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Dynamical realizations of the Lifshitz group are studied within the group-theoretic framework. A
generalization of the 1d conformal mechanics is constructed, which involves an arbitrary dynamical
exponent z. A similar generalization of the Ermakov-Milne-Pinney equation is proposed. Invariant
derivative and field combinations are introduced, which enable one to construct a plethora of dynamical
systems enjoying the Lifshitz symmetry. A metric of the Lorentzian signature in (d + 2)-dimensional
spacetime and the energy-momentum tensor are constructed, which lead to the generalized Ermakov-
Milne-Pinney equation upon imposing the Einstein equations. The method of nonlinear realizations is used
for building Lorentzian metrics with the Lifshitz isometry group. In particular, a (2d + 2)-dimensional
metric is constructed, which enjoys an extra invariance under the Galilei boosts.
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I. INTRODUCTION

The nonrelativistic version of the AdS/CFT-
correspondence [1,2] extends the holographic dictionary
to encompass strongly coupled condensed matter systems.
It relies upon finite-dimensional conformal extensions
of the Galilei algebra, the most general of which is the
¢-conformal Galilei algebra [3,4]. The latter builds upon
generators of time translation, dilatation, and special
conformal transformation, which form so(2, 1) subalgebra,
spatial rotations, as well as a chain of vector generators
describing spatial translations, Galilei boosts, and constant
accelerations.

If the special conformal transformation is discarded, the
generators of Galilei boosts and constant accelerations can be
omitted as well. Furthermore, the commutator of temporal
translation and dilatation can be deformed to include an
arbitrary constant z known as the dynamical exponent, giving
rise to the Lifshitz algebra (see, e.g., Ref. [5]). Initiated in [6],
the Lifshitz holography attracted considerable attention' and
active research in this direction continues to date.

The goal of this work is to explore dynamical realiza-
tions of the Lifshitz group within the group-theoretic
framework [9].
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Literature on the subject is overwhelmingly large. For a
review of the field prior to 2016 see Ref. [5]. Interesting accounts
of the Lifshitz geometries can be found in [7,8].
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In the next section, a real Lie algebra formed by the
generators of translation and dilatation in one-dimensional
space is considered and a generalization of the conformal
mechanics [10] is constructed which involves an arbitrary
dynamical exponent z. The general solution to the corre-
sponding equation of motion is given in terms of the
hypergeometric function [11]. A transformation of the
temporal variable and the dilaton field is given which
links the model to the system with z =1 in [10].

In Sec. III, the 1d conformal mechanics in a harmonic
trap is discussed. A generalization involving arbitrary
dynamical exponent z is proposed which is further used
to define a generalized Ermakov-Milne-Pinney equation.

Section IV is focused on dynamical realizations of the
Lifshitz group in mechanics. In particular, the method of
nonlinear realizations [9] is used to determine the invariant
derivative and field combinations, which are the building
blocks for constructing dynamical systems. In general, such
models describe a particle moving in a d-dimensional
space, which is driven by the conformal mode introduced
in Sec. IL. In this setting, the latter acts as a kind of a cosmic
scale factor.

Section V adds to the recent studies in [12,13], which
incorporated a cosmic scale factor within Eisenhart’s
approach [14] (see also Ref. [15,16]) to geometrization
of classical mechanics. A metric of the Lorentzian signature
in (d+ 2)-dimensional spacetime and the energy-
momentum tensor are constructed, which result in the
generalized Ermakov-Milne-Pinney equation upon impos-
ing the Einstein equations. The corresponding null geo-
desics describe a variant of the Lifshitz oscillator driven by
the conformal mode.

In Sec. VI, the group-theoretic construction is applied to
build Lorentzian metrics possessing the Lifshitz isometry

Published by the American Physical Society
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group. In particular, we reproduce the (d + 2)-dimensional
metric in [6] as well as construct its (2d + 2)-dimensional
extension enjoying an extra invariance under the Galilei
boosts.

In Appendix A, symmetries of the 1d conformal
mechanics in a harmonic trap are discussed. Appendix B
contains a group-theoretic analysis of the Lifshitz algebra
extended by the generator of Galilei boosts.

Throughout the paper, summation over repeated indices
is understood.

II. THE CONFORMAL MODE

First, it is worth reminding the reader how the conven-
tional 1d conformal mechanics is introduced in [10].
Consider the conformal transformation in one dimension

t,_at—f—ﬁ
oyt +6’

as — ﬁ Y = lv (1)
a primary field p(1) of the conformal weight 1

Pt = (7)p(1), (2)

where the dot designates the derivative with respect to ¢,
and the action functional [10]

ifep) o

with a constant y. Being applied to (3), the transformations
(1) and (2) yield

st ()2 G3)) o

The last term involves the Schwarzian derivative ’l—,/ -3 (%)2
which is known to vanish for the SL(2, R) transformation
in (1), while the second term is a total derivative. Thus, the
action (3) describes a self-interacting 1d conformal field
theory, y being a coupling constant. Alternatively, the
system can be regarded as a particle moving on a real line

parametrized by the coordinate p in the external field
potential U(p) = Z—i In the latter interpretation, y links to

the strength of the external force.

As was demonstrated in [17], the model (3) can be

obtained by applying the conventional group-theoretic
construction [9] to the Lie algebra s/(2,R) ~so(2,1).
Given the structure relations of s/(2, R)
[H,D] = iH, [H,K] = 2iD, [D,K] = iK, (5)
where H, D, and K generate translation, dilatation, and
special conformal transformation, respectively, one con-
siders the group-theoretic element

g= eitHeis(t)Keiu(t)D’ (6)

where ¢ is a temporal variable and s(f), u(¢) are the
Goldstone fields. Using the Baker-Campbell-Hausdorff
formula

AT e A — T & i;—n'[A A, .. [A T, (7)

n times

one computes the Maurer-Cartan one-forms
g 'dg = iwyH + iwgK + iwpD, (8)
where

wg=e'dt, wx=e"(5+s%)dt, wp=(u—2s)dt, (9)
which hold invariant under the SO(2, 1)-transformation
g = ek D . g parametrized by real numbers a, S,
and o.

Introducing a new field p = e? and imposing the
SO(2, 1)-invariant constraints [17]

wp =0, wx = y*oy. (10)

where y is interpreted as a coupling constant, one can use
the first condition in (10) to eliminate s :’/—; from the

consideration, while the second restriction reproduces the
conformal mechanics equation of motion [10]

pP="3. (11)

Before we turn to a generalization of (11) involving an
arbitrary dynamical exponent z, it proves instructive to
obtain (11) without invoking the generator of special
conformal transformation K as the latter does not belong
to the Lifshitz algebra. Note also that, as far as (11) is
concerned, a constant of the motion associated with the
special conformal transformation is functionally dependent
on other integrals of motion [10] and, hence, can be
discarded.

Setting s =0 in (9) and specifying to a subalgebra
formed by H and D, one gets the invariant derivative
D= e”% and the invariant field Du. Using them to
construct the equation of motion

D*u + h(Du)* = 22, (12)

where h and y are real constants, one can fix /& from the

requirement that (12) takes the conventional conservative
- a%—f{’) after introducing p = 3. This

yields h = —% and reduces (12) to (11).

mechanics form p =
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We are now in a position to formulate a generalization of
the conformal mechanics (11) which involves an arbitrary
dynamical exponent z. Let us modify the first commutator
in (5) in accord with the Lifshitz algebra

[H,D] = izH. (13)
Introducing the group-theoretic element
— eitHeiu(t)D

g : (14)

and repeating the steps above, one finds the invariant
derivative D = e”‘% and the invariant field Du, while
Eq. (12) yields2

. 221y
p= pztzi—l’ (15)
after setting p = e?, h = 1_22z (the latter condition removes

the p?-term from the equation of motion) and rescaling the

coupling constant 2Zyi1 - 72
Symmetries of (15) are obtained from ¢ = ¢'* P . g,

which gives

t=t+a  p)=p@):

f=er p(r) = (i), (16)
where a and f are real finite parameters. Note that (15)
reduces to (11) at z = 1.

The general solution to (15) is found by integrating a first
order differential equation which follows from the expres-
sion for the conserved energy

1 .5 y2
E:* ,0 + -2 :>:t(t—t0)

2 P
1 1 . 1 . 2
PGt agige) e (17)
V2E ’

where 7, is a constant of integration and ,F(a, b; c; x) is
the hypergeometric function [11].> When obtaining (17),
the following identity

“Because in general 4z — 1 is an arbitrary real number, one has
to assume that p is dimensionless, while [y] = [t7'].
Because the hypergeometric series ,F1(a, b;c;x) is ill de-

fined for ¢ = —n, n being a natural number, a decreasing
sequence z,, = 43(1+—432)’ which starts at 3 and converges to 3, will

be excluded from the consideration. Note also that the hyper-
geometric series, which specifies ,F(a, b; c; x), converges for
|x| < 1 only [11]. The domain of the function in (17) is consistent
with the convergence condition.

-
w
H
(&}

-2

2.
FIG. 1. The graph of t = B for E = yr=1,
z = 0.8 (bottom), z = 1 (middle), z = 1.2 (top).
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proved helpful. Figure 1 displays the graph of ¢ =

I I B L
”1;2?)’ for E=1 y=1, z=0.8 (bottom),
z =1 (middle), z = 1.2 (top).

In order to keep the parallel with the conformal mechan-
ics, in what follows we assume z >% such that (15)
describes scattering off the center. In particular, the
numerical value of z can be used to engineer a distance
from the center p = 0 to the turning point at

2\
Y\ %2 e
i) = (L) = @ =pn (9
Figure 2 displays the graph of U(p) = 2/){‘—2,2 for y =1,

7 = 0.8 (top), z =1 (middle), z = 1.2 (bottom).
It is worth mentioning that the action functional asso-
ciated with Eq. (15)

1 . y2
s=1 / dt (,ﬂ - p4z_2) (19)

scales as §' = /(179§ under the dilatation transformation
in (16). In particular, for z = 1 one can construct an extra
integral of motion by applying Noether’s theorem [10]

1
D =2 pp~Et, (20)

which jointly with E can be used to build the general
solution to (11) by purely algebraic means

106023-3
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FIG. 2. Potential energy U(p) =
z =1 (middle), z = 1.2 (bottom).

2/)4 ,fory—l z = 0.8 (top),

2 2
M' (21)
2E

This solution also illustrates the fact that a constant of the
motion associated with the special conformal transforma-
tion is redundant for describing the conventional conformal
mechanics [10].

As far as the single commutator (13) is concerned, the
parameter z can be removed from the consideration by
rescaling D. In particular, redefining the field and the
temporal variable in accord with

or, equivalently

p(x) =p(t)"',  dv=(2z=1)p(t)*Vdr,  (23)
one can link the system involving arbitrary z, which is
described by p(7), to the model with z = 1 featured by p(7).
Yet, if one is interested in the full Lifshitz algebra (see
Sec. IV), the redefinition of D would result in z resurfacing
in other commutators. In what follows, we stick to the
conventional notation which keeps z manifest in (13).

In concluding this section, we note that given p(z) =

+ y>+4(D+Ex)?

5F the integral

dr
Y fomr=

yields an expression which involves the hypergeometric

=1 3 _ 4(D+Er)?
function , F' (2 ET 5.~ y77)
lematic to express 7 in terms of ¢ and subsequently use the
invariant —p p —E7 for constructing the general solution

to (15) by purely algebraic means.

. Hence, it appears prob-

III. THE CONFORMAL MODE
IN A HARMONIC TRAP

The so(2,1) invariance of (11) is preserved (see
Appendix A) if one introduces into the consideration a
harmonic trap potential

2
ptatp =", (24)

=

where @ is a constant frequency. The general solution
to (24) describes oscillations around the equilibrium point

Po = ﬂ
:%\/E— \/ET_w—Zygcos (o(t+1)),  (25)

where E, f, are constants of integration, and it reduces to
(21) in the limit @ — O.

Redefining the evolution parameter and the field in
accord with (23), one obtains an analogue of (24) involving
an arbitrary dynamical exponent z

. 2z —1)y?
pz- N =B g
The latter is characterized by the conserved energy

L(., 2 47— 7’
EZE p-+wp +p4z_2 . (27)

Similarly to (24), the generalized system describes oscil-
lations around the equilibrium point

P = (é)_ (28)

Figure 3 plots the potential energy for w =1, y =1,
z = 0.8 (bottom), z = 1 (middle), z = 1.2 (top).
Because it proves problematic to evaluate the integral

’:/ (Ve :

—w*y?cos 2w (7 + ro)))

in a closed form, only implicit solutions to (26) can be
obtained via the link (22) to z = 1 variant in (24). For a
similar reason, the conformal invariance of (24) is no longer
transparent after switching to the partner equation (26).
Concluding this section, we note that allowing @ in (26)
to be time-dependent, i.e., @ — Q(¢), one obtains a
generalization of the Ermakov-Milne-Pinney equation4

*For a recent account of the Ermakov-Milne-Pinney equation
see Ref. [13].
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FIG. 3. The graph of U(p) =1 (a?p*72 +p4}/T2_2), for o = 1,
y =1, 2 =0.8 (bottom), z = 1 (middle), z = 1.2 (top).

) L (2z-1)p?
oo -

which involves an arbitrary dynamical exponent z. Although
@ — Q(t) breaks the Lifshitz symmetry, in Sec. V we
construct a metric of the Lorentzian signature in (d + 2)-
dimensional spacetime and the energy-momentum tensor,
which involve a cosmic scale factor p(¢) and lead to (29)
after imposing the Einstein equations, thus generalizing the
recent studies in [12,13].

IV. DYNAMICAL REALIZATIONS OF THE
LIFSHITZ GROUP IN MECHANICS

Let us now turn to the full Lifshitz algebra

[H,D]=izH, [D.P]= —%Pi,
[Mj, Py| = =i63P; + 16, P;,

[Mj, My] = =6y M j —i6;;M ;i +i6;M j. +i6 3 M,  (30)

where P; and M;;, i = 1, ..., d, are the generators of spatial
translations and rotations, respectively, and &;; is the
Kronecker delta. In a nonrelativistic spacetime parame-
trized by t and x;, i = 1, ..., d, the algebra can be realized
by the differential operators

H:iat, D:izt@,—l—%xiai, Pi:iai, M,,lelaj—lxjal,
(31)

where 0, = g, 0; = %

Note that, because the temporal and spatial coordinates
scale differently under the dilatation, a conventional kinetic
term cannot be used to construct invariant action func-
tionals. A way out is to introduce an extra coordinate,
transforming similarly to the spatial coordinates, and use it
for building the Lifshitz-invariant derivative and field

combinations. The method of nonlinear realizations [9]
provides a rigorous way of implementing the idea. A
similar consideration of the #-conformal Galilei group
has been reported in [18,19].

In order to construct dynamical systems invariant under
transformations forming the Lifshitz group, one starts with
the coset space element

g= eltH piu(t)D Hixi(HP; o SO(d), (32)

and then computes g~'dg, which gives rise to the Maurer-
Cartan oneforms

1
e~udr, du, dx; + = x;du. (33)

2

The forms hold invariant under the Lifshitz transformations
acting on the temporal variable ¢ and the Goldstone fields

u(t), x;(1)

f=t+a, W()=u(r), xi(I)=x;1);
t=et,  W{)=ult)+p, X)) =x(1);
!=t, u({)=u(t), X()=x(t)+ae?, (34)

which can be obtained by analyzing the left action of the
group on the coset space ¢ = '™ PP elai()Pi . ¢

Note that a parametrization of the coset space element
chosen in (32) results in the dilatation transformation which
leaves x;(¢) inert. Taking into account the identity
et eiu(t)D

ixi(Pi — l%i(1)P; itH piu(1)D %) = eu(TI)x,-(t),

(35)

e

which is readily established by making use of the Baker-
Campbell-Hausdorff formula (7), one can verify that the
pair (¢, %;) transforms in the conventional way under the
temporal translation, dilatation and spatial translation

P=tta P =p), F()=%0);
I H(1) = &x,(1);

e
/=1, P(1) = p(1), (1) =%x(1) + a;. (36)
where we switched form u to p = ei.

From (33) one gets the invariant derivative and fields

d
D= e — Du,

1
Dx; + ~x,D
7 x; + 5% Du, (37)

which are the building blocks for constructing equations of
motion. For the conformal mode p = e? it seems reasonable
to accept the variant (15) in Sec. II, while one is at liberty to
choose any combination for the spatial coordinates, includ-
ing higher derivative variants.

106023-5
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For example, the equation
1 1
D Dxi + ixiDu + wDu 'Dxi + Ex,-Du = 0, (38)

where w is a constant, describes the oscillator
¥+ r(0)x +w(t)x; =0, (39)

involving the time-dependent frequency and damping
coefficients

y(t)=(2z+2w+1>§’ w(t):§+<2z+2w—1)<§)2.
(40)

1-2z

Interestingly enough, for w = -5 it can be cast into the

total derivative form

(px;) = 0. (41)

which holds invariant under a larger symmetry group (see
Appendix B). In particular, choosing p to be the evolution
parameter, from (17) one gets

a; 11 1
(p)=—=+,F| =, 1 ; P 42
xilp) ="+ 1(2 24z a4 2Ep4z—2>ﬂ (42)

where a;, 3; are constant vectors and p € (py(z), o), where
po(z) is the turning point (18). Being the sum of two vectors
with varying length, (42) describes a curve on a two-
dimensional plane in d dimensions. Figure 4 displays the
parametric plot (x; (p), x,(p)) for E =4,y = 1,a; = (1, 1),
pi=(1,-1), z=08 (left), z=1 (middle), z=1.2
(right), p € [1, 8].

Interesting higher derivative models invariant under the
Lifshitz group can be constructed by making recourse to
curvature invariants of a curve in arbitrary dimension (see,
e.g., Ref. [20]). For example, a regular curve in three-
dimensional space x; = x;(t), i = 1, 2, 3, is characterized
by the curvature and torsion

XXX XxX)-x
l_|;3|’ K2:<; 12 (43)
x| X x X|
Implementing the substitution
. 1 . !
Xx; = Dx; —|—§x,»Du, X; > D| Dx; + ExiDu ,
5 1
X; = D D.X,' + Ex,'Du s (44)

in x; and x, above and using them to construct a
Lagrangian density L£(k;,x,) [in doing so p = €% is to

0.5

0.5 1.0 1.5

-0.5

FIG. 4. The parametric plot (x;(p).xs(p)) for E=14, y =1,
a = (1,1), f; = (1,—1), z = 0.8 (left), z = 1 (middle), z = 1.2
(right), p € [1,8].

be regarded as a fixed function obeying (15)], one can build
a geometrically inspired action functional

S = /dte‘Z”E(Kl,Kz), (45)

from which an equation of motion for x; can be obtained.
The model (45) will be studied in more detail elsewhere.

V. CONFORMAL MODE AS A COSMIC
SCALE FACTOR

Let us turn back to the conformal mechanics in the
harmonic trap studied in Sec. III, choose z = 1 and rewrite
the conserved energy (27) as

2
P = —/% — @*p* + 2E. (46)

Remarkably enough, this equation is akin to the Friedmann
equation describing the radiation dominated Universe

. C A
PP==+5pt K (47)
pe 3

where p(z) is a cosmic scale factor in the Friedmann-
Robertson-Walker metric, A is a cosmological constant,
k=—1, 0, 1, and C is a positive constant entering the
equation of state (see, e.g., Ref. [21]). If y* in (46) were
negative, the equation would be a particular instance of
(47), and p(z) in (46) might have been interpreted as a
cosmic scale factor relevant for describing the radiation

106023-6
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dominated Universe. Unfortunately, changing y> — —?
in (46) makes the original conformal mechanics unstable.

Although, (46) is not directly applicable to realistic
cosmology, in this section we discuss Lorentzian metrics,
for which the conformal mode p(¢) in Sec. III represents a
cosmic scale factor. Maintaining the Lifshitz isometry
group for a curved metric turns out to be problematic
and the formalism is more suited for dealing with the
generalized Ermakov-Milne-Pinney equation (29).

An elegant geometric reformulation of a classical mechan-
ics model with d degrees of freedom x;, i =1, ...,d, and
potential energy U(f,x) was achieved in [14] (see also
Ref. [15,16]) in terms of null geodesics associated with the
(d + 2)-dimensional Lorentzian metric

ds? = =2U(t,x)dt* — dtdv + dx;dx;, (48)

where ¢ is a temporal variable and v is an extra coordinate
giving rise to the covariantly constant null Killing vector
field

‘fﬂ ay = aw (49)

with 0, = aiy,, and y* = (¢, v, x;). The latter implies that (48)
belongs to the Kundt class. In this section, we discuss an
extension of (48) which links to the generalized Ermakov-
Milne-Pinney equation (29).

Following [12,13], let us focus on the oscillator potential
U(x) = y*>x;x; and introduce into the consideration a
cosmic scale factor p(7)

2z - 1)72xixi

ds? = _ oL de? — didv + pdxidx;. (50)
P

Inverting the metric and computing the Christoffel symbols

o 222 1Pxp o 222Dy
= T 1 > i T 4=
P P
I} = 2pp5;.
. 2z — 1)y’x; . )
I, :(2747)7)6” F;j :Bgu’ (51)
P p

where we have split the index u = (¢, v,i),i =1, ..., d, and
denoted p = %, one can verify that the temporal variable ¢
is related to the affine parameter A along a null geodesic

t =1+t (52)

where 7 and ¢, are constants of integration, the equation of
motion for x; reads

(ox) - (‘;’—%‘—”V)p —0. (3)

where the dot designates the derivative with respect to t,
while the evolution of »(7) over time is governed by the null
geodesic equation ds* = 0

. 2z — D)y?x;x; ..
V== ( p4z)_2 + pzxixi' (54)

In particular, if p is chosen to obey (15), Eq. (53) reduces
to (41).
The corresponding geometry, however, is flat as can be
seen by implementing the coordinate transformation
=t

X = px;, v =v+ppxix;,  (55)

which brings the metric to the form

ds® = <£’ - #) Xxidi?® — drdv' + dxidx,.  (56)
p pr

If p obeys (15), the first term in (56) vanishes and ds>
simplifies to the 54 Minkowski metric, (¢, v’) being the
double-null coordinates.

The picture becomes more interesting if, by analogy
with [13], one decides to impose the generalized Ermakov-
Milne-Pinney equation (29) on the cosmic scale factor p. In
this case the metric (56) is no longer flat and Eq. (29) can be
derived from the Einstein equations

R,, = 8xT,, (57)
by introducing the energy-momentum tensor 7,

T (2z—1)d

Hv 27 sz4(z_])§/4€w

,=0, V*T,, =0,

(58)

where £, is the covariantly constant null Killing vector
field (49). In particular, Eq. (53) turns into

%+ (22— 1)Q2p*Dxl =0, (59)

where x; = px;, which reduces to the time-dependent
harmonic oscillator equation for z = 1.

VI. LORENTZIAN METRICS WITH THE LIFSHITZ
ISOMETRY GROUP

The method of nonlinear realizations can also be used for
building Lorentzian metrics with the Lifshitz isometry
group, which are relevant for describing gravity duals to
field theories enjoying the Lifshitz symmetry [5,6]. For
example, focusing on the group manifold

g= eltH pluD piX;Pi o SO(d)’ (60)

106023-7
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which is parameterized by the coordinates (z,u,X;),

i=1,...,d, and computing the Maurer-Cartan invariants
as above
o 1
e dl, dl/l, Xm +§Xidu, (61)

one gets the natural building blocks for constructing
invariant quadratic forms (metrics). In particular, redefining
the coordinates r = e, x; = e2X;, which bring (61) to the
form familiar from studying near horizon black hole
geometries

d
2dr, L rdx, (62)
r
one obtains the metric’
2 4o o Ar
ds® = —r*dt* + —-+ r’dx;dx;, (63)
r

which is the key ingredient in describing the Lifshitz
holography [6]. Note that (63) reduces to the AdS,,,
metric in the Poincaré coordinates for 2z = 1.

Extending the Lifshitz algebra by the Galilei boost
generator K; (see Appendix B), similarly enlarging the
group element (60), and repeating the steps above, one
derives the invariants

dy;
r2z—l ’

r¥dt, ﬂ , r(dx; — y;dt), (64)
r

where y; are extra coordinates associated with K;, which
give rise to a natural generalization of (63)

dr?
ds* = —r¥d* + Tt 2 (dx; — y;dt)(dx; — y;dt)

2 2
U v
+ e dy;idy; + —.= dyi(dx; — ydt), (65)

72

i, v being constant parameters obeying u®> > v*. The
quadratic form (65) holds invariant under temporal trans-
lation and spatial rotation, as well as under the anisotropic
conformal transformation and the Galilei boost

! =%, r=2"r, vi= A"y

Vi=yi+ v (66)

!/
xj = Ax;,
A
X; = X; + v,
where A and v; are finite transformation parameters. It

would be interesting to study whether (65) can be obtained
as a solution to field equations of gravity coupled to some

>The Lifshitz algebra (30) reproduces that in [6] after rescaling
2D - D, 2z - z.

matter content and whether it can be used for holographic
applications in the spirit of [6].

VII. CONCLUSION

To summarize, in this work dynamical realizations
of the Lifshitz group were studied. A generalization of
the 1d conformal mechanics [10] was constructed, which
involved an arbitrary dynamical exponent z. A similar
generalization of the Ermakov-Milne-Pinney equation
was proposed. The method of nonlinear realizations [9]
was used to determine the Lifshitz-invariant derivative
and field combinations, which enabled us to construct
dynamical systems enjoying such symmetry. Extending
the recent studies in [12,13], a metric of the Lorentzian
signature in (d + 2)-dimensional spacetime and the
energy-momentum tensor were constructed, which led
to the generalized Ermakov-Milne-Pinney equation upon
imposing the Einstein equations. The corresponding null
geodesic equations were shown to describe a variant of the
Lifshitz oscillator driven by the conformal mode. It was
demonstrated that the group-theoretic framework [9]
could also be used for building Lorentzian metrics with
the Lifshitz isometry group. In particular, a (2d + 2)-
dimensional extension of the (d + 2)-dimensional metric
in [6] was constructed, which enjoyed an extra invariance
under the Galilei boost.

Turning to possible further developments, it would be
interesting to analyze in more detail the issue of integra-
bility for the models in Sec. IV. Explicit solutions to the
generalized Ermakov-Milne-Pinney equation are worth
studying as well. It is interesting to explore whether the
metric (65) in Sec. VI can be obtained as a solution to field
equations of gravity coupled to some matter content and
whether it can be used for holographic applications in the
spirit of [6].
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APPENDIX A: SYMMETRIES OF EQ. (24)

In this Appendix, we discuss symmetries of Eq. (24).
Demanding (24) to hold invariant under the transformation
! =a(r), p(¢)=b(1)p(1)," one gets two differential
equations

bb =20 + b2 (b* —1) =0,  a= b2

®0ne could try a more general ansatz ¢ = a(t), p'(¢) =
b(t)p(p(1)), and @(p(t)) being an arbitrary function. Yet, the
requirement that (24) be invariant under the transformation results

i d
in 75 = 0.
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The general solution to these equations involves three
constants of integration, say «, 3, and o, which give rise
to the following symmetry transformations of (24)

! =t+a, (1) = p(1);

= %arctan <<\/ 1+ p? —ﬁ) tan (wt))

\/\/1 + % + B cos (2wt)

1
¢ = —arctan <a + V1 + 6% tan (a)t))
w

\/\/1 + 6% + osin 2wt)

Expanding each function of f and ¢ into the Taylor series
up to the first order, one obtains the generators of
infinitesimal transformations

H=1i0,— 0*C, D= Zisin (2wt)0, + %cos (2wt)p0,,
w

C= 2;(02 (1 —cos 2wt))0, + isin (2wt)pd,,

which obey so(2, 1) algebra
[H,D] = iH,

[H.C] =2iD,  [D.C]=iC.

Note that in the limit @ — 0 the generators reproduce the
conventional realization of so(2, 1)

H=i9, D=id, +%pa . C=if8, +itpd,,

while the reduced equations bb — 20 =0, 4 =b? yield

t/_at—f—ﬂ
oyt +6’

o0 = (G o0 4

where a, 3, y, and § are real constants obeying ad — yf = 1.
The latter point is in agreement with the analysis in [10].

APPENDIX B: ADDING THE GALILEI BOOST
TO THE LIFSHITZ ALGEBRA

The Lifshitz algebra (30) can be extended to include the
generator of Galilei boost K;, which obeys the structure
relations

. . 1
[H,Ki]:lpl’, [D,Ki]:l<Z—Z>Ki,

[Mij’ K])} = _16l])Kj + léijl

The latter adds K; =iz0; to the differential operators in (31).
Extending the coset space element (32) in a natural way

g= eitHeiu(t)Deix,-(t)P,- eiy,-(t)K,- % SO(d),
and can compute the Maurer-Cartan invariants
g_ldg = I(UHH + 1(I)DD + ia)p,-Pi + i(UKiKi,

where

1
wp=e~"dt,  wp=du, wPi:dxi+§xid”—df€_wyi,
1
wg;=dy;— Z_E v;du.

Setting the constraint wp;/wy = 0, one can express y; in
terms of the other fields and their invariant derivatives

D:ez"i,

7 (B1)

1
vy, = D.Xl' + ExiDu,
while imposing the equation of motion wg;/wy =0
one reproduces a variant of the Lifshitz mechanics (38)
with w = 1_—227
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