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We investigate the response of a model gravitational wave detector consisting of two particles to the
quantized cylindrical gravitational waves and obtain a relation between the standard deviation of the distance
between two particles and the distance from the source to the detector. It is found that the quantum effect
carried by the cylindrical gravitational wave can be observed above Planck scale even though the source is as
far as the cosmological horizon. The equation of motion for the change of the distance between two particles
is obtained when the cylindrical gravitational waves pass. It is surprising that the dissipative term does not
exist up to the first order approximation due to cylindrical symmetry of the gravitational wave.
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I. INTRODUCTION

Some physical effects such as black hole evaporation and
early-universe cosmology [1,2] imply there should be a
quantum theory about gravity, but there is no experimental
or observational evidence to support that [3–5] up to now.
An important confirmation is to test the hypothetical quanta
of the gravitational field such as gravitons, but it is nearly
impossible to conclude in the foreseeable future [6,7].
Gravitational waves (GWs), however, can be used to
examine the possible implications for the quantization of
gravity since the GWs have been directly detected by LIGO
in 2015 for the first time [8].
Recently, Parikh, Wilczek and Zahariade treated the GWs

as quantum entity and explored its implications for quan-
tization of gravity from the perspective of experimental
observation [9,10]. They calculated the effect of quantized
gravitational field on falling bodies, and found that the
dynamics of the separation of a pair of free falling particles is
no longer deterministic, but probabilistic, as acted on by a
novel stochastic force. In this paper, we will investigate this
using the Einstein-Rosen wave [11] by coupling it with a
pair of free falling particles which is a simplified model for
the GW detector.
The Einstein-Rosen wave is an exact solution of general

relativity with two commuting Killing vectors and describes
a cylindrical GW, so using it to study the aspects of
nonlinearity originating from Einstein gravity is convenient
and significant [12]. Historically, it played an important role
in early attempts at defining the energy carried by gravita-
tional waves [13,14], since the energy of GWs is difficult
to be described locally due to the equivalence principle
[15–18]. Thus, the Einstein-Rosen waves as cylindrical GWs

from some proper astrophysical sources [19] could be
observed really [20] as they can carry the energy with
themselves. Moreover, the Einstein-Rosen wave has a nice
quantum description [21] and its quantization coupled to
massless scalar field has been obtained [22]. Although the
quantization of Einstein-Rosen cylindrical GWs has received
a lot of attention [23–33], its implication from the observable
point of view has not been discussed. In this paper, we study
its possible quantum signatures from cylindrical GWs by
calculating the response of a model GW detector to the
quantized gravitational field. It is found that the signatures
for the quantization of GWs contains the information about
the distance from the source to the detector which is derived
from the specific form of cylindrical GWs and cannot be
obtained from the general description for GWs.
The paper is organized as follows. In Sec. II, the theory of

Einstein-Rosen wave is reviewed. In particular, its quantized
form is given for the later discussion for the observable effect
of cylindrical GWs. In Sec. III, we use a simple detection
model to study the observable effect of the cylindrical GWs
and some novel results are obtained. Finally, we give a
conclusion in Sec. IV.

II. EINSTEIN-ROSEN WAVE

Consider a spacetime with the cylindrical symmetry
and its metric can be expressed with a conformally flat
form [21],

ds2 ¼ e−ψ ½eγð−dT2 þ dR2Þ þ R2dθ2� þ eψdZ2; ð1Þ

where the metric functions ψ and γ depend only on the
coordinates R and T. Using the vacuum Einstein field
equation, it is obtained that*zhangbaocheng@cug.edu.cn
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∂2ψ

∂T2
−
∂2ψ

∂R2
−
1

R
∂ψ
∂R ¼ 0; ð2Þ

which is the wave equation of physical degrees of freedom
and has exactly the same form as the wave equation of the
cylindrically symmetric massless scalar field ψ evolving in
Minkowskian spacetime background [21]. This means that
the metric function ψ represents cylindrical gravitational
waves or Einstein-Rosen waves. The metric function γ can
be obtained as

γ ¼ 1

2

Z
R0

0

dRR
��∂ψ

∂T
�

2

þ
�∂ψ
∂R

�
2
�
: ð3Þ

This is the energy of cylindrical GWs in a ball of radius R0,
which derives from the definition about C-energy introduced
by Thorne [13] and a recent detailed discussion refers
to Ref. [34].
The solution of Eq. (2) for a particular wave number k

can be obtained as

ψkðR; TÞ ¼
1ffiffiffiffiffiffiffiffiffi
2ℏG

p J0ðkRÞðaðkÞe−ikT þ a†ðkÞeikTÞ; ð4Þ

where J0ðkRÞ is the Bessel function of zeroth order. When
the canonical quantization is implemented, the parameters
aðkÞ and a†ðkÞ are regarded as operators satisfying the
commutation relations ½aðkÞ; a†ðk0Þ� ¼ ℏδðk; k0Þ, and they
can be physically interpreted as annihilation and creation
operators.
As discussed in the Introduction, the observable effect of

cylindrical GWs is considered at the place with a large
distance from the source, so the linearized form of this
metric (1),

ds2 ¼ ð1 − ψÞds23 þ ð1þ ψÞdZ2; ð5Þ

with ds23¼−ð1þγÞdT2þð1þγÞdR2þR2dθ2, is adequate
in the following discussion. It is noted that in the linearized
metric, the wave equation (2) still holds, but the energy
function γ takes the asymptotic form. When R → ∞, the
energy of gravitational waves is obtained as

γ∞ ¼
Z

∞

0

dkka†ðkÞaðkÞ; ð6Þ

by putting the Eq. (4) into Eq. (3) and taking the large R limit
[24,32]. This shows that the energy remains finite at large R.
According to the analyses in Refs. [21,30,32], the

Hamiltonian of this linearized gravity can be written as

HG0 ¼
Z

∞

0

dR

�
p2
ψ

2R
þ R

2

�∂ψ
∂R

�
2
�
; ð7Þ

where the gauge fixing conditions pγ ¼ 0 and R ¼ r are
imposed. pψ and pγ are the canonical momenta conjugated

to the metric fields ψ and γ, respectively. R ¼ r indicates
that R can be used to measure the distance from the source
to the detector. Noted that the metric in Eq. (1) has used the
gauge R ¼ r since in the initial expression the term R2dθ2

should be r2dθ2. It is not hard to confirm that HG0 ¼ γ∞
when the expression of pψ is used. For the cylindrical GWs,
there is another physically related Hamiltonian HG ¼
2ð1 − e−HG0=2Þ which describes the energy per unit length
along the symmetry axis in general relativity [24]. HG is
related to the physical time t which is gotten by the
transformation t ¼ eγ∞=2T. Furthermore, with time t, the
annihilation and creation operators can expressed as

aEðk; tÞ ¼ aðkÞ exp ½−itEðkÞe−HG0=2�;
a†Eðk; tÞ ¼ a†ðkÞ exp ½itEðkÞe−HG0=2�; ð8Þ

where EðxÞ ¼ 2ð1 − e−x=2Þ. When the dimensional con-
stants ℏ and G are restored, EðkÞ can be expressed as
ð1 − e−4ℏGÞ=ð4GÞ, which gives 1

ℏEðkÞ ¼ kþOðℏÞ. Thus,
we take the first approximation EðkÞ ∼ k in the calculation
below. Substituting these equations into metric field in
Eq. (4), we have

ψðR; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ℏG

p
Z

∞

0

dkJ0ðkRÞ½aEðk; tÞ þ a†Eðk; tÞ�: ð9Þ

Define qkðtÞ ¼ aEðk; tÞ þ a†Eðk; tÞ, and decompose ψðR; tÞ
into discrete modes. Thus, the metric field becomes

ψðR; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ℏG

p
X
k

J0ðkRÞqkðtÞ; ð10Þ

where the zeroth-order Bessel function J0ðkRÞ satisfies the
integral relation,

R
∞
0 dRRJ0ðkRÞJ0ðk0RÞ ¼ L

2π δðk − k0Þ, for
the period boundary condition k ¼ 2πR=L.
Based on the discussion above, the Einstein-Hilbert

action of linearized cylindrically symmetric GWs can be
written as

SG ¼ 1

64πG

Z
t2

t1

Z
∞

0

dTdR

�
pψ

∂ψ
∂T −H0

�

¼ 1

64πG

Z
t2

t1

Z
∞

0

dTdR
R
2

��∂ψ
∂T

�
2

−
�∂ψ
∂R

�
2
�

¼ 1

2
m
Z

t2

t1

dt
X
k

ðð _qkÞ2 − e−γ∞k2ðqkÞ2Þ; ð11Þ

where the dot denotes the derivative with respect to t. m≡
e
γ∞
2 L

128π2ℏG2 is similar to the meaning of the mass, pψ ¼ R ∂ψ
∂T is

used in the second line, and Eq. (10) and the integral
relation for the zeroth-order Bessel function J0ðkRÞ are
used in the third line.
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III. DETECTION

In this section, we consider the observable effect of the
cylindrical GWs. In this linearized metric (5), the Riemann
curvature tensor RR

0;R0 can be calculated, which gives the
geodesic deviation equation, d2l

dt2 ¼ −RR
0;R0l with l denoting

the distance between two free falling testing particles. With
these, we can construct a simple model to test the cylindrical
GWs by the change of the distance between a pair of
particles with the action,

SM ¼
Z

t2

t1

dt

�
1

2
m0

_l2 −
1

2
m0ð_γ − _ψÞ_ll

�

¼
Z

t2

t1

dt

�
1

2
m0

_l2 þ g
X
k

J0ðkRÞ _qk_ll
�
; ð12Þ

wherem0 is the mass of the particle and g≡ m0

2
ffiffiffiffiffiffiffi
2ℏG

p similar to

the coupling parameter between the GWs and two particles.
In the second line of the calculation, Eq. (10) is used, and
_γ ¼ 0 is imposed when the distance R is large as required for
the discussion of the observable effect of cylindrical GWs.
The independence of γ on the time means that the energy
carried by the cylindrical GWs is constant at large R
[22,24,32]. Thus, the effect of the cylindrical GWs on the
distance between two particles derives mainly from the
metric function ψ .
Together with the action of cylindrical GWs, we have the

total action as

S ¼ SG þ SM: ð13Þ

Now we can calculate the physical effect. Similar to the
consideration in Refs. [9,10], the transition probability of
the particles from the state ϕA to state ϕB in time t,
Pψω

ðϕA → ϕBÞ ¼
P

jfi jhf;ϕBjUðtf; 0Þjψω;ϕAij2 where
ψω and f are the initial and final gravitational field states,
is calculated in what follows. Uðtf; 0Þ is the time evolving
operator which is related to the total Hamiltonian of the
combined GWs with particles. Due to the weak gravita-
tional field, linearity allows us to write the whole action as
S ¼ P

ω Sω with

Sω ¼
Z

t2

t1

dt

�
1

2
m _q2 þ 1

2
m0

_l2 −
1

2
mω2q2e−γ∞

þ gJ0ðωRÞ _q _l l
�
; ð14Þ

where the relativistic dispersion relation ω ¼ k is used and
the subscript on qk is ignored for brevity. Then, the total
canonical momenta are introduced as p ¼ m _qþ gJ0ðkRÞ_ll
for the field and π ¼ m0

_lþ gJ0ðkRÞ _ql for the particle
system, and the total Hamiltonian is obtained as

H¼
�
p2

2m
þ π2

2m0

−
gpπJ0l
mm0

��
1−

g2J20l
2

mm0

�−1
þ1

2
mω2q2e−γ∞ :

ð15Þ

Thus, the time evolving operator can be calculated according
to Ulðtf; 0Þ ¼ exp ð− i

ℏ

R
HdtÞ.

Inserting several complete bases of joint position
eigenstates,

R
dqdljq; lihq; lj, and calculating the integral

of the variables q and π, the transition probability becomes

Pψω
½ϕA →ϕB� ¼C

Z
D̃lD̃l0e

i
ℏ

R tf
0

dt1
2
m0ð_l2−_l02ÞFψω

½l; l0�; ð16Þ

where the unrelated factor C ¼ R
dlidl0idlfdl

0
fϕ

�
Aðl0iÞϕBðl0fÞ

ϕ�
BðlfÞϕAðliÞ. Fψω

½l; l0� ¼ hψωjU†
l0 ðtf; 0ÞUlðtf; 0Þjψωi is

the well-known Feynman-Vernon influence functional
[35–37]. A further calculation (see the Appendix for the
detail) gives

Fψω
½l; l0� ¼ F0ω½l; l0�hψωjeW�a†e−Wajψωi; ð17Þ

where

W≡ igffiffiffiffiffiffiffiffiffiffiffiffiffi
8mℏω

p
Z

tf

0

dtðXðtÞ−X0ðtÞÞJ0ðωRÞe−itωe−γ∞=2
; ð18Þ

and

F0ω½l; l0� ¼ exp

�
−

g2

8mℏω

Z
tf

0

Z
t

0

dtdt0J0ðωR1ÞJ0ðωR2Þ

× ðXðtÞ−X0ðtÞÞðXðt0Þe−iðt−t0Þω−X0ðt0Þeiðt−t0ÞωÞ
�
;

ð19Þ

with XðtÞ≡ d2

dt2 l
2ðtÞ and X0ðtÞ≡ d2

dt2 l
02ðtÞ. Note that we

consider the source and the two particles being in the same
line. R1 and R2 are the distances between the source and the
two particles, respectively, with R2 − R1 ¼ l for the distance
between two particles.
The calculation above is made only for a single mode,

and sum up all these modes to derive the vacuum influence
phase as
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iΦ0½l;l0� ¼
X
k

iΦ0ω½l;l0�

¼−
4πm2

0G
ℏ

Z
tf

0

Z
t

0

dtdt0
Z

∞

0

dω½cosððt− t0ÞωÞ

×J0ðωR1ÞJ0ðωR2ÞðXðtÞ−X0ðtÞÞðXðt0Þ−X0ðt0ÞÞ�

þ i4πm2
0G

ℏ

Z
tf

0

Z
t

0

dtdt0
Z

∞

0

dω½sinððt− t0ÞωÞ

×J0ðωR1ÞJ0ðωR2ÞðXðtÞ−X0ðtÞÞðXðt0ÞþX0ðt0ÞÞ�;
ð20Þ

where the relation F0ω½l; l0� ¼ exp½iΦ0½l; l0�� is used.
It is surprising that the second term is zero due to the
relation

R∞
0 JνðaxÞJνðbxÞ sinðcxÞ ¼ 0 for the situation

with Re½ν� > −1, 0 < c < b − a, and 0 < a < b. As dis-
cussed in Refs. [9,10], the second term in Eq. (20) is
related to the dissipation during the interaction between
the GW and the particles. So the dissipation is zero in the
situation we discuss due to the cylindrical symmetry of
GW. Actually, this term could exist when the EðkÞ takes
the higher-order term, but these terms are suppressed by
the higher-order power of ℏ.
Instead of continuing to calculate the transition proba-

bility that requires an unambiguous expression for the state
jψωi of the gravitational field, we use the correlation
function to illustrate the observable effect. The correlation
function can be defined as in [10] through the vacuum part
of the influence phase by,

A0ðt; t0Þ≡ 4ℏG
π

Z
∞

0

dω cosððt − t0ÞωÞJ0ðωR1ÞJ0ðωR2Þ:

ð21Þ

It is noted that A0ðt;t0Þ¼ hN0ðtÞN0ðt0Þi¼
R
DN0exp ½−1

2R
T
0

R
T
0 dtdt0A−1

0 ðt;t0ÞN0ðtÞN0ðt0Þ�N0ðtÞN0ðt0Þ is the auto-
correlation function of quantum stochastic noise N0 using
the Feynman-Vernon trick [10,35]. An observable signa-
ture is obtained through the standard deviation when t0 ¼ t
given by

σ0 ¼ hðlðtÞ − hlðtÞiÞ2i12

≈
l0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN0ðtÞN0ðtÞi

p

¼ l0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0ðt; tÞ

p
; ð22Þ

where l0 is the initial distance between two particles
(it can also be considered as the arm length of the GW
detector [38]). A0ðt; tÞ ¼ 4ℏG

π

R
∞
0 dωJ0ðωR1ÞJ0ðωR2Þ is a

convergent integral, which is different from the result in
Refs. [9,10] where the integral about A0ðt; tÞ is divergent
so the frequency has to be cut off at ωmax ∼ 2πc=l0 with
dipolelike approximation. A striking character of our

result (22) is the dependence of the correlation function
A on the distance from the source to the detector. This is
demonstrated in Fig. 1. It is seen that the smaller the initial
distance between two particles, the higher the required
sensitivity would be. For the present detected possible
sources that focused on the distance from the source to
the detector about 1 Gpc (∼1025m) [39–41], it is found
that the present detector is unable to detect the quantum
effect of GWs, since its requirement for the ability to
detect the change of 10−32 m for the length using the
ground detector and 10−29 m using the spatial detectors is
beyond the ability of the present technology [42–45].
However, the quantum effect of cylindrical GW is larger
than the Planck scale even though the distance from the
source to the detector reaches at the cosmological horizon
(∼14 Gpc), which means that the quantum property of
GW can be observed above Planck scale.
Finally, we want to give the expression for the equation

of motion for the separation of two particles. For this, such
term as hψωjeW�a†

e−Wajψωi in Eq. (17) has to be calculated.
Using the same method as in Ref. [10], we have the
Langevin-like equation

̈l −
1

2
½ψ̈ðtÞ þ N̈0ðtÞ�lðtÞ ¼ 0; ð23Þ

for the state ψω taken as the coherent state. The first term
is related to the classical effect of cylindrical GW, and
the second term derives from the quantum property of
GW, which can be regarded as a stochastic noise [9,10]
distinguished from the classically deterministic evolution.
In particular, the fifth-order derivative term that existed in
the earlier discussion [9,10] disappears here because the

FIG. 1. The standard deviation σ0 for the change of the length
between two particles (or test masses) influenced by cylindrical
GWs as a function of the distance from the source to the detector.
The length for different lines is taken according to the present
setups or plans for GW detection, i.e., the red line represents the
arm length of ground detector like LIGO and the blue line
represents the arm length of spatial detectors like LISA, Taiji, or
Tianqin.
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second term is zero in Eq. (20). Other states as the squeezed
vacuum state can be used to do the calculation, but no more
new results are obtained than those presented here or in the
earlier study [9,10].

IV. CONCLUSION

In this paper, we have investigated the quantized Einstein-
Rosen wave and its detectable effect. The Einstein-Rosen
wave has the cylindrical symmetry, the well-defined local
energy, and a nice quantized form similar to that for the
quantum harmonic oscillators. Based on these, we calculated
the influence of passing cylindrical GW on a two-particle
system that is a simple model for the GW detector. Unlike
the general GW detection, the parallel propagation along the
direction of two-particle connection works for our discus-
sion. Using the methods of the path integral and the
Feynman-Vernon influence functional, we have calculated
the transition probability for the combined system of two
particles and GWs. In particular, we discuss the standard
deviation for the quantity of geodesic deviation of two-
particle free motion. This can be regarded as an observable
signature. It is significant to note that the signature carries
the information about the distance from the source to the
detector. As illustrated in Fig. 1, the observable sensitivity
depends not only on the distance from the source to the
detector, but also on the distance between two particles.
Interestingly, even for the sources at the cosmological
horizon, the quantum effect of cylindrical GWs could be
observed above the Planck scale. Finally, we have obtained a
Langevin-like equation for the quantity of geodesic deviation

for two-particle’s motion. Different from earlier results, there
is no gravitational radiation reaction term existed in our
calculation up to the first approximation due to the cylin-
drical symmetry of GW. Based on these results, it is
interesting to study further in what case or how the
cylindrical waves can be generated, which will be included
in our future work.
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APPENDIX: DERIVATION OF
EQUATION OF MOTION

The purpose of the appendix is to give a detailed
calculation about the significant and different results in
Sec. III of the main text using the method in Ref. [9,10].
Starting from the Hamiltonian (15) of the detection model,
we continue to make the calculation about the transition
probability of particle from sate ϕA to state ϕB

Pψω
ðϕA → ϕBÞ ¼

X
jfi

jhf;ϕBjUðtf; 0Þjψω;ϕAij2; ðA1Þ

where ja; bi≡ jai ⊗ jbi and Uðtf; 0Þ ¼ expð− i
ℏ

R
HdtÞ is

the unitary time-evolution operator. We now insert several
complete bases of joint position eigenstates,

R
dqdljq; li

hq; lj, and have

Pψω
ðϕA → ϕBÞ ¼

X
jfi

hψω;ϕAjU†ðtf; 0Þjf;ϕBihf;ϕBjUðtf; 0Þjψω;ϕAi

¼
X
jfi

Z
dqidq0idqfdq

0
fdlidl

0
idlfdl

0
ihψω;ϕAjq0i; l0iihq0i; l0ijU†ðtf; 0Þjq0f; l0fi

× hq0f; l0fjf;ϕBihf;ϕBjqf; lfihqf; lfjUðtf; 0Þjqi; liihqi; lijψω;ϕAi

¼
Z

dqidq0idqfdq
0
fdlidl

0
idlfdl

0
iψ

�
ωðq0iÞϕ�

Aðl0iÞϕBðl0fÞϕ�
BðlfÞψωðqiÞϕAðliÞ

× hq0i; l0ijU†ðtf; 0Þjq0f; l0fihqf; lfjUðtf; 0Þjqi; lii; ðA2Þ

where ψωðqÞ, ϕAðlÞ, ϕBðlÞ are the corresponding wave
functions in position representation for the states jψωi,
jϕAi, jϕBi, respectively. In order to express each of the
amplitudes in canonical path-integral form, we write the
transition probability as

Pψω
½ϕA → ϕB� ¼

Z
dlidl0idlfdl

0
fϕ

�
Aðl0iÞϕBðl0fÞϕ�

BðlfÞϕAðliÞ

×
Z

D̃lD̃l0e
i
ℏ

R tf
0

dt1
2
m0ð_l2−_l02ÞFψω

½l; l0� ðA3Þ

where the Feynman-Vernon influence functional is intro-
duced according to the definition as

Fψω
½l; l0� ¼ hψωjU†ðtf; 0ÞUðtf; 0Þjψωi: ðA4Þ

The influence functional indicates the effect of the
quantized gravitational field mode on the arm length of
the detector.
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In order to calculate further the Feynman-Vernon func-
tional, we require that we change the Hamiltonian form (15)
in main text. Using the amplitudes in canonical path-integral
form,

hqf; lfjUðtf; 0Þjqi; lii

¼
Z

DπDlDpDq exp

×
�
i
ℏ

Z
tf

0

dtðπ_lþ p _q −Hðq; p; l; πÞÞ
�
; ðA5Þ

and then performing the path integral over π, we find

hqf; lfjUðtf; 0Þjqi; lii

¼
Z

D̃le
i
ℏ

R
dt1

2
m0

_l2
Z

DpDq exp

×

�
i
ℏ

Z
tf

0

dtðp _q −Hlðq; pÞÞ
�
; ðA6Þ

where

Hlðp; qÞ ¼
ðp − gJ0ðωRÞl_lÞ2

2m
þ 1

2
mω2q2e−γ∞ : ðA7Þ

This is just the Hamiltonian required in the follow-
ing calculation. Furthermore, it can been split into a
time-independent free piece and an interaction piece,
Hl ¼ H0 þHI with

H0 ¼
p2

2m
þ 1

2
mω2q2e−γ∞ ; ðA8Þ

HI ¼ −
gJ0ðωRÞp_ll

m
þ g2J0ðωR1ÞJ0ðωR2Þ_l2l2

2m
: ðA9Þ

Notice from the form of (A7) that the instantaneous
eigenstates are merely those of a simple harmonic oscillator
but shifted in momentum space by p → pþ gJ0ðωRÞ_ll.
Since shifts in momentum space are generated by the
position operator, we can rewrite the time-evolution
operator as

Uðtf;0Þ¼e−
i
ℏJ0ðωRÞqg_lð0Þlð0ÞUðtf;0Þei

ℏJ0ðωRÞqg_lðtfÞlðtfÞ ðA10Þ

Using this Uðtf; 0Þ, the influence functional in Eq. (A4)
becomes

Fψω
½l; l0� ¼ hψωje− i

ℏJ0ðωRÞqgl0ð0Þ_l0ð0ÞU†ðtf; 0Þe− i
ℏJ0ðωRÞqgl0ðtfÞ_l0ðtfÞe− i

ℏJ0ðωRÞqglðtfÞ_lðtfÞUðtf; 0Þe− i
ℏJ0ðωRÞqglð0Þ_lð0Þjψωi

¼ hψωje− i
ℏJ0ðωRÞqIgl0i_l0iU†

I ðtfÞe−
i
ℏJ0ðωRÞqIðtfÞgl0f_l0f e− i

ℏJ0ðωRÞqIðtfÞglf_lfUIðtfÞe− i
ℏJ0ðωRÞqIðtfÞgli_li jψωi; ðA11Þ

where li ¼ lð0Þ, lf ¼ lðtfÞ and quantities with a subscript I are defined in the interaction picture (e.g.,
qIðtÞ ¼ eiH0t=ℏqe−iH0t=ℏ). Since in the interaction picture, pI ¼ m _qI , we can rewrite the interaction Hamiltonian as

HI ¼ J0ðωRÞg _qIl_lþ
J0ðωR1ÞJ0ðωR2Þðgl_lÞ2

2m
: ðA12Þ

Since the commutator ½HIðtÞ; HIðt0Þ� ¼ g2J0ðωR1ÞJ0ðωR2ÞlðtÞ_lðtÞlðt0Þ_lðt0Þ½ _qIðtÞ; _qIðt0Þ� is easy to be confirmed to be a

constant, we can eliminate the time-ordering symbol in the interaction evolution operator UIðtfÞ ¼ T ðe− i
ℏ

R tf
0

HIdldtÞ at the
expense of an additional term in the exponent which can be seen in the following form,

UIðtfÞ ¼ exp

�
−
i
ℏ

Z
tf

0

HIdt −
1

2ℏ2

Z
tf

0

Z
t

0

dtdt0½HIðtÞ; HIðt0Þ�
�

¼ exp

�
ig
ℏ

Z
tf

0

J0ðωRÞ _qIlðtÞ_lðtÞdtþ
ig2

2mℏ

Z
tf

0

J0ðωR1ÞJ0ðωR2ÞðlðtÞ_lðtÞÞ2dt
�

× exp

�
−

g2

2ℏ2

Z
tf

0

Z
t

0

dtdt0J0ðωR1ÞJ0ðωR2ÞlðtÞ_lðtÞlðt0Þ_lðt0Þ½ _qIðtÞ; _qIðt0Þ�
�
: ðA13Þ

After repeated use of integration by parts to remove the time derivatives from the qI operators, this expression becomes
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UIðtfÞ ¼ exp

�
ig
ℏ

Z
tf

0

J0ðωRÞ _qIlðtÞ_lðtÞdtþ
ig2

2mℏ

Z
tf

0

J0ðωR1ÞJ0ðωR2ÞðlðtÞ_lðtÞÞ2dt
�

× exp

�
−

g2

2ℏ2

Z
tf

0

Z
t

0

dtdt0J0ðωR1ÞJ0ðωR2ÞlðtÞ_lðtÞlðt0Þ_lðt0Þ½ _qIðtÞ; _qIðt0Þ�
�
:

¼ exp

�
ig
2ℏ

Z
tf

0

dtJ0ðωRÞqIðtÞXðtÞ −
ig
ℏ
J0ðωRÞqIðTÞlf_lf þ

ig
ℏ
J0ðωRÞqIli_li

�

× exp

�
−

g2

8ℏ2

Z
tf

0

Z
t

0

dtdt0J0ðωR1ÞJ0ðωR2Þ½qIðtÞ; qIðt0Þ�XðtÞXðt0Þ

−
g2

4ℏ2

Z
tf

0

dtJ0ðωR1ÞJ0ðωR2Þ½qIðtÞ; qIðt0Þ�li_liXðtÞ

þ g2

4ℏ2

Z
tf

0

dt0J0ðωR1ÞJ0ðωR2Þ½qIðtÞ; qIðt0Þ�lf_lfXðt0Þ þ
g2

2ℏ2
J0ðωR1ÞJ0ðωR2Þ½qIðtÞ; qIðt0Þ�li_lilf_lf

�
ðA14Þ

where q ¼ qIð0Þ, XðtÞ and X0ðtÞ are defined after Eq. (17) in the main text.
Then, using the relation eAeB ¼ eAþBe

1
2
½A;B� where A and B are operators, UIðtfÞ can be reduced to be

UIðtfÞ ¼ e−
ig
ℏJ0ðωRÞqIðtfÞlf_lf e

ig
2ℏ

R tf
0

dtJ0ðωRÞqIðtÞXðtÞe
ig
ℏJ0ðωRÞqIli_li

× e−
g2

8ℏ2

R tf
0

R
t

0
dtdt0J0ðωR1ÞJ0ðωR2Þ½qIðtÞ;qIðt0Þ�XðtÞXðt0Þ; ðA15Þ

With this expression, we can simplify the form of the influence functional (A11) as

Fψω
½l; l0� ¼ eShψωje−

ig
2ℏ

R tf
0

dldtJ0ðωRÞqIðtÞX0ðtÞe
ig
2ℏ

R tf
0

dldtJ0ðωRÞqIðtÞXðtÞjψωi; ðA16Þ

where

S ≡ g2

8ℏ2

Z
tf

0

Z
t

0

dldtdt0J0ðωR1ÞJ0ðωR2Þ½qIðtÞ; qIðt0Þ�ðX0ðtÞX0ðt0Þ − XðtÞXðt0ÞÞ; ðA17Þ

Thus, we obtain a suitable form of the influence functional as

Fω½l; l0� ¼ F0ω½l; l0�hψωje−W�a†þWajψωi: ðA18Þ

This is the formula (17) in the main text.
In order to calculate the Eq. (23) in the main text, the concrete quantum state for the gravitational field has to be chosen.

We choose the coherent states, jψωi ¼ jαωi, where αω is the eigenvalue of the annihilation operator a, ajαωi ¼ αωjαωi.
Since the classical cylindrical gravitational wave mode q is qclðtÞ ¼ Qω cosðωtþ φωÞ, the classical cylindrical gravitational
wave can be written as

ψðtÞ ¼ J0ðωRÞqclðtÞ: ðA19Þ

The influence functional becomes

Fω½l; l0� ¼ F0ω½l; l0�e−W�α�ωþWαω

¼ F0ω½l; l0� exp
�
ig
2ℏ

J0ðωRÞQω cosðωtþ qωÞðXðtÞ − X0ðtÞÞ
�
: ðA20Þ

Putting all this together, we find that the transition probability can be written as
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PðϕA → ϕBÞ ¼
Z

dlidl0idlfdl
0
fϕ

�
Aðl0iÞϕBðl0fÞϕ�

BðlfÞϕAðliÞ

×
Z

D̃lD̃l0 exp
�
−
1

2

Z
tf

0

Z
tf

0

dtdt0A−1
0 N0ðtÞN0ðt0Þ

�

× exp

�
i
ℏ

Z
tf

0

dt

�
1

2
m0ð_l2 − _l02Þ þ 1

4
m0ðψðR; tÞ þ N0ðtÞÞðXðtÞ − X0ðtÞÞ

��
: ðA21Þ

Using the saddle point approximation, we get the equation
of motion for the separation distance l as

∂L
∂l −

d
dt

∂L
∂_l þ

d2

dt2
∂L
∂̈l ¼ 0; ðA22Þ

with the Lagrangian as

L ¼ 1

2
m0ð_l2 − _l02Þ þ 1

4
m0ðψðR; tÞ þ N0ðtÞÞðXðtÞ − X0ðtÞÞ:

ðA23Þ

Thus, we have the Langevin-like equation

̈l −
1

2
½N̈0ðtÞ þ ψ̈ðR; tÞ�lðtÞ ¼ 0: ðA24Þ

This is the formula (23) in the main text.
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