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Dynamical realizations of the Lifshitz group are studied within the group-theoretic framework. A
generalization of the 1d conformal mechanics is constructed, which involves an arbitrary dynamical
exponent z. A similar generalization of the Ermakov-Milne-Pinney equation is proposed. Invariant
derivative and field combinations are introduced, which enable one to construct a plethora of dynamical
systems enjoying the Lifshitz symmetry. A metric of the Lorentzian signature in (dþ 2)-dimensional
spacetime and the energy-momentum tensor are constructed, which lead to the generalized Ermakov-
Milne-Pinney equation upon imposing the Einstein equations. The method of nonlinear realizations is used
for building Lorentzian metrics with the Lifshitz isometry group. In particular, a (2dþ 2)-dimensional
metric is constructed, which enjoys an extra invariance under the Galilei boosts.
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I. INTRODUCTION

The nonrelativistic version of the AdS=CFT-
correspondence [1,2] extends the holographic dictionary
to encompass strongly coupled condensed matter systems.
It relies upon finite-dimensional conformal extensions
of the Galilei algebra, the most general of which is the
l-conformal Galilei algebra [3,4]. The latter builds upon
generators of time translation, dilatation, and special
conformal transformation, which form soð2; 1Þ subalgebra,
spatial rotations, as well as a chain of vector generators
describing spatial translations, Galilei boosts, and constant
accelerations.
If the special conformal transformation is discarded, the

generators of Galilei boosts and constant accelerations can be
omitted as well. Furthermore, the commutator of temporal
translation and dilatation can be deformed to include an
arbitrary constant z known as the dynamical exponent, giving
rise to the Lifshitz algebra (see, e.g., Ref. [5]). Initiated in [6],
the Lifshitz holography attracted considerable attention1 and
active research in this direction continues to date.
The goal of this work is to explore dynamical realiza-

tions of the Lifshitz group within the group-theoretic
framework [9].

In the next section, a real Lie algebra formed by the
generators of translation and dilatation in one-dimensional
space is considered and a generalization of the conformal
mechanics [10] is constructed which involves an arbitrary
dynamical exponent z. The general solution to the corre-
sponding equation of motion is given in terms of the
hypergeometric function [11]. A transformation of the
temporal variable and the dilaton field is given which
links the model to the system with z ¼ 1 in [10].
In Sec. III, the 1d conformal mechanics in a harmonic

trap is discussed. A generalization involving arbitrary
dynamical exponent z is proposed which is further used
to define a generalized Ermakov-Milne-Pinney equation.
Section IV is focused on dynamical realizations of the

Lifshitz group in mechanics. In particular, the method of
nonlinear realizations [9] is used to determine the invariant
derivative and field combinations, which are the building
blocks for constructing dynamical systems. In general, such
models describe a particle moving in a d-dimensional
space, which is driven by the conformal mode introduced
in Sec. II. In this setting, the latter acts as a kind of a cosmic
scale factor.
Section V adds to the recent studies in [12,13], which

incorporated a cosmic scale factor within Eisenhart’s
approach [14] (see also Ref. [15,16]) to geometrization
of classical mechanics. A metric of the Lorentzian signature
in (dþ 2)-dimensional spacetime and the energy-
momentum tensor are constructed, which result in the
generalized Ermakov-Milne-Pinney equation upon impos-
ing the Einstein equations. The corresponding null geo-
desics describe a variant of the Lifshitz oscillator driven by
the conformal mode.
In Sec. VI, the group-theoretic construction is applied to

build Lorentzian metrics possessing the Lifshitz isometry
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group. In particular, we reproduce the (dþ 2)-dimensional
metric in [6] as well as construct its (2dþ 2)-dimensional
extension enjoying an extra invariance under the Galilei
boosts.
In Appendix A, symmetries of the 1d conformal

mechanics in a harmonic trap are discussed. Appendix B
contains a group-theoretic analysis of the Lifshitz algebra
extended by the generator of Galilei boosts.
Throughout the paper, summation over repeated indices

is understood.

II. THE CONFORMAL MODE

First, it is worth reminding the reader how the conven-
tional 1d conformal mechanics is introduced in [10].
Consider the conformal transformation in one dimension

t0 ¼ αtþ β

γtþ δ
; αδ − βγ ¼ 1; ð1Þ

a primary field ρðtÞ of the conformal weight 1
2

ρ0ðt0Þ ¼ ð _t0Þ12ρðtÞ; ð2Þ

where the dot designates the derivative with respect to t,
and the action functional [10]

S ¼ 1

2

Z
dt

�
_ρ2 −

γ2

ρ2

�
; ð3Þ

with a constant γ. Being applied to (3), the transformations
(1) and (2) yield

S0 ¼ Sþ 1

4

Z
dt

��
ρ2
̈t0
_t0

�
_

− ρ2
�⃛
t 0

_t0
−
3

2

�̈
t0

_t0

�
2
��

: ð4Þ

The last term involves the Schwarzian derivative
⃛t 0
_t0 −

3
2
ð̈t0_t0Þ2,

which is known to vanish for the SLð2; RÞ transformation
in (1), while the second term is a total derivative. Thus, the
action (3) describes a self-interacting 1d conformal field
theory, γ being a coupling constant. Alternatively, the
system can be regarded as a particle moving on a real line
parametrized by the coordinate ρ in the external field

potential UðρÞ ¼ γ2

ρ2
. In the latter interpretation, γ links to

the strength of the external force.
As was demonstrated in [17], the model (3) can be

obtained by applying the conventional group-theoretic
construction [9] to the Lie algebra slð2; RÞ ≃ soð2; 1Þ.
Given the structure relations of slð2; RÞ

½H;D� ¼ iH; ½H;K� ¼ 2iD; ½D;K� ¼ iK; ð5Þ

where H, D, and K generate translation, dilatation, and
special conformal transformation, respectively, one con-
siders the group-theoretic element

g ¼ eitHeisðtÞKeiuðtÞD; ð6Þ

where t is a temporal variable and sðtÞ, uðtÞ are the
Goldstone fields. Using the Baker-Campbell-Hausdorff
formula

eiATe−iA ¼ T þ
X∞
n¼1

in

n!
½A; ½A;…½A; T�…��|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

; ð7Þ

one computes the Maurer-Cartan one-forms

g−1dg ¼ iωHH þ iωKK þ iωDD; ð8Þ

where

ωH¼e−udt; ωK¼euð_sþs2Þdt; ωD¼ð _u−2sÞdt; ð9Þ

which hold invariant under the SOð2; 1Þ-transformation
g0 ¼ eiαHeiσKeiβD · g parametrized by real numbers α, β,
and σ.
Introducing a new field ρ ¼ e

u
2 and imposing the

SOð2; 1Þ-invariant constraints [17]

ωD ¼ 0; ωK ¼ γ2ωH; ð10Þ

where γ is interpreted as a coupling constant, one can use
the first condition in (10) to eliminate s ¼ _ρ

ρ from the
consideration, while the second restriction reproduces the
conformal mechanics equation of motion [10]

ρ̈ ¼ γ2

ρ3
: ð11Þ

Before we turn to a generalization of (11) involving an
arbitrary dynamical exponent z, it proves instructive to
obtain (11) without invoking the generator of special
conformal transformation K as the latter does not belong
to the Lifshitz algebra. Note also that, as far as (11) is
concerned, a constant of the motion associated with the
special conformal transformation is functionally dependent
on other integrals of motion [10] and, hence, can be
discarded.
Setting s ¼ 0 in (9) and specifying to a subalgebra

formed by H and D, one gets the invariant derivative
D ¼ eu d

dt and the invariant field Du. Using them to
construct the equation of motion

D2uþ hðDuÞ2 ¼ 2γ2; ð12Þ

where h and γ are real constants, one can fix h from the
requirement that (12) takes the conventional conservative

mechanics form ρ̈ ¼ − ∂UðρÞ
∂ρ after introducing ρ ¼ e

u
2. This

yields h ¼ − 1
2
and reduces (12) to (11).
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We are now in a position to formulate a generalization of
the conformal mechanics (11) which involves an arbitrary
dynamical exponent z. Let us modify the first commutator
in (5) in accord with the Lifshitz algebra

½H;D� ¼ izH: ð13Þ

Introducing the group-theoretic element

g ¼ eitHeiuðtÞD; ð14Þ

and repeating the steps above, one finds the invariant
derivative D ¼ ezu d

dt and the invariant field Du, while
Eq. (12) yields2

ρ̈ ¼ ð2z − 1Þγ2
ρ4z−1

; ð15Þ

after setting ρ ¼ e
u
2, h ¼ 1−2z

2
(the latter condition removes

the _ρ2-term from the equation of motion) and rescaling the

coupling constant γ2

2z−1 → γ2.
Symmetries of (15) are obtained from g0 ¼ eiαHeiβD · g,

which gives

t0 ¼ tþ α; ρ0ðt0Þ ¼ ρðtÞ;
t0 ¼ eβzt; ρ0ðt0Þ ¼ e

β
2ρðtÞ; ð16Þ

where α and β are real finite parameters. Note that (15)
reduces to (11) at z ¼ 1.
The general solution to (15) is found by integrating a first

order differential equation which follows from the expres-
sion for the conserved energy

E ¼ 1

2

�
_ρ2 þ γ2

ρ4z−2

�
⇒ �ðt − t0Þ

¼ 2F1ð12 ; 1
2−4z ; 1þ 1

2−4z ;
γ2

2Eρ4z−2Þ · ρffiffiffiffiffiffi
2E

p ; ð17Þ

where t0 is a constant of integration and 2F1ða; b; c; xÞ is
the hypergeometric function [11].3 When obtaining (17),
the following identity

2F1

�
1

2
;

1

2 − 4z
; 1þ 1

2 − 4z
; x

�

þ ð2 − 4zÞx d
dx

�
2F1

�
1

2
;

1

2 − 4z
; 1þ 1

2 − 4z
; x

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p

proved helpful. Figure 1 displays the graph of t ¼
2
F1ð12; 1

2−4z;1þ 1
2−4z;

γ2

2Eρ4z−2
Þ·ρffiffiffiffi

2E
p for E ¼ 1

2
, γ ¼ 1, z ¼ 0.8 (bottom),

z ¼ 1 (middle), z ¼ 1.2 (top).
In order to keep the parallel with the conformal mechan-

ics, in what follows we assume z > 1
2
such that (15)

describes scattering off the center. In particular, the
numerical value of z can be used to engineer a distance
from the center ρ ¼ 0 to the turning point at

ρ0ðzÞ ¼
�
γ2

2E

� 1
4z−2

⇒ ρ0ðzÞ ¼ ρ0ð1Þ 1
2z−1: ð18Þ

Figure 2 displays the graph of UðρÞ ¼ γ2

2ρ4z−2
for γ ¼ 1,

z ¼ 0.8 (top), z ¼ 1 (middle), z ¼ 1.2 (bottom).
It is worth mentioning that the action functional asso-

ciated with Eq. (15)

S ¼ 1

2

Z
dt

�
_ρ2 −

γ2

ρ4z−2

�
ð19Þ

scales as S0 ¼ eβð1−zÞS under the dilatation transformation
in (16). In particular, for z ¼ 1 one can construct an extra
integral of motion by applying Noether’s theorem [10]

D ¼ 1

2
ρ_ρ − Et; ð20Þ

which jointly with E can be used to build the general
solution to (11) by purely algebraic means

1 2 3 4 5

–2

2

4

FIG. 1. The graph of t ¼ 2
F1ð12; 1

2−4z;1þ 1
2−4z;

γ2

2Eρ4z−2
Þ·ρffiffiffiffi

2E
p for E ¼ 1

2
, γ ¼ 1,

z ¼ 0.8 (bottom), z ¼ 1 (middle), z ¼ 1.2 (top).

2Because in general 4z − 1 is an arbitrary real number, one has
to assume that ρ is dimensionless, while ½γ� ¼ ½t−1�.

3Because the hypergeometric series 2F1ða; b; c; xÞ is ill de-
fined for c ¼ −n, n being a natural number, a decreasing
sequence zn ¼ 3þ2n

4ð1þnÞ, which starts at 5
8
and converges to 1

2
, will

be excluded from the consideration. Note also that the hyper-
geometric series, which specifies 2F1ða; b; c; xÞ, converges for
jxj < 1 only [11]. The domain of the function in (17) is consistent
with the convergence condition.
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ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4ðDþ EtÞ2

2E

r
: ð21Þ

This solution also illustrates the fact that a constant of the
motion associated with the special conformal transforma-
tion is redundant for describing the conventional conformal
mechanics [10].
As far as the single commutator (13) is concerned, the

parameter z can be removed from the consideration by
rescaling D. In particular, redefining the field and the
temporal variable in accord with

ρðtÞ ¼ ρ̃ðτÞ 1
2z−1; dt ¼ dτ

ð2z − 1Þρ̃ðτÞ2z−22z−1
; ð22Þ

or, equivalently

ρ̃ðτÞ ¼ ρðtÞ2z−1; dτ ¼ ð2z − 1ÞρðtÞ2ðz−1Þdt; ð23Þ

one can link the system involving arbitrary z, which is
described by ρðtÞ, to the model with z ¼ 1 featured by ρ̃ðτÞ.
Yet, if one is interested in the full Lifshitz algebra (see
Sec. IV), the redefinition of D would result in z resurfacing
in other commutators. In what follows, we stick to the
conventional notation which keeps z manifest in (13).

In concluding this section, we note that given ρ̃ðτÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2þ4ðDþEτÞ2

2E

q
the integral

t ¼
Z

dτ

ð2z − 1Þρ̃ðτÞ2z−22z−1

yields an expression which involves the hypergeometric

function 2F1ð12 ; z−1
2z−1 ;

3
2
;− 4ðDþEτÞ2

γ2
Þ. Hence, it appears prob-

lematic to express τ in terms of t and subsequently use the
invariant 1

2
ρ̃ _̃ρ−Eτ for constructing the general solution

to (15) by purely algebraic means.

III. THE CONFORMAL MODE
IN A HARMONIC TRAP

The soð2; 1Þ invariance of (11) is preserved (see
Appendix A) if one introduces into the consideration a
harmonic trap potential

ρ̈þ ω2ρ ¼ γ2

ρ3
; ð24Þ

where ω is a constant frequency. The general solution
to (24) describes oscillations around the equilibrium point
ρ0 ¼

ffiffiffiγ
ω

p

ρðtÞ ¼ 1

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ω2γ2

q
cos ð2ωðtþ t0ÞÞ

r
; ð25Þ

where E, t0 are constants of integration, and it reduces to
(21) in the limit ω → 0.
Redefining the evolution parameter and the field in

accord with (23), one obtains an analogue of (24) involving
an arbitrary dynamical exponent z

ρ̈þ ð2z − 1Þω2ρ4z−3 ¼ ð2z − 1Þγ2
ρ4z−1

: ð26Þ

The latter is characterized by the conserved energy

E ¼ 1

2

�
_ρ2 þ ω2ρ4z−2 þ γ2

ρ4z−2

�
: ð27Þ

Similarly to (24), the generalized system describes oscil-
lations around the equilibrium point

ρ0 ¼
�
γ

ω

� 1
4z−2

: ð28Þ

Figure 3 plots the potential energy for ω ¼ 1, γ ¼ 1,
z ¼ 0.8 (bottom), z ¼ 1 (middle), z ¼ 1.2 (top).
Because it proves problematic to evaluate the integral

t¼
Z

dτ

ð2z− 1Þ
�
1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−ω2γ2

p
cos ð2ωðτþ τ0ÞÞ

q �2z−2
2z−1

in a closed form, only implicit solutions to (26) can be
obtained via the link (22) to z ¼ 1 variant in (24). For a
similar reason, the conformal invariance of (24) is no longer
transparent after switching to the partner equation (26).
Concluding this section, we note that allowing ω in (26)

to be time-dependent, i.e., ω → ΩðtÞ, one obtains a
generalization of the Ermakov-Milne-Pinney equation4

2 4 6 8 10

0.1

0.2

0.3

0.4

FIG. 2. Potential energy UðρÞ ¼ γ2

2ρ4z−2
for γ ¼ 1, z ¼ 0.8 (top),

z ¼ 1 (middle), z ¼ 1.2 (bottom).

4For a recent account of the Ermakov-Milne-Pinney equation
see Ref. [13].
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ρ̈þ ð2z − 1ÞΩ2ρ4z−3 ¼ ð2z − 1Þγ2
ρ4z−1

; ð29Þ

which involves an arbitrary dynamical exponent z. Although
ω → ΩðtÞ breaks the Lifshitz symmetry, in Sec. V we
construct a metric of the Lorentzian signature in (dþ 2)-
dimensional spacetime and the energy-momentum tensor,
which involve a cosmic scale factor ρðtÞ and lead to (29)
after imposing the Einstein equations, thus generalizing the
recent studies in [12,13].

IV. DYNAMICAL REALIZATIONS OF THE
LIFSHITZ GROUP IN MECHANICS

Let us now turn to the full Lifshitz algebra

½H;D� ¼ izH; ½D;Pi� ¼ −
i
2
Pi;

½Mij;Pk� ¼ −iδikPj þ iδjkPi;

½Mij;Mkl� ¼ −iδikMjl − iδjlMik þ iδilMjk þ iδjkMil; ð30Þ

where Pi andMij, i ¼ 1;…; d, are the generators of spatial
translations and rotations, respectively, and δij is the
Kronecker delta. In a nonrelativistic spacetime parame-
trized by t and xi, i ¼ 1;…; d, the algebra can be realized
by the differential operators

H¼ i∂t; D¼ izt∂tþ
i
2
xi∂i; Pi¼ i∂i; Mij¼ ixi∂j− ixj∂i;

ð31Þ

where ∂t ¼ ∂
∂t, ∂i ¼ ∂

∂xi.
Note that, because the temporal and spatial coordinates

scale differently under the dilatation, a conventional kinetic
term cannot be used to construct invariant action func-
tionals. A way out is to introduce an extra coordinate,
transforming similarly to the spatial coordinates, and use it
for building the Lifshitz-invariant derivative and field

combinations. The method of nonlinear realizations [9]
provides a rigorous way of implementing the idea. A
similar consideration of the l-conformal Galilei group
has been reported in [18,19].
In order to construct dynamical systems invariant under

transformations forming the Lifshitz group, one starts with
the coset space element

g ¼ eitHeiuðtÞDeixiðtÞPi × SOðdÞ; ð32Þ

and then computes g−1dg, which gives rise to the Maurer-
Cartan oneforms

e−zudt; du; dxi þ
1

2
xidu: ð33Þ

The forms hold invariant under the Lifshitz transformations
acting on the temporal variable t and the Goldstone fields
uðtÞ, xiðtÞ

t0 ¼ tþ α; u0ðt0Þ ¼ uðtÞ; x0iðt0Þ ¼ xiðtÞ;
t0 ¼ eβzt; u0ðt0Þ ¼ uðtÞ þ β; x0iðt0Þ ¼ xiðtÞ;
t0 ¼ t; u0ðt0Þ ¼ uðtÞ; x0iðt0Þ ¼ xiðtÞ þ aie−

u
2; ð34Þ

which can be obtained by analyzing the left action of the
group on the coset space g0 ¼ eiαHeiβDeiaiðtÞPi · g.
Note that a parametrization of the coset space element

chosen in (32) results in the dilatation transformation which
leaves xiðtÞ inert. Taking into account the identity

eitHeiuðtÞDeixiðtÞPi ¼ eix̃iðtÞPieitHeiuðtÞD; x̃iðtÞ ¼ e
uðtÞ
2 xiðtÞ;

ð35Þ

which is readily established by making use of the Baker-
Campbell-Hausdorff formula (7), one can verify that the
pair ðt; x̃iÞ transforms in the conventional way under the
temporal translation, dilatation and spatial translation

t0 ¼ tþ α; ρ0ðt0Þ ¼ ρðtÞ; x̃0iðt0Þ ¼ x̃iðtÞ;
t0 ¼ eβzt; ρ0ðt0Þ ¼ e

β
2ρðtÞ; x̃0iðt0Þ ¼ e

β
2x̃iðtÞ;

t0 ¼ t; ρ0ðt0Þ ¼ ρðtÞ; x̃0iðt0Þ ¼ x̃iðtÞ þ ai; ð36Þ

where we switched form u to ρ ¼ e
u
2.

From (33) one gets the invariant derivative and fields

D ¼ ezu
d
dt

; Du; Dxi þ
1

2
xiDu; ð37Þ

which are the building blocks for constructing equations of
motion. For the conformal mode ρ ¼ e

u
2 it seems reasonable

to accept the variant (15) in Sec. II, while one is at liberty to
choose any combination for the spatial coordinates, includ-
ing higher derivative variants.

1 2 3 4 5

5

10

15

20

25

FIG. 3. The graph of UðρÞ ¼ 1
2
ðω2ρ4z−2 þ γ2

ρ4z−2
Þ, for ω ¼ 1,

γ ¼ 1, z ¼ 0.8 (bottom), z ¼ 1 (middle), z ¼ 1.2 (top).
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For example, the equation

D
�
Dxi þ

1

2
xiDu

�
þ wDu

�
Dxi þ

1

2
xiDu

�
¼ 0; ð38Þ

where w is a constant, describes the oscillator

ẍi þ γðtÞ_xi þ ωðtÞxi ¼ 0; ð39Þ

involving the time-dependent frequency and damping
coefficients

γðtÞ ¼ ð2zþ 2wþ 1Þ _ρ
ρ
; ωðtÞ ¼ ρ̈

ρ
þð2zþ 2w− 1Þ

�
_ρ

ρ

�
2

:

ð40Þ

Interestingly enough, for w ¼ 1−2z
2

it can be cast into the
total derivative form

ðρxiÞ̈ ¼ 0; ð41Þ

which holds invariant under a larger symmetry group (see
Appendix B). In particular, choosing ρ to be the evolution
parameter, from (17) one gets

xiðρÞ¼
αi
ρ
þ 2F1

�
1

2
;

1

2−4z
;1þ 1

2−4z
;

γ2

2Eρ4z−2

�
βi; ð42Þ

where αi, βi are constant vectors and ρ ∈ ðρ0ðzÞ;∞Þ, where
ρ0ðzÞ is the turning point (18). Being the sum of two vectors
with varying length, (42) describes a curve on a two-
dimensional plane in d dimensions. Figure 4 displays the
parametric plot ðx1ðρÞ; x2ðρÞÞ for E ¼ 1

2
, γ ¼ 1, αi ¼ ð1; 1Þ,

βi ¼ ð1;−1Þ, z ¼ 0.8 (left), z ¼ 1 (middle), z ¼ 1.2
(right), ρ ∈ ½1; 8�.
Interesting higher derivative models invariant under the

Lifshitz group can be constructed by making recourse to
curvature invariants of a curve in arbitrary dimension (see,
e.g., Ref. [20]). For example, a regular curve in three-
dimensional space xi ¼ xiðtÞ, i ¼ 1, 2, 3, is characterized
by the curvature and torsion

κ1 ¼
j_x⃗ × ̈x⃗j
j_x⃗j3

; κ2 ¼
ð_x⃗ × ̈x⃗Þ · ⃛x⃗
j_x⃗ × ̈x⃗j2

: ð43Þ

Implementing the substitution

_xi → Dxi þ
1

2
xiDu; ẍi → D

�
Dxi þ

1

2
xiDu

�
;

⃛xi → D2

�
Dxi þ

1

2
xiDu

�
; ð44Þ

in κ1 and κ2 above and using them to construct a
Lagrangian density Lðκ1; κ2Þ [in doing so ρ ¼ e

u
2 is to

be regarded as a fixed function obeying (15)], one can build
a geometrically inspired action functional

S ¼
Z

dte−zuLðκ1; κ2Þ; ð45Þ

from which an equation of motion for xi can be obtained.
The model (45) will be studied in more detail elsewhere.

V. CONFORMAL MODE AS A COSMIC
SCALE FACTOR

Let us turn back to the conformal mechanics in the
harmonic trap studied in Sec. III, choose z ¼ 1 and rewrite
the conserved energy (27) as

_ρ2 ¼ −
γ2

ρ2
− ω2ρ2 þ 2E: ð46Þ

Remarkably enough, this equation is akin to the Friedmann
equation describing the radiation dominated Universe

_ρ2 ¼ C
ρ2

þ Λ
3
ρ2 − κ; ð47Þ

where ρðtÞ is a cosmic scale factor in the Friedmann-
Robertson-Walker metric, Λ is a cosmological constant,
κ ¼ −1, 0, 1, and C is a positive constant entering the
equation of state (see, e.g., Ref. [21]). If γ2 in (46) were
negative, the equation would be a particular instance of
(47), and ρðtÞ in (46) might have been interpreted as a
cosmic scale factor relevant for describing the radiation

FIG. 4. The parametric plot ðx1ðρÞ; x2ðρÞÞ for E ¼ 1
2
, γ ¼ 1,

αi ¼ ð1; 1Þ, βi ¼ ð1;−1Þ, z ¼ 0.8 (left), z ¼ 1 (middle), z ¼ 1.2
(right), ρ ∈ ½1; 8�.
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dominated Universe. Unfortunately, changing γ2 → −γ2
in (46) makes the original conformal mechanics unstable.
Although, (46) is not directly applicable to realistic

cosmology, in this section we discuss Lorentzian metrics,
for which the conformal mode ρðtÞ in Sec. III represents a
cosmic scale factor. Maintaining the Lifshitz isometry
group for a curved metric turns out to be problematic
and the formalism is more suited for dealing with the
generalized Ermakov-Milne-Pinney equation (29).
An elegant geometric reformulation of a classical mechan-

ics model with d degrees of freedom xi, i ¼ 1;…; d, and
potential energy Uðt; xÞ was achieved in [14] (see also
Ref. [15,16]) in terms of null geodesics associated with the
(dþ 2)-dimensional Lorentzian metric

ds2 ¼ −2Uðt; xÞdt2 − dtdvþ dxidxi; ð48Þ

where t is a temporal variable and v is an extra coordinate
giving rise to the covariantly constant null Killing vector
field

ξμ∂μ ¼ ∂v; ð49Þ

with ∂μ ¼ ∂
∂yμ and yμ ¼ ðt; v; xiÞ. The latter implies that (48)

belongs to the Kundt class. In this section, we discuss an
extension of (48) which links to the generalized Ermakov-
Milne-Pinney equation (29).
Following [12,13], let us focus on the oscillator potential

UðxÞ ¼ γ2xixi and introduce into the consideration a
cosmic scale factor ρðtÞ

ds2 ¼ −
ð2z − 1Þγ2xixi

ρ4z−2
dt2 − dtdvþ ρ2dxidxi: ð50Þ

Inverting the metric and computing the Christoffel symbols

Γv
tt ¼ −

2ð2z − 1Þ2γ2xixi _ρ
ρ4z−1

; Γv
ti ¼

2ð2z − 1Þγ2xi
ρ4z−2

;

Γv
ij ¼ 2ρ_ρδij;

Γi
tt ¼

ð2z − 1Þγ2xi
ρ4z

; Γi
tj ¼

_ρ

ρ
δij; ð51Þ

where we have split the index μ ¼ ðt; v; iÞ, i ¼ 1;…; d, and
denoted _ρ ¼ dρ

dt, one can verify that the temporal variable t
is related to the affine parameter λ along a null geodesic

t ¼ t1λþ t0; ð52Þ

where t0 and t1 are constants of integration, the equation of
motion for xi reads

ðρxiÞ̈ −
�
ρ̈

ρ
−
ð2z − 1Þγ2

ρ4z

�
ρxi ¼ 0; ð53Þ

where the dot designates the derivative with respect to t,
while the evolution of vðtÞ over time is governed by the null
geodesic equation ds2 ¼ 0

_v ¼ −
ð2z − 1Þγ2xixi

ρ4z−2
þ ρ2 _xi _xi: ð54Þ

In particular, if ρ is chosen to obey (15), Eq. (53) reduces
to (41).
The corresponding geometry, however, is flat as can be

seen by implementing the coordinate transformation

t0 ¼ t; x0i ¼ ρxi; v0 ¼ vþ ρ_ρxixi; ð55Þ

which brings the metric to the form

ds2 ¼
�
ρ̈

ρ
−
ð2z − 1Þγ2

ρ4z

�
x0ix

0
idt

02 − dt0dv0 þ dx0idx
0
i: ð56Þ

If ρ obeys (15), the first term in (56) vanishes and ds2

simplifies to the 5d Minkowski metric, ðt0; v0Þ being the
double-null coordinates.
The picture becomes more interesting if, by analogy

with [13], one decides to impose the generalized Ermakov-
Milne-Pinney equation (29) on the cosmic scale factor ρ. In
this case the metric (56) is no longer flat and Eq. (29) can be
derived from the Einstein equations

Rμν ¼ 8πTμν ð57Þ

by introducing the energy-momentum tensor Tμν

Tμν ¼
ð2z− 1Þd

2π
Ω2ρ4ðz−1Þξμξν; Tμ

μ ¼ 0; ∇μTμν ¼ 0;

ð58Þ

where ξμ is the covariantly constant null Killing vector
field (49). In particular, Eq. (53) turns into

ẍ0i þ ð2z − 1ÞΩ2ρ4ðz−1Þx0i ¼ 0; ð59Þ

where x0i ¼ ρxi, which reduces to the time-dependent
harmonic oscillator equation for z ¼ 1.

VI. LORENTZIANMETRICSWITH THE LIFSHITZ
ISOMETRY GROUP

The method of nonlinear realizations can also be used for
building Lorentzian metrics with the Lifshitz isometry
group, which are relevant for describing gravity duals to
field theories enjoying the Lifshitz symmetry [5,6]. For
example, focusing on the group manifold

g ¼ eitHeiuDeiXiPi × SOðdÞ; ð60Þ
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which is parameterized by the coordinates ðt; u; XiÞ,
i ¼ 1;…; d, and computing the Maurer-Cartan invariants
as above

e−zudt; du; dXi þ
1

2
Xidu; ð61Þ

one gets the natural building blocks for constructing
invariant quadratic forms (metrics). In particular, redefining
the coordinates r ¼ e−

u
2, xi ¼ e

u
2Xi, which bring (61) to the

form familiar from studying near horizon black hole
geometries

r2zdt;
dr
r
; rdxi; ð62Þ

one obtains the metric5

ds2 ¼ −r4zdt2 þ dr2

r2
þ r2dxidxi; ð63Þ

which is the key ingredient in describing the Lifshitz
holography [6]. Note that (63) reduces to the AdSdþ2

metric in the Poincaré coordinates for 2z ¼ 1.
Extending the Lifshitz algebra by the Galilei boost

generator Ki (see Appendix B), similarly enlarging the
group element (60), and repeating the steps above, one
derives the invariants

r2zdt;
dr
r
; rðdxi − yidtÞ;

dyi
r2z−1

; ð64Þ

where yi are extra coordinates associated with Ki, which
give rise to a natural generalization of (63)

ds2 ¼ −r4zdt2 þ dr2

r2
þ r2ðdxi − yidtÞðdxi − yidtÞ

þ μ2

r4z−2
dyidyi þ

ν2

r2z−2
dyiðdxi − yidtÞ; ð65Þ

μ, ν being constant parameters obeying μ2 > ν4. The
quadratic form (65) holds invariant under temporal trans-
lation and spatial rotation, as well as under the anisotropic
conformal transformation and the Galilei boost

t0 ¼ λ2zt; r0 ¼ λ−1r; x0i ¼ λxi; y0i ¼ λ1−2zyi;

x0i ¼ xi þ vit; y0i ¼ yi þ vi; ð66Þ

where λ and vi are finite transformation parameters. It
would be interesting to study whether (65) can be obtained
as a solution to field equations of gravity coupled to some

matter content and whether it can be used for holographic
applications in the spirit of [6].

VII. CONCLUSION

To summarize, in this work dynamical realizations
of the Lifshitz group were studied. A generalization of
the 1d conformal mechanics [10] was constructed, which
involved an arbitrary dynamical exponent z. A similar
generalization of the Ermakov-Milne-Pinney equation
was proposed. The method of nonlinear realizations [9]
was used to determine the Lifshitz-invariant derivative
and field combinations, which enabled us to construct
dynamical systems enjoying such symmetry. Extending
the recent studies in [12,13], a metric of the Lorentzian
signature in (dþ 2)-dimensional spacetime and the
energy-momentum tensor were constructed, which led
to the generalized Ermakov-Milne-Pinney equation upon
imposing the Einstein equations. The corresponding null
geodesic equations were shown to describe a variant of the
Lifshitz oscillator driven by the conformal mode. It was
demonstrated that the group-theoretic framework [9]
could also be used for building Lorentzian metrics with
the Lifshitz isometry group. In particular, a (2dþ 2)-
dimensional extension of the (dþ 2)-dimensional metric
in [6] was constructed, which enjoyed an extra invariance
under the Galilei boost.
Turning to possible further developments, it would be

interesting to analyze in more detail the issue of integra-
bility for the models in Sec. IV. Explicit solutions to the
generalized Ermakov-Milne-Pinney equation are worth
studying as well. It is interesting to explore whether the
metric (65) in Sec. VI can be obtained as a solution to field
equations of gravity coupled to some matter content and
whether it can be used for holographic applications in the
spirit of [6].
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APPENDIX A: SYMMETRIES OF EQ. (24)

In this Appendix, we discuss symmetries of Eq. (24).
Demanding (24) to hold invariant under the transformation
t0 ¼ aðtÞ, ρ0ðt0Þ ¼ bðtÞρðtÞ,6 one gets two differential
equations

bb̈ − 2_b2 þ ω2b2ðb4 − 1Þ ¼ 0; _a ¼ b2:

5The Lifshitz algebra (30) reproduces that in [6] after rescaling
2D → D, 2z → z.

6One could try a more general ansatz t0 ¼ aðtÞ, ρ0ðt0Þ ¼
bðtÞφðρðtÞÞ, and φðρðtÞÞ being an arbitrary function. Yet, the
requirement that (24) be invariant under the transformation results
in d2φ

dρ2 ¼ 0.
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The general solution to these equations involves three
constants of integration, say α, β, and σ, which give rise
to the following symmetry transformations of (24)

t0 ¼ tþ α; ρ0ðt0Þ ¼ ρðtÞ;

t0 ¼ 1

ω
arctan

�� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

q
− β

�
tan ðωtÞ

�
;

ρ0ðt0Þ ¼ ρðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β2

p
þ β cos ð2ωtÞ

q ;

t0 ¼ 1

ω
arctan

�
σ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

p
tan ðωtÞ

�
;

ρ0ðt0Þ ¼ ρðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

p
þ σ sin ð2ωtÞ

q :

Expanding each function of β and σ into the Taylor series
up to the first order, one obtains the generators of
infinitesimal transformations

H ¼ i∂t − ω2C; D ¼ i
2ω

sin ð2ωtÞ∂t þ
i
2
cos ð2ωtÞρ∂ρ;

C ¼ i
2ω2

ð1 − cos ð2ωtÞÞ∂t þ
i
2ω

sin ð2ωtÞρ∂ρ;

which obey soð2; 1Þ algebra

½H;D� ¼ iH; ½H;C� ¼ 2iD; ½D;C� ¼ iC:

Note that in the limit ω → 0 the generators reproduce the
conventional realization of soð2; 1Þ

H ¼ i∂t; D ¼ it∂t þ
i
2
ρ∂ρ; C ¼ it2∂t þ itρ∂ρ;

while the reduced equations bb̈ − 2_b2 ¼ 0, _a ¼ b2 yield

t0 ¼ αtþ β

γtþ δ
; ρ0ðt0Þ ¼

�
dt0

dt

�1
2

ρðtÞ; ðA1Þ

where α, β, γ, and δ are real constants obeying αδ − γβ ¼ 1.
The latter point is in agreement with the analysis in [10].

APPENDIX B: ADDING THE GALILEI BOOST
TO THE LIFSHITZ ALGEBRA

The Lifshitz algebra (30) can be extended to include the
generator of Galilei boost Ki, which obeys the structure
relations

½H;Ki� ¼ iPi; ½D;Ki� ¼ i

�
z −

1

2

�
Ki;

½Mij; Kp� ¼ −iδipKj þ iδjpKi:

The latter addsKi¼ it∂i to the differential operators in (31).
Extending the coset space element (32) in a natural way

g ¼ eitHeiuðtÞDeixiðtÞPieiyiðtÞKi × SOðdÞ;

and can compute the Maurer-Cartan invariants

g−1dg ¼ iωHH þ iωDDþ iωPiPi þ iωKiKi;

where

ωH¼e−zudt; ωD¼du; ωPi¼dxiþ
1

2
xidu−dte−zuyi;

ωKi¼dyi−
�
z−

1

2

�
yidu:

Setting the constraint ωPi=ωH ¼ 0, one can express yi in
terms of the other fields and their invariant derivatives

yi ¼ Dxi þ
1

2
xiDu; D ¼ ezu

d
dt

; ðB1Þ

while imposing the equation of motion ωKi=ωH ¼ 0
one reproduces a variant of the Lifshitz mechanics (38)
with w ¼ 1−2z

2
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