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Recently, by explicit calculations at orders o', &', @3, it has been observed that the effective action of
string theory at the critical dimension is independent of the background for the closed spacetime manifolds.
In this paper we speculate that for the open spacetime manifolds, the effective action is even independent of
the character of the boundary, i.e., the boundary couplings for timelike and spacelike boundaries are the
same. We support this proposal by calculating the boundary couplings in the bosonic string theory at order
o for the spacelike boundary and show that they are the same as the couplings for the timelike boundary

that have been recently found.
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I. INTRODUCTION

The critical string theory is an extension of the Einstein
theory of general relativity which is consistent with the
rules of quantum mechanics. As in the Einstein theory, one
expects the string theory at the critical dimension D =
1 +d to be background independent. In the low energy
effective action, by the background independence we mean
the coefficients of the independent gauge invariant cou-
plings at each order of @ should be independent of the
background. The background independence in the double
field theory formalism has been discussed in [1].

The independent couplings in the effective action at a
given order of o/, are all gauge invariant couplings modulo
the field redefinitions, the total derivative terms and the
Bianchi identities. For the closed spacetime manifolds, the
field redefinitions at a given order of o involve the most
general gauge invariant terms at that order [2]. The
numbers of independent couplings involving the metric,
dilaton and the B-field at orders o, a2, &> are 8,60,872,
respectively  [2-4]. The background independence
assumption indicates that the coefficients of these cou-
plings are independent of the background. If one can fix
them for a particular background, then they are valid for
any other background as well. On the other hand, it has
been proved in [5,6] that the dimensional reduction of the
classical effective actions of the bosonic and heterotic
string theories on a torus 7¢ are invariant under global
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O(d, d) transformations. Hence, if one considers a par-
ticular background which includes one circle, compactifies
the effective action on this circle and ignores the Kaluza-
Klein massive modes (dimensional reduction), then the
lower dimensional action which includes all parameters of
the original action, must have the O(1, 1) symmetry. This
symmetry may fix the couplings in the original action.
Imposing this symmetry on the effective action of the
bosonic string theory at orders o/, ', the coefficients of all
independent couplings have been found in [7,8] up to an
overall factor. Imposing this symmetry on the NS-NS
couplings of the type II superstring theory at order o3, the
coefficients of all independent couplings have been found
in [9-11] up to an overall factor. The resulting couplings
must be valid for any other background. For example, the
same couplings must be valid for the background which
includes the compact submanifold 7¢. The lower-dimen-
sional action in this case must have the symmetry O(d, d)
[5,6]. In fact, it has been shown in [12,13] that the resulting
couplings have exactly such symmetry. For the back-
ground which has the compact submanifold T2, the lower
dimensional action must have the symmetry O(2, 2). It has
been shown in [14] that the couplings at order o have such
symmetry.

For the open spacetime manifolds, it has been speculated
in [15] that the field redefinitions at a given order of &
involve only the restricted gauge invariant terms which
respect the boundary conditions in the least action princi-
ple. In the presence of boundary, the boundary conditions
which are consistent with the above O(1,1) or O(d,d)
symmetries, require the massless fields and their derivatives
at order m to be known on the boundary for the effective
actions at order o™ [16]. The minimum numbers of
independent couplings at order o for the bosonic string
theory and for the heterotic string theory after truncating the
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Yang-Mills gauge fields, are 17 bulk couplings and 38
boundary couplings [15,16]. The background independ-
ence assumption in this case indicates that the coefficients
of these parameters are independent of the background and
are independent of the character of the boundary, i.e., the

|

coefficients in the bulk and boundary couplings must be the
same for both timelike and spacelike boundaries. Using the
background independence assumption, these couplings in a
particular minimal scheme have been recently found for the
timelike boundary to be [15]
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where n* is the unit vector orthogonal to the boundary, Ry is the Gauss-Bonnet gravity couplings and Q) is the Chern-
Simons couplings that for timelike boundary, i.e., n*n, =1, is given as [16,18]

0 = 4|K*,R — 2K*R,, — 2K ,“n*n*R,, + 2K*n"n’R

In the above equations, K, is the extrinsic curvature which is
defined as K, = P“”Pﬂyv(anﬂ) where P* is the first
fundamental form which projects the spacetime tensors
tangent to the boundary. For the timelike boundary, the first
fundamental form is defined as P* = G* — n#n* for which
the extrinsic curvature becomes K,, = V,n, —n,n,Vn,.
In the above equations, the metric in the covariant derivatives
and in the curvatures is the bulk metric G, . If one chooses the
overall factor a; to be a; = 1/96 (a; = 1/192), then the
bulk action becomes the Meissner action of the bosonic
(heterotic) string theory found in [19], up to a restricted field
redefinition [15]. For the superstring theory a; = 0.
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For the spacelike boundary in which n*n, = —1, the first
fundamental form is defined as P** = G** + n*n* for which
the extrinsic curvature becomes K,, = V,n, + n,n,Ven,.
We expect this sign difference in the second term in the
definition of the first fundamental form changes the sign of all
terms which involve three unit vector n* or extrinsic
curvature. Therefore, when the spacetime has spacelike
boundary, the background independence assumption of the
effective action predicts that the bulk action to be the same as
the bulk action (1) for the spacetime which has timelike
boundary, whereas the character independence predicts the
following boundary couplings for the spacelike boundary:
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where the terms involving three unit vector n* or extrinsic curvature have different sign compare to the timelike boundary
couplings in (1). In above equation, Q3 is the Chern-Simons couplings for the spacelike boundary

1
Q3 = 4|K¥,R = 2K" Ry, + 2K, 0 n*R,, = 2K nn Ry, + 5 (6K (K, KM = 2K, K¥ K", = 4K K, K™)|. (4)
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Note that the terms with three extrinsic curvatures have
different sign compare to the Chern-Simons couplings of
the timelike boundary (2). In this paper, using the back-
ground independence method, we are going to calculate the
bulk and boundary couplings for the spacetime manifold
which has spacelike boundary and show that the resulting
couplings are exactly the same as the above couplings
which are predicted by the background/character independ-
ence assumption.

The outline of the paper is as follows: In Sec. II, we write
the 17 independent bulk couplings and the 38 independent
boundary couplings at order &' which have been found in
[15,16]. In Sec. III, using the background independence
assumption, we consider the background which has a
spacelike boundary and one circle, and use the dimensional
reduction to find the corresponding couplings in the base
space. We then impose the O(1,1) symmetry on the
reduced actions to constrain the parameters in the actions.
In Sec. IV, we consider the background which has a
spacelike boundary and the torus 7¢, and use the cosmo-
logical reduction to find the one-dimensional bulk action
and the zero-dimensional boundary action. We then impose
the O(d, d) symmetry on the resulting actions to further
constrain the remaining parameters. The above two con-
straints fix the bulk action to be the bulk action in (1), and
fix the boundary action up to two parameters. By requiring
the gravity couplings on the boundary action to be con-
sistent with the Chern-Simons couplings, the two boundary
parameters are also fixed. We find that the final boundary
action is exactly the same as (3).

II. INDEPENDENT COUPLINGS AT ORDER «

The effective actions of string theory on an open
manifold has both bulk and boundary actions. At the
sphere-level, these actions have the following o -expansion:

Seff = Z a’mSm = S() + a'Sl + 0/282 + a’3S3 i

m=0

8Seff = Z a/masm
m=0
= 0SS + 0S| + a%0S; + a®0S; + - - - (5)

The leading order actions in the universal sector which
includes metric, dilaton, and B-field, in the string frame for
both timelike and spacelike boundaries are

|
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where G is determinant of the bulk metric G,, and
boundary is specified by the functions x* = x#(6#). In
the boundary term, ¢ is determinant of the induced metric
on the boundary

Ox* Ox¥
9up = @@ v (7)

and K is the trace of the extrinsic curvature. The normal
vector to the boundary is »*. It is outward-pointing
(inward-pointing) if the boundary is spacelike (timelike).
Using the double field theory formalism, it has been shown
in [17] that the leading order effective action (6) can be
written in O(D, D)-invariant form in terms of the gener-
alized metric and dilaton.

Atorder o these actions in terms of their Lagrangians are

2
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K

In general there are 41 gauge invariant couplings in the bulk
Lagrangian. Removing the total derivative terms from the
bulk to the boundary by using the Stokes’ theorem and
using the Bianchi identities, one can reduce the 41
couplings to 20 couplings. The most general field redefi-
nitions reduce these couplings to 8 couplings [2]. However,
in the presence of boundary one is not allowed to use the
most general field redefinitions because they ruin the
boundary conditions required in the least action principle
for the effective actions of string theory [16]. The allowed
field redefinitions at order o requires the metric does not
change, and the dilaton and B-field change to include only
the first derivative of the massless fields. This restricted
field redefinition has only three parameters. Hence, there
are only 17 independent couplings in the bulk. The
couplings in a particular minimal scheme are [15]

Ly =aHH?Hy H, .. + ayH o, HP'H “Hp,. + a3H,°HpsR? + ayR,5RY
+ a5Haﬂ},H“ﬂ}'R + a6R2 + a7Raﬂ75Raﬁ},5 + aSHaﬁeHaﬂyRﬂyﬁe + anga(I)V“d)
+ aloRaﬂVﬁva(D + allRaﬁV“q)Vﬂ(D + alzva(l)vad)vﬂd>vﬂd> + amvad)Vﬂva(I)Vﬂ(I)

+ aMVﬂVa(DVﬂV“(D + CllsvaHaﬁYV5Hﬂ},6 + dl6HaﬂyanV5Hﬂ},§ + a17V5H

aﬂyvéHaﬂy (9)
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where a,...,a;; are
parameters.

The boundary of the spacetime has a unit normal vector n*,
hence, the boundary Lagrangian 0£; should include this
vector and its derivatives as well as the bulk tensors. Since the
field redefinition freedom has been already used in the bulk
action, one is not allowed to use any field redefinition in the
|

17 background independent

boundary action. Removing the boundary total derivative
terms from the most general gauge invariant boundary
couplings, and using the Bianchi identities and the identities
corresponding to the unit vector, it has been shown in [16]
that there are 38 independent couplings in the boundary
action. For both timelike and spacelike boundaries, the
couplings in a particular scheme are [16]

OL| = by HysHPOK®, + byH O H s 5K + b3K JKPK 5, + byK* K 5, KP!
+ bsK® KP 4K, + beH > H 35 K" ,n*n’ + by1H ., H 35 K"°n"n” + bgKR 5
+ boK7 ,n“nPR,5 + b1gK,R + by K0 nP Ry, 55 + b1, HPn*V yHp 5
+ b;3KP"nV K, + b14KP 5n"V K7, + b15sn°V 4R + bigH 3, sH°n°V @
+ b17K 5, KP'nV @ + bigKP sK7 0V ;@ + bygH % H 5.n*nn’V ,®
+ bzon”nﬁnVR/jyva(D + by n*RV @ + bzzKﬁﬁVad)V“(D + b23n“n/’VaCDV/}K7y
+ by K7 ,n*nPN OV 3@ + bysn®n’V;V K7, + bysK*¥V V@
+ byy K7 nnPV Vo ® + boygH /O H y sn™VP® + byon®RosVP® + byyK s VIOV D
+ b3 10V OV ;OVID + b3yn*VV, OVPD + by H,*n*n’n'V, H s,
+ b3ynnn’V, V0V, ® + bysn®nn’V, OV, Vs® + bysn®n’n’'V, V,;V,®
+ byn“nPV 3K o, V' ® + bign®n’n’n’VsV,K 5 (10)

where by, ..., byg are 38 background independent param-
eters. These parameters, however, depend on the character
of boundary. They have been found in [15] for the timelike
boundary. In the following sections we consider the
boundary to be spacelike.

III. BACKGROUND WITH SUBMANIFOLD S

We have used the gauge symmetries corresponding to the
massless fields to write the independent couplings in the
bulk action (9) and in the boundary action (10). The
parameters in these actions are independent of the back-
grounds. In general, there is no global symmetry in the
universal sector of string theory at the critical dimension to
be used for fixing these parameters. However, for some
specific backgrounds which have compact submanifolds,
the compactified actions may have some global symmetries
after ignoring the Kaluza-Klein massive modes (dimen-
sional reduction). Since the parameters in the actions (9)
and (10) appears also in the lower dimensional actions, one
can use the symmetry of the lower dimensional actions to
fix these parameters. In this section we consider the
background with submanifold S("). That is, we choose
the open manifold to have the structure M®P) =
MP=D x s aMP) = gMP=1) x S, The manifold
M) has coordinates x* = (x?,y) and its boundary
OMP) has coordinates 6" = (6%, y) where y is the coor-
dinate of the circle S("). The boundary in the base space is

|
specified by the functions x* = x“(¢). The dimensionally
reduced action then should have the O(1, 1) symmetry. To
simplify the calculation, we consider the Z,-subgroup of
the O(1, 1)-group.

The reduction of the effective actions on the circle S()
should then be invariant under the Z,-transformations, up
to some total derivative terms on the boundary [20], i.e.,

Sett (W) + OSese (W) = See(w') + OSere(w')  (11)

where S and 0S¢ are the reductions of the bulk action
S.s¢ and boundary action OS.y, respectively. In above
equation y represents all the massless fields in the base
space which are defined in the following Kaluza-Klein
reductions [21]:

G. - f_]ab + e(pgagb e(/)ga
" e’ gy e )

B — <l_7ab +%bagb_%bbga ba)
" —b, 0/

®=¢+o/4 ' =(n%0) (12)
and ' represents its transformation under the Z,-
transformations or the T-duality transformations. At the
leading order of , the T-duality transformations are the
Buscher rules [22,23]. To order «/, they are the Buscher
rules and the corrections at order ' which do not ruin the
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boundary conditions of the least action principle in the base
space. They are [15]

@' =—p+dAp, ¢,=b,+de"*Agy,,
b;:ga+a/8_w/2Aba’ géb :gah’

H t/lbc :Habc+a/AHabc’ ¢/:¢+a/A¢’ (13)
where the corrections Ag, Ab,, Ag,, A¢ contain all con-
tractions of the massless fields in the base space at order o’
which involve only the first derivative of the massless
fields. The correction AH . is related to the corrections
Ag,, Ab, through the following relation:

n,=n,

AI_{abc = Habc - 36_(/)/2W[abAbc] - Seq}/zAg[avbc] (14)
where H,,. is a U(1)x U(1) gauge invariant closed
3-form at order o' which is odd under parity. It has the
following terms:

H e = €10,W3V 4 + €20,H 1V (15)
where e;, e, and the coefficients in the corrections
Ag, Ab,, Ag,, A¢ are parameters that the Z,-symmetry
of the effective action should fix them. The above trans-
formations should also form the Z,-group [7]. In the above
equation, V, is field strength of the U(1) gauge field g,,
ie, Vg = 0,9, — 0p9,, and W, is field strength of the
U(1) gauge field b,, i.e., W, = 0,b, — 0}b,. The three-
form H is defined asAI:IabC = Hupe =3 9 W —%b[aV_bC]
where the three-form H is field strength of the two-form b,
in (12).

In [16], it has been shown that the constraint (11) can be
written as two separate constraints. One for the bulk
couplings and the other one for the boundary couplings.
These constraints for the couplings at order o are [16]

2 -
$10) = Si(v) = 0 = 5 [ @ ley/ TGV, (A ) =0
981 (w) — 981 (wp) — A0Sy + T (w)

) ,
+—2/ dP=26\/gn,A%e™? =0
K

(16)

where g is the determinant of the base space metric g,;, and
g is the determinant of the induced base space metric on its
boundary, i.e.,

aaa 865 Yab

ab

(17)

In Eq. (16), yy, is the transformation of the base space field
w under the Buscher rules, A{ is a vector made of the
massless fields in the base space at order o with arbitrary
coefficients, and 7| (y) is the most general total derivative
terms in the boundary at order o, i.e.,

2

) == [ a2 (19

where F¢’ is an antisymmetric tensor constructed from the
massless fields in the base space at order @ with arbitrary
coefficients. In the Eq. (16), AS,, AJS, are the Taylor
expansions of the reduction of the leading order actions (6)
at order o/,

So(wo + adyy) = So(wp) + A ASy+ -+

0So(yy + adw) = 0So(wi) + dAISy+ -+ (19)

where dots represent some terms at higher orders of @ in
which we are not interested in this paper.

The first constraint in (16) involves only the bulk fields
that their reductions are given in [8]. The second constraint
involves the bulk fields and the boundary extrinsic curva-
ture. The reduction of the extrinsic curvature and its first
and second derivatives for the timelike boundary are
calculated in [24]. We have checked explicitly that they
are valid for spacelike boundary as well. Using these
reductions and following the same steps as those in [16],
one finds that the Z,-symmetry fixes the bulk Lagrangian
(9) to be the same as the one has been found in [15], i.e.,

) X 1 1 N 1 1 1
Ly=aH,*H" HyH,.. + <3a1 +—a +all)Ha/35HaﬂyH76&H§€e ——ay H,/°HpsR7 + <4a10 +6111>Ra/3R“ﬂ

64 64

: H 5 HP'R 1 R?+24a,R 4,sR*r
+19—2a11 ofy T +24a 1 Ryp,5 =+

16 4
1

8 16

1
—36a, —sa ——011> HHP" Ry 5

1 1
— Zal leacha(I) —|— alOR"ﬁV/jV,,(I) + a 1RaﬁV"CDVﬂ<I) + alovﬁvaq)vﬂvaq) - RaIOVaH“WV(;Hﬁy‘s

1 1 1
+§aIOH(l/"YVa(I)V5Hﬂy5 + <8a1 +—aj +&a1 1> v(;Ha/}yv(sHa/)’V

24

(20)
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and the boundary Lagrangian (10) for the spacelike boundary to be

1
aﬁl = blH/Jy(sHﬂyﬁKaa +— (—2(110 - all)Hay(sH[)’yﬁKaﬂ + bllKayKaﬂK/iy

16
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+

[\)I»—‘/\[\)M—

_|_

Wi~

(4ayo + ayy +48(=2by + b)) K¥PV,V, @

ap + %‘111 +24b, — b7 + 4b19> Kyyn“nﬂvﬁvaq) + %alOHaV‘SHﬂﬂgn“Vﬁq)
(ayy —96b1)n"R VP ® + ay K VOV D + (—ay; + 96b,)n"V OV ,0V/ O
ay; — 96b,)n*V;V,0V/® + % (2a10 + ayy — 2byy +48b1,)H,*nn’n’V H s,

(ay —2(96b; + byg))n*n’n’'V ,0V,;,0V, O

- 2(010 + 48b1 + 24b12 - b17 + 4b19)n“nﬂn}’va¢v},vﬂfb + b38n”n/}n7n‘sv5V},Ka/; (21)

which is not the same as its corresponding timelike
Lagrangian found in [15]. The sign of some of the
parameters are changed compare to the timelike case.
We have imposed the identities corresponding to the unit
vector in the base space, by writing it as

n® = ——aﬂf (22)

VI0ufO' f|

where f is the function that specifies the spacelike
boundary, i.e., 9,f0"f = —|0,f0°f|.

The bulk Lagrangian has three parameters a;, a,o, a;; and
the boundary Lagrangian has two bulk parameters a, a;
and 7 boundary parameters by, by, b2, b7, b13, D19, b3g.
Since not all parameters are fixed up to an overall factor, in
the next section we consider another background.

IV. BACKGROUND WITH SUBMANIFOLD T@

In this section, we consider the background which has
the submanifold T(?9). That is, the open manifold has the

|
structure MP) = M) x 7@ agpmP) = oM () x 7@, The
base space manifold M (1) has time coordinate z, hence, its
boundary is spacelike boundary. The compactification on
this background has massless modes as well as infinite
tower of massive Kaluza-Klein modes. If one ignores the
massive Kaluza-Klein modes (cosmological reduction),
and uses the appropriate one-dimensional field redefini-
tions, then the cosmological action should have the O(d, d)
symmetry, i.e.,

Sé(y) + 0S5 (w) = SG (') + 0SG:(w')  (23)

where S and OS¢, are the cosmological reductions of the
bulk action S, ;s and boundary action S, respectively. In
above equation y represents all the massless fields in the

base space, i.e.,
—n?(t) 0 0 0
G;w = ’ B;w = )
0 Gi;(1) 0 Bj(1)

1
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The lapse function n(f) can also be fixed to n = 1. This
function at the boundary is the unit vector orthogonal to the
boundary. On the right-hand side of Eq. (23), v’ represents
their appropriate higher-derivative field redefinitions. The
effective actions on the right-hand side must be invariant
under O(d, d)-transformations.

In the absence of boundary, it has been shown in [25,26]
that there are field redefinitions, including the lapse
function, in which the nonlocal cosmological action which
involves higher time-derivatives become local action which
involves only the first time-derivative of the generalized
metric. In the presence of the boundary, one should not use
the field redefinitions for the lapse function because this
function at the boundary represents the unit normal vector
on the boundary. Moreover, in the presence of the boun-
dary, the field redefinitions should be restricted to those
which do not ruin the boundary conditions in the least
action principle in the base space [15]. In the presence of
boundary, there might be the field redefinitions that left
intact the laps function and do not ruin the boundary
conditions, however, the action in that scheme may involve
the first derivative of the generalized metric as well as
the first derivative of the one-dimensional dilaton, i.e., the
action may still become local. On the other hand, for the
local action, one expects the usual boundary condition in
the least action principle in which only the values of the
massless fields are known on the boundary. Hence, the
boundary action should not include the derivative of
the massless fields, i.e., as it has been speculated
in [16], the boundary action must be zero in that particular
scheme. Hence, in that scheme, the constraint (23) becomes

Seir(w) + 0S5 (w) = SG(w) (25)

It has been shown in [15] that there is such scheme at
order o'

The above constraint at each order of « produces two
constraints. One bulk and one boundary constraints. At the
leading order of o, they are

c 2 d — o
S500) — 3 [ dr 5 (Toe ) = ¢ w)
2
0S5(w) + = Toe™ =0 (26)
The second terms in the first equation is a total derivative
term at the two derivative order. For a particular Z,, the bulk

constraint produces the following O(d, d)-invariant action
[25,27,28]:

SO = —% / dre™? [—gbz - étr(é‘z)] (27)

where S is the generalized metric. Taking into the account
the appropriate Z, from the bulk constraint, one finds the
boundary constraint (26) satisfies automatically [16].

The constraint (25) at order o« produces the following
two constraints:

) - ASgw) - 5 [ dr (Tie ) = 0w)

2

where AS§ () is the Taylor expansion of the leading order
cosmological action (27) at order o/, i.e.,

S§(w + odyh) = S (w) + dASS (w) + -+ (29)

It has been shown in [15] that the bulk constraint in (28) is
satisfies when there are the following relations between the
bulk parameters a;, ag, ay;:

apn = —384611, ayy = 0 (30)

The corresponding O(d, d)-invariant action is the cosmo-
logical action that has been found in [19], i.e.,

2 1 . 1 o
SO (w) = —p24a1/dte ‘f’[ﬁtr(SA) —a(tr(S ))?
1 eninn Loy
+5w(S)p" — ¢ (31)
2 3
The corresponding total derivative terms are the

following:

I] = 24a13ikBijij + 12alGi,~ijij - 6alBl-jBiijk
- 6GIGi,‘ijGkk — 24QIBUBU¢ + 24alGiid72
+ 3201&3 (32)

The corresponding field redefinitions that involve only the
first derivative of the massless fields have been also found
in [15]. However, since they do not appear in the boundary
constraint in (28), we are not interested in them. Inserting
the relations (30) into the bulk Lagrangian (20), one
reproduces the Lagrangian (1), as expected.

The one-dimensional reduction of the timelike boundary
couplings (21) is the following:

106021-7



MOHAMMAD R. GAROUSI

PHYS. REV. D 105, 106021 (2022)

2
985 = — =
1 K‘2

€_¢ Z(—96Cl] — (b]] — 12b12))B,-kB”ij +Z(—192a| — (b]] — 12b]2))GikGlJij

+ 36611 + 6b1 - 3b12)Giiijij - 6alBijBiijk - 601Gii.ijGkk

(
1
2

(2461] + 6b] + b]g)BijBU¢ + <60a1 + 9b1 - 61712 - §b19> Gile/¢

L. 1 . 1 C
+24a,G' > + c (96a, —24b, — byg)d° + 1 (192a, + by, — 12b,)BYB;;

1

where we have also used the relations (30). The above
action is not invariant under the O(d, d) transformations. If
one includes 7| which is given in (32), one can choose the
boundary parameters such that the result becomes invariant.
For the following relations between the parameters:

bll = —96611 4 24[91, b12 = 801 + 2b15

1
b19 - —12b1 +Zb17 (34)

The boundary action becomes O(d, d)-invariant which
involves the first derivative of the dilaton, i.e.,

2
85?(1//) + lee_‘p

’ 1 L
= —Pe_(/' {(12611 + 3b, —8b17> (BijB” + Gi.iG])¢

1 .
- <l6a1 +4b, + gbm) ¢3]

The boundary constraint in (28) then dictates the following
relations:

bi; =96a, + 24b,, big = =96a, —24b,  (35)
The above relations (34) and (35), then reduce the 7
boundary parameters in (21) to 2 parameters b, bsg.
Note that the coupling with coefficient b;g is invariant
under the O(1,1) and O(d, d) transformations.

For the spacetime manifolds which have boundary, both
the bulk and boundary actions should satisfy the least
action principle, i.e., §(S; + dS;) = 0 with the appropriate
boundary condition on the massless fields. Since the bulk
action has at most the term with two derivatives, the
variation of the bulk action satisfies 6S; = 0 using the
assumption that the values of the massless fields and their
first derivatives are known on the boundary [16]. The
variation of the boundary action produces variation of the
second derivatives of the massless fields which are not zero
on the boundary for the effective action at order o'
However, the parameters b, bsg, cannot be fixed because

+ Z (19201 + bll - 12b12>GUGij + 5 (—192a1 + 24b12 - b17 + 4b19)¢ ¢:| (33)

the nonzero variations are total derivative terms on the
boundary which are zero. In fact inserting the relations
(30), (34), and (35) into the boundary action (21), one finds
the variation of the resulting boundary action against the
metric variation produces the following terms:

—24(4a; + b)) 0" @I fPV V356G 5
—24(4a; + by) 0" DO, fO fO fP*VV,6Gs.  (36)

where we have used the assumption that the variation of
metric and its first derivative, and their tangent derivatives
are zero, i.e., 6G,p = 0,06G,; = 0 and P*9,0,6G,; = 0.
On the other hand, if one considers the following anti-
symmetric tensor:

F?ﬂ = (96a; + 24b1)nﬂn[“8ﬁ]d>(vﬂ56”y - V.,6G,") (37)

Then its corresponding boundary total derivative term, i.e.,

A o AP o\ /gn V(e 2 F ) (38)

would cancel the variations (36). Similar cancellations
happen for the variations of the boundary action against
the dilaton and B-field.

We fix the remaining boundary parameters b;, bsg by
noting that the boundary couplings include the structures as
those in the Chern-Simons form. Hence, we fix the
remaining parameters in the boundary action such that
the gravity couplings in the boundary include the Chern-
Simons form. The Chern-Simons form has the following
gravity couplings for the spacelike boundary [18]:

- - 1
05 =4 [K"”R ~2K"R,, 5 (3K"K, K" — K* K* K",
- 2KﬂUKy(1KaM):| (39)

where f?m, and R are curvatures that are constructed from
the induced metric (7). Using the following Gauss-Codazzi
relations for the spacelike boundary:
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Raﬂ = PaﬂPﬁpRﬂb + nﬂnyRaﬂﬂy + KaﬂKﬂﬂ — KaﬂKﬂﬂ
R=R+2n"n"R,, + K, K" — K}'K," (40)

and the identity n*K,, = 0, one can rewrite Q5 in terms of
the spacetime curvatures, i.e., (4). For the spacelike
boundary, there is also the following identity:

n*n’n'n’V;V K5 = 2K, K¥ Ky, — n"n’V, V'K 5 (41)

which can be verified by writing both sides in the local
frame and in terms of the function f, i.e.,

nt = _L (42)

V10,1 f]

48
651 - - ;ll
K

The identity (41) is the same as the corresponding identity
in the timelike boundary [16] in which the terms which
have three n” or extrinsic curvature, have different sign.
However, the term which has five n* or extrinsic curvature,
has the same sign.

Using the identity (41), one finds the gravity couplings in
the boundary action become the same as the couplings in
Q3 for the following relations:

b1 = —4a1, b38 == 3201 (43)

In fact, inserting the relations (30), (34), (35) and (43) into
the boundary action (21), one finds the boundary couplings
(3) dictated by the background/character independence of
the effective actions at the critical dimension.

The boundary action for the non-null boundaries can
then be written as

4 1
/ 4Py /|g|e—2d> [Qz + §n2nanﬂvyvy1(aﬂ — 6[-]/jy(sHﬂyzSKoca 4 Hay(SH/j},gKaﬂ

+ n*H,*Hgs. K7 ,nn’ — 2n*Hy* H 5.0 n 'V ,® + 8KP ,V , 0V ®

32
— 16n*K7,n"n’V ,®V;® — 16K ,,V* OV D + ?nzn”nﬁnyva¢>vﬂ®vy(b (44)

where n? = n*n,, and the Chern-Simons density is

1
0, =4|K*,R—2K"R,, —2n*K,"n*n"R,, +2n°K* n®n’R 5, — §n2(6K"’aKWK"” —-2K* K',K®, —4K 'K ,K™*)| (45)

The boundary action has terms which have one and five n*
and/or K,4. At the higher orders of o', one expects the
boundary action to have terms with 1,5,9,13,- - - unit vector
n® and/or K,z Hence, to find the boundary actions at
higher orders of @, one may first find the couplings for the
timelike boundary, and then inserts n> = 1 in the couplings
which have 3,7,11,- - - unit vector n* and/or K ,4, to produce
terms with 1,5,9,13,- - - unit vector n* and/or K ;5. The result
then would be valid for the spacelike boundary as well. It
would be interesting to find the boundary couplings at order
a'? to check this speculation.

The boundary action for the null boundary may be
obtained by treating the null boundary as a limit of a sequence
of non-null boundaries [29]. Using this method, the coupling
on the null boundary at the leading order has been found in
[29] by taking the appropriate limit of the non-null boundary

coupling in (6). One may use this method to find the boundary
couplings at order ¢ for the null boundary by taking the limit
of the non-null boundary couplings (44).

Having found the boundary couplings (44) correspond-
ing to the bulk action (1) at order «, one may try to write
them in manifest O(D, D)-invariant form, as has been done
in [17] for the leading order effective action. Even for the
closed spacetime manifold, it is hard to write the effective
action at order o' in terms of the generalized metric because
the conventional 2D-dimensional Riemann curvature does
not transform covariantly under the generalized diffeo-
morphisms [30-33]. However, this action has been written
in O(D, D)-invariant form using the generalized frame
[34,35]. It would be interesting to write the bulk and
boundary actions (1), (44) in the duality manifest actions in
terms of the generalized frame.
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