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Recently, by explicit calculations at orders α0; α02; α03, it has been observed that the effective action of
string theory at the critical dimension is independent of the background for the closed spacetime manifolds.
In this paper we speculate that for the open spacetime manifolds, the effective action is even independent of
the character of the boundary, i.e., the boundary couplings for timelike and spacelike boundaries are the
same. We support this proposal by calculating the boundary couplings in the bosonic string theory at order
α0 for the spacelike boundary and show that they are the same as the couplings for the timelike boundary
that have been recently found.
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I. INTRODUCTION

The critical string theory is an extension of the Einstein
theory of general relativity which is consistent with the
rules of quantum mechanics. As in the Einstein theory, one
expects the string theory at the critical dimension D ¼
1þ d to be background independent. In the low energy
effective action, by the background independence we mean
the coefficients of the independent gauge invariant cou-
plings at each order of α0 should be independent of the
background. The background independence in the double
field theory formalism has been discussed in [1].
The independent couplings in the effective action at a

given order of α0, are all gauge invariant couplings modulo
the field redefinitions, the total derivative terms and the
Bianchi identities. For the closed spacetime manifolds, the
field redefinitions at a given order of α0 involve the most
general gauge invariant terms at that order [2]. The
numbers of independent couplings involving the metric,
dilaton and the B-field at orders α0;α02; α03 are 8,60,872,
respectively [2–4]. The background independence
assumption indicates that the coefficients of these cou-
plings are independent of the background. If one can fix
them for a particular background, then they are valid for
any other background as well. On the other hand, it has
been proved in [5,6] that the dimensional reduction of the
classical effective actions of the bosonic and heterotic
string theories on a torus Td are invariant under global

Oðd; dÞ transformations. Hence, if one considers a par-
ticular background which includes one circle, compactifies
the effective action on this circle and ignores the Kaluza-
Klein massive modes (dimensional reduction), then the
lower dimensional action which includes all parameters of
the original action, must have the Oð1; 1Þ symmetry. This
symmetry may fix the couplings in the original action.
Imposing this symmetry on the effective action of the
bosonic string theory at orders α0; α02, the coefficients of all
independent couplings have been found in [7,8] up to an
overall factor. Imposing this symmetry on the NS-NS
couplings of the type II superstring theory at order α03, the
coefficients of all independent couplings have been found
in [9–11] up to an overall factor. The resulting couplings
must be valid for any other background. For example, the
same couplings must be valid for the background which
includes the compact submanifold Td. The lower-dimen-
sional action in this case must have the symmetry Oðd; dÞ
[5,6]. In fact, it has been shown in [12,13] that the resulting
couplings have exactly such symmetry. For the back-
ground which has the compact submanifold T2, the lower
dimensional action must have the symmetry Oð2; 2Þ. It has
been shown in [14] that the couplings at order α0 have such
symmetry.
For the open spacetime manifolds, it has been speculated

in [15] that the field redefinitions at a given order of α0
involve only the restricted gauge invariant terms which
respect the boundary conditions in the least action princi-
ple. In the presence of boundary, the boundary conditions
which are consistent with the above Oð1; 1Þ or Oðd; dÞ
symmetries, require the massless fields and their derivatives
at order m to be known on the boundary for the effective
actions at order α0m [16]. The minimum numbers of
independent couplings at order α0 for the bosonic string
theory and for the heterotic string theory after truncating the
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Yang-Mills gauge fields, are 17 bulk couplings and 38
boundary couplings [15,16]. The background independ-
ence assumption in this case indicates that the coefficients
of these parameters are independent of the background and
are independent of the character of the boundary, i.e., the

coefficients in the bulk and boundary couplings must be the
same for both timelike and spacelike boundaries. Using the
background independence assumption, these couplings in a
particular minimal scheme have been recently found for the
timelike boundary to be [15]
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where nμ is the unit vector orthogonal to the boundary, R2
GB is the Gauss-Bonnet gravity couplings and Qt

2 is the Chern-
Simons couplings that for timelike boundary, i.e., nμnμ ¼ 1, is given as [16,18]

Qt
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In the above equations,Kμν is the extrinsic curvaturewhich is
defined as Kμν ¼ Pα

μPβ
ν∇ðαnβÞ where Pμν is the first

fundamental form which projects the spacetime tensors
tangent to the boundary. For the timelike boundary, the first
fundamental form is defined as Pμν ¼ Gμν − nμnν for which
the extrinsic curvature becomes Kμν ¼ ∇μnν − nμnα∇αnν.
In the above equations, themetric in the covariant derivatives
and in the curvatures is thebulkmetricGμν. If one chooses the
overall factor a1 to be a1 ¼ 1=96 (a1 ¼ 1=192), then the
bulk action becomes the Meissner action of the bosonic
(heterotic) string theory found in [19], up to a restricted field
redefinition [15]. For the superstring theory a1 ¼ 0.

For the spacelike boundary in which nμnμ ¼ −1, the first
fundamental form is defined as Pμν ¼ Gμν þ nμnν for which
the extrinsic curvature becomes Kμν ¼ ∇μnν þ nμnα∇αnν.
We expect this sign difference in the second term in the
definition of the first fundamental form changes the sign of all
terms which involve three unit vector nμ or extrinsic
curvature. Therefore, when the spacetime has spacelike
boundary, the background independence assumption of the
effective action predicts that the bulk action to be the same as
the bulk action (1) for the spacetime which has timelike
boundary, whereas the character independence predicts the
following boundary couplings for the spacelike boundary:
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where the terms involving three unit vector nμ or extrinsic curvature have different sign compare to the timelike boundary
couplings in (1). In above equation, Qs

2 is the Chern-Simons couplings for the spacelike boundary
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Note that the terms with three extrinsic curvatures have
different sign compare to the Chern-Simons couplings of
the timelike boundary (2). In this paper, using the back-
ground independence method, we are going to calculate the
bulk and boundary couplings for the spacetime manifold
which has spacelike boundary and show that the resulting
couplings are exactly the same as the above couplings
which are predicted by the background/character independ-
ence assumption.
The outline of the paper is as follows: In Sec. II, we write

the 17 independent bulk couplings and the 38 independent
boundary couplings at order α0 which have been found in
[15,16]. In Sec. III, using the background independence
assumption, we consider the background which has a
spacelike boundary and one circle, and use the dimensional
reduction to find the corresponding couplings in the base
space. We then impose the Oð1; 1Þ symmetry on the
reduced actions to constrain the parameters in the actions.
In Sec. IV, we consider the background which has a
spacelike boundary and the torus Td, and use the cosmo-
logical reduction to find the one-dimensional bulk action
and the zero-dimensional boundary action. We then impose
the Oðd; dÞ symmetry on the resulting actions to further
constrain the remaining parameters. The above two con-
straints fix the bulk action to be the bulk action in (1), and
fix the boundary action up to two parameters. By requiring
the gravity couplings on the boundary action to be con-
sistent with the Chern-Simons couplings, the two boundary
parameters are also fixed. We find that the final boundary
action is exactly the same as (3).

II. INDEPENDENT COUPLINGS AT ORDER α0

The effective actions of string theory on an open
manifold has both bulk and boundary actions. At the
sphere-level, these actions have the following α0-expansion:

Seff ¼
X∞
m¼0

α0mSm ¼ S0 þ α0S1 þ α02S2 þ α03S3 þ � � �

∂Seff ¼
X∞
m¼0

α0m∂Sm

¼ ∂S0 þ α0∂S1 þ α02∂S2 þ α03∂S3 þ � � � ð5Þ

The leading order actions in the universal sector which
includes metric, dilaton, and B-field, in the string frame for
both timelike and spacelike boundaries are

S0 þ ∂S0
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where G is determinant of the bulk metric Gμν and
boundary is specified by the functions xμ ¼ xμðσμ̃Þ. In
the boundary term, g is determinant of the induced metric
on the boundary

gμ̃ ν̃ ¼
∂xμ
∂σμ̃

∂xν
∂σν̃ Gμν ð7Þ

and K is the trace of the extrinsic curvature. The normal
vector to the boundary is nμ. It is outward-pointing
(inward-pointing) if the boundary is spacelike (timelike).
Using the double field theory formalism, it has been shown
in [17] that the leading order effective action (6) can be
written in OðD;DÞ-invariant form in terms of the gener-
alized metric and dilaton.
At order α0 these actions in terms of their Lagrangians are

S1 ¼ −
2
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Z
M
dDx

ffiffiffiffiffiffiffi
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e−2ΦL1;

∂S1 ¼ −
2

κ2

Z
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dD−1σ
ffiffiffiffiffi
jgj

p
e−2Φ∂L1 ð8Þ

In general there are 41 gauge invariant couplings in the bulk
Lagrangian. Removing the total derivative terms from the
bulk to the boundary by using the Stokes’ theorem and
using the Bianchi identities, one can reduce the 41
couplings to 20 couplings. The most general field redefi-
nitions reduce these couplings to 8 couplings [2]. However,
in the presence of boundary one is not allowed to use the
most general field redefinitions because they ruin the
boundary conditions required in the least action principle
for the effective actions of string theory [16]. The allowed
field redefinitions at order α0 requires the metric does not
change, and the dilaton and B-field change to include only
the first derivative of the massless fields. This restricted
field redefinition has only three parameters. Hence, there
are only 17 independent couplings in the bulk. The
couplings in a particular minimal scheme are [15]

L1 ¼ a1Hα
δϵHαβγHβδ

εHγϵε þ a2Hαβ
δHαβγHγ

ϵεHδϵε þ a3Hα
γδHβγδRαβ þ a4RαβRαβ

þ a5HαβγHαβγRþ a6R2 þ a7RαβγδRαβγδ þ a8Hα
δϵHαβγRβγδϵ þ a9R∇αΦ∇αΦ

þ a10Rαβ∇β∇αΦþ a11Rαβ∇αΦ∇βΦþ a12∇αΦ∇αΦ∇βΦ∇βΦþ a13∇αΦ∇β∇αΦ∇βΦ

þ a14∇β∇αΦ∇β∇αΦþ a15∇αHαβγ∇δHβγ
δ þ a16Hα

βγ∇αΦ∇δHβγ
δ þ a17∇δHαβγ∇δHαβγ ð9Þ
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where a1;…; a17 are 17 background independent
parameters.
The boundary of the spacetimehas a unit normal vectornμ,

hence, the boundary Lagrangian ∂L1 should include this
vector and its derivatives aswell as the bulk tensors. Since the
field redefinition freedom has been already used in the bulk
action, one is not allowed to use any field redefinition in the

boundary action. Removing the boundary total derivative
terms from the most general gauge invariant boundary
couplings, and using the Bianchi identities and the identities
corresponding to the unit vector, it has been shown in [16]
that there are 38 independent couplings in the boundary
action. For both timelike and spacelike boundaries, the
couplings in a particular scheme are [16]

∂L1 ¼ b1HβγδHβγδKα
α þ b2Hα

γδHβγδKαβ þ b3Kα
γKαβKβγ þ b4Kα

αKβγKβγ

þ b5Kα
αKβ

βKγ
γ þ b6Hα

δϵHβδϵKγ
γnαnβ þ b7Hαγ

ϵHβδϵKγδnαnβ þ b8KαβRαβ

þ b9Kγ
γnαnβRαβ þ b10Kα

αRþ b11KγδnαnβRαγβδ þ b12Hβγδnα∇αHβγδ

þ b13Kβγnα∇αKβγ þ b14Kβ
βnα∇αKγ

γ þ b15nα∇αRþ b16HβγδHβγδnα∇αΦ

þ b17KβγKβγnα∇αΦþ b18Kβ
βKγ

γnα∇αΦþ b19Hβ
δϵHγδϵnαnβnγ∇αΦ

þ b20nαnβnγRβγ∇αΦþ b21nαR∇αΦþ b22Kβ
β∇αΦ∇αΦþ b23nαnβ∇αΦ∇βKγ

γ

þ b24Kγ
γnαnβ∇αΦ∇βΦþ b25nαnβ∇β∇αKγ

γ þ b26Kαβ∇β∇αΦ

þ b27Kγ
γnαnβ∇β∇αΦþ b28Hα

γδHβγδnα∇βΦþ b29nαRαβ∇βΦþ b30Kαβ∇αΦ∇βΦ

þ b31nα∇αΦ∇βΦ∇βΦþ b32nα∇β∇αΦ∇βΦþ b33Hα
δϵnαnβnγ∇γHβδϵ

þ b34nαnβnγ∇αΦ∇βΦ∇γΦþ b35nαnβnγ∇αΦ∇γ∇βΦþ b36nαnβnγ∇γ∇β∇αΦ

þ b37nαnβ∇βKαγ∇γΦþ b38nαnβnγnδ∇δ∇γKαβ ð10Þ

where b1;…; b38 are 38 background independent param-
eters. These parameters, however, depend on the character
of boundary. They have been found in [15] for the timelike
boundary. In the following sections we consider the
boundary to be spacelike.

III. BACKGROUND WITH SUBMANIFOLD Sð1Þ

We have used the gauge symmetries corresponding to the
massless fields to write the independent couplings in the
bulk action (9) and in the boundary action (10). The
parameters in these actions are independent of the back-
grounds. In general, there is no global symmetry in the
universal sector of string theory at the critical dimension to
be used for fixing these parameters. However, for some
specific backgrounds which have compact submanifolds,
the compactified actions may have some global symmetries
after ignoring the Kaluza-Klein massive modes (dimen-
sional reduction). Since the parameters in the actions (9)
and (10) appears also in the lower dimensional actions, one
can use the symmetry of the lower dimensional actions to
fix these parameters. In this section we consider the
background with submanifold Sð1Þ. That is, we choose
the open manifold to have the structure MðDÞ ¼
MðD−1Þ × Sð1Þ, ∂MðDÞ ¼ ∂MðD−1Þ × Sð1Þ. The manifold
MðDÞ has coordinates xμ ¼ ðxa; yÞ and its boundary
∂MðDÞ has coordinates σμ̃ ¼ ðσã; yÞ where y is the coor-
dinate of the circle Sð1Þ. The boundary in the base space is

specified by the functions xa ¼ xaðσãÞ. The dimensionally
reduced action then should have the Oð1; 1Þ symmetry. To
simplify the calculation, we consider the Z2-subgroup of
the Oð1; 1Þ-group.
The reduction of the effective actions on the circle Sð1Þ

should then be invariant under the Z2-transformations, up
to some total derivative terms on the boundary [20], i.e.,

SeffðψÞ þ ∂SeffðψÞ ¼ Seffðψ 0Þ þ ∂Seffðψ 0Þ ð11Þ

where Seff and ∂Seff are the reductions of the bulk action
Seff and boundary action ∂Seff , respectively. In above
equation ψ represents all the massless fields in the base
space which are defined in the following Kaluza-Klein
reductions [21]:

Gμν ¼
�
ḡab þ eφgagb eφga

eφgb eφ

�
;

Bμν ¼
�
b̄ab þ 1

2
bagb − 1

2
bbga ba

−bb 0

�
;

Φ ¼ ϕ̄þ φ=4; nμ ¼ ðna; 0Þ ð12Þ

and ψ 0 represents its transformation under the Z2-
transformations or the T-duality transformations. At the
leading order of α0, the T-duality transformations are the
Buscher rules [22,23]. To order α0, they are the Buscher
rules and the corrections at order α0 which do not ruin the
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boundary conditions of the least action principle in the base
space. They are [15]

φ0 ¼−φþα0Δφ; g0a¼baþα0eφ=2Δga;

b0a¼gaþα0e−φ=2Δba; ḡab0 ¼ ḡab;

H̄abc
0 ¼ H̄abcþα0ΔH̄abc; ϕ̄0 ¼ ϕ̄þα0Δϕ̄; n0a¼na ð13Þ

where the corrections Δφ;Δba;Δga;Δϕ̄ contain all con-
tractions of the massless fields in the base space at order α0
which involve only the first derivative of the massless
fields. The correction ΔH̄abc is related to the corrections
Δga, Δba through the following relation:

ΔH̄abc ¼ H̃abc − 3e−φ=2W½abΔbc� − 3eφ=2Δg½aVbc� ð14Þ

where H̃abc is a Uð1Þ ×Uð1Þ gauge invariant closed
3-form at order α0 which is odd under parity. It has the
following terms:

H̃abc ¼ e1∂ ½aWb
dVc�d þ e2∂ ½aH̄bc�d∇dφ ð15Þ

where e1, e2 and the coefficients in the corrections
Δφ;Δba;Δga;Δϕ̄ are parameters that the Z2-symmetry
of the effective action should fix them. The above trans-
formations should also form the Z2-group [7]. In the above
equation, Vab is field strength of the Uð1Þ gauge field ga,
i.e., Vab ¼ ∂agb − ∂bga, and Wμν is field strength of the
Uð1Þ gauge field ba, i.e., Wab ¼ ∂abν − ∂bba. The three-
form H̄ is defined as H̄abc ¼ Ĥabc − 3

2
g½aWbc� − 3

2
b½aVbc�

where the three-form Ĥ is field strength of the two-form b̄ab
in (12).
In [16], it has been shown that the constraint (11) can be

written as two separate constraints. One for the bulk
couplings and the other one for the boundary couplings.
These constraints for the couplings at order α0 are [16]

S1ðψÞ − S1ðψ 0
0Þ − ΔS0 −

2

κ2

Z
dD−1x

ffiffiffiffiffiffi
−ḡ

p ∇aðAa
1e

−2ϕ̄Þ ¼ 0

∂S1ðψÞ − ∂S1ðψ 0
0Þ − Δ∂S0 þ T1ðψÞ

þ 2

κ2

Z
dD−2σ

ffiffiffĩ
g

p
naAa

1e
−2ϕ̄ ¼ 0 ð16Þ

where ḡ is the determinant of the base space metric ḡab and
g̃ is the determinant of the induced base space metric on its
boundary, i.e.,

g̃ã b̃ ¼
∂xa
∂σã

∂xb
∂σb̃ ḡab ð17Þ

In Eq. (16), ψ 0
0 is the transformation of the base space field

ψ under the Buscher rules, Aa
1 is a vector made of the

massless fields in the base space at order α0 with arbitrary
coefficients, and T1ðψÞ is the most general total derivative
terms in the boundary at order α0, i.e.,

T1ðψÞ ¼ −
2

κ2

Z
∂MðD−1Þ

dD−2σ
ffiffiffiffiffi
jg̃j

p
na∇bðe−2ϕ̄Fab

1 Þ ð18Þ

where Fab
1 is an antisymmetric tensor constructed from the

massless fields in the base space at order α0 with arbitrary
coefficients. In the Eq. (16), ΔS0, Δ∂S0 are the Taylor
expansions of the reduction of the leading order actions (6)
at order α0,

S0ðψ 0
0 þ α0ψ 0

1Þ ¼ S0ðψ 0
0Þ þ α0ΔS0 þ � � �

∂S0ðψ 0
0 þ α0ψ 0

1Þ ¼ ∂S0ðψ 0
0Þ þ α0Δ∂S0 þ � � � ð19Þ

where dots represent some terms at higher orders of α0 in
which we are not interested in this paper.
The first constraint in (16) involves only the bulk fields

that their reductions are given in [8]. The second constraint
involves the bulk fields and the boundary extrinsic curva-
ture. The reduction of the extrinsic curvature and its first
and second derivatives for the timelike boundary are
calculated in [24]. We have checked explicitly that they
are valid for spacelike boundary as well. Using these
reductions and following the same steps as those in [16],
one finds that the Z2-symmetry fixes the bulk Lagrangian
(9) to be the same as the one has been found in [15], i.e.,

L1 ¼ a1Hα
δϵHαβγHβδ

εHγϵεþ
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4
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1

4
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þ 1
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1

16
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�
−36a1−

1

8
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1

16
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�
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−
1

4
a11R∇αΦ∇αΦþa10Rαβ∇β∇αΦþa11Rαβ∇αΦ∇βΦþa10∇β∇αΦ∇β∇αΦ−

1

16
a10∇αHαβγ∇δHβγ

δ

þ 1
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δþ

�
8a1þ

1

24
a10þ

1

48
a11

�
∇δHαβγ∇δHαβγ ð20Þ
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and the boundary Lagrangian (10) for the spacelike boundary to be

∂L1 ¼ b1HβγδHβγδKα
α þ

1

16
ð−2a10 − a11ÞHα

γδHβγδKαβ þ b11Kα
γKαβKβγ

þ 1

4
ð−a11 − 2ð48b1 þ b17ÞÞKα

αKβγKβγ þ 1

12
ða11 þ 96b1 − 2b18ÞKα

αKβ
βKγ

γ

−
1

2
b19Hα

δϵHβδϵKγ
γnαnβ þ

�
a10 þ

1

2
a11 þ 12b12

�
KαβRαβ

þ 1

2
ða10 − 48b1 þ 24b12 − b17 þ 4b19ÞKγ

γnαnβRαβ þ
�
−
1

8
a11 − 12b1

�
Kα

αR

þ b11KγδnαnβRαγβδ þ b12Hβγδnα∇αHβγδ þ
�
1

48
a11 − 2b1

�
HβγδHβγδnα∇αΦ

þ b17KβγKβγnα∇αΦþ b18Kβ
βKγ

γnα∇αΦþ b19Hβ
δϵHγδϵnαnβnγ∇αΦ

þ
�
−a10 −

1

2
a11 − 24b12 þ b17 − 4b19

�
nαnβnγRβγ∇αΦþ

�
−
1

4
a11 þ 24b1

�
nαR∇αΦ

− 48b1Kβ
β∇αΦ∇αΦ − 2ð48b1 þ b18ÞKγ

γnαnβ∇αΦ∇βΦ

þ 1

2
ð4a10 þ a11 þ 48ð−2b1 þ b12ÞÞKαβ∇β∇αΦ

þ
�
a10 þ

1

2
a11 þ 24b12 − b17 þ 4b19

�
Kγ

γnαnβ∇β∇αΦþ 1

8
a10Hα

γδHβγδnα∇βΦ

þ 1

2
ða11 − 96b1ÞnαRαβ∇βΦþ a11Kαβ∇αΦ∇βΦþ ð−a11 þ 96b1Þnα∇αΦ∇βΦ∇βΦ

þ ða11 − 96b1Þnα∇β∇αΦ∇βΦþ 1

8
ð2a10 þ a11 − 2b11 þ 48b12ÞHα

δϵnαnβnγ∇γHβδϵ

−
2

3
ða11 − 2ð96b1 þ b18ÞÞnαnβnγ∇αΦ∇βΦ∇γΦ

− 2ða10 þ 48b1 þ 24b12 − b17 þ 4b19Þnαnβnγ∇αΦ∇γ∇βΦþ b38nαnβnγnδ∇δ∇γKαβ ð21Þ

which is not the same as its corresponding timelike
Lagrangian found in [15]. The sign of some of the
parameters are changed compare to the timelike case.
We have imposed the identities corresponding to the unit
vector in the base space, by writing it as

na ¼ −
∂afffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j∂bf∂bfj
p ð22Þ

where f is the function that specifies the spacelike
boundary, i.e., ∂af∂af ¼ −j∂af∂afj.
The bulk Lagrangian has three parameters a1, a10, a11 and

the boundary Lagrangian has two bulk parameters a10, a11
and 7 boundary parameters b1; b11; b12; b17; b18; b19; b38.
Since not all parameters are fixed up to an overall factor, in
the next section we consider another background.

IV. BACKGROUND WITH SUBMANIFOLD TðdÞ

In this section, we consider the background which has
the submanifold TðdÞ. That is, the open manifold has the

structure MðDÞ ¼ Mð1Þ × TðdÞ, ∂MðDÞ ¼ ∂Mð1Þ × TðdÞ. The
base space manifold Mð1Þ has time coordinate t, hence, its
boundary is spacelike boundary. The compactification on
this background has massless modes as well as infinite
tower of massive Kaluza-Klein modes. If one ignores the
massive Kaluza-Klein modes (cosmological reduction),
and uses the appropriate one-dimensional field redefini-
tions, then the cosmological action should have theOðd; dÞ
symmetry, i.e.,

SceffðψÞ þ ∂SceffðψÞ ¼ SOeffðψ 0Þ þ ∂SOeffðψ 0Þ ð23Þ
where Sceff and ∂Sceff are the cosmological reductions of the
bulk action Seff and boundary action ∂Seff , respectively. In
above equation ψ represents all the massless fields in the
base space, i.e.,

Gμν ¼
�−n2ðtÞ 0

0 GijðtÞ
�
; Bμν ¼

�
0 0

0 BijðtÞ
�
;

2Φ ¼ ϕþ 1

2
log detðGijÞ ð24Þ
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The lapse function nðtÞ can also be fixed to n ¼ 1. This
function at the boundary is the unit vector orthogonal to the
boundary. On the right-hand side of Eq. (23), ψ 0 represents
their appropriate higher-derivative field redefinitions. The
effective actions on the right-hand side must be invariant
under Oðd; dÞ-transformations.
In the absence of boundary, it has been shown in [25,26]

that there are field redefinitions, including the lapse
function, in which the nonlocal cosmological action which
involves higher time-derivatives become local action which
involves only the first time-derivative of the generalized
metric. In the presence of the boundary, one should not use
the field redefinitions for the lapse function because this
function at the boundary represents the unit normal vector
on the boundary. Moreover, in the presence of the boun-
dary, the field redefinitions should be restricted to those
which do not ruin the boundary conditions in the least
action principle in the base space [15]. In the presence of
boundary, there might be the field redefinitions that left
intact the laps function and do not ruin the boundary
conditions, however, the action in that scheme may involve
the first derivative of the generalized metric as well as
the first derivative of the one-dimensional dilaton, i.e., the
action may still become local. On the other hand, for the
local action, one expects the usual boundary condition in
the least action principle in which only the values of the
massless fields are known on the boundary. Hence, the
boundary action should not include the derivative of
the massless fields, i.e., as it has been speculated
in [16], the boundary action must be zero in that particular
scheme. Hence, in that scheme, the constraint (23) becomes

SceffðψÞ þ ∂SceffðψÞ ¼ SOeffðψ 0Þ ð25Þ
It has been shown in [15] that there is such scheme at
order α0.
The above constraint at each order of α0 produces two

constraints. One bulk and one boundary constraints. At the
leading order of α0, they are

Sc0ðψÞ −
2

κ2

Z
dt

d
dt

ðI0e−ϕÞ ¼ SO0 ðψÞ

∂Sc0ðψÞ þ 2

κ2
I0e−ϕ ¼ 0 ð26Þ

The second terms in the first equation is a total derivative
term at the two derivative order. For a particular I0, the bulk
constraint produces the following Oðd; dÞ-invariant action
[25,27,28]:

SO0 ¼ −
2

κ2

Z
dte−ϕ

�
− _ϕ2 −

1

8
trð _S2Þ

�
ð27Þ

where S is the generalized metric. Taking into the account
the appropriate I0 from the bulk constraint, one finds the
boundary constraint (26) satisfies automatically [16].

The constraint (25) at order α0 produces the following
two constraints:

Sc1ðψÞ − ΔSO0 ðψÞ −
2

κ2

Z
dt

d
dt

ðI1e−ϕÞ ¼ SO1 ðψÞ

∂Sc1ðψÞ þ 2

κ2
I1e−ϕ ¼ 0 ð28Þ

where ΔSO0 ðψÞ is the Taylor expansion of the leading order
cosmological action (27) at order α0, i.e.,

SO0 ðψ þ α0ψ 0
1Þ ¼ SO0 ðψÞ þ α0ΔSO0 ðψÞ þ � � � ð29Þ

It has been shown in [15] that the bulk constraint in (28) is
satisfies when there are the following relations between the
bulk parameters a1, a10, a11:

a11 ¼ −384a1; a10 ¼ 0 ð30Þ

The corresponding Oðd; dÞ-invariant action is the cosmo-
logical action that has been found in [19], i.e.,

SO1 ðψÞ ¼ −
2

κ2
24a1

Z
dte−ϕ

�
1

16
trð _S4Þ − 1

64
ðtrð _S2ÞÞ2

þ 1

2
trð _S2Þ _ϕ2 −

1

3
_ϕ4

�
ð31Þ

The corresponding total derivative terms are the
following:

I1 ¼ 24a1 _Bi
k _Bij _Gjk þ 12a1 _G

i
i
_Gjk

_Gjk − 6a1 _Bij
_Bij _Gk

k

− 6a1 _G
i
i
_Gj

j
_Gk

k − 24a1 _Bij
_Bij _ϕþ 24a1 _G

i
i
_ϕ2

þ 32a1 _ϕ
3 ð32Þ

The corresponding field redefinitions that involve only the
first derivative of the massless fields have been also found
in [15]. However, since they do not appear in the boundary
constraint in (28), we are not interested in them. Inserting
the relations (30) into the bulk Lagrangian (20), one
reproduces the Lagrangian (1), as expected.
The one-dimensional reduction of the timelike boundary

couplings (21) is the following:
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∂Sc1 ¼ −
2

κ2
e−ϕ

�
1

4
ð−96a1 − ðb11 − 12b12ÞÞ _Bi

k _Bij _Gjk þ
1

4
ð−192a1 − ðb11 − 12b12ÞÞ _Gi

k _Gij _Gjk

þ ð36a1 þ 6b1 − 3b12Þ _Gi
i
_Gjk

_Gjk − 6a1 _Bij
_Bij _Gk

k − 6a1 _G
i
i
_Gj

j
_Gk

k

−
1

2
ð24a1 þ 6b1 þ b19Þ _Bij

_Bij _ϕþ
�
60a1 þ 9b1 − 6b12 −

1

2
b19

�
_Gij

_Gij _ϕ

þ 24a1 _G
i
i
_ϕ2 þ 1

6
ð96a1 − 24b1 − b18Þ _ϕ3 þ 1

4
ð192a1 þ b11 − 12b12Þ _BijB̈ij

þ 1

4
ð192a1 þ b11 − 12b12Þ _GijG̈ij þ

1

2
ð−192a1 þ 24b12 − b17 þ 4b19Þ _ϕ ϕ̈

�
ð33Þ

where we have also used the relations (30). The above
action is not invariant under the Oðd; dÞ transformations. If
one includes I1 which is given in (32), one can choose the
boundary parameters such that the result becomes invariant.
For the following relations between the parameters:

b11 ¼ −96a1 þ 24b1; b12 ¼ 8a1 þ 2b1;

b19 ¼ −12b1 þ
1

4
b17 ð34Þ

The boundary action becomes Oðd; dÞ-invariant which
involves the first derivative of the dilaton, i.e.,

∂Sc1ðψÞ þ 2

κ2
I1e−ϕ

¼ −
2

κ2
e−ϕ

��
12a1 þ 3b1 −

1

8
b17

�
ð _Bij

_Bij þ _Gij
_GijÞ _ϕ

−
�
16a1 þ 4b1 þ

1

6
b18

�
_ϕ3

�

The boundary constraint in (28) then dictates the following
relations:

b17 ¼ 96a1 þ 24b1; b18 ¼ −96a1 − 24b1 ð35Þ

The above relations (34) and (35), then reduce the 7
boundary parameters in (21) to 2 parameters b1, b38.
Note that the coupling with coefficient b38 is invariant
under the Oð1; 1Þ and Oðd; dÞ transformations.
For the spacetime manifolds which have boundary, both

the bulk and boundary actions should satisfy the least
action principle, i.e., δðS1 þ ∂S1Þ ¼ 0 with the appropriate
boundary condition on the massless fields. Since the bulk
action has at most the term with two derivatives, the
variation of the bulk action satisfies δS1 ¼ 0 using the
assumption that the values of the massless fields and their
first derivatives are known on the boundary [16]. The
variation of the boundary action produces variation of the
second derivatives of the massless fields which are not zero
on the boundary for the effective action at order α0.
However, the parameters b1, b38, cannot be fixed because

the nonzero variations are total derivative terms on the
boundary which are zero. In fact inserting the relations
(30), (34), and (35) into the boundary action (21), one finds
the variation of the resulting boundary action against the
metric variation produces the following terms:

− 24ð4a1 þ b1Þ∂αΦ∂βfPγδ∇α∇βδGγδ

− 24ð4a1 þ b1Þ∂αΦ∂αf∂βf∂γfPδϵ∇β∇γδGδϵ ð36Þ

where we have used the assumption that the variation of
metric and its first derivative, and their tangent derivatives
are zero, i.e., δGαβ ¼ ∂μδGαβ ¼ 0 and Pμν∂μ∂γδGαβ ¼ 0.
On the other hand, if one considers the following anti-
symmetric tensor:

F αβ
1 ¼ ð96a1 þ 24b1Þnμn½α∂β�Φð∇μδGν

ν −∇νδGμ
νÞ ð37Þ

Then its corresponding boundary total derivative term, i.e.,
Z
∂MðDÞ

dD−1σ
ffiffiffi
g

p
nα∇βðe−2ΦF αβ

1 Þ ð38Þ

would cancel the variations (36). Similar cancellations
happen for the variations of the boundary action against
the dilaton and B-field.
We fix the remaining boundary parameters b1, b38 by

noting that the boundary couplings include the structures as
those in the Chern-Simons form. Hence, we fix the
remaining parameters in the boundary action such that
the gravity couplings in the boundary include the Chern-
Simons form. The Chern-Simons form has the following
gravity couplings for the spacelike boundary [18]:

Qs
2 ¼ 4

�
Kμ

μR̃ − 2KμνR̃μν −
1

3
ð3Kα

αKμνKμν − Kμ
μKν

νKα
α

− 2Kμ
νKναKαμÞ

�
ð39Þ

where R̃μν and R̃ are curvatures that are constructed from
the induced metric (7). Using the following Gauss-Codazzi
relations for the spacelike boundary:
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R̃αβ ¼ PαμPβνRμν þ nμnνRαμβν þ KαμKβ
μ − KαβKμ

μ

R̃ ¼ Rþ 2nμnνRμν þ KμνKμν − Kμ
μKν

ν ð40Þ

and the identity nμKμν ¼ 0, one can rewrite Qs
2 in terms of

the spacetime curvatures, i.e., (4). For the spacelike
boundary, there is also the following identity:

nαnβnγnδ∇δ∇γKαβ ¼ 2Kα
γKαβKβγ − nαnβ∇γ∇γKαβ ð41Þ

which can be verified by writing both sides in the local
frame and in terms of the function f, i.e.,

nμ ¼ −
∂μfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂νf∂νfjp ð42Þ

The identity (41) is the same as the corresponding identity
in the timelike boundary [16] in which the terms which
have three nα or extrinsic curvature, have different sign.
However, the term which has five nα or extrinsic curvature,
has the same sign.
Using the identity (41), one finds the gravity couplings in

the boundary action become the same as the couplings in
Qs

2 for the following relations:

b1 ¼ −4a1; b38 ¼ 32a1 ð43Þ
In fact, inserting the relations (30), (34), (35) and (43) into
the boundary action (21), one finds the boundary couplings
(3) dictated by the background/character independence of
the effective actions at the critical dimension.
The boundary action for the non-null boundaries can

then be written as

∂S1 ¼ −
48a1
κ2

Z
dD−1σ

ffiffiffiffiffi
jgj

p
e−2Φ

�
Q2 þ

4

3
n2nαnβ∇γ∇γKαβ −

1

6
HβγδHβγδKα

α þHα
γδHβγδKαβ

þ n2Hα
δϵHβδϵKγ

γnαnβ − 2n2Hβ
δϵHγδϵnαnβnγ∇αΦþ 8Kβ

β∇αΦ∇αΦ

− 16n2Kγ
γnαnβ∇αΦ∇βΦ − 16Kαβ∇αΦ∇βΦþ 32

3
n2nαnβnγ∇αΦ∇βΦ∇γΦ

�
ð44Þ

where n2 ¼ nμnμ, and the Chern-Simons density is

Q2 ¼ 4

�
Kμ

μR−2KμνRμν−2n2Kα
αnμnνRμνþ2n2KμνnαnβRαμβν−

1

3
n2ð6Kα

αKμνKμν−2Kμ
μKν

νKα
α−4Kμ

νKναKαμÞ
�

ð45Þ

The boundary action has terms which have one and five nα

and/or Kαβ. At the higher orders of α0, one expects the
boundary action to have terms with 1,5,9,13,� � � unit vector
nα and/or Kαβ. Hence, to find the boundary actions at
higher orders of α0, one may first find the couplings for the
timelike boundary, and then inserts n2 ¼ 1 in the couplings
which have 3,7,11,� � � unit vector nα and/or Kαβ, to produce
terms with 1,5,9,13,� � � unit vector nα and/orKαβ. The result
then would be valid for the spacelike boundary as well. It
would be interesting to find the boundary couplings at order
α02 to check this speculation.
The boundary action for the null boundary may be

obtained by treating the null boundary as a limit of a sequence
of non-null boundaries [29]. Using this method, the coupling
on the null boundary at the leading order has been found in
[29] by taking the appropriate limit of the non-null boundary

coupling in (6).Onemayuse thismethod to find the boundary
couplings at order α0 for the null boundary by taking the limit
of the non-null boundary couplings (44).
Having found the boundary couplings (44) correspond-

ing to the bulk action (1) at order α0, one may try to write
them in manifestOðD;DÞ-invariant form, as has been done
in [17] for the leading order effective action. Even for the
closed spacetime manifold, it is hard to write the effective
action at order α0 in terms of the generalized metric because
the conventional 2D-dimensional Riemann curvature does
not transform covariantly under the generalized diffeo-
morphisms [30–33]. However, this action has been written
in OðD;DÞ-invariant form using the generalized frame
[34,35]. It would be interesting to write the bulk and
boundary actions (1), (44) in the duality manifest actions in
terms of the generalized frame.
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