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We study numerically the first order radiative corrections to the self-energy, in covariant loop quantum
gravity. We employ the recently developed sl2cfoam-next spinfoam amplitudes library and some
original numerical methods. We analyze the scaling of the divergence with the infrared cutoff, for which
previous analytical estimates provided widely different lower and upper bounds. Our findings suggest that
the divergence is approximately linear in the cutoff. We also investigate the role of the Barbero-Immirzi
parameter in the asymptotic behavior, the dependence of the scaling on some boundary data, and the
expectation values of boundary operators.
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I. INTRODUCTION

The spinfoam, or covariant, formulation of loop quantum
gravity (LQG) [1], is based on the definition of truncated
amplitudes that define the background independent dynam-
ics of quantum spacetime [2,3] in a way similar to the
Feynman graphs’ definition of the dynamics of quantum
field theory. In a Feynman graph, radiative corrections
appear as loops (set of propagators forming a circle) and
may give rise to ultraviolet divergences. In a spinfoam,
radiative corrections appear as bubbles (set of faces forming
a sphere) and may give rise to infrared divergences when
the cosmological constant is taken to be zero.1 Here, we
investigate the first order correction to a single edge of the
spinfoam, which is analogous to the first order contribution
to the self-energy in quantum field theory, and hence is
referred to as a self-energy radiative correction. We use the
version of the amplitude developed in Refs. [7–15] gen-
erally denoted as the EPRL amplitude. For reviews and
notation, see Refs. [16–18].
The spinfoam infrared divergences have been studied

analytically from a number of different perspectives [19–
28]. EPRL divergences have been studied in the Euclidean
[29,30] and Lorentzian theories [31,32]. In particular, the
last two references by Riello and Doná provide lower and
upper bounds to the degree of divergence of the self-energy,
resulting in a wide window. In Ref. [31], Riello gives a
detailed analysis of the critical point that contributes to the

amplitude in the large-spin scaling limit, based on the
techniques introduced in Ref. [33], in the case of non-
degenerate geometric configurations. He finds a logarith-
mic divergence in the cutoff K. He then estimates in a final
appendix that the contribution of the degenerate sector
might be linear in K, hence dominating the total diver-
gence, postponing a detailed analysis of this sector to future
studies. On the other hand, in Ref. [32], Doná disregards
the interference between the different terms in the sum, and
this allows him to estimate an upper bound on the
divergence that scales as K9. He also proves that the upper
bounds derived with his algorithm provide excellent
estimates of different kinds of infrared divergences
restricted to the three-dimensional model, suggesting that
this might be also true in four dimensions, underlining the
need for a complete numerical analysis for future studies.
These two results leave a window of possibilities which

spans more than nine powers of the cutoff. In this work, we
address the issue numerically. What we find is consistent
with Riello’s rough estimate: for small values of the
Barbero-Immirzi parameter, the numerical analysis is
compatible with a linear divergence in K.
The numerical calculation is possible thanks to the

recently developed sl2cfoam-next library [34]. Our
computations were performed on the clusters Cedar
and Graham of Compute Canada (www.computecanada
.ca) and on the Mesocentre of Aix-Marseille University
(mesocentre.univ-amu.fr). The analysis and visualization of
the computed data have been done with Julia [35] and
Mathematica [36].
In Sec. II, we describe the structure of the self-energy

amplitude. In Sec. III, we recall the calculation of the
degree of divergence in topological SUð2Þ BF model,
which can be found exactly. This allows us to compare
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1The general definition of the spinfoam amplitudes includes a

nonzero cosmological constant [4–6] that plays the role of an
infrared cutoff and makes the amplitudes finite.
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the numerical results with the analytical ones in the
literature. In Sec. IV, we define the EPRL amplitude. In
Sec. V, we describe the results of the numerical analysis of
the EPRL self-energy amplitude. Finally, in theAppendixes,
we report some further numerical studies and consistency
checks.

II. SELF-ENERGY

Consider two 4-simplices joined by four tetrahedra. The
boundary of this cellular complex is formed by two
tetrahedra. In quantum gravity, this cellular complex can
be associated to the transition from a single quantum of
space to a single quantum of space, via a splitting into four
virtual quanta, which then recombine [2,3]. Notice the
similarity with the self-energy Feynman graph in a quan-
tum field theory. This, however, is only an analogy; there is
no notion of energy or radiation involved here. This graph
should be understood as a higher order term in the spinfoam
expansion.
The dual of this cellular complex is a 2-complex C. It is

formed by two pentavalent vertices v� joined by four
internal edges ea, with a ¼ 1, 2, 3, 4. Each of the two
vertices has one other edge e�, ending on the boundary.
The 2-complex has four external faces fa that end on the
boundary and six internal faces fab, dual to the surfaces
that separate the four internal tetrahedra. See Fig. 1. The six
faces fab, taken together, form the bubble we are inter-
ested in.
The boundary of the 2-complex C is the graph Γ formed

by the two 4-valent nodes n� where the edges e� end
(dual to the initial and final quanta of space), joined by
four links la that bound the faces fa (see Fig. 2). The
kinematical LQG boundary Hilbert space is therefore
HΓ ¼ L2½SUð2Þ4=SUð2Þ2�Γ. The graph Γ is represented
in Fig. 2.
A basis inHΓ is given by the spinnetwork states jja; i�i,

where ja are the spins attached to the links la. In the two
intertwiner spaces, we choose the recoupling basis i�
defined by pairing the links j1 and j2 at the node n�,
i.e., the basis that diagonalizes the modulus square of the
sum of the SUð2Þ generators in the SUð2Þ representation j1
and j2 [37–39]. The label i indicates the spin of the virtual
link in this recoupling basis.

We focus on the subspaces Hj ⊂ HΓ where the four
spins are equal ja ¼ j and denote the basis states as

jj; i�i ¼ jj; iþi ⊗ jj; i−i: ð1Þ

We are interested in the EPRL amplitude [16]

Wðj; i�Þ ¼ hWCjj; i�i ð2Þ

relative to the 2-complex C. To compute this amplitude
numerically, we need an infrared cutoff to bound the sum
over the spins associated to the internal faces. We denote
this cutoff K, and we define the cutoff amplitude as

Wðj; i�; KÞ ¼ hWC;Kjj; i�i: ð3Þ

We are interested in studying the dependence of this
amplitude on K.

III. BF AMPLITUDE

As a first step, we consider the amplitude

WBFðj; i�Þ ¼ hWBF
C jj; i�i ð4Þ

in the topological SUð2Þ BF theory, where the amplitude
can be computed analytically [32]. The BF self-energy
amplitude can be written as

WBFðj; i�Þ ¼
X
jab;ia

dfjabgdfiag
Y
�
f15jgja;jab;i�;ia ; ð5Þ

where dfjabg ¼
Q

ða;bÞð2jab þ 1Þ and dfiag ¼
Q

að2ia þ 1Þ,
with a; b ¼ 1;…4, a ≠ b. The BF vertex amplitude
f15jgjAB;iA is the 15-j Wigner symbol defined contracting
the five intertwiners iA with the ten spins JAB, with
A;B ¼ 1;…5, A ≠ B. See Appendix C for notation and
conventions. A graphical representation of this amplitude
that will be useful later on is the following:

FIG. 1. The two-complex C of the self-energy. All vertices and
edges but only one internal and two external faces are depicted.

FIG. 2. The boundary graph.
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ð6Þ

Here, for completeness, we should include in the expres-
sion for the amplitude the dimensional factor of the
boundary faces and intertwiners, but this is a constant
overall factor that can be ignored in the analysis since it
does not affect the scaling of the divergence; that is, what
interests us. In (6), the six internal faces jab are highlighted
in red. If we choose a recoupling basis for the internal
intertwiners as

ð7Þ

then this picture gives directly the expression of the two BF
vertex amplitudes in terms of Wigner 3-j symbols: each
intersection of three lines is one such symbols, and the lines
specify the contractions’ scheme
The multiple sum over the spins jab and the virtual spins

ia of the intertwiners are constrained by the Mandelstam
identities that need to be satisfied for the Wigner symbols
not to vanish. But it is clear from the last picture that the
fixed values of the external spins ja do not prevent the
internal spins jab for growing arbitrarily large.
This is the origin of the divergence. To study it numeri-

cally, we introduce a cutoff jmax ¼ K on the six internal
faces jab, therefore bounding all the sums by K. That is, we
define

WBFðj; i�;KÞ ¼
X
jab≤K

ia

dfjabgdfiag
Y
�
f15jgja;jab;i�;ia :

We have computed this quantity numerically for a fixed
value of the ja and i�, for different values of K. In the BF
case, it is known analytically that the degree of divergence
does not depend on ja and i�. The result is shown in Fig. 3,
in which the continuous curve is WBF ¼ 4.8 · K9.
This result is consistent with the analytical result [32],

which gives

WBFðj; i�;KÞ ∝ K9: ð8Þ

We briefly recall how to derive this result. Consider the
simple case where all external spins are zero. The BF
amplitude can be expressed in Fourier transform as a
multiple integral over SUð2Þ, given by one integration
per link and one delta function per face. In this case, we
have

WBF ¼
Z

dga
Y
a>b

δðgag−1b Þ:

It is easy to see that one integration is redundant, and the
other three can be used to eliminate three delta functions,
leaving

WBF ¼ δð1Þ3: ð9Þ

To regularize this expression, one can write the delta
function as a sum over characters χj of irreducible
representations of SUð2Þ and introduce an infrared cutoff
K, as follows:

FIG. 3. Log-log plot of the BF self-energy amplitude as a
function of the cutoff K on the internal spins jab. The continuous
curve represents the function 4.8 · K9.
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δðUÞ ¼ lim
K
δKðUÞ ¼ lim

K

XK
j

ð2jþ 1ÞχjðUÞ:

Then, easily, δKð1Þ ≈ K3, and (8) follows from (9).
The numerical analysis in Fig. 3 shows that the asymp-

totic scaling of the self-energy BF divergence (8) is reached
for very low values of the infrared cutoff K. The compu-
tation involved in producing Fig. 3 is nowadays trivial and
can be easily performed on a laptop thanks to very efficient
routines for computing Wigner (3,6,9)-j symbols [40,41].
However, we note that the computational complexity grows
for a large power of the cutoff index K, approximately
equal to the number of internal faces of the foam. We plot in
Fig. 4 the total number of combinations of internal spins
that must be computed for each value of the cutoff K, till
K ¼ 20. We can see that the triangular inequalities reduce
the complexity from K6 to effectively ∼K5.6. This still gives
a large number of configurations to consider and provides a
considerable numerical challenge in the EPRL case, whose
vertex amplitude is much more computationally complex
than the BF one, as we show in the next section.

IV. EPRL

Let us now come to the quantum gravity theory. The
EPRL vertex amplitude is defined using a restriction of the
unitary irreducible representations in the principal series of
SLð2;CÞ [12,13]. In order to evaluate it numerically, a
more tractable formulation has been derived in Ref. [42]
and discussed in Refs. [43,44]. In this formulation, the
vertex is expressed as a sum over SUð2Þ 15-j symbols
weighted by one “booster function” B4 per edge (see the
Appendix C 2 for explicit formulas). The amplitude of a
vertex bounded by spins jf and intertwiners ie can thus be
written as a sum,

Vðjf; ie; γÞ ¼
X
lf≥jf
ke

dfkeg

�Y
e

B4ðjf; lf; ie; ke; γÞ
�
f15jglf;ke ;

ð10Þ

with virtual intertwiners ke and virtual spins lf ≥ jf,
e ¼ 2.::5. One booster function must be replaced by the
identity, corresponding to the suppression of a redundant
SLð2; CÞ integration.2 Notice that we keep the dependence
on the Barbero-Immirzi parameter explicit. In this expres-
sion, the infinite sum over lf, called the “shell expansion,”
can be shown analytically to converge, but in view of the
numerical calculation, it is convenient to truncate it at a
finite value defining

Vðjf; ie; γÞ ¼ lim
Δl→∞

Vðjf; ie; γ;ΔlÞ; ð11Þ

where

ð12Þ

As before, we have neglected dimensional factors attached
to the boundary intertwiners ie and to the boundary spins
jf. In the following, we will refer to the cutoff Δl as the
number of shells. Even if the convergence of the amplitudes
a function of Δl is assured [43,44], it is not possible to have
a unique prescription to set the optimal Δl to get an
acceptable convergence, since it depends on the details of
data such as the face spins jf and the Barbero-Immirzi
parameter. In addition, the convergence depends strongly
on the structure of the 2-complex, and there is no known
general procedure to estimate the error made in truncating
the sum over the auxiliary spins. In the next section, we
describe a technique to extrapolate the limitΔl → ∞ for the
self-energy.

FIG. 4. Log-log plot of the total number of different configu-
rations of internal spins jab to be summed over for increasing
values of the cutoff K. The power-law fit is ∼1.7 · K5.6.

2The 15-j symbol in (10) depends also on the four spins which
label the gauge fixed edge, even if in the analytic notation it is not
emphasized.

FRISONI, GOZZINI, and VIDOTTO PHYS. REV. D 105, 106018 (2022)

106018-4



With the form of the vertex described above, we can
write the self-energy amplitude explicitly, in a form suitable
for the numerical analysis. This gives

ð13Þ

with q ¼ 1…4. Compared to the diagrammatic expressions
used for the EPRL vertex (12), we have rearranged some
links to emphasize the structure of the contractions between
the vertices, which defines the spinfoam associated with the
triangulation described in Sec. II.
The EPRL self-energy amplitude (13) is the main object

of the analysis performed in this paper. The interested
reader can derive the complete analytical expressions by
comparing the graphical counterparts with the definitions
given in Appendix C.
When the two boundary intertwiners iþ and i− have the

same value i, the EPRL self-energy amplitude simplifies as

Wðj; i; γ;K;ΔlÞ ¼
X
jab≤K

ia

dfjabgdfiagVðj; jab; i; ia; γ;ΔlÞ2

ð14Þ

since the two vertex amplitudes entering the sum over
the internal faces jab are identical. Except for the
coherent state (Appendix A 1) and the boundary observable
analysis (Appendix A 2), we shall always consider the two
boundary intertwinwers i� to have the same value. In the
following, we use i ¼ ð0; 0Þ. The results with different
values are substantially identical, differing only by a
slightly overall shift of the points, as we show in
Appendix A 1.
Numerically, the vertex amplitude Vðj; jab; i; ia; γ;ΔlÞ in

(14) can be efficiently computed using the recently devel-
oped library sl2cfoam-next [34] given the list of
boundary spins ðji ¼ j; jabÞ and the number of shells
Δl. The squared sum over the internal intertwiner indices
ia can be implemented by contracting the resulting vertex
tensor with itself. All the configurations of internal spins
are automatically distributed by the library across the

available cluster nodes, and each node parallelizes the
computation of the various shells over the available local
CPUs. The particular code employed for this work is
available at the repository [45].
From (12), it is clear that the computation of a single

EPRL vertex amplitude is much more complex than the
corresponding BF vertex amplitude with the same boun-
dary spins and intertwiner indices. In fact, a single EPRL
amplitude requires the computation of roughly ðΔlþ 1Þ6
different BF amplitudes and ðΔlþ 1Þ3 booster functions,
for each different set of intertwiners ia that bound the vertex
[whose number is ∼ð2jþ 1Þ5 if the boundary spins are of
order ∼j]. In the present case, a different EPRL vertex
tensor (i.e., a bundle of amplitudes at fixed boundary spins
with running boundary intertwiner indices) must be com-
puted for each configuration of the internal spins jab,
whose number as a function of the cutoff K has been
estimated in the previous section (see Fig. 4). From these
simple estimates, we see that the numerical complexity of
computing (14), using our methods, grows quickly when
any of the parameters K, Δl, or j increases, roughly with a
power law between five to six powers of the increasing
parameter. We provide in the next section some data for the
resources employed in a computation of (14) up to K ¼ 10
and Δl ¼ 20.

V. DIVERGENCE ANALYSIS

We have studied the amplitude (14) numerically and
considered the following questions:
(1) What is the asymptotic scaling of the EPRL di-

vergence?
(2) What is the dependence on the Barbero-Immirzi

parameter?
(3) At fixed boundary spins and Barbero-Immirzi

parameter, does the scaling change using boundary
spinnetwork states or intrinsic coherent states?

(4) What are the configurations which contribute most
to the divergence itself?

The first two questions are addressed in the main text, the
third is addressed in Appendix A 1, and the fourth is
addressed in Appendix B. The main difficulty toward
answering these questions is the limit Δl → ∞ that cannot
be taken numerically. To address this problem, we have
relied on a property of the dependence of the amplitude on
Δl at fixed K, that has emerged from the numerical analysis
itself.

A. Extrapolation scheme

We show in Fig. 5 the amplitude (14) as a function of the
cutoff K, for various values of the number of shells Δl and
for γ ¼ 0.1 and γ ¼ 1.0. From a simple qualitative analysis,
we infer that the convergence of the shell approximation is
faster for a reduced bulk spins cutoff, while it becomes
slower as K increases. The highest curve is a lower bound
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to the amplitude as a function of K, which is recovered in
the limit Δl → ∞. Convergence in the number of shells
appears to depend on γ, with the case γ ¼ 1.0 converging
faster.
The convergence of (14) in the parameter Δl can be

extrapolated from the data reported in Fig. 5. To this aim,
we have computed the ratios of the differences between
adjacent curves of Fig. 5, at fixed K, as a function of Δl.
That is, we have studied the function

fðγ; K;ΔlÞ≡Wðγ; K;Δlþ 2Þ −Wðγ; K;Δlþ 1Þ
Wðγ; K;Δlþ 1Þ −Wðγ; K;ΔlÞ ; ð15Þ

for each fixed value of j and i. The result is shown in Fig. 6
for K ≥ 5 and γ ¼ 1.0. It appears from Fig. 6 that the
function fðγ; K;ΔlÞ tends to a constant for larger enough
values of K, as a function of Δl (however, see also the more
complete analysis for the case γ ¼ 0.1, that is studied in a
following section). Since (15) is the ratio between

successive terms of a series, this means that the sum over
the parameter Δl can be well approximated by a geometric
series when K is large. Defining

cK;γ ≡ fðγ; K; N − 2Þ ð16Þ

where N is the largest Δl parameter that has been reached
numerically, our assumption implies for Δl ≥ N

Wðγ; K;Δlþ 1Þ −Wðγ; K;ΔlÞ ≈ ðcK;γÞΔl: ð17Þ

We thus approximate the divergence in the limitΔl → ∞ as

Wðγ;KÞ≡ lim
Δl→∞

Wðγ;K;ΔlÞ

≈Wðγ;K;N−1ÞþWðγ;K;NÞ−Wðγ;K;N−1Þ
1−cK;γ

;

ð18Þ

where we used the elementary limit of the geometric series.
We note that the approximation improves when (i) more
shells can be computed numerically, i.e., the index N
increases, and (ii) the ratios (15) are closer to true constants
in Δl. We applied this extrapolation scheme to the
amplitudes computed numerically for different values of
γ. In particular, in the case γ ¼ 0.1, where the convergence
in Δl is the slowest, hence the approximation is the least
accurate, we pushed the Δl parameter to very large values
in order to study the accuracy of our extrapolation scheme
and obtained very precise results for a physically rel-
evant case.

B. Case γ = 0.1

In Fig. 7, we show the amplitude (14) for the case
γ ¼ 0.1, with the computed data for Δl ≤ 20 and the
extrapolated curves from N ¼ 10 and from N ¼ 20.

FIG. 5. The EPRL divergence (14) as a function of the cutoff parameter K, for a number of shells Δl ¼ 0 to 10. Darker colors
correspond to larger Δl. A portion of the plot around K ¼ 5 is highlighted to show the convergence properties of the shells
approximation. Left: γ ¼ 0.1. Right: γ ¼ 1.0.

FIG. 6. Function (15) for γ ¼ 1.0. The curves appear to tend to
a constant value cK;γ .
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From these plots, we can verify that the approximation
gives results that are already accurate starting with low
values of N, since the difference between the two extrap-
olations is small, around 5% for K ¼ 10. Plotting the ratios
(15) till very large values of Δl, as we did in Fig. 8, we can
see that for the case γ ¼ 0.1 the approximation
fðγ; K;ΔlÞ ≈ const is more accurate for larger values of
K and less accurate for smaller cutoffs. This is not an issue
since convergence in Δl is reached sooner for small cutoffs
(since the ratios are smaller, the series converges faster).
Also, Fig. 8 shows that the extrapolation is actually a lower
bound to the true amplitude, although very close to the
exact result.
Importantly, the qualitative behavior of the divergence,

either extrapolated from N ¼ 10 or N ¼ 20, is clearly
linear. In Fig. 7, we show the fit of the extrapolated curves
with straight lines. It is clear that the extrapolated points fall

exactly on a straight line for K ≳ 5 in both cases, with the
better approximation at N ¼ 20 being also closer to linear
behavior than the one at N ¼ 10. We conclude in this case
that the overall divergence is very close to linear in the
cutoff parameter K.
A few comments are in order. First, our results are in

accordance with the rough analytical estimate of Riello
[31]. It is important to notice that his main analysis focuses
on what Riello calls the nondegenerate sector of the
divergence and disregards the contributions from degen-
erate configurations when the 4-simplices dual to the two
spinfoam vertices v� have nonmaximal dimension. He
found that this sector contributes with a leading factor of
logK to the divergence. However, in Appendix C of
Ref. [31], the remaining degenerate sector is estimated
to contribute with a dominant factor of K to the overall
divergence, which is what our numerical analysis shows.
Our result also clearly shows that the interference effects
neglected in Ref. [32] result in a strong suppression of the
divergence, of approximately eight powers of K.
Second, our numerical analysis does not completely

exclude the possibility that the behavior for very large
values of K is different from what is inferred in the regime
K ≲ 10. There are, however, multiple arguments support-
ing our conclusion: (i) Our findings are compatible with
past analytical estimates [31]. (ii) From Fig. 7, we see that
improving the approximation also improves the matching
with the linear fit, which appears perfect for as much as
about 12 data points. (iii) We can compare the EPRL
divergence with the BF case, where the asymptotic power-
law divergence is already manifest for spins of order ∼10
(see Fig. 3) and analytically it is seen to be independent
from the details of the chosen boundary data. (iv) Recent
numerical investigations [34,46] strongly support the
hypothesis that the semiclassical (i.e., asymptotic) regime
of theory is reached for relatively small spins if the

FIG. 7. The complete analysis for the case γ ¼ 0.1 till N ¼ Δlmax ¼ 20. Left: all the curves at various Δl with the extrapolation from
Δl ¼ 20. Right: The extrapolations from Δl ¼ 10 and Δl ¼ 20 with the corresponding linear fits. The slopes of the fits are 8.1 × 10−6

and 8.6 × 10−6, respectively. The standard errors of the fits, obtained with Julia’s LSQFIT package, are 2.3 × 10−8 and 4.6 × 10−9,
respectively.

FIG. 8. Function (15) for γ ¼ 0.1 plotted till N ¼ Δlmax ¼ 20.
It is evident that the approximation f ≈ const for Δl > N
provides a lower bound to the exact limit Δl → ∞.
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Barbero-Immirzi parameter γ is small (e.g., around 0.1).
This appears to be related to the slower frequency of
asymptotic oscillations of the amplitude whenever γ is
small [46]. Hence, we can assume that we are looking at the
asymptotic divergence for K ≳ 5, in this case. This is also
supported by our analysis for larger values of γ, which do
not appear to converge to a fixed (γ-independent) asymp-
totic behavior in the considered range of the cutoff, as we
show in the next paragraph.
As a final comment for the γ ¼ 0.1 case, we report some

technical details about the hardware resources that were
employed. The computation of the divergence at K ≤ 10
andΔl ¼ 20 ran on 640 CPUs for ∼60 h, for a total of ∼40,
000 CPU-h. The whole computation at γ ¼ 0.1 from Δl ¼
0 to 20 took about 125,000 CPU-h. Recall that the
computational complexity of the EPRL model scales as
ðΔlþ 1Þ6; thus, the plots at largest number of shells took
most of the allocated CPU time. Symmetries in the internal
spins jab peculiar to this case (j ¼ 1=2; i� ¼ 0) have been
implemented in the code to reduce the computational time
of about a factor ∼6.

C. Case γ ≳ 0.1

The extrapolation method outlined above allowed us to
investigate also larger values of the Barbero-Immirzi

parameter γ without replicating the already substantial
computational effort required for the case γ ¼ 0.1. We
have studied the scaling of the asymptotic divergence for
nine values of γ, ranging between 0.1 and 10. The result is
shown in Fig. 9, for which we used N ¼ 10 in Eq. (18).
Notice that the extrapolation scheme is more effective in the
cases γ > 0.1 than in the case γ ¼ 0.1, as the curves of the
ratios given by the function (15) become closer to constants
as γ increases (compare Fig. 6 with Fig. 8). The data of
Fig. 9 are fitted with a function,

Wðγ; KÞ ¼ aþ bKc; ð19Þ

where a, b, c are real coefficients. The best fit for the values
of these parameters are shown in Table I. Table I shows that
the amplitude is suppressed for large γ. The divergence is
increasingly well fitted by an approximately linear scaling
as the Barbero-Immirzi parameter decreases, while for
γ ≳ 1, the curve is approximated by a quadratic function
in the range K ∈ ½0; 10�. We interpret this apparent
dependence of the scaling on γ as a sign that the asymptotic
or semiclassical regime is not reached for K ≤ 10 when
γ ≳ 1. A possible educated guess is that the nonlinear
behavior for large γ could correspond to the initial non-
linear part of the curve seen also at small γ, namely, that the

FIG. 9. Fit of the amplitude Wðγ; KÞ extrapolated via Eq. (18) with N ¼ 10 for decreasing values of the Barbero-Immirzi parameter
γ ≠ 0.1 and withN ¼ 20 for γ ¼ 0.1. The fit is made cutting the values ofWðγ; KÞ forK ≤ 4 and superimposing the resulting curve with
all the extrapolated points.
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dependence could become linear for any γ at sufficiently
high K. This intriguing hypothesis could have interesting
consequences for a renormalization procedure. We leave
the accurate testing of the large-γ sector for future works.
As the computational complexity dramatically increases
when K increases, it is likely that different numerical
methods or approximations would be needed in order to
test this sector, which is interesting from a theoretical point
of view but does not appear interesting physically, given the
current status of the theory.

VI. CONCLUSIONS

In this work, we applied new computational techniques
to the study of the infrared divergence of the spinfoam self-
energy graph in the EPRL model. We have computed the
divergent amplitudes with a running cutoff under an
approximation (the “shells approximation”), which we then
lifted by introducing an extrapolation scheme suited for the
case considered. We tested our assumptions by refining the
approximation up to a large number of shells, using
considerable computational resources, for the most inter-
esting case with the Barbero-Immirzi parameter γ ¼ 0.1.
We also explored the divergence at other values of γ and
investigated the dependence and reliability of our results by
using different boundary data and by computing geomet-
rical boundary observables.
Our findings considerably refine the upper and lower

bounds given in the previous literature [31,32]. We have
shown that the numerical evidence clearly points to a linear
divergence in the infrared cutoff parameter. On one hand,
our result shows that the divergence scaling is much less
severe than expected by approximate power-counting argu-
ments of BF and Euclidean theories [29,30] or upper-bound
estimates to the Lorentzian theory [32]. On the other hand,
our result also shows that the total divergence is of higher
order than the analytical estimate of the so-called non-
degenerate sector [31] and thus provides the first strong
evidence that virtual “degenerate” (i.e., of nonmaximal
dimension) configurations effectively dominate the first
order quantum corrections to the bare spinfoam propagator.

This is a point that was hinted at in previous works (see
especially Appendix C of Ref. [31]) but left unverified.
As in ordinary quantum field theories, understanding

quantum corrections to the bare spinfoam propagator is
tightly related to the issue of renormalization, which is
still an active area of research in the context of spinfoam
and group field theories. Our work fills one of the very
first steps toward this program by providing a precise
estimate of the degree of divergence. Our results about the
divergence at various values of γ also suggest that a
possible renormalization scheme might involve the run-
ning of the Barbero-Immirzi parameter. The numerical
testing of this hypothesis is left for future work, as the
possible generalization of our extrapolation scheme to
different divergent graphs.
This is one of the first works in the field of covariant

LQG to specifically exploit high-performance codes on a
computer cluster. The computations accomplished in this
paper would not have been possible using a single or a few
machines. We believe that complex computational projects
will prove to be more and more fundamental to the
advancement of the field in the coming years, and we
hope that our work and our codes will provide a useful and
encouraging ground for progressing in this direction. In this
regard, the application of Markov chain Monte Carlo
(MCMC) methods in covariant LQG to study the quantum
regime in spinfoams composed of multiple vertex ampli-
tudes glued together will appear soon [47].
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APPENDIX A: CONSISTENCY CHECKS

1. Divergence with coherent boundary states

In this subsection, we test whether the results presented
in Sec. V depend on the chosen boundary data. The basis
chosen diagonalizes one of the two dihedral angles of the
boundary tetrahedra, thus leaving the other maximally

TABLE I. Fit coefficients table.

Wðγ; KÞ ¼ aþ bKc ðj ¼ 0.5; i ¼ 0Þ, K ∈ ½0; 10�
γ a b c

10 −1.7 × 10−32 9.2 × 10−33 2.3
7.5 −2.2 × 10−29 8.2 × 10−30 2.3
5 −4.3 × 10−25 1.1 × 10−25 2.3
3 −5.7 × 10−20 1.1 × 10−20 2.3
1 −8.6 × 10−11 2.6 × 10−11 1.9
0.75 −1.7 × 10−9 1.1 × 10−9 1.8
0.5 −7.6 × 10−8 6.7 × 10−8 1.5
0.25 −1.5 × 10−6 2.0 × 10−6 1.2
0.1 −8.8 × 10−6 8.6 × 10−6 1
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spread. Would the results change using a more semi-
classical boundary state? To answer this question, we have
repeated the computation using intrinsic coherent inter-
twiners [16] as boundary states.
The definition of the intrinsic semiclassical intertwiners

is based on the relation between polyhedra and SUð2Þ
invariants [48,49] and coherent intertwiners [8]. A 4-valent
coherent intertwiner is defined by the group averaging,

jjja; n⃗ai≡
Z

dg ⊗
4

a¼1
gjja; n⃗ai ¼

X
i

ciðn⃗aÞjja; ii; ðA1Þ

where jja; n⃗ai are SUð2Þ coherent states, g ∈ SUð2Þ. The
vectors n⃗a can be parametrized as n⃗≡ ðsinΘ cosΦ;
sinΘ sinΦ; cosΘÞ. The decomposition of a 4-valent coher-
ent intertwiner, in the recoupling channel i with outgoing
links, reads

ðA2Þ

where Dj
m;jðn⃗Þ ¼ Dj

m;jðϕ;Θ;−ϕÞ is the SUð2Þ Wigner
matrix parametrized as

Dj
m;jðϕ;Θ;−ϕÞ ¼ e−imϕdjm;jðΘÞeijϕ;

with djm;j as a small Wigner matrix [50]. In order to be
interpreted as quantum polyhedra, the boundary tetrahedra
of the spinfoam must satisfy the closure conditionX

f

Λfn⃗f ¼ 0; ðA3Þ

where Λf is the eigenvalue of the area operator associated
with each face of the tetrahedron.
An example of the numerical analysis of the amplitude

obtained by contracting the amplitude (13) with coherent
states (A1), for increasing boundary spin values, is shown3

in Fig. 10, compared with boundary spinnetwork states.
The scaling of the self-energy amplitude turns out to be
unchanged whether using boundary spinnetwork states
jj; i�i or coherent states jjj; n⃗�fi, apart for a global factor
that multiplies all curves. Also, using coherent states, the
scaling does not seem to depend on the orientation of the
normals n⃗�f.

2. Boundary observables

Another check of consistency of the geometrical picture
and the numerical calculation can be obtained by looking at
the geometry of the two boundary tetrahedra. Their
geometrical properties are jointly fixed by choosing the
boundary data and by the dynamics. Here, we show the
resulting expectation values of some geometrical boundary
operators, that is,

hOi ¼ hWjOjΨi
hWjΨi ðA4Þ

where the bra W contains the propagator, namely, the
dynamics, while the ketΨ turns out to be the tensor product
of the in and out states of the LQG Hilbert space. With the
term “propagator,” we refer to the square matrices (they are
such since the self-energy triangulation has two boundary
tetrahedra) in which the element a, b corresponds to the
amplitude (13) with a ¼ iþ; b ¼ i−. Computing the expect-
ation values (A4) of geometric operators describing boun-
dary tetrahedra is a significant numerical investigation,
especially considering that computations carried out with
the EPRL model are still in their primordial stages [44,51–
55], and, as far as we know, at present time, there are no

FIG. 10. Self-energy amplitude (13) with fixed intertwiners (first two panels) vs coherent (third panel) boundary data (A1). Using
coherent intertwiners, we find no difference in scaling by changing the orientation of the normals n⃗a.

3Normals n⃗a satisfy condition (A3), and we considered the
absolute value in order to obtain real numbers.
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such numerical computations with spinfoams containing a
bubble.
Since in the calculation of (A4) the dimensional factor of

the boundary intertwiners is relevant, in this section, it is
convenient to define a “normalized” amplitude as

WNðj; i�; KÞ≡Wðj; i�; KÞ
ffiffiffiffiffiffiffiffiffiffi
dfi�g

q
; ðA5Þ

where dfi�g ¼
Q

�ð2i� þ 1Þ ¼ ð2iþ þ 1Þð2i− þ 1Þ.

a. Angles

The shape of the tetrahedra in twisted geometry is
measured by the angle operator

Aabjj; i�i ¼ cosðθabÞi�jj; i�i; ðA6Þ

which is interpreted as the cosine of the external dihedral
angle between the faces a and b of the tetrahedron defined
on the node associated with the intertwiner i�. The spin-
network basis states diagonalize the dihedral angle θab
between faces a and b. The equation for the dihedral angle
cosðθabÞ in terms of intertwiner spin i� reads

cosðθabÞi� ¼
i�ði�þ1Þ− jaðjaþ1Þ− jbðjbþ1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðjaþ1Þjbðjbþ1Þp : ðA7Þ

We consider the expectation value (A4) of the angle
operator (A6) in any of the two (equal) boundary regular
tetrahedra of the triangulation using the spinnetwork state.
According to the recoupling basis ðj1; j2Þ, we focus on the
angle between faces 1 and 2. The expectation value on node
þ can be computed as

hWjA12jWi
hWjWi ¼

P
i�½WNðj; i�; KÞ�2 cosðθ12ÞiþP

i�½WNðj; i�; KÞ�2
; ðA8Þ

where we considered the case in which all boundary spins
are equal to j. Carrying out the numerical computation
of (A8), we obtain a value that is in agreement with the
geometric value of the external angle of a regular tetrahedron
up to the tenth significant digit, as shown in Fig. 11. We
repeated the calculation for increasing values of boundary
spins j up to j ¼ 5, also varyingΔl, finding exactly the same
value and the unaltered precision. This is consistent with the
fact thatwe are looking at the only anglewhich is completely
sharp, while the others turn out to be spread.

b. Volumes

The volume operator of a tetrahedron reads

Vabc ¼
ffiffiffi
2

p

3
ð8πGℏγÞ32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jJ⃗a · J⃗b × J⃗cj

q
; ðA9Þ

where J⃗a is the vector of SUð2Þ generators on link a. The
operator (A9) is not diagonal in the spinnetwork states. The
dynamic expectation value (see Ref. [16] for the derivation)
on node þ turns out to be

hWjVjWi
hWjWi

¼
P

i�;i0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dfiþgdfi0þg

q
WNðj;i�;KÞWNðj;i0þ;KÞvðiþ;i0þ;jÞP
i�½WNðj;i�;KÞ�2

ðA10Þ

where vðiþ; i0þ; jÞ is the matrix element

vðiþ; i0þ; jÞ ¼
ffiffiffi
2

p

3
ð8πGℏγÞ32

X
v

hj; i0þjvi
ffiffiffiffiffiffiffiffi
jqvj

p
hvjj; iþi;

ðA11Þ

in which qv are the eigenvalues of the volume, while jvi
corresponds to the eigenvector relative to the eigenvalue qv.

FIG. 12. Dynamic expectation value of the volume operator
(A10). We neglected all the constant factors in (A10) and (A11).
The volumes scale as j

3
2.

FIG. 11. Dynamic expectation value of the cosine of the
external dihedral angle operator (A8). We find excellent agree-
ment with the value −0.3̄.
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In Fig. 12, we report the numerical values obtained from
(A10). We see that the scaling of the expectation value of
the boundary volume as a function of the spin j corresponds
to that actually existing between the volume of a regular
tetrahedron and the area of one of its faces, that is V ∝ j3=2.
As for the angle operator, we repeated the calculation by
varying the number of shells, finding the same trend.
Finally, for both the angle operator and for the volume,

we repeated the calculation with boundary coherent states
(A1) verifying that the expectation value is dominated by
the classical contribution.
The picture that emerges is that the boundary observ-

ables have an expectation value that coincides with the
classical one and are not affected by the presence of
divergence in the bulk of the spinfoam. Namely, even if
the amplitude (13) is divergent, the expectation values (A8),
(A10) are finite and fully consistent with the geometry of a
regular tetrahedron.

APPENDIX B: INTERNAL CONTRIBUTIONS

We add here a tentative analysis of the kind of configu-
rations that contribute to the divergence. For this aim, it is
convenient to rewrite Eq. (14) as

Wðj; i; γ;K;ΔlÞ ¼
X
jab≤K

ωðjab; j; i; γ;ΔlÞ: ðB1Þ

Now, consider the average and the standard deviation of the
sextuplet of internal spins fjabg,

j̄ðjabÞ ¼
1

6

X
a≠b

jab; σðjabÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6

X
a≠b

ðjab − j̄abÞ2
s

;

ðB2Þ

and define

wðj̄; σ; j; i; γ; K;ΔlÞ ¼
X

j̄ðjabÞ¼j̄
σðjabÞ¼σ

ωðjab; j; i; γ;ΔlÞ: ðB3Þ

That is, we write the contributions to the divergence as
a function of the average and standard deviation of the
internal spins, adding the contributions with different
sextuplets that have the same average and standard
deviation. The function 100 − j logwðj̄; σ; j; i; γ; K;ΔlÞj
is plotted for fixed j; i; γ;Δl and various values of K
in Fig. 13, where the factor 100 is only for visual
purposes. Increasing Δl has the effect of increasing the
value of each point, while increasing K also implies
adding more configurations, as shown in Fig. 4. Figure 13
indicates that the largest individual contributions to the
amplitude (14) come from semiclassical bulk spins
configurations with j̄ ∼ j and low σ, as one might expect,
while the divergence comes from the proliferation
of smaller contribution with arbitrary high spin and
deviations.
We also note that the divergence of the self-energy,

manifestly shown in Fig. 9, occurs in the limit Δl → ∞
only. In fact, in Ref. [32], it is shown that the sum over the
internal spins of the amplitude (14) is convergent in the
simplified model Δl ¼ 0. Even if an analytical proof is not
yet available, it seems likely that the amplitude has a finite
limit K → ∞ for each finite Δl, since the internal spins
configurations in the limit become more and more sup-
pressed. Since also the limitΔl → ∞ at fixedK is finite, we
can schematize the role of the two limits with the following
four-node diagram:

APPENDIX C: CONVENTIONS AND BASIC
FORMULAS

We collect here the basic definitions needed for the
calculation in this paper.

FIG. 13. The largest individual contributions to the divergent amplitude (14) come from “semiclassical” bulk spins configurations with
j̄ ∼ j and low σ. Triangular inequalities result in a triangular shape in the plane ðj̄; σÞ.
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1. SUð2Þ Wigner j-symbols

We use the definition of the Wigner’s ð3jmÞ symbol
given in Ref. [50] with the orthogonality property

X
m1; m2

�
j1 j2 j3
m1 m2 m3

��
j1 j2 j3
m1 m2 n3

�
¼ δj3l3δm3n3

2j3þ1
:

ðC1Þ

These are normalized and vanish if triangular inequalities
are not satisfied. We define the ð4jmÞ symbol as the
contraction of two ð3jmÞ symbol using an intertwiner k,

iðkÞm1m2m3m4
≡
�

j1 j2 j3 j4
m1 m2 m3 m4

�ðkÞ

≡X
mi

ð−1Þk−mi

�
j1 j2 k

m1 m2 mi

��
k j3 j4

−mi m3 m4

�
;

ðC2Þ

with the orthogonality relations

X
m1;m2;m3

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðk1Þ� j1 j2 j3 j4
m1 m2 m3 m4

�ðk2Þ

¼ δk1k2
2k1þ1

δj4l4δm4n4

2j4þ1
; ðC3Þ

where
δk1k2
2k1þ1

is the normalization factor. A synthetic notation
for ð4jmÞ symbols is also

�
jf
mf

�ðkÞ
≡

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðkÞ
: ðC4Þ

With these definitions and the conventional definitions of

Wigner’s matrices for SUð2Þ, DðjÞ
mnðgÞ, we have

Z
dgDj1

m1n1ðgÞDj2
m2n2ðgÞDj3

m3n3ðgÞDj4
m4n4ðgÞ

¼
X
k

dk

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðkÞ� j1 j2 j3 j4
n1 n2 n3 n4

�ðkÞ
:

ðC5Þ

We denote the 4-valent intertwiner with the ket jki,
defined as

jki≡ iðkÞm1m2m3m4
jj1; m1ijj2; m2ijj3; m3ijj4; m4i ðC6Þ

where the ð4jmÞ symbol is defined in (C2). The states (C6)
constitute a basis in the intertwiner space of a 4-valent
node,

I4 ≡ Inv½Vj1 ⊗ Vj2 ⊗ Vj3 ⊗ Vj4 �; ðC7Þ

where Vji is the irreducible representation of spin ji. The
resolution of the identity in the intertwiner space I4 and the
orthogonality condition can be written as

1ðI4Þ ¼
X2j
k¼0

ð2kþ 1Þjkihkj; ðC8Þ

hkjk0i ¼ δk;k0

ð2kþ 1Þ : ðC9Þ

The 15-j symbol we use in this work is the irreducible
symbol of first type, following the convention of Ref. [56].
Its graphical representation and its definition in terms of
Wigner’s 6-j symbols is

ðC10Þ
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2. Booster functions

The booster functions [43,44], also known as B4 functions [42], are the noncompact remnants of the SLð2;CÞ integrals.
These functions turn out to encode all the details of the EPRL model, such as the Y-map. We define them as

ðC11Þ

where dðρ;kÞðrÞ are the boost matrix elements for γ-simple
irreducible representations of SLð2;CÞ in the principal
series, γ is the Barbero-Immirzi parameter, and the ð4jmÞ
symbols are defined in Appendix C 1.
The booster function B4ðjf; lf; i; kÞ is interpreted as a

quantum tetrahedron being boosted among adjacent
frames: the two sets jf and lf describe the four
areas of the tetrahedron in the two frames connected

by a boost, and the two intertwiners i and k describe
the quantum intrinsic shape of the tetrahedron [42].
For a precise interpretation of the booster functions and
their semiclassical limit, we refer to Ref. [57]. The
explicit form of the boost matrix elements can be found
in the literature. For the general form, see Refs. [42,58].
We just report here the case of simple irreducible
representations:

dðγj;jÞjlp ðrÞ ¼ ð−1Þj−l2 Γðjþ iγjþ 1Þ
jΓðjþ iγjþ 1Þj

Γðl − iγjþ 1Þ
jΓðl − iγjþ 1Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p

ðjþ lþ 1Þ!
�
ð2jÞ!ðlþ jÞ!ðl − jÞ! ðlþ pÞ!ðl − pÞ!

ðjþ pÞ!ðj − pÞ!
�
1=2

× e−ðj−iγjþpþ1ÞrX
s

ð−1Þse−2sr
s!ðl − j − sÞ! 2F1½lþ 1 − iγj; jþ pþ 1þ s; jþ lþ 2; 1 − e−2r�: ðC12Þ
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