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This paper points out the importance of the quantum nature of the gravitational interaction with matter in
a linearized theory of quantum gravity induced entanglement of masses. We will show how the quantum
interaction entangles the steady states of a closed system (eigenstates) of two test masses placed in the
harmonic traps, and how such a quantum matter-matter interaction emerges from an underlying quantum
gravitational field. We will rely upon quantum perturbation theory highlighting the critical assumptions for
generating a quantum matter-matter interaction and showing that a classical gravitational field does not
render such an entanglement. We will consider two distinct examples: one where the two harmonic
oscillators are static, and the other where the harmonic oscillators are nonstatic. In both cases it is the
quantum nature of the gravitons interacting with the harmonic oscillators that are responsible for creating
an entangled state with the ground and the excited states of harmonic oscillators as the Schmidt basis.
We will compute the concurrence as a criterion for the above entanglement and compare the two ways of
entangling the two harmonic oscillators.
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I. INTRODUCTION

The classical theory of general relativity (GR) is out-
standing in matching the observations on large scales,
especially from the solar system tests to the observations
from the detection of the gravitational waves [1]. Despite
these successes, the classical theory fails at very short
distances and early times. The classical GR predicts black
hole and cosmological singularity where the notion of
spacetime breaks down [2].
Although it is believed that the quantum theory of

gravity will alleviate some of these challenges, however,
we still do not know whether gravity is indeed quantum or
not. Moreover, there are also many candidates for a
quantum theory of gravity [3]. From an effective field
theory perspective and at low energies, it is believed that the
gravitational interaction is being mediated by a massless
spin-2 graviton, which can be canonically quantized [4–7].
Although the perturbative quantum theory of gravity also
possesses many challenges, such as the issues of renorma-
lizability at very high energies and the issue of finiteness at
low energies where the day to day experiments are
performed, it is still a very good effective field theory
description of nature [8].
Given the feeble interaction strength of gravity, it is

extremely hard to detect a graviton in a detector by the
momentum transfer [9]. Indirect detection of the quantum
properties of the graviton remains elusive in the primordial

nature of the gravitational waves (GWs) [10,11].
Astrophysical and cosmological uncertainties shroud any
validation of the quantum nature of spacetime by modifying
the photon dispersion relationship [12]. Moreover, the strict
constraint on the graviton mass indirectly arising from the
propagation of the GWs detected by the LIGO observatory
hints no departure from GR in the infrared [13].
Given all these challenges, it is worth asking how to test

the quantum nature of a graviton in a laboratory at low
energies. Recently, there has been a proposal to test the
quantum nature of gravity by witnessing the spin entan-
glement between the two quantum superposed test masses,
known as the quantum gravity induced entanglement of
masses (QGEM) [14,15]. The idea is to create a spatial
quantum superposition of two test masses and bring them
adjacent to each other in a controlled environment such that
their only dominant interaction that remains is the exchange
of a massless graviton. It is possible to realize such a
daunting experiment but there are many challenges that
need to be overcome.1

1The detailed analysis of the demanding nature of the QGEM
experiment (such as creating Schrödinger cat states with massive
test masses along with achieving the required coherence lifetime
required to detect the entanglement) has been discussed already
in [14]. A related idea was also proposed in [16]. These initial
works [14–16] garnered extensive interest in the research
community [17–44].
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In this paper we will review the conceptual under-
pinnings of the QGEM mechanism. The entanglement of
the two masses emerges from “local operation and
quantum communication (LOQC),” whereas no entangle-
ment would occur by “local operations and classical
communication (LOCC)” [45]. The LOCC principle states
that the two quantum states cannot be entangled via a
classical channel if they were not entangled to begin with,
or entanglement cannot be increased by local operations
and classical communication. The classical communica-
tion is the critical ingredient which can be put to the test
when it comes to graviton mediated interaction between
the two masses. If the graviton is quantum, it would
mediate the gravitational attraction between the two
masses, and it would also entangle them, hence confirm-
ing the QGEM proposal [14,15].
One of the aims of the current paper is to sharpen the

argument of LOCC for the purpose of QGEM, and high-
light the role of the quantum nature of the interactions for
entangling the two quantum systems. We will use basic
quantum mechanics and perturbation theory to show how
the perturbed wave functions of the matter systems become
entangled solely by the virtue of the quantum natured
graviton. We will furthermore highlight the relevant
degrees of freedom of the graviton which interacts with
the quantized matter, and they are responsible for the
entanglement in both the static and nonstatic cases.
We will study this problem in the number state basis of

two harmonic oscillator states, and we will show that the
perturbed state is an entangled state even at the first order in
a quantum perturbation theory [46]. The quantum inter-
action between the two matter systems emerges from the
change in the graviton vacuum energy due to the presence
of the two quantum harmonic oscillators. In the QFT
community this is a well-known way to understand how
contact interactions emerge (see [47]). We will show that in
a static limit this change in the vacuum energy is the same
as that of Newton’s potential at the lowest order in
Newton’s constant, which appears at the second order in
the perturbation theory. Furthermore, the Newtonian poten-
tial is the energy shift of the gravitational vacuum. In this
case the relevant gravitational degrees of freedom required
to be quantized is composed of both the spin-2 and spin-0
components [4,15]. A similar interpretation applies to the
nonstatic case, except there are some details in the
components of the graviton which will get modified.
In particular, if the matter is quantized, then the energy

shift in the gravitational field becomes an operator valued
interaction. Since we have the quantum superpositions for
the matter systems, the energy shift in the gravitational field
will not be a real number, resulting in the gravitational field
itself being a nonclassical entity.
We will calculate the concurrence [48] as a way to

measure the entanglement between the two harmonic
oscillators and show that the concurrence is always positive

for the quantum interaction between the graviton and the
matter states.2,3

This paper is organized in the following way. We will
first briefly recap the known results, i.e., the two quantum
harmonic oscillators (Sec. II), and show how the quantum
interaction is responsible for generating the entanglement
(Sec. III). We will then quantify the degree of entangle-
ment using concurrence which we will compute using
perturbation theory. We then discuss the special case
where the interaction potential is generated by the gravi-
tational field in the regime of weak gravity (Sec. IV). In
particular, we will first show how the T̂00 component of
the stress-energy tensor generates entanglement—j00i
and j11i are the Schmidt basis of the entangled state,
where jnNi≡ jnijNi and jni (jNi) denote the number
state of the first (second) harmonic oscillator (Sec. V). We
will then consider entanglement via graviton in the non-
static case (Sec. VI). We will find that the T̂0i components
of the stress-energy tensor generate a two-mode squeezed
state of the two harmonic oscillators (Sec. VII). In
addition, we will show that the T̂ij components of the
stress-energy tensor (which give rise to the GWs) generate
entanglement—j00i and j22i are the Schmidt basis of the
entangled state, in line with the quadrupole nature of the
gravitational radiation (Sec. VIII). We will finally con-
clude with the consequences for the classical/quantum
communication (Sec. IX).

II. TWO QUANTUM HARMONIC OSCILLATORS

Let us consider the two matter systems, denoted by
A and B, which are placed in the harmonic traps located at
�d=2. We suppose that the harmonic oscillators are well-
localized, such that

x̂A ¼ −
d
2
þ δx̂A; x̂B ¼ d

2
þ δx̂B; ð1Þ

where x̂A and x̂B are the positions, and δx̂A and δx̂B denote
small displacements from the equilibrium. The usual
Hamiltonian for the two harmonic oscillators is given by

2In this paper we will consider only pure states to highlight the
conceptual points, but the analysis could be readily extended
to more realistic situations with mixed states to account
for the internal/external noise sources and environmental
decoherence.

3The entanglement features of harmonic oscillators in the
presence of the interaction are quite well-known in the quantum
optics literature (see for example [49]). Typically, the quantum
nature of the photon plays the role of the quantum interaction.
However, our aim here is to concentrate on the quantum nature of
the graviton, especially highlighting the graviton’s dynamical
degrees of freedom which are responsible for the quantum
interaction in enabling the entanglement feature of the quantum
harmonic oscillators. These dynamical degrees of freedom
of the graviton are very different in nature compared to the
photon.
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Ĥmatter ¼
p̂2
A

2m
þ p̂2

B

2m
þmω2

m

2
δx̂2A þmω2

m

2
δx̂2B; ð2Þ

where p̂A and p̂B are the conjugate momenta and ωm is the
harmonic frequency of the two traps (assumed equal for the
two particles for simplicity). We now introduce the adimen-
sional mode operators for the matter by writing

δx̂A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s
ðâþ â†Þ; δx̂B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s
ðb̂þ b̂†Þ; ð3Þ

p̂A ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmωm

2

r
ðâ†− âÞ; p̂B¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmωm

2

r
ðb̂†− b̂Þ; ð4Þ

which satisfy the usual canonical commutation relationships
(the only nonzero commutators are given by ½a; a†� ¼ 1 and
½b; b†� ¼ 1). Using this notation the Hamiltonian can be
written succinctly as

Ĥmatter ¼ ĤA þ ĤB; ð5Þ

where ĤA ¼ ℏωmâ†â and ĤB ¼ ℏωmb̂
†b̂.Wewill nowwant

to investigate the steady statewhen the system is perturbedby
an interaction Hamiltonian HAB. In particular, we will show
that in general any quantum interaction will entangle the two
harmonic oscillators.

III. QUANTUM INTERACTION
INDUCES ENTANGLEMENT

Let us assume that the initial state of the matter system is
given by

jψ ii ¼ j0iAj0iB; ð6Þ

where j0iA (j0iB) denote the ground state of the first
(second) harmonic oscillator (in the following we will omit
the subscripts A and B for the states to ease the notation).
Suppose we now introduce an interaction potential λHAB
between the two matter systems, where λ is a small
bookkeeping parameter. The perturbed state is given by

jψ fi≡ 1ffiffiffiffiffi
N

p
X
n;N

CnN jnijNi; ð7Þ

where jni and jNi denote the number states and the overall
normalization is given by N ¼ P

n;N jCnN j2. We have that
C00 ≡ 1 (coefficient of the unperturbed state), while the
other coefficients are given by

CnN ¼ λ
hnjhNjĤABj0ij0i
2E0 − En − EN

; ð8Þ

where E0 is the ground-state energy for the harmonic
oscillators (equal for the two harmonic oscillators as we

have assumed the same trap frequency) and En and EN
denote the energies of the excited states.
Here we note the role of ĤAB being a quantum

operator. If HAB were classical, it would have an
associated c-number (complex number), which would yield
hnjhNjHABj0ij0i ¼ 0, by virtue of the orthogonality of the
ground and the excited states (j0ij0i and jnijNi) of the two
quantum harmonic oscillators, as n;N > 0 in Eq. (8).4 By
the same argument, interactions acting as operators on only
one of the two quantum systems (i.e., without products of
operators acting on the two matter systems) cannot entangle
the two systems. It is thus instructive to rewrite the state in
Eq. (7) in the following way [46]:

jψ fi ∼
�
j0i þ

X
n>0

Anjni
��

j0i þ
X
N>0

BN jNi
�

þ
X
n;N>0

ðCnN − AnBNÞjnijNi; ð9Þ

where An ≡ Cn0 and BN ≡ C0N . The first line in Eq. (9)
would yield a separable state, while the second line is
responsible for entanglement of the two matter systems (the
An and BN terms will not contribute to the entanglement at
first order in perturbation theory). We can already see the
stark difference between the LOQC and the LOCC.5 The
nontrivial part of a LOQC mechanism is now encoded in
the terms of the interaction Hamiltonian ĤAB producing the
second line in Eq. (9). On the other hand, a LOCC
mechanism could produce the first line of Eq. (9), but
not the second line, as a classical interaction cannot
entangle the two quantum states if they were not entangled
to begin with.6

To quantify the degree of entanglement we can compute
the concurrence [48,50]

4Let us clarify what we mean by the Hamiltonian acting on a
quantum state in a Hilbert space, which is by definition an
operator, to be associated with a number. Essentially, we mean
that it could (a) be proportional to the identity operator multiplied
by a number, or (b) be something nontrivial, but acts on an
eigenbasis. Our statement above holds for both the definitions.

5The above discussion, of course, relies on initially pure states
evolving unitarily under a fixed Hamiltonian so that they remain
pure. The general notion of LOCC [45], as used in quantum
information is broader, distinguishing entangled states from
classically mutually correlated states. The above discussion of
Eq. (9) can, of course, be easily generalized to mixed states and
probabilistic operations (simply several repeats of our argument
for different initial states and different Hamiltonians with their
corresponding probabilities).

6A similar discussion was first adopted in the momentum
space entanglement in a perturbative quantum field theory,
Ref. [46], where they argued that the entanglement entropy of
and mutual information between subsets of field theoretic degrees
of freedom at different momentum scales are natural observables
in quantum field theory. Here we will compare the degree of
entanglement by computing the concurrence (see the discussion
below).
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C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − tr½ρ̂2A�Þ

q
; ð10Þ

where ρ̂A can be computed by tracing away the B state

ρ̂A ¼
X
N

hNjψ fihψ f jNi: ð11Þ

Wewill recall that the larger the concurrence C is, the larger
is the degree of entanglement—C ¼ 0 corresponds to a
separable state, while C ¼ ffiffiffi

2
p

is obtained for a maximally
entangled state. Inserting Eq. (7) into Eq. (11) we find

ρ̂A ¼ 1

N

X
n;n0;N

CnNC�
n0N jnihn0j: ð12Þ

Wewill then insert Eq. (11) back into Eq. (10) to eventually
find

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

X
n;n0;N;N0

CnNC�
n0NCn0N0C�

nN0=N 2

�s
: ð13Þ

In the next sections, we will consider the entanglement of
two harmonic oscillators induced by the quantum nature of
gravitons. For this case, the entanglement will be induced
by the terms C11 and C22 at the lowest order in the
perturbation theory when the potential ĤAB is generated
by the quantized gravitational field in the regime of weak
gravity.

IV. QUANTUM GRAVITATIONAL INTERACTION

We will consider the setup of two quantum harmonic
oscillators (introduced in the previous sections) in the
presence of the gravitational field. In particular, we will
work in the regime of small perturbations jhμνj ≪ 1 about
the Minkowski background ημν. The metric is given by
gμν ¼ ημν þ hμν [where μ, ν ¼ 0, 1, 2, 3 and we are using
the ð−;þ;þ;þÞ signature throughout]. We will promote
the fluctuations into the quantum operators,

ĥμν ¼ A
Z

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωkð2πÞ3
s

ðP̂†
μνðkÞe−ik·r þ H:c:Þ; ð14Þ

where k is the three-vector and dk≡ d3k. The prefactor is
denoted by A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πG=c2

p
, where G is Newton’s con-

stant, and P̂μν and P̂†
μν denote the graviton annihilation and

the creation operator. We will discuss in detail the proper-
ties of the graviton and the relevant degrees of freedom
below.
Around the Minkowski background, the graviton

coupling to the stress-energy tensor T̂μν is given by the
following operator valued interaction term:

Ĥint ¼ −
1

2

Z
drĥμνðrÞT̂μνðrÞ; ð15Þ

where r denotes the three-vector.
We will now consider separately the coupling induced by

the component T̂00 in the static limit and by the full stress-
energy tensor T̂μν in the nonstatic case.

V. ENTANGLEMENT VIA GRAVITON IN THE
STATIC LIMIT

Let us consider two particles of massm (which will form
the two oscillating systems). The two particles are gen-
erating the following current in the static limit:

T̂00ðrÞ≡mc2ðδðr − r̂AÞ þ δðr − r̂BÞÞ; ð16Þ

where r̂A ¼ ðx̂A; 0; 0Þ and r̂B ¼ ðx̂B; 0; 0Þ denote the posi-
tions of the two matter systems. The Fourier transform of
the current is given by

T̂00ðkÞ ¼
mc2ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ðeik·r̂A þ eik·r̂BÞ; ð17Þ

where k denotes 3-momentum.
Following the canonical quantization of graviton in a

weak field regime [4], we decompose ĥμν ¼ γ̂μν −
ð1=2Þημνγ̂ around a Minkowski background (where we
use the convention γ ≡ ημνγ

μν). The two distinct modes,
i.e., the spin-2, γμν, and the spin-0, γ, can be treated as
independent variables. They are promoted as self-adjoint
operators and decomposed into

γ̂μν ¼ A
Z

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωkð2πÞ3
s

ðP̂†
μνðkÞe−ik·r þ H:c:Þ; ð18Þ

γ̂ ¼ 2A
Z

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωkð2πÞ3
s

ðP̂†ðkÞe−ik·r þ H:c:Þ; ð19Þ

where

½P̂μνðkÞ; P̂†
λρðk0Þ� ¼ ½ημληνρ þ ημρηνλ�δðk − k0Þ; ð20Þ

½P̂ðkÞ; P̂†ðk0Þ� ¼ −δðk − k0Þ: ð21Þ

The graviton Hamiltonian is now given by [4]

Ĥg ¼
Z

dkℏωk

�
1

2
P̂†
μνðkÞP̂μνðkÞ − P̂†ðkÞP̂ðkÞ

�
: ð22Þ

We are interested in computing the change in the energy
ΔĤg—the shift of the energy of the graviton vacuum
arising from the interaction with the matter. In the static
limit (where we neglect the motion of the two harmonic
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oscillators), the interaction Hamiltonian can be written in a
simple form:

Ĥint ¼
1

2

Z
dr½γ̂00ðrÞ þ ð1=2Þγ̂ðrÞ�T̂00ðrÞ: ð23Þ

We can now compute the shift to the energy of the graviton
vacuum using the perturbation theory. The first order term
vanishes,7 while the second order term in the perturbation
theory yields

ΔĤg ≡
Z

dk
h0jĤintjkihkjĤintj0i

E0 − Ek
; ð24Þ

where jki ¼ ðP̂†
00ðkÞ þ P̂†ðkÞÞj0i is the one-particle state

constructed in the unperturbed vacuum, Ek ¼ E0 þ ℏωk is
the energy of the one-particle state, and E0 is the energy of
the vacuum state. The mediated graviton is now off-shell/
virtual by virtue of the integration of all possible momen-
tum k—and hence does not obey classical equations of
motion. Using Eqs. (14), (18), (19), and (23) we readily
find8

hkjĤintj0i ¼
A
2

ffiffiffiffiffiffiffiffi
ℏ

2ωk

s
T̂00ðkÞ; ð25Þ

where we have used the definition of the Fourier
transform

T̂00ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

ð2πÞ3
s Z

dre−ik·rT̂00ðrÞ: ð26Þ

From Eq. (25) we then obtain a simple expression,

h0jĤintjkihkjĤintj0i ¼
ℏA2T̂†

00ðkÞT̂00ðkÞ
8ωk

: ð27Þ

From Eq. (24) we then readily find

ΔĤg ¼ −A2

Z
dk

T̂†
00ðkÞT̂00ðkÞ
8c2k2

: ð28Þ

Performing the momentum integration using spherical
coordinates, we then find the result

ΔĤg ¼ −
A2m2c2

16πjr̂A − r̂Bj
; ð29Þ

where we have omitted the self-energy terms of the individ-
ual particles.9 We will finally insert A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πG=c2

p
into

Eq. (29) to find Newton’s potential10:

7The first order contribution to the energy is given by
h0jĤintj0i ¼ 0, where j0i denotes the unperturbed graviton
vacuum. This is due to the fact that Ĥint depends linearly on
γ̂μν; γ̂ which are themselves linear combinations of creation and
the annihilation operators, P̂†

μν; P̂μν; P̂
†; P̂. Hence h0jĤintj0i

depends only linearly on P̂†
μν; P̂μν; P̂

†; P̂ and thus vanishes (as
P̂j0i ¼ 0 and h0jP̂† ¼ 0 and similarly for the other operators).
The nonvanishing contribution will come from the second order
term in the perturbation theory [15,51,52].

8Inserting the definition of Ĥint from Eq. (23) [and the
definitions of γ̂μν and γ̂ from Eqs. (18) and (19), respectively],
we encounter the following expression: hkjðP̂†

00ðk0Þ þ P̂†ðk0ÞÞj0i.
Using jki ¼ ðP̂†

00ðkÞ þ P̂†ðkÞÞj0i we then find

h0jðP̂00ðkÞP̂†
00ðk0Þ þ P̂ðkÞP̂†ðk0ÞÞj0i;

while the other terms vanish as the vacuum state satisfies
P̂00ðkÞj0i ¼ P̂ðkÞj0i ¼ 0. The two terms on the right-hand
side can then be rewritten as h0j½P̂00ðkÞ; P̂†

00ðk0Þ�j0i and
h0j½P̂ðkÞ; P̂†ðk0Þ�j0i, where we have used the definition of the
commutator ½Ô1; Ô2� ¼ Ô1Ô2 − Ô2Ô1 (as well as again the
definition of the vacuum state). Using now the commutation
relations defined in Eqs. (20) and (21) and summing the two
terms, we then finally obtain

hkjðP̂†
00ðk0Þ þ P̂†ðk0ÞÞj0i ¼ δðk − k0Þ:

9There are self-energy contributions which provide the ultra-
violet (UV) corrections and tend to generate infinities in the limit
when the graviton momentum goes to infinity, i.e., k → ∞. This
is an example of a UV divergence appearing in a perturbative
quantum gravity. We are interested in the infrared (IR) limit
where we are neglecting the UV aspects of the quantum gravity.

10There is a covariant formulation also to obtain the same
answer by using the time-ordered graviton propagator discussed
in [15]. The Einstein-Hilbert action can be written as in terms of
the fluctuations hμν up to quadratic in order:

S ¼ ð1=4Þ
Z

d4xhμνOμνλσhλσ þOðh3Þ;

where Oμνλσ ¼ ð1=4Þðημρηνσ þ ημσηνρÞ□ − ð1=2Þημνηρσ□þ
ð1=2Þðημν∂ρ∂σ þ ηρσ∂μ∂ν − ημρ∂ν∂σ − ημσ∂ν∂ρÞ, where the
d’Alembertain operator is □ ¼ gμν∇μ∇ν. The propagator for
the graviton [15,52] hμν can be recast in terms of

ΠμνρσðkÞ ¼ ð1=2k2Þðημρηνσ þ ηνρημσ − ημνηρσÞ:

With the help of this propagator, one can find the gravitational
potential, i.e., the nonrelativistic scattering due to an exchange of
an off-shell graviton. The gravitational potential is given
by ΦðrÞ ¼ −ð8πG=ð2πÞ3Þ R d3kT00

1 Π0000ðkÞT00
2 ð−kÞeik·r ¼

−4πGm2
R
d3keik·r=k2 ¼ −Gm2=r. This result is the same as

what we have obtained in Eq. (30). The only difference here is
that we have computed the potential by using the full graviton
propagator and the scattering amplitude between the two masses
via the exchange of spin-2 and spin-0 components of the graviton
(see the Appendix of Ref. [15]). In the text we have computed the
change in the graviton vacuum. However, in the nonrelativistic
limit both the results give rise to the same conclusion.
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ΔĤg ¼ −
Gm2

jx̂A − x̂Bj
: ð30Þ

We thus find that the change in the graviton energy, ΔĤg,
due to the interaction between the graviton and the matter is
an operator valued function of the two matter systems, i.e.,

ΔĤg ≡ fðx̂A; x̂BÞ: ð31Þ

If the two matter systems do not have sharply defined
positions (such as when placed in a spatial superposition or
some other nonclassical state), then the change in the
graviton energy ΔĤg will not be a real number, as required
in a classical theory of gravity, but rather an operator-
valued quantity, a bona fide quantum entity.
We now wish to calculate the excited wave function jψfi

of the two harmonic oscillators to establish the link
between entanglement and LOQC discussed in Sec. III.
We first use Eq. (1) and expand Eq. (30) to find

ΔĤg ≈ −
Gm2

d
þ Gm2

d2
ðδx̂B − δx̂AÞ −

Gm2

d3
ðδx̂B − δx̂AÞ2:

ð32Þ

The last term gives the lowest order matter-matter inter-
action11

ĤAB ≡ 2Gm2

d3
δx̂Aδx̂B: ð33Þ

Note that the interaction Hamiltonian ĤAB contains only
the operators of the two harmonic oscillators δx̂A; δx̂B. Yet
it is critical to realize that the product δx̂Aδx̂B would not
have arisen if we had assumed a real-valued shift of the
energy of the gravitational field. Indeed, a classical gravi-
tational field is unable to produce the operator-valued shift
in Eq. (30) [and hence the quantum interaction potential in
Eq. (33)]. We must thus conclude that gravitationally
induced entanglement is indeed a quantum signature of
the gravitational field.12

We will now use the modes in Eq. (3) to find

ĤAB ≈ ℏgðâ b̂þâ†b̂þ âb̂† þ â†b̂†Þ; ð34Þ

where we have defined the coupling

g≡ Gm
d3ωm

: ð35Þ

Using ĤAB as the interaction Hamiltonian in Eq. (8), we
find that the only nonzero coefficient emerges from the
term ∼â†b̂† and is given by

C11 ¼ −
g

2ωm
: ð36Þ

We note that the a†b† term generates the first excited states
in the harmonic oscillators (with energy E1 ¼ E0 þ ℏωm).
In addition, we also have the term C00 ¼ 1 corresponding
to the unperturbed state.
The final state in Eq. (7) thus simplifies to (up to first

order in the perturbation theory, and by setting λ ¼ 1)

jψ fi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg=ð2ωmÞÞ2

p
�
j0ij0i − g

2ωm
j1ij1i

�
; ð37Þ

which is an entangled state involving the ground and the
first excited states of the two harmonic oscillators. We
compute the reduced density matrix by tracing system B
(we recall that our notation is jnijNi ¼ jniAjNiB). The
concurrence in Eq. (13) reduces to

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

1þ ðg=ð2ωmÞÞ4
1þ ðg=ð2ωmÞÞ2

�s
≈

ffiffiffi
2

p g
ωm

; ð38Þ

which is valid when the parameter g=ωm ≪ 1 is small.
Inserting the coupling from Eq. (35), we find the con-
currence is given by

C ¼
ffiffiffi
2

p
Gm

d3ω2
m

: ð39Þ

We thus see that the degree of entanglement grows linearly
with the mass of the oscillator and inversely with the
distance between the two oscillators (inverse cubic) as well
as with the frequency of the harmonic trap (inverse square).
Let us reiterate the key finding. If the underlying

gravitational field were classical (specifically, obeying
LOCC), then the final state of the matter components,
i.e., the two harmonic oscillator states, would have never
evolved to the entangled state jψfi, but would have rather
remained in an unentangled/separable state. Conversely, if
the gravitational field is quantized (and hence obeys
LOQC), then we have shown that it can give rise to the
entangled state jψfi.

11It is instructive to compare the obtained results for two
harmonic oscillators to the results obtained previously for two
interferometers. In both cases, the action is proportional to
S ¼ Eτ=ℏ, where the interaction energy of the system is given
by E ∼HAB and τ is the coherence timescale. Considering the
setup in [14,16], and setting Δϕ ∼ S, we then recover the
entanglement phase Δϕ ∼ ð2Gm2=ℏdÞðδx=dÞ2τ, where we have
assumed δxA ∼ δxB ∼ δx for the localized spatial superpositions
of the two test masses.

12The above expression, Eq. (33), has been the starting point
for the entanglement of the two harmonic oscillators with 1=r-
potential in many analyses (see [36,39–42,53]), but here we have
shown how this interaction arises by noting how the vacuum of
the spin-2 and spin-0 components of the graviton has shifted due
to the quantum nature of the harmonic oscillators.

BOSE, MAZUMDAR, SCHUT, and TOROŠ PHYS. REV. D 105, 106028 (2022)

106028-6



VI. ENTANGLEMENT VIA GRAVITON IN THE
NONSTATIC CASE

In this section, we are interested in the coupling of the
gravitational field to the T̂ij components of the stress-
energy tensor. In our specific case we consider two particles
(in harmonic traps) moving along the x-axis such that the
only nonzero components are given by T00, T01, and T11

(with T10 ¼ T01). Hence the relevant components of the
graviton are given by ĥ00 ¼ γ̂00 þ ð1=2Þγ̂ (already present
in the static case), by ĥ01 ¼ ĥ10 ¼ γ̂01, and by ĥ11 ¼ γ̂11 −
ð1=2Þγ̂ (which can be identified with the degrees of
freedom of the GWs as discussed below). We will find
that the energy shift in the graviton vacuum induces a
coupling between the two harmonic oscillator states, which
leads to the entanglement only when we assume that the
ĥ00; ĥ01; ĥ11 components are quantum.
The computation follows the analogous steps as the ones

discussed in the previous section. The basic assumption is
that these gravitonmodes are quantized and act as a quantum
communicator, or serve as a quantum interaction between the
two harmonic oscillators. The interaction Hamiltonian now
has two contributions:

Ĥint ¼
1

2

Z
dr½γ̂00ðrÞ þ ð1=2Þγ̂ðrÞ�T̂00ðrÞ

þ
Z

drγ̂01ðrÞT̂01ðrÞ

þ 1

2

Z
dr½γ̂11ðrÞ − ð1=2Þγ̂ðrÞ�T̂11ðrÞ; ð40Þ

where the first line coincides with the interaction considered
in Eq. (23), while the second and third lines arise from the
degrees of freedom of the GWs corresponding to the
+polarization.13

Let us first rewrite the interaction term in Eq. (40) using
the definitions in Eqs. (18) and (19):

Ĥint ¼
A
2

Z
dk

ffiffiffiffiffiffiffiffi
ℏ
2ωk

s
ð½P̂00ðkÞ þ P̂ðkÞ�T̂00ðkÞ þ H:c:Þ

þA
Z

dk

ffiffiffiffiffiffiffiffi
ℏ

2ωk

s
ðP̂01ðkÞT̂01ðkÞ þ H:c:Þ

þA
2

Z
dk

ffiffiffiffiffiffiffiffi
ℏ

2ωk

s
ð½P̂11ðkÞ − P̂ðkÞ�T̂11ðkÞ þ H:c:Þ;

ð44Þ

where we have introduced the Fourier transform of the
stress-energy tensor

T̂μνðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

dre−ik·rT̂μνðrÞ: ð45Þ

Since we are considering the two harmonic oscillators to be
moving along the x-axis such that the only nonzero
components are given by

T̂μνðrÞ≡ p̂μp̂ν

E=c2
ðδðr − r̂AÞ þ δðr − r̂BÞÞ; ð46Þ

where pμ ¼ ð−E=c; pÞ, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þm2c4

p
, μ, ν ¼ 0, 1,

and r̂A ¼ ðx̂A; 0; 0Þ, r̂B ¼ ðx̂B; 0; 0Þ denote the positions of
the twomatter systems. Herewe have promoted the classical
expression of the stress-energy tensor to a quantum operator
following the Weyl quantization prescription to ensure that
the quantum stress-energy tensor is a Hermitian operator. In
order to simplify the notation we will, however, write the
unsymmetrized expressions (e.g., x̂p̂), implicitly assuming
that all expressions need to be interpreted in the symmetrized
ordering [e.g., ðx̂p̂þ p̂x̂Þ=2]. Using Eqs. (45) and (46), we
find the following Fourier space components:

T̂00ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ðÊAeik·r̂A þ ÊBeik·r̂BÞ; ð47Þ

T̂01ðkÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ðp̂Aceik·r̂A þ p̂Bceik·r̂BÞ; ð48Þ

T̂11ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
�
p̂2
Ac

2

EA
eik·r̂A þ p̂2

Bc
2

EB
eik·r̂B

�
: ð49Þ

We can readily extend the computation from Sec. V to
Eq. (44) by including in the computation the intermediate
graviton states: jki ¼ 1ffiffi

2
p P̂†

00ðkÞj0i, 1ffiffi
2

p P̂†
11ðkÞj0i, P̂†

01ðkÞj0i,
and P̂†ðkÞÞj0i (where the prefactor 1ffiffi

2
p in the first two states

13We recall that in the transverse-traceless (TT) gauge we have
the interaction Hamiltonian given by [54]

Ĥint ¼ −
1

2

Z
drĥijðrÞT̂ijðrÞ; ð41Þ

where we implicitly assume the summation over the indices i,
j ¼ 1, 2, 3. The propagating, on-shell, graviton is described by the
two helicity states ðþ;×Þ:

ĥij ¼ A
Z

dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωkð2πÞ3
s

P†
λðkÞeλijðkÞe−ik·r þ H:c:; ð42Þ

where we have assumed the summation over the two polarizations
ðþ;×Þ (eλjk denote the basis for the two polarization states), and the
annihilation and the creation operator satisfy

½P̂λðkÞ; P̂†
λðk0Þ� ¼ δðk − k0Þ: ð43Þ

The trace-reversed perturbation ĥijðrÞ in Eq. (42) can be identified
with γ̂ijðrÞ − ð1=2Þηijγ̂ðrÞ. In particular, in our specific case theþ
polarization GW ĥ11ðrÞ can be identified with γ̂11ðrÞ − ð1=2Þγ̂ðrÞ.
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ensured the correct normalization14). The energy shift of the
graviton vacuum j0i is thus given by the second order
perturbation theory (while the first order perturbation will
vanish7):

ΔĤg ≡
XZ

dk
h0jĤintjkihkjĤintj0i

E0 − Ek
; ð50Þ

where the sum indicates summation over the one-particle
projectors15 jkihkj constructed on the unperturbed vacuum,
E0 is the energy of the vacuum state, and Ek ¼ E0 þ ℏωk is
the energy of the one-particle state. We can readily evaluate

h0jP̂ðkÞĤintj0i ¼
A
2

ffiffiffiffiffiffiffiffi
ℏ
2ωk

s
ðT̂00ðkÞ − T̂11ðkÞÞ; ð51Þ

h0jP̂01ðkÞĤintj0i ¼ A

ffiffiffiffiffiffiffiffi
ℏ
2ωk

s
T̂01ðkÞ; ð52Þ

h0jP̂00ðkÞĤintj0i ¼ A

ffiffiffiffiffiffiffiffi
ℏ
2ωk

s
T̂00ðkÞ; ð53Þ

h0jP̂11ðkÞĤintj0i ¼ A

ffiffiffiffiffiffiffiffi
ℏ
2ωk

s
T̂11ðkÞ: ð54Þ

By using Eqs. (51)–(54), we then find from Eq. (50)

ΔĤg ¼ −A2

Z
dk

T̂†
00ðkÞT̂00ðkÞ þ T̂†

11ðkÞT̂11ðkÞ
8c2k2

−A2

Z
dk

ðT̂†
00ðkÞT̂11ðkÞ þ H:c:Þ

8c2k2

þ 4A2

Z
dk

T̂†
01ðkÞT̂01ðkÞ
8c2k2

: ð55Þ

We now use the fact that the two particles are confined along
the x-axis, where we set p̂Ay ¼ p̂Az ¼ p̂By ¼ p̂Bz ¼ 0 and
write p̂A ≡ p̂Ax; p̂B ≡ p̂Bx, r̂A ¼ ðxA; 0; 0Þ, r̂B ¼ ðxB; 0; 0Þ,
and k ¼ ðkx; ky; kzÞ. We then insert Eqs. (47)–(49) to find16

ΔĤg ¼ −
A2

ð2πÞ3
Z

dk

�ÊAÊB þ p̂2
Ac

2

EA

p̂2
Bc

2

EB

8c2k2

þ
ÊA

p̂2
Bc

2

EB
þ ÊB

p̂2
Ac

2

EA

8c2k2
− 4

p̂Acp̂Bc
8c2k2

�

× ðeikxðx̂A−x̂BÞ þ e−ikxðx̂A−x̂BÞÞ: ð56Þ

Performing the integration and expanding in powers of 1=c2,
we find that Eq. (56) simplifies to17

ΔĤg ¼ −
Gm2

jx̂A − x̂Bj

−
Gð3p̂2

A − 8p̂Ap̂B þ 3p̂2
BÞ

2c2jx̂A − x̂Bj

−
Gð5p̂4

A − 18p̂2
Ap̂

2
B þ 5p̂4

BÞ
8c4m2jx̂A − x̂Bj

: ð58Þ

Equation (56) contains the exact couplings between the two
masses up to order Oð1=c4Þ and to the leading order IR
contributions in Newton’s constant, G. Note that if we set
p̂A ¼ p̂B ¼ 0, the last two terms vanish. However, a quan-
tum system retains its zero point fluctuations, and hence we

14The normalization of the states can be computed using the
commutation relations in Eqs. (20) and (21). Let us consider
first P̂†

00ðkÞj0i. We note that h0jP̂00ðkÞP̂†
00ðk0Þj0i ¼ h0j½P̂00ðkÞ;

P̂†
00ðk0Þ�j0i, where we have used the definition of the commu-

tator ½Ô1; Ô2� ¼ Ô1Ô2 − Ô2Ô1 (as well as the definition of
the vacuum state). Using (20) we then readily find
h0jP̂00ðkÞP̂†

00ðk0Þj0i ¼ 2δð3Þðk − k0Þ. Using analogous steps we
find h0jP̂11ðkÞP̂†

11ðk0Þj0i ¼ 2δð3Þðk − k0Þ, h0jP̂01ðkÞP̂†
01ðk0Þj0i ¼

−δð3Þðk − k0Þ, and h0jP̂ðkÞP̂†ðk0Þj0i ¼ −δ ð3Þðk − k0Þ.
15The projectors jkihkj

hkjki are given by 1
2
P̂†
00ðkÞj0ih0jP̂00ðkÞj,

1
2
P̂†
11ðkÞj0ih0jP̂11ðkÞj, −P̂†

01ðkÞj0ih0jP̂01ðkÞj, and −P̂†ðkÞj0i×
h0jP̂ðkÞj. The normalization prefactors 1

hkjki ¼ 1
2
; 1
2
;−1;−1 are a

direct consequence of the commutation relations in Eqs. (20) and
(21) which fix the normalization of the states.14 With these
definitions of the projectors we find that jkihkj

hkjki jki ¼ þ1jki; i.e.,
the projectors give a positive eigenvalueþ1 as expected. InEq. (50)
we are thus implicitly using the normalized projectors jkihkj

hkjki when
we write jkihkj.

16In Eq. (56) we have omitted cross terms between each
particle with itself, i.e., terms involving only one of the two
particles such as ∼ÊAÊA; ÊBÊB;…. Such terms are known as the
self-energy terms and do not contribute to the interaction between
the two particles. Analogous self-energy terms appear also in
electromagnetism when we try to compute the interaction
between the two charges (see for example Ref. [51]).

17It is instructive to compare the gravitational potential
obtained in Eq. (58) to the results for classical point particles
in the literature. We first transform from the reference frame of
the two traps to the center-of-mass reference frame where we
have p≡ pA ¼ −pB and denote r≡ jxA − xBj. From Eq. (58) we
then find the potential

ΔHg ¼ −
Gm2

r
− 7

Gp2

c2r
−

Gp4

c4m2r
; ð57Þ

which matches the results previously obtained using different
methods [55–58].
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find hp̂2
Ai ¼ hp̂2

Bi ∼ ℏmωm even for ground states of the two
harmonic oscillators [using Eq. (4) and the canonical
commutation relations].
Let us make a brief comment on Eq. (58). By quantizing

the graviton we have obtained

ΔĤg ≡ fðp̂A; p̂B; x̂A; x̂BÞ; ð59Þ
which is an operator-valued shift in the vacuum energy
depending on the matter operators. On the other hand, if we
would have assumed a classical gravitational field, we
could have only generated a real-valued shift ΔHg in a
complete analogy to what we have discussed in Eq. (30).
We will be interested in computing the lowest order

corrections for the final matter state jψfi due to the second
and third terms on the right-hand side of Eq. (58) (the first
term has already been discussed in Sec. V).

VII. COMPUTING THE CONCURRENCE
FOR CASE-1

We first discuss the second term on the right-hand side of
Eq. (58). We can extract the lowest order nontrivial
quantum interaction term18:

ĤAB ∼ 4
Gp̂Ap̂B

c2d
þ � � � : ð60Þ

Note that at the lowest order in the expansion of the
denominator, x̂A and x̂B do not occur, and the interaction
Hamiltonian is dominated by the momentum operators p̂A
and p̂B. We will now use the modes in Eq. (4) to find

ĤAB ≈ ℏgðâ† − âÞðb̂† − b̂Þ; ð61Þ
where the coupling is given by

g ¼ 2Gmωm

c2d
: ð62Þ

As we will see, the only term that is relevant in our case is
â†b̂†, which signifies that the final matter state is a linear
combination of j0ij0i and j1ij1i. In particular, using ĤAB
as the interaction Hamiltonian in Eq. (8) we find that the
only nonzero perturbation coefficient emerges from the
term ∼â†b̂†, and it is given by

C11 ¼ −
g

2ωm
: ð63Þ

Here we have used the fact that energy momentum
conservation constraints

E1 ¼ E0 þ ℏωm: ð64Þ

Note that it is twice the frequency of the harmonic
oscillators. In addition, we also have the term C00 ¼ 1,
corresponding to the unperturbed state.
We find that the final state in Eq. (7) thus simplifies to

(setting λ ¼ 1)

jψ fi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg=ð2ωmÞÞ2

p
�
j0ij0i − g

2ωm
j1ij1i

�
; ð65Þ

which is an entangled state involving the ground and the
first excited states of the harmonic oscillators (up to first
order in the perturbation theory). We compute the reduced
density matrix by tracing away system B (we recall that
our notation is jnijNi ¼ jniAjNiB). The concurrence in
Eq. (13) reduces to

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

1þ ðg=ð2ωmÞÞ4
1þ ðg=ð2ωmÞÞ2

�s
≈

ffiffiffi
2

p g
ωm

; ð66Þ

which is valid when the parameter g=ωm ≪ 1. After
inserting the coupling from Eq. (62), we find the con-
currence to be

C ¼ 2
ffiffiffi
2

p
Gm

c2d
: ð67Þ

Note that the degree of entanglement grows linearly with
the mass of the harmonic oscillators, does not depend on
the frequency, and scales inversely with the distance
between the two oscillators.
We find that the concurrence in the case of a static limit

given in Eq. (39) dominates over the nonstatic case, provided

ωmd
c

<
1ffiffiffi
2

p : ð68Þ

For example, with ωm ∼ 108 Hz we find that the threshold
value is obtained already at d ∼ 1 m. Hence, such effects
could in principle be tested already with a small tabletop
experiment, but the feasibility of the experiment has to be
studied separately.

VIII. COMPUTING THE CONCURRENCE
FOR CASE-2

From the last term in Eq. (58) we can extract the lowest
order nontrivial quantum interaction term19:

18Intuitively, it is again interesting to estimate the entangle-
ment phase. We find Δϕ ∼ 4GpapBτ=ðc2ℏdÞ, where τ is the
coherence timescale. As expected, such effects are thus typically
suppressed in comparison to the phase accumulated from the
exchange of graviton in the static case11.

19It is again interesting to estimate the approximate entangle-
ment phase. We find Δϕ ∼ 9Gp2

ap2
Bτ=ð4c4m2ℏdÞ, where τ is the

coherence timescale. As expected such effects are thus typically
suppressed in comparison to the phase accumulated from the
exchange of the graviton in the static case11.

MECHANISM FOR THE QUANTUM NATURED GRAVITONS TO … PHYS. REV. D 105, 106028 (2022)

106028-9



ĤAB ∼ −
9Gp̂2

Ap̂
2
B

4c4m2d
þ � � � : ð69Þ

Note that at the lowest order in the expansion of the
denominator, x̂A and x̂B do not occur, and the interaction
Hamiltonian is dominated by the momentum operators p̂A
and p̂B. We will now use the modes in Eq. (4) to find

ĤAB ≈ −ℏgðâ† − âÞ2ðb̂† − b̂Þ2; ð70Þ

where the coupling is given by

g ¼ 9Gℏω2
m

16c4d
: ð71Þ

The only term that is relevant in our case is ðâ†b̂†Þ2, which
signifies that the final matter state is a linear combination of
j0ij0i and j2ij2i. Hence, at the lowest order the gravitons
carry twice the energy of the harmonic oscillators,
i.e., ωk ¼ 2ωm.
In particular, using ĤAB as the interaction Hamiltonian in

Eq. (8), we find that the only nonzero perturbation
coefficient emerges from the term ∼â†2b̂†2 and is given by

C22 ¼
g

2ωm
: ð72Þ

Here we have used the fact that energy momentum
conservation constraints

E2 ¼ E0 þ 2ℏωm: ð73Þ

Note that it is twice the frequency of the harmonic
oscillators. In addition, we also have the term C00 ¼ 1,
corresponding to the unperturbed state.
We find that the final state in Eq. (7) thus simplifies to

(setting λ ¼ 1)

jψ fi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðg=ð2ωmÞÞ2

p
�
j0ij0i þ g

2ωm
j2ij2i

�
; ð74Þ

which is an entangled state involving the ground and the
second excited states of the harmonic oscillators (up to first
order in the perturbation theory).
Note that the occurrence of the second excited states from

the initial ground states requires the transition n → nþ 2,
where n is the number eigenvalue of the harmonic oscillator.
This distinct n → nþ 2 transition can be traced back to the
coupling to the gravitational field [see Eqs. (58), (69), and
(70)]. In particular, it emerges from the coupling ∝ ĥ11T̂11,
where ĥ11 can be identified with the degrees of freedom
associated with the “+” gravitational waves.13 In our case we
have T̂11 ∼ ðâ†Þ2; ðb̂†Þ2, and thus we find the couplings
ðâ†Þ2ĥ11 and ðb̂†Þ2ĥ11, which lead to the transition
n → nþ 2 for the two harmonic oscillators. In general,

one can expect the transitions n → n� 2 whenever we have
a coupling of the gravitational field to a harmonic oscillator.20

For example, it occurs also in the case of absorption/emission
of GWs of a specific polarization “+” [23].
We now compute the reduced density matrix by tracing

away system B (we recall that our notation is jnijNi ¼
jniAjNiB). The concurrence in Eq. (13) reduces to

C≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1 −

1þ ðg=ð2ωmÞÞ4
1þ ðg=ð2ωmÞÞ2

�s
≈

ffiffiffi
2

p g
ωm

; ð77Þ

which is validwhen the parameter g=ωm ≪ 1. After inserting
the coupling from Eq. (71), we find the concurrence to be

C ¼ 9
ffiffiffi
2

p
Gℏωm

16c4d
: ð78Þ

Note that the degree of entanglement grows linearly with the
frequency of the harmonic oscillators, does not depend on the
mass, and scales inversely with the distance between the two
oscillators. The concurrence in the case of the exchange of a
graviton in the static limit dominates over the nonstatic case,
provided

ω2
m <

mc4

ℏωmd2
: ð79Þ

20We will bring an intuitive understanding on the origin of the
transition n → nþ 2. We can decompose the gravitational field
into the plane waves ∼e−iðωkt−kxÞ, and Taylor expand in small
displacements up to order Oðx2Þ:

ĥ11ðt; xÞ ∼ ĥ11ðt; 0Þ þ
∂ĥ11ðt; xÞ

∂x
����
x¼0

ikx

−
1

2

∂2ĥ11ðt; xÞ
∂x2

����
x¼0

k2x2 þ � � � ; ð75Þ

where k ¼ ωk=c and ωk is the angular frequency of the
gravitational field mode. The first term on the right-hand side
of Eq. (75) is a constant and can be omitted, while the second
linear term ∼kx can be shown to vanish by considering the Fermi
normal coordinates [59], as a consequence of the equivalence
principle. From the remaining last term, we thus find:

ĥ11ðt; xÞ ∼ −
1

2c2
∂2ĥ11ðt; xÞ

∂t2
����
x¼0

x2; ð76Þ

where we have used ωk ¼ kc. From the gravitational coupling to
the matter component, T̂11ðxÞ ∝ δðx̂ − xÞ, where x̂ is the position
of the harmonic oscillator, we find the required quadratic
coupling, i.e., ĥ11T̂11 ∝ x̂2. It is this matter-gravity coupling
∝ x̂2 that leads to the transition n → nþ 2. Since x̂ ∝ ðâþ â†Þ
and x̂ ∝ ðb̂þ b̂†Þ, we find the terms ðâ†Þ2 and ðb̂†Þ2, respectively.
Combining these two terms, we then get precisely the term
ðâ†b̂†Þ2 that we found using the perturbation theory [see
derivation below Eq. (69)].
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In the original QGEM proposal [14], the proposed inter-
separation distance between the two quantum superposition
of particles with mass m ∼ 10−14 kg is kept roughly at d ∼
100 × 10−6 m in order to avoid Casimir induced entangle-
ment [14]. If we wish to witness the entanglement in the
nonstatic case, we would require extremely high frequency
oscillators [i.e., from Eqs. (79) we find ωm ≳ 1021 Hz],
beyond the reach of the current state of the art in a laboratory.
Let us highlight the link between LOCC/LOQC and the

quantized graviton. If the graviton were treated classically,
then the final state of the two harmonic oscillator states
would have never evolved to an entangled state such as
Eqs. (65) and (74)—in this case this amounts to γ̂11 and γ̂
components. Indeed, a classical field is unable to give the
operator-valued shift of the vacuum energy in Eq. (59)
which led to the quantum coupling in Eq. (61) (i.e., a cross
product of matter operators).

IX. DISCUSSION

In this paper we have considered a specific example to
reinforce the importance of the quantum gravitational
interaction in the QGEM protocol. The crucial observation
here is that the quantum nature of the gravitational
interaction yields an operator valued shift in the gravita-
tional Hamiltonians, ΔĤg [see Eqs. (30) and (58)].
Classical gravity will only yield a real-valued shift in ΔHg.
In particular, we considered the two quantum harmonic

oscillators separated by a distance d interacting via the
exchange of a graviton comprising the spin-2 and spin-0
components. We have shown that the quantum nature of the
graviton [for both spin-2 and spin-0, ĥ00 ≡ γ̂00 þ ð1=2Þγ̂] is
essential to create an entangled state with the ground and
excited states of the harmonic oscillators forming the
Schmidt basis.
Similar physics arises in the nonstatic case as well. The

quantum nature of the graviton (i.e., ĥ01 ≡ γ̂01 component)
will generate a two-mode squeezed state of the two
harmonic oscillators, Eq. (65). On the other hand, the ĥ11 ≡
γ̂11 − ð1=2Þγ̂ component is crucial to entangle with the
ground and the second excited states of the harmonic
oscillators. It is also interesting to note that these latter
states, Eq. (74), have never been presented previously, to
our knowledge, in any context in the vast literature on
entangled harmonic oscillators (for example in the quantum
optics or in the allied literature). They are particular to the
nature of spin-2 graviton.
We have obtained all the results relying only on the

elementary perturbation theory; the wave function was
evaluated up to the first order, and the correction to the
graviton vacuum was computed up to the second order (to
obtain the nonvanishing contribution to the vacuum
energy). Both the wave function calculations and the
correction to the energy of the vacuum suggest that the

quantum interaction between the graviton and the
matter is crucial to obtain entanglement, reinforcing that
the LOCC cannot yield or lead to the increment in the
entanglement.21

We computed the entanglement concurrence and showed
that the concurrence is always positive for a quantum
gravitational field (indicating entanglement), but would
remain zero for a classical gravitational field (no entangle-
ment). Moreover, the entanglement can be regarded as due
to the operator valued shifts of the vacuum energy.
So far we have kept our investigation limited to the local

quantum interaction between matter and the gravitational
field—our Ĥint was strictly local. It would be interesting to
study what would happen if the locality in the gravitational
interaction is abandoned [15,60–63]. Giving up local
gravitational interaction will help us to further investigate
the entanglement in theories beyond GR, and in quantum
theories of gravity where nonlocal interactions enter in
various manifestations (see [3,64–66]). We can also attempt
to compute the entanglement by modifying the graviton
propagator in nonperturbative formulations of quantum
gravity [67,68]. Similar computations to the entanglement
can be computed within perturbative quantum gravity but
with higher post-Newtonian Hamiltonians in 3þ 1 dimen-
sions (see [69,70]).
In summary, our results corroborate the importance of

the QGEM experiment, which relies on the fact that the two
quantum superposed masses kept at a distance can entangle
via the quantum nature of the graviton. This would be
crucial in unveiling the quantum properties of the spin-2
graviton which is hitherto a hypothetical particle respon-
sible for the fluctuations of the spacetime in the context of a
perturbative quantum gravity.

ACKNOWLEDGMENTS

M. T. and S. B. acknowledge EPSRC Grant No. EP/
N031105/1, S. B. the EPSRC Grant No. EP/S000267/1,
and M. T. funding by the Leverhulme Trust (RPG-
2020-197). M. S. is supported by the Fundamentals of
the Universe research program within the University of
Groningen. A. M.’s research is funded by the Netherlands
Organisation for Science and Research (NWO) Grant
No. 680-91-119.

21If one limits the discussion to the nonrelativistic models of
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cal degrees of freedom of the gravitation field. Here, we have
shown that in the perturbative canonical quantum theory of
gravity we can account for the dynamical degrees of freedom.
These are crucial to obtain the correct shift in the operator valued
gravitational energy which gives rise to the quantum matter-
matter interaction. Other theories beyond GR would require a
similar analysis of the dynamical degrees of freedom of the
gravitational field.
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