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We propose a family of dilaton gravity models possessing bouncing solutions with interiors connecting
separate asymptotically flat regions. We demonstrate that inner Cauchy horizons are stable given certain
initial conditions. We study causal structure and evaluate thermodynamic properties of black bounces using
Euclidean methods. Extremal bounces have zero temperature and can be considered as remnants. We
speculate that quantum fluctuations can dissolve event horizons in the case of black bounces, providing a
possible resolution to the information paradox.
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I. INTRODUCTION

The existence of black holes poses one of the most die-
hard riddles in theoretical physics. According to quantum
field theory, black holes evaporate into thermal radiation
[1]. This semiclassical result conflicts with the postulate of
unitary quantum evolution [2].
The gauge/string duality makes us believe this contra-

riety is apparent and black hole evaporation is nothing but a
sophisticated scattering process [3]. Nevertheless, conclu-
sive proof is still absent. On the contrary, the Almheiri-
Marolf-Polchinski-Sully (AMPS)-firewall argument sharp-
ens the information paradox as a no-go theorem reading
one of the commonly believed statements, namely, purity of
Hawking radiation, validity of the local quantum field
theory beyond the horizon scale, or “nondramatic” horizon,
should be omitted [4].
This claim is not resistant to possible loopholes.Therewas

recently a disclosure of so-called “islands” by using replica
wormholes to evaluate unitary form of the Page curve during
black hole evaporation [5]. This achievement stimulated a
revival of interest in low-dimensional models of gravity
which are perfect playgrounds to verify these new ideas [6].
Two-dimensional gravity is considered to be renormaliz-

able, suggesting that a solution to the information loss
problem is analytically tractable at least in principle. It also
allows us to leave aside unimportant higher-dimensional
complications. Holography provides a connection to con-
densed matter models like the Sachdev-Ye-Kitaev (SYK)
spin chain [7], so it can be potentially verified even in the
laboratory experiments [8].
In this paper, we investigate dilaton gravity models

which are modifications of the prolific Callan-Giddings-
Harvey-Strominger (CGHS) model [9],

SCGHS ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
e−2ϕRþ 4e−2ϕðð∇ϕÞ2 þ λ2Þ

−
1

2

XN
i¼1

ð∇fiÞ2
�
; ð1Þ

describing interactions of the metric gμν, dilaton ϕ, and N
massless scalar fields fi. The classical CGHS model is
exactly solvable, but it is not singularity free, and adding
one-loop corrections from the scalar fields does not resolve
this issue [10,11].
It was conjectured that quantum gravity effects should

resolve singularity. Instead of considering complicated full
dynamics at large curvatures, one may apply a “phenom-
enological” limiting condition Rμνρσ

2 < Λ2 with some
dimensionful Planck scale parameter Λ [12]. Next, one
can modify the gravity action (1) so that singularity is
dynamically avoided. By implementing the limiting cur-
vature condition as a constraint, the models were obtained
where gravitational collapse stops with the de Sitter core’s
formation [13,14].
A question remains if such solutions actually appear

from the UV-completed theory of quantum gravity. Two-
dimensional dilaton models can arise as reductions of
higher-dimensional gravityM2 × Kd ↦ M0

2 upon compac-
tification on some subspace Kd. In the string theoretic
framework, it becomes interesting if such a model repre-
sents an effective field theory consistent with underlying
quantum gravity or belongs to the so-called swampland
[15]. Generally, one expects that a two-dimensional model
does not necessarily have a consistent higher-dimensional
counterpart. In this sense, two-dimensional theories can
have some form of effective or approximate holographic
description which is yet to be understood [16].
Observations coming from Lorentzian path integral

approach insist that regular black holes are incompatible*fitkevich@phystech.edu
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with allowed gravitational effective actions [17,18].
Therefore, the considered nonsingular models could only
mimic some essential features of black-hole-like objects
(e.g., fuzzballs or Planck stars) in the true quantum gravity.
In this paper, we modify the gravity action (1) so that a

bounce happens instead of the de Sitter core. Therefore, a
given class of models contains vacuum solutions similar to
the Bardeen black holes. Classical black bounces are
described by a nonsingular metric but possess event
horizons and oscillate in global time connecting an infinite
number of asymptotically flat patches; cf. Ref. [19].
In the considered dilaton gravity models, there is a

threshold mass Mext corresponding to the extremal boun-
ces. Nonextremal bounces have masses M > Mext, and
solutions with M < Mext are horizonless. Black bounces
are more or less stable against matter perturbations which
can lead to the mass inflation phenomenon [20] at the
certain choice of initial condition.
We evaluate the temperature and the entropy of black

bounces using Euclidean methods. The extremal bounces
have zero temperature and do not evaporate and can be
considered as remnants. Mean field approximation reads
that the remnants are stable, but it seems likely they
undergo quantum decay. An infinitesimal amount of energy
is sufficient to dissolve the event horizon completely and all
the matter fallen into a would-be interior returns back after
the end of evaporation.
The paper is organized as follows. In Sec. II, we find

static classical solutions in the proposed class of models.
Section III addresses inclusion of the matter fields. In
Sec. IV, we discuss gathered results and illuminate some
prospects.

II. DEFORMATIONS OF CGHS MODEL

A. General linear dilaton vacuum model

We describe the class of dilaton gravity models pos-
sessing the linear dilaton vacuum (LDV),

ϕ ¼ −λr; R ¼ 0; ds2 ¼ −dt2 þ dr2; ð2Þ

as a solution of field equations. One finds it is provided by
the action,

SLDV ¼
Z

d2x
ffiffiffiffiffiffi
−g

p ðWðϕÞRþW00ðϕÞðð∇ϕÞ2 þ λ2ÞÞ þ Sm;

ð3Þ

where primes denote derivatives of WðϕÞ with respect to
its argument and Sm is an action for some matter which
we ignore in this section. The choices WðϕÞ ¼ e−2ϕ and
WðϕÞ ¼ e−2ϕ − Nϕ=48π correspond to the CGHS
and Russo-Susskind-Thorlacius (RST) [11] models,
respectively.

By varying Eq. (3) with respect to ϕ and gμν, one derives
field equations,

W0ðϕÞR ¼ 2W00ðϕÞ□ϕþW000ðϕÞðð∇ϕÞ2 − λ2Þ; ð4Þ

gμνðW00ðϕÞðð∇ϕÞ2 − λ2Þ þ 2W0ðϕÞ□ϕÞ
− 2W0ðϕÞ∇μ∇νϕ ¼ Tm

μν; ð5Þ

where Tm
μν ¼ ð−2= ffiffiffiffiffiffi−gp ÞδSm=δgμν is the matter stress

tensor. Equations (4) and (5) have the one-parametric set
of vacuum solutions,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ ; ϕ ¼ −λr;

fðrÞ ¼ 1þ M
λW0ðϕÞ ; ð6Þ

where M is an integration constant corresponding to the
Arnowitt-Deser-Misner (ADM) mass for asymptotically
flat spacetimes. Global properties of the solution (6) are
determined by a form of the function W0ðϕÞ.
If fðrÞ > 0 for all r, it defines a spacetime without event

horizons with configuration resembling a kink from field
theory. If fðrÞ changes its sign, the equation fðrhÞ ¼ 0
determines a position of the event horizons.
The Ricci curvature is given by formula R ¼ −∂2

rfðrÞ
for the Schwarzschild ansatz (6). Therefore, a singularity
occurs if W0ðϕsÞ ¼ 0 and W00ðϕsÞ ≠ 0 at r ¼ −ϕs=λ. This
observation allows us to construct models (3) possessing
nonsingular black holes with event horizons by explicit
choice of WðϕÞ. In the next section, we provide a concrete
example.
Let us calculate the thermodynamic properties of black

holes in the models (3). The solution contributing to the
partition function is a Euclidean continuation of Eq. (6),

dsE2 ¼ fðrÞdtE2 þ
dr2

fðrÞ ; 0 ≤ tE < βH; ð7Þ

which is periodic in imaginary time tE ¼ it and has no
conifold singularity on the event horizon r ¼ rh. The last
condition fixes the imaginary time period, which is the
inverse Hawking temperature βH ¼ TH

−1 ¼ 4π=f0ðrhÞ.
Relating the event horizon position with the black hole
mass by M ¼ −λW0ðϕhÞ, one finds the temperature

TH ¼ λ2W00ðϕhÞ
4πM

: ð8Þ

It appears that the extremal black hole has zero temperature
because W00ðϕhÞ ¼ 0 in this case. This is a signature of a
possible remnant at the end of black hole evaporation.
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The black hole entropy is given by

SBHðMÞ ¼
Z

M

Mext

dM
THðMÞ ¼ 4πWðϕhÞ − 4πWðϕh;extÞ; ð9Þ

where we had taken into account that the lightest black hole
has vanishing entropy by fixing limits of integration.

B. Example: sinh-CGHS model

Let us fix WðϕÞ ¼ −2 sinhð2ϕÞ in Eq. (3); namely,
consider the action

Ssinh ¼ −2
Z

d2x
ffiffiffiffiffiffi
−g

p
sinhð2ϕÞðRþ 4ð∇ϕÞ2 þ 4λ2Þ; ð10Þ

which describes two copies of the CGHS model plus
corrections at large jϕj ¼ λjrj. Left (ϕ > 0) and right
(ϕ < 0) copies interpolate smoothly near the “core” region
of proper size/duration ≃λ−1 across the line ϕ ¼ 0.
The general vacuum solution (6) becomes one with

fðrÞ ¼ 1 −
M

4λ coshð2λrÞ : ð11Þ

The metric component (11) is plotted in Fig. 1(a) for
different values of the mass parameter M.
One finds the Ricci scalar scales uniformly with massM.

It concentrates inside the core reaching the maximum
positive value

ffiffiffiffiffiffiffiffiffiffi
2=33

p
× λM at the borders and the mini-

mum negative value −λM at the core’s center; see Fig. 1(b).
One notes from Eq. (11) there is a threshold mass

Mext ¼ 4λ. If M < Mext, the metric (11) describes the
gravitational kink depicted in Fig. 1(c). If M > Mext, the
spacetime describes the nonextremal black bounce with
outer and inner event horizons at r ¼ �rh,

rh ¼
1

2λ
arcosh

�
M
Mext

�
; ð12Þ

so that fð�rhÞ ¼ 0. For the extremal bounce, one
has rh ¼ 0.
Substituting WðϕÞ ¼ −2 sinhð2ϕÞ into Eqs. (8) and (9),

one finds the black bounce entropy and temperature,

SBH ¼ 2π

λ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2
ext

M2

r
; ð13Þ

TH ¼ λ

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

M2
ext

M2

r
: ð14Þ

For large black bounces, the temperature approaches a
value λ=2π in agreement with the CGHS model limit.
The Schwarzschild coordinates ðt; rÞ in Eqs. (6) and (11)

are geodesically incomplete and describe the exterior region
at r > rh. To study the global structure of the eternal black
bounce, one needs to perform the coordinate extension.
Let us introduce new coordinates,

T ¼
ffiffiffiffiffiffiffiffiffi
gðrÞ

p
sinhð2πTHtÞ; R ¼

ffiffiffiffiffiffiffiffiffi
gðrÞ

p
coshð2πTHtÞ;

ð15Þ

where

gðrÞ ¼ ð1þ Mext
M ÞthðλrÞ − 2πTH=λ

ð1þ Mext
M ÞthðλrÞ þ 2πTH=λ

expð4πTHrÞ: ð16Þ

The function gðrÞ > 0 in the exterior region r > rh, so the
Schwarzschild coordinates ðt; rÞ cover a quadrant R > jTj.
Applying the coordinate transformation (15), one finds the
metric (6), (11) in the form

(a)

(b) (c)

FIG. 1. (a) Metric component fðrÞ for different masses M=λ ¼ 2, 4, 8. (b) Ricci curvature. (c) Penrose diagram for the gravitational
kink with M < Mext ¼ 4λ.
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ds2 ¼ fðrÞ
4π2TH

2gðrÞ ð−dT
2 þ dR2Þ; ð17Þ

where a conformal factor ∝ fðrÞ=gðrÞ is positive every-
where except at the inner horizon r ¼ −rh.
The metric (17) can be analytically continued into the

interior region if one redefines coordinates ðT; RÞ as

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−gðrÞ

p
coshð2πTHtÞ; R¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðrÞ

p
sinhð2πTHtÞ

ð18Þ

so that ðT; RÞ cover the entire spacetime patch
with r > −rh.
This patch is still not geodesically complete. The global

spacetime consists of the infinite number of patches with
the interior regions matched onto each other. The lines ϕ ¼
const belonging to Tþ-region of the ith patch and T− region
of the (iþ 1)th patch can be identified by a map,

Viþ1 ¼ −
κ

Vi
; Uiþ1 ¼ −

1

κUi
; ð19Þ

where Vi ¼ Ti þ Ri, Ui ¼ Ti − Ri are the light-cone coor-
dinates on the ith patch and κ is a residual parameter
corresponding to respective shifts of the identified patches
along the lines ϕ ¼ const. The resulting Penrose diagram is

presented in Fig. 2. Observers can travel in one time
direction in contrast to the traversable wormhole case.1

III. MATTER CONSIDERATIONS

A. Core stability?

One may wonder if a singularity appears in the core
region (jϕj≲ 1) in response to a perturbation by infalling
matter. We consider one of the massless scalar fields fi ≡ f
in Eq. (1) as a source of gravity with the stress tensor,

Tmμν ¼ ∇μf∇νf −
1

2
gμνð∇fÞ2; ð20Þ

on the rhs of Eq. (5). Notice that the matter appears to
antigravitate from the viewpoint of asymptotic observer on
the left side (ϕ > 0) of the spacetime because of the change
of sign inWðϕÞ. Nevertheless, it does not necessarily make
the model unstable because matter fields have manifestly
positive energy and the gravity sector does not have
propagating degrees of freedom in two dimensions.
Ingoing wave packet fðvÞ admits an exact solution with

the Vaidya metric,

(a) (b)

FIG. 2. Penrose diagrams for (a) the eternal nonextremal bouce and (b) the extremal bounce (a similar picture arises for the model of
Ref. [21]).

1An alternative term “timehole” was introduced to describe
such spacetimes in Ref. [22].
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ds2¼−Fðv;rÞdv2þ2dvdr;

Fðv;rÞ¼1−
MðvÞ

4λcoshð2λrÞ ; ∂vMðvÞ¼ð∂vfðvÞÞ2; ð21Þ

where MðvÞ is the Bondi mass; see Fig. 3. One finds the
Ricci scalar R ¼ −∂2

rFðv; rÞ is everywhere finite and
concludes the core is classically stable.
We need to remark that classical stability of the core does

not automatically mean the singularity is absent in the full
quantum regime. Indeed, the core region lives formally at
the strong coupling as WðϕÞ → 0, and the quantum
corrections can drastically modify its internal structure.
One may wonder if something peculiar happens already

after inclusion of the one-loop corrections from the matter
fields [23]. It was argued that the classical linear dilaton
vacuum is unstable in the CGHS model. The semiclassical
static solutions were found with the dilaton field bouncing
off the strong coupling region [24].
It is intriguing if a similar thing could happen in the

models with black bounces so that the strong coupling
problem is avoided. Unfortunately, we found this is not the
case; see Appendix A for details. In this paper, we assume
that singularity never appears and the strong coupling poses
no threat.
A minisuperspace approximation of the RST model

suggests there is a bouncing behavior [25]. The similar
picture is motivated by loop quantum gravity (LQG) [26].
Nevertheless, there can be severe obstacles to adopt such a
picture without hesitation; namely, LQG provides generic
mechanisms which may turn the singularity into an acausal
“Euclidean core” free of infinite curvature but impeding
deterministic evolution [27].

B. Mass inflation?

There is a widespread opinion that the regular black
holes with Cauchy horizons are unstable because of the

mass inflation phenomenon [20]. This effect is related to
exponential accumulation of matter near inner horizons
leading to formation of the spacelike singularity.
This instability may not necessarily be present [28,29],

but it was demonstrated that charged black holes in the
CGHS model suffer from the mass inflation both at
classical and semiclassical levels [30–32]. Therefore, it
becomes important to check whether the inner Cauchy
horizons are stable against matter perturbations in our case.
We assume that black bounces are large M ≫ Mext and

ignore evaporation effects. We approximate spacetime with
the CGHS model solution in the regions far from the core at
jϕj ≲ 1. The general CGHS solution with choice of the
metric ds2 ¼ −e2ρdvdu is

e−2ρ ¼ e−2ϕ ¼ −λ2vuþ gðvÞ þ hðuÞ;

gðvÞ ¼ 1

2

Z
v

0

dv0
Z þ∞

v0
dv00ð∂vfðv00ÞÞ2;

hðuÞ ¼ −
1

2

Z
u

−∞
du0

Z
u0

−∞
du00ð∂ufðu00ÞÞ2; ð22Þ

where gðvÞ, hðuÞ are functions depending on the matter
content [9].
One takes

gðvÞ ≃M
2λ

−
g∞

ðλvÞ2α ; α > 0; ð23Þ

which corresponds to a power-law tail fðvÞ ≃ f0 × ðλvÞ−α
as v → þ∞. After passing the core region, the wave packet
distorts according to Eq. (19),

fðvÞ ↦ f0 ð−λvÞα; ð24Þ

on the future side of the black bounce.
Substituting (24) into Eq. (22) and using R ¼ −2□ρ, one

obtains the Ricci scalar,

R ≃ 4λ2e2ϕ
�
M
2λ

þ ð2αþ 1Þg∞ð−λvÞ2α þ
EoutðuÞ
2λ

þ 2αþ 1

2α − 1

2αg∞
λ

ð−λvÞ2α−1∂uhðuÞ
�
; ð25Þ

to be finite at the Cauchy horizon if α > 1=2. Otherwise,
the outgoing wave packet crossing the Cauchy horizon at
v ¼ 0 triggers a singularity formation.
Concerning regularity of the solution across the Cauchy

horizon, Eq. (25) does not apply at v > 0 because a
continued solution depends on the undetermined matter
content in the future spacetime patch. The whole solution is
not analytic because of arbitrariness in the choice of the
wave packets living on the future side of the bounce. One
can only assume that the solution (22) describes the black
hole with fixed mass at v → þ0 so that

FIG. 3. The Vaidya solution (21) with a wave packet ∂vfðvÞ ¼
10λsechðλvÞ (blurry horizontal strip). Dark lines are outgoing null
geodesics. The inner and outer horizons are correspondingly
future and past attractors for null geodesics.
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gðvÞ ≃M
2λ

þ g0 ðλvÞ2α; α > 0: ð26Þ

It is only possible if the wave packets propagating along the
Cauchy horizon at v → þ0 have finite energy and there is
no singularity. More importantly, all the problems asso-
ciated with the mass inflation may be resolved by back-
reaction from matter fields on geometry as we argue in the
next section.

C. Remnants?

In the adiabatic approximation, the Hawking radiation
from black bounces is approximately thermal described by
a blackbody spectrum. The radiation flux can be related to a
mass change rate by the two-dimensional Stefan-
Boltzmann law, see Appendix B for derivation,

dM
dt

¼ −
π

12
T2
HðMÞ; ð27Þ

where temperature THðMÞ is given by Eq. (14).
One integrates out Eq. (27) and obtains

MðtÞ þMext

2
log

�
MðtÞ −Mext

MðtÞ þMext

�
¼ M0 −

λ2t
48π

; ð28Þ

where M0 ≫ Mext was assumed. Early times are character-
ized by the linear regime of evaporation corresponding to the
CGHS model according to Eq. (28). After losing the bulk of
its mass, evaporation of the black bounce slows down,

M ≃Mext

�
1þ exp

�
−

λ2t
24πMext

��
; ð29Þ

so it takes an infinite amount of time to settle down to the
extremal limit. This configuration seems to be stable and can
be regarded as a remnant; see Fig. 4(a). The possibility for
remnants in the CGHS model was previously advocated for
in Ref. [33].
One suspects it is unreliable to draw conclusion about

stability of the remnants from the semiclassical picture
because a precise dynamics at the late times (29) should
depend on the strong coupling behavior.
Indeed, one conjectures that the thermal fluctuations of

the fields near the event horizon can destroy the remnant. A
characteristic decay time can be estimated from thermo-
dynamic principles as follows. Recalling the Einstein
theory of fluctuations,

hMi ¼ −
1

Z
∂Z
∂β ; hM2i ¼ 1

Z
∂2Z
∂β2 ; ⇒

hðΔMÞ2i ¼ −
∂hEi
∂β ; ð30Þ

one finds using Eq. (14) a deviation

δM ¼ Mdec −Mext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔMÞ2i

q
¼ λ2

Mext
Oð1Þ ð31Þ

from the mean field result (29) assuming δM ≪ Mext.
Substitution into Eq. (29) gives an estimate,

tdec ≃ 48π
Mext

λ2
log

�
Mext

λ

�
; ð32Þ

for the expected remnant lifetime.

(a) (b)

FIG. 4. Penrose diagrams for (a) the evaporating black bounce formed from gravitational collapse of matter in the semiclassical
approximation and (b) the proposed scenario for the decaying remnant in the end of evaporation. Arrows represent Hawking radiation.
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Hereby, we propose a scenario for the entire evolution.
The black bounce approaching the extremal state is sub-
jected to stochastic quantum field fluctuations, which cause
transition from collapsing into expanding near-extremal
black bounce. This state releases the would-be interior
matter content into the same region of spacetime rendering
unitary evolution and then relaxes to a gravitational kink
state of unspecified mass; see Fig. 4(b). The aforemen-
tioned mass inflation problem also becomes removed
because the Cauchy horizon disappears, too, in this picture.

IV. CONCLUSIONS

We propose simple two-dimensional dilaton gravity
models with nonsingular black holes and Minkowski
spacetime as a trivial solution. The properties of the
nontrivial vacuum solution depend on its mass. There
are gravitational kinks (M < Mext), extremal (M ¼ Mext)
and nonextremal (M > Mext) black bounces. The gravita-
tional kinks have the same causal structure as the
Minkowski spacetime. The eternal bounces resemble
charged black holes with separate asymptotically flat
regions connected by one-way interiors.
We considered a particular model approximated by the

CGHS model except for the central core region of size λ−1.
This core stable against perturbations by classical infalling
matter. We found that mass inflation on the Cauchy
horizons can happen at a certain choice of initial conditions.
Euclidean methods allows us to calculate temperature

and entropy of the bounces. The extremal black bounces
are supposed to have zero temperature and entropy; hence,
they can be considered as remnants.
We argue that remnants are unstable because of the

thermal fluctuations of mass δM ≃ TH. Infinitesimally
small change can completely dissolve the event horizon.
This scenario of evaporation is analogous to one proposed
for regular black holes in Refs. [34,35]. Loop quantum
gravity motivates the similar picture of evaporation for real
black holes [36].
Let us discuss some prospects for future research. The next

step will be further development of the S-matrix approach,
e.g., in the spirit of ’t Hooft’s black hole ansatz [37].
Previously, we calculated semiclassical scattering ampli-

tudes using the regularization method in the CGHS model
with a reflecting boundary ϕ ¼ ϕ0 and a massive pointlike
particle as matter [38]; see also Refs. [39,40] for more
details on this model. Obtained results are consistent with
unitarity, but analogous calculation for complete theory
with quantum matter fields is still missing.
The same method can be applied to the sinh-CGHS

model in attempt to find the regular solution contributing to
the path integral. One may expect that, given initial and
final quantum states, namely, the high-energy collapsing
wave packet and outgoing low-energy Hawking radiation,
the regularization method produces a horizonless spacetime
envisioned in Sec. III C.

Another interesting path for research is to consider
AdS2=CFT1 correspondence in the spirit of the Almheiri
and Polchinski (AP) model [41]. The addition of the term

SAdS2 ¼ −8Λ
Z

d2x
ffiffiffiffiffiffi
−g

p ðϕcoshð2ϕÞ þϕ2 sinhð2ϕÞÞ ð33Þ

to the action (10) replaces vacuum solution (11) with
fðrÞ ¼ 1 −M=4λ coshð2λrÞ þ Λr2 so that it describes
asymptotically AdS2 background. The understanding of
gravitational scattering in terms of the dual boundary
theory may shed more light on holography in realistic
models of quantum gravity.
An additional important question concerns the islands

method for calculating the entanglement entropy [6]. It
seems reasonable to connect the replica wormholes with the
saddle-point solutions contributing to scattering ampli-
tudes. Models with nonsingular black holes are perfectly
suited for this task.
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APPENDIX A: QUANTUM KINKS IN SINH-CGHS

In this Appendix, we investigate static solutions in the
model (10) with the one-loop corrections from N matter
fields. This is accounted for by adding the Polyakov action
[23], which can be recast in the local form,

Sone−loop ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∇χÞ2 þ

ffiffiffiffiffiffiffiffi
N
48π

r
χR

�
; ðA1Þ

by using an auxiliary field χ representing contribution from
all N scalar fields given vacuum background state. By
varying Eq. (A1), one finds the field equation,

□χ ¼ −
ffiffiffiffiffiffiffiffi
N
48π

r
R; ðA2Þ

and the energy-momentum tensor,

Tχ
μν ¼ ∇μχ∇νχ −

1

2
gμνð∇χÞ2 þ

ffiffiffiffiffiffiffiffi
N
12π

r
ð∇μ∇νχ − gμν□χÞ;

ðA3Þ

on the rhs of Eq. (5).
With choice of the metric with the line element

ds2¼ e2αðrÞð−dt2þdr2Þ, one derives differential equations,

BLACK BOUNCES AND REMNANTS IN DILATON GRAVITY PHYS. REV. D 105, 106027 (2022)

106027-7



W0ðϕðrÞÞα00ðrÞ þW00ðϕðrÞÞϕ00ðrÞ

þ 1

2
W000ðϕðrÞÞððϕ0ðrÞÞ2 − λ2e2αðrÞÞ ¼ 0; ðA4Þ

N
24π

α00ðrÞ þW0ðϕðrÞÞϕ00ðrÞ þW00ðϕðrÞÞððϕ0ðrÞÞ2

− λ2e2αðrÞÞ ¼ 0; ðA5Þ

for unknown functionsϕðrÞ,αðrÞ. Initial conditions are fixed
by asymptotic behavior of fields.
Let us consider Eq. (3) with WðϕÞ ¼ e−2ϕ − a × e2ϕ

interpolating between the CGHS (a ¼ 0) and sinh-CGHS
(a ¼ 1) models. We solved Eqs. (A4) and (A5) numerically
in Mathematica using the implicit Runge-Kutta method.
We present results in Fig. 5.
The numerical solution with a ¼ 0 reproduces quantum

kinks obtained in Ref. [24]. An analogous picture arises in
the sinh-CGHS models if the number of scalar fields is
comparably large. In both cases, the Ricci scalar R ¼
−2e−2α∂2

rα diverges as r → −∞, and the quantum kink has
singularity at the left infinity. Regular solutions do not have
bouncing behavior of the dilaton field.

APPENDIX B: HAWKING RADIATION FROM
WEYL ANOMALY

We revisit here the calculation of the renormalized
energy-momentum tensor of the massless scalar field in

two dimensions. One recalls the expectation value of its
trace is anomalous,

hT̂μ
μiψ ¼ −

R
24π

; ðB1Þ

given a quantum state of the matter.
For the metric with a line element ds2 ¼ −fðrÞdvdu

where r is an implicit function of v − u, one finds

hTvviψ ¼ 1

96π

�
f00ðrÞfðrÞ − 1

2
ðf0ðrÞÞ2

�
þ gψðvÞ; ðB2Þ

hTuuiψ ¼ 1

96π

�
f00ðrÞfðrÞ − 1

2
ðf0ðrÞÞ2

�
þ hψðuÞ; ðB3Þ

where gψðvÞ and hψ ðuÞ are function determined by the
quantum state.
The Unruh state is given by

gUnruhðvÞ ¼ 0; hUnruhðuÞ ¼
λ2

48π

�
1 −

M2
ext

M2

�
; ðB4Þ

where we used Eq. (11). This corresponds to the Hawking
flux from the collapsing black bounce with M > Mext.
Calculation shows that hTuuiUnruh is regular at the event
horizon and future infinity where it gives a blackbody
radiation flux with the temperature (14).

(a) (b)

FIG. 5. (a) Set of numerical solutions interpolating between the CGHS and sinh-CGHS models. Mass M ¼ 10−3 ×Mext as seen by
asymptotic observer and number of fields N ¼ 1. (b) Transition from classical kink of mass M ¼ 0.5 ×Mext to quantum kink in the
sinh-CGHS model with growing number of quantum fields N.
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