ −i∂sW.
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Kij̄WinKj̄KmW̄ ¼ 5KaKbjWj2 ð25Þ

by substituting Eq. (17), and otherwise these terms vanish.
Combining these leads to

∂a∂bV ¼ eKð9Kab þ 8KaKbÞjWj2; ð26Þ

∂a∂sV ¼ eKð−2KaKsÞjWj2; ð27Þ

∂
2
sV ¼ eKð−Kss þ 3K2

sÞjWj2: ð28Þ

Hence, the mass matrix for the moduli in AdS units is
given by

R2
AdS∂m∂nV ¼

�
9Kab þ 8KaKb −2KaKs

−2KaKs −Kss þ 3K2
s

�
; ð29Þ

where R2
AdS ¼ −3=Vmin. We can proceed similarly with

Eq. (20) for the axions ba, ξ, where now all derivatives of
the Kähler potential will vanish, and for the superpotential
derivatives we have

∂baW ¼ −i∂vaW; ∂ξW ¼ −i∂sW: ð30Þ

This results in

∂ba∂bbV ¼ eKð5Kab þ 12KaKbÞjWj2; ð31Þ

∂ba∂ξV ¼ −3eKKaKsjWj2; ð32Þ

∂
2
ξV ¼ 2eKK2

s jWj2; ð33Þ

and so the mass matrix is

R2
AdS∂m∂nV ¼

�
5Kab þ 12KaKb −3KaKs

−3KaKs 2K2
s

�
: ð34Þ

These expressions match with the results obtained in
Ref. [22] (see in particular Appendix B). However, this
computation provides a more compact way to arrive at
these results, using the ordinary N ¼ 1 structure of the
potential and without having to rely on the formalism
developed in Refs. [14,21,22]. Moreover, the derivation
provided above makes it clear that the only properties
feeding into the final result are the no-scale relations for the
Kähler potential and the specific form of the superpotential
leading to Eqs. (16) and (17).

IV. COMPLEX STRUCTURE MODULI

Let us briefly review the arguments that lead to both
integer conformal dimensions for the complex structure
moduli [which have already been discussed (implicitly or
explicitly) in Refs. [6,25]] and the absence of any mixing

with the Kähler sector. To establish the latter, one can
follow the same steps as the ones leading to Eq. (27),
finding that

∂uα∂vbV ¼ −2KuαKvbe
KjWj2 ¼ 0 ð35Þ

because of Eq. (18). Similarly,

∂uα∂sV ¼ −3eK
�
−KuαKs þ

1

2
KuαKs

�
jWj2

þ 3

2
KuαKseKjWj2 ¼ 0: ð36Þ

Within the CS sector, nondiagonal terms are also absent

∂uα∂uβV ¼ 3eKKuαKuβ jWj2 ¼ 0: ð37Þ

It was shown in Ref. [25] that the only nonvanishing
contribution then comes from

∂uα∂uαV ¼ −Kuαuαe
KjWj2; ð38Þ

fixing all masses to the universal value of

m2
u ¼ −2=3Vmin ¼ −2=R2

AdS: ð39Þ

As the axions appear in neither the Kähler potential nor the
superpotential, they are all massless.

V. SPECTRUM

Let us define the two block matrices

Kmn ¼
�
Kab 0

0 Kss

�
Lmn¼

�
4KaKb −KaKs

−KaKs
K2

s
4

�
; ð40Þ

where K is simply the Kähler metric for the moduli (in real
components) evaluated at the minimum of the potential.
Then, from the results of the previous section the Hessians
of the moduli and axion potential can be expressed as

HM
mn ≡ R2

AdS∂m∂nV ¼ 9Kmn þ 2Lmn ð41Þ

and

HA
mn ≡ R2

AdS∂m∂nV ¼ 5Kmn þ 3Lmn; ð42Þ

respectively. The physical masses can be obtained as the
eigenvalues of M ¼ 2K−1H, which is related to the mass
matrix

M̃ ¼ 2
ffiffiffiffiffiffiffiffi
K−1

p
T
H

ffiffiffiffiffiffiffiffi
K−1

p
ð43Þ

by a similarity transformation.
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In principle, the stabilized values of the vi’s and the
dilaton can be extracted by the system of h1;1− þ 1 equations
in the first line of Eq. (15). Knowing the value of the axions
at the minimum, it would then be possible to write the mass
matrix as a function of the flux data only. Although the
equations cannot be solved explicitly for arbitrary triple
intersection numbers κabc and fluxes ea, ma, the “implicit”
form of the matrix derived above is not only sufficient for
our purposes, but it is more helpful to elucidate the
surprising simplifications in the final expressions.
To compute the eigenvalues of K−1L, one can begin by

noticing that any vector of the form

x ¼ ðxi; x0Þ with x0Ks ¼ 4Kaxa ð44Þ

satisfies K−1Lx ¼ 0. This essentially descends from the
fact that M can be expressed as a tensor product
Lmn ¼ AmAn, with Am ¼ ð2Ka;−Ks=2Þ. One therefore
has a basis of h1;1− eigenvectors with an eigenvalue of
λix ¼ 0. Furthermore, the no-scale relations (3)–(8) imply
that the vector

y ¼ ðvi; K−1
s Þ; ð45Þ

is also an eigenvector of L, with eigenvalue λy ¼ 13.
Then, there is a basis in which the mass matrices in AdS

units read

MM
mn ¼ 18δmn þ 52δ1;m ð46Þ

MA
mn ¼ 10δmn þ 78δ1;m; ð47Þ

also in agreement with the results of Ref. [22]. Through the
relation ΔðΔ − dÞ ¼ m2R2

AdS, they correspond to con-
formal dimensions of

Δ1 ¼ 10; Δ2…h1;1− þ1 ¼ 6 ð48Þ

for the saxions, and

Δ1 ¼ 11; Δ2…h1;1− þ1 ¼ 5 ð49Þ

for the corresponding axions. Similar conclusions can be
drawn for all the complex structure moduli as well. From
Eq. (39), there are in principle two distinct possibilities for
the saxions as both solutions to ΔðΔ − dÞ ¼ m2R2

AdS
satisfy the unitarity bound. However, N ¼ 1 superconfor-
mal symmetry excludes the option Δuα ¼ 1,6 as the axion
and saxion are in the same three-dimensional N ¼ 1
supermultiplet [26]. Combined with the fact that the

complex structure axions are all massless, one arrives at
the conclusion that

Δuα ¼ 2; Δaα ¼ 3: ð50Þ

for all complex structure moduli Uα, where α ¼ 1…h2;1.

VI. CONCLUSIONS

We have shown how—if we assume they actually
exist—the spectrum of the CFT3 duals to supersymmetric
DGKT type IIA flux vacua is characterized by a spectrum
of integer conformal dimensions for the low-lying primar-
ies. This result generalizes an observation first made in
Ref. [6] for the simplest case of a T6=Z3 × Z3 orientifold,
and later extended in Ref. [7] to a wide range of examples.
For a generic modulus, the conformal dimension is given

by one of the very few integer values in Eqs. (48)–(50). It is
surprising to see how these numbers do not bear any trace
of the microscopic details of the compactification, i.e., the
values of the fluxes and the geometry of the orientifold.
Such a simple and universal behavior is suggestive of the
fact that the holographic perspective offers a both novel and
insightful viewpoint on these constructions.
Despite the simplicity of the result, the calculation itself

does not seem to yield any clear insight into why such a
striking property should hold. Its outcome relies on the no-
scale relations for the Kähler potential, as well as some
more specific conditions involving the superpotential and
its derivatives, Eqs. (16) and (17).
One might wonder whether supersymmetry plays a role:

already at the N ¼ 1 level, the structure of the super-
conformal multiplets implies that the conformal dimen-
sions of axions and saxions should differ by one. A further
observation is that no-scale relations partially depend on
the factorization of the Kähler potential into a sum of two
terms (depending only on the Kähler and complex structure
moduli respectively), which could be seen as a remnant of a
more constraining N ¼ 2 supersymmetry of the original
supergravity theory, where the Kähler potential factorizes
into hypermultiplet and vector multiplet terms.
Generally, one would expect that N ¼ 1 corrections

would break this factorization and introduce mixing
between the Kähler and complex structure moduli.
Examples of such corrections would be α0 and gs correc-
tions which, generically, would not preserve the N ¼ 2
structure. The DGKT vacua have a scale-separated limit of
large volume and weak coupling; one would expect this
limit to suppress such corrections, with an asymptotic limit
in which corrections to the integer conformal dimensions
vanish asymptotically.
More generally, it would be extremely fascinating to

come up with a deeper explanation of either the integer
dimensions or the large degeneracies amongst the oper-
ators. A related question one might hope to address in
the future is whether any similar structure holds for the

6It would be interesting to understand how supersymmetry
implements this from an AdS perspective, where the choices
correspond to different boundary conditions for the scalar field.
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nonsupersymmetric vacua as well, as suggested by the
examples in Refs. [6,7].
In a long-term perspective, an interesting direction

would involve trying to understand if one could either
prove or disprove the consistency of these (or similar) four-
dimensional vacua using ideas from AdS=CFT.
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