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We compare different formulations of the generalized uncertainty principle that have an underlying
algebraic structure. We show that the formulation by Kempf, Mangano, and Mann [Phys. Rev. D 52 (1995)],
quite popular for phenomenological studies, satisfies the Jacobi identities only for spin zero particles. In
contrast, the formulation proposed earlier by one of us (Maggiore) [Phys. Lett. B 319 (1993)] has an
underlying algebraic structure valid for particles of all spins and in this sense seems more fundamental. The
latter is also much more constrained, resulting in only two possible solutions, one expressing the existence
of a minimum length and the other expressing a form of quantum-to-classical transition. We also discuss
how this more stringent algebraic formulation has an intriguing physical interpretation in terms of a
discretized time at the Planck scale.
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I. INTRODUCTION

The idea of a generalized uncertainty principle (GUP),
of the form

Δx≳ ℏ
2Δp

þ const ×GNΔp ð1Þ

(where GN is Newton’s constant), and its associated
minimum resolvable length, emerges from the computation
of scattering amplitudes in string theory at Planckian
energies [1–5] and from the Gedanken experiment with
black holes and Hawking radiation [6–8] (although the
idea of a minimum length in gravity has a very long history,
see [9,10] for historical discussions). In these frameworks,
the term proportional to GN corresponds to a first-
order quantum gravity correction, valid in the limit
Δp=ðMPcÞ ≪ 1, where MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=GN

p
is the Planck

mass. Therefore, Eq. (1) should be understood as

Δx ≥
ℏ

2Δp

�
1þ β0

�
Δp
MPc

�
2

þO
�
Δp
MPc

�
4
�
; ð2Þ

where β0 is a dimensionless constant [related to the
constant appearing in Eq. (1) by const ¼ β0=ð2c3Þ].
It is natural to ask whether there is an algebraic structure

underlying the GUP, much as the canonical commutator
½xi; pj� ¼ iℏδij underlies the standard Heisenberg uncer-
tainty relation, and, in the affirmative case, if, under some

reasonable assumptions, the algebraic structure is suffi-
ciently constraining to determine (almost) uniquely the
structure of the higher-order terms in Eq. (1). This question
was first posed, and answered affirmatively, by one of us
(Maggiore, MM) in [11] (see also [12]). A different answer
to the same question was later provided by Kempf,
Mangano, and Mann (KMM) in [13].
In this paper, we further elaborate on the algebraic

formulations of the GUP. In Sec. II, we compare the
MM and KMM formulations of the GUP and argue that
the former is more fundamental, as the resulting commu-
tators satisfy the Jacobi identities in full generality, while,
in the approach of KMM, it is implicitly assumed that the xi
are the coordinates of a spin-zero particle. If the existence
of a minimum length should emerge from a fundamental
theory of quantum gravity as a basic property of space-
time, we should expect it to hold independently of the
type of particle used to probe it, and, in this sense, the
formulation in [11] seems more suitable to emerge from a
fundamental theory. As we will see, this formulation is also
more restrictive, fixing uniquely (modulo a sign) the ½xi; xj�
and the ½xi; pj� commutators, while the KMM approach
involves an arbitrary function of momentum. Out of the two
solutions allowed by the Jacobi identities in the approach of
[11], only one describes the existence of a minimum length.
The other, which differs in a crucial sign, was already
mentioned in [11], but received little attention. In Sec. III,
we discuss the latter solution in more detail, and we show
that it can be seen as describing a transition from quantum
to classical mechanics, with all commutators vanishing at a
critical energy. In Sec. IV, elaborating on results presented
in [14], we see how the two solutions allowed by the Jacobi
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identities can be understood as emerging in a setting in
which time becomes discrete at the Planck scale. In Sec. V,
we examine the effect of GUPs to composite objects,
confirming previous results obtained in the KMM frame-
work [15], that indicate a strong suppression of GUP effects
at macroscopic scales when the deformed commutators are
applied to the constituent particles. Some further general-
izations of the algebraic structure underlying the GUP
are discussed in Sec. VI. Finally, Sec. VII summarizes our
conclusions.

II. COMPARISON OF DIFFERENT ALGEBRAIC
APPROACHES TO THE GUP

Let us begin by recalling the MM approach followed in
Ref. [11] to find an algebraic structure underlying the GUP.
One starts by assuming that (1) the three-dimensional
rotation group is not deformed, so the rotation generators
J satisfy the undeformed commutation relations ½Ji; Jj� ¼
iϵijkJk, and coordinates and momenta satisfy the unde-
formed commutation relations of spatial vectors, ½Ji; xj� ¼
iϵijkxk; ½Ji; pj� ¼ iϵijkpk. (2) The momenta commutes
among themselves: ½pi; pj� ¼ 0, so that also the translation
group is not deformed. (3) The ½x; x� and ½x; p� commu-
tators depend on a deformation parameter κ with dimen-
sions of mass. In the limit κ → ∞ (that is, κc2 much larger
than any energy in the problem), the canonical commuta-
tion relations are recovered. With these assumptions, one is
led to look for an expression for the ½x; x� and ½x; p�
commutators of the form

½xi; xj� ¼
�
ℏ
κc

�
2

aðpÞiϵijkJk; ð3Þ

½xi; pj� ¼ iℏδijfðpÞ: ð4Þ

Having assumed rotational invariance, the functions aðpÞ
and fðpÞ (which are real and dimensionless) can depend on
momentum only through it modulus p≡ jpj; equivalently,
they can be written as functions of E=ðκc2Þ, where E is
defined by E2 ¼ p2c2 þm2c4.1 Compared to [11], we keep
c explicit, rather than setting c ¼ 1, and we prefer to use p
instead of E as the argument of the functions, to make more
clear the relation with the KMM result in [13]. The angular
momentum J is defined as dimensionless, i.e., is in units
of ℏ, while κ has dimensions of mass and, eventually, is
identified with the Planck mass times a numerical constant.
In principle, one could also add a term proportional to pipj

to the right-hand side of Eq. (4). We discuss in Sec. VI how
this term can be eliminated.
We work in the context of nonrelativistic quantum

mechanics. While there has been much work toward
Lorentz-covariant deformed commutation relations (see
[9] for review), it is not obvious that this is the correct
way to proceed. In fact, already in the undeformed case, the
relativistic generalization is obtained in a different way
through quantum field theory, rather than promoting
½xi; pj� ¼ iℏδij to something like ½xμ; pν� ¼ iℏημν.
The functions aðpÞ and fðpÞ can be constrained by

imposing that the deformed commutators satisfy the Jacobi
identities. The nontrivial ones are ½xi; ½xj; xk�� þ cyclic ¼ 0

and ½xi; ½xj; pk�� þ cyclic ¼ 0 and give the conditions [11]

daðpÞ
dp

p · J ¼ 0; ð5Þ

fðpÞ
p

dfðpÞ
dp

¼ −
aðpÞ
κ2c2

: ð6Þ

The crucial point, that is at the basis of the difference
between the results of MM, Ref. [11], and KMM, Ref. [13],
is the following. If we restrict to orbital angular momentum
so that J ¼ L, then p · J ¼ 0 automatically, and Eq. (5)
is satisfied without the need of imposing da=dp ¼ 0.
Therefore, one remains with just one relation between
aðpÞ and fðpÞ, given by Eq. (6). One can, for instance,
choose fðpÞ arbitrarily, and then, aðpÞ follows. This is the
approach implicitly taken by KMM, where fðpÞ is even-
tually arbitrarily chosen to have the form fðpÞ ¼ 1þ βp2

[13]. However, if we want to interpret the GUP as a
fundamental property of quantum gravity, its validity
should not be restricted to spin-zero particles, but should
hold generally. For a generic spin, p · J is nonvanishing
(it is indeed the helicity of the particle). Therefore, in
Ref. [11], it was rather imposed that da=dp ¼ 0, so aðpÞ
must be a constant. With a rescaling of κ, we can then
set aðpÞ ¼ �1. Consider first the solution aðpÞ ¼ −1
(we will come back to the other solution in Sec. III).
Then, Eq. (6) integrates to

fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ p2

κ2c2

s
; ð7Þ

where α is an integration constant. This constant can
be fixed requiring that, at energies E ≪ κc2 or momenta
p ≪ κc, the standard uncertainty principle is recovered
[this also fixes the plus sign in front of the square root in
Eq. (7)]. If we work using momentum as a variable, as
in Eq. (7), the natural choice is then α ¼ 1, so that the
Heisenberg uncertainty relation is recovered at p ¼ 0, and
Eqs. (3) and (4) become

1We take E as a notation for ðp2c2 þm2c4Þ1=2. The actual
dispersion relation between energy and momentum, in the
context of the GUP, is also often modified, see, e.g., [12]. In
that case, we denote by E the actual energy of the system, whose
relation to E is nontrivial, see Sec. IV.
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½xi; xj� ¼ −
�
ℏ
κc

�
2

iϵijkJk; ð8Þ

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

κ2c2

s
: ð9Þ

Actually, in Ref. [11] was made a different choice for the
integration constant, which resulted in

fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þm2c2

κ2c2

s
; ð10Þ

i.e., in terms of E,

fðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

κ2c4

s
; ð11Þ

so that the ½x; x� commutator is still given by Eq. (8), while

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

κ2c4

s
: ð12Þ

This choice was made because a GUP of this form emerges
naturally in the context of the κ-deformed Poincaré algebra
[12], as we see in Sec IV. Both Eqs. (9) and (12) are
logically possible, within this framework. At p ≪ κc,
Eq. (12) reduces to

½xi; pj� ≃ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

κ2

s
; ð13Þ

corresponding to a mass-dependent rescaling of ℏ, while
Eq. (9) reduces to ½xi; pi� ≃ iℏδij. If m is interpreted as the
mass of an elementary particle, and κ is of the order of the
Planck mass,m=κ is negligibly small, and Eqs. (9) and (12)
are basically the same. We examine in Sec. V the situation
for macroscopic objects, whose mass can easily exceed the
Planck mass.
We can now compare MM’s Eqs. (8) and (9), or Eqs. (8)

and (12), with the deformed algebra proposed by KMM,
which reads2 [13]

½xi; xj� ¼ −2ℏ
dFðp2Þ
dðp2Þ iðxipj − xjpiÞ; ð14Þ

½xi; pj� ¼ iℏδij½1þ Fðp2Þ�: ð15Þ

Furthermore, the orbital angular momentum (in units of ℏ),
in the approach of Ref. [13], is expressed in terms of
coordinates and momenta as

Lij ¼
1

ℏ
1

1þ Fðp2Þ ðxipj − xjpiÞ; ð16Þ

so that Eqs. (14) and (15) can be rewritten as

½xi; xj� ¼ −2ℏ2½1þ Fðp2Þ� dFðp
2Þ

dp2
iϵijkLk; ð17Þ

½xi; pj� ¼ iℏδij½1þ Fðp2Þ�: ð18Þ

Comparison with Eqs. (3) and (4) shows, first of all, that
Ref. [13] is implicitly assuming Ji to be the same as the
orbital angular momentum Li. Therefore, the constraint
da=dp ¼ 0 is lost. Writing 1þ Fðp2Þ ¼ fðpÞ, we then get
back Eqs. (3) and (4), with aðpÞ expressed in terms of fðpÞ
through the remaining constraint (6).
Eventually, Ref. [13] specializes to the simple choice

Fðp2Þ ¼ βp2, with β a constant [written in terms of a
dimensionless constant β0 as β ¼ β0=ðM2

Pc
2Þ], and this

form of the GUP has become very popular for phenom-
enological studies. It should be stressed, however, that,
apart from its simplicity, there is no real justification for this
choice. The strength of the MM approach of Ref. [11] is
that it requires that the Jacobi identities hold for particles
with all spins, and not only for spin-zero particles, and this
fixes uniquely the functions aðpÞ and fðpÞ (modulo a sign,
that we discuss further below, and the different possible
choices of integration constant α in fðpÞ, as we have
discussed). In contrast, in the approach of KMM, the
algebra is only valid for spin-zero particles. As a result,
one loses a constraint, and the function fðpÞ becomes
completely arbitrary. Any function of the form fðpÞ ¼
1þ βp2 þOðp4Þ would reproduce Eq. (2), and the par-
ticular truncation fðpÞ ¼ 1þ βp2 has no special motiva-
tion. In particular, there is no reason why such an
expression should hold as p approaches the Planck scale.3

Observe that, away from the lowest order in Δp=MPc, in
which all these algebraic structures reproduce Eq. (2), the
MM GUP obtained from Eq. (9), and the KMM obtained
from Eq. (18) with Fðp2Þ ¼ βp2, are completely different.
To make contact with the notation commonly used in the
context of Eq. (18), we introduce also in Eq. (9) a constant
β0 from

2See their Eqs. (75) and (77); we denote by Fðp2Þ the function
that they call fðp2Þ, to avoid a notation conflict with the function
that enters in Eq. (4), and that, following the notation in [11], we
denote as fðpÞ.

3Many subsequent works, inspired by the approach in [13],
have proposed variants of the GUP by choosing other specific
forms of the function fðpÞ with supposedly desirable properties,
see, e.g., [16–19]. However, all these approaches suffer from the
same basic arbitrariness of the proposed functional form.
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1

κ2
¼ 2β0

M2
P
; ð19Þ

and β ¼ β0=ðM2
Pc

2Þ, so Eq. (9) can be written as

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β0

p2

M2
Pc

2

s

¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

q
: ð20Þ

The uncertainty principle derived from this commutation
relation is

ΔxiΔpj ≥
ℏ
2
δij

D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

q E
; ð21Þ

where h…i denotes the quantum expectation value on a
given state. We can write this more explicitly expanding the
square root as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

q
¼

X∞
n¼0

cnð2βp2Þn; ð22Þ

where we used the generalized binomial coefficient

cn ¼
�
1=2
n

�
¼ ð−1Þnð2nÞ!

22nð1 − 2nÞðn!Þ2 : ð23Þ

Then,

ΔxiΔpj ≥
ℏ
2
δij

X∞
n¼0

cnð2βÞnhp2ni

≥
ℏ
2
δij

X∞
n¼0

cnð2βÞnhp2in

¼ ℏ
2
δij

X∞
n¼0

cnð2βÞn½hpi2 þ ðΔpÞ2�n

¼ ℏ
2
δij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β½hpi2 þ ðΔpÞ2�

q
; ð24Þ

so that Eq. (9) gives (see Fig. 1, yellow line)

ΔxiΔpj ≥
ℏ
2
δij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β0

hpi2 þ ðΔpÞ2
M2

Pc
2

s

≥
ℏ
2
δij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β0

ðΔpÞ2
M2

Pc
2

s
: ð25Þ

For values of Δp much smaller than MPc, this becomes

ΔxiΔpj ≳ ℏ
2
δij

�
1þ β0

ðΔpÞ2
M2

Pc
2

�
; ð26Þ

which is of the form (1). In contrast, in the opposite limit
Δp ≫ MPc, Eq. (25) gives

ΔxiΔpj ≳ ℏδij

�
β0
2

�
1=2 Δp

MPc
; ð27Þ

which implies

Δx≳ Lp

�
β0
2

�
1=2

; ð28Þ

where LP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck length. Therefore, the

minimum uncertainty for Δx saturates to a value of order of
LP times a numerical factor that depends on β0.
The same computation performed for Eq. (12) gives

ΔxiΔpj ≥
ℏ
2
δij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β0

E2 þ ðΔpÞ2c2
M2

Pc
4

s

≥
ℏ
2
δij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2β0

m2c2 þ ðΔpÞ2
M2

Pc
2

s
; ð29Þ

and in the limit Δp ≫ MPc (with m < MP), we re-
cover Eq. (28).
In contrast, the KMM GUP obtained from Eq. (18) with

FðpÞ ¼ βp2 has a different behavior. To see this, note that
the commutator

FIG. 1. Bound on Δx as a function of Δp for different
uncertainty principles. Blue: the Heisenberg uncertainty relation
allows for arbitrarily small Δx as Δp increases. Orange: the MM
GUP Eq. (25) obtained from Eq. (20) predicts a minimum Δx for
large Δp. Green: the KMM GUP Eq. (31) obtained from Eq. (30)
predicts a minimum Δx for a finite Δp, after which the position
uncertainty increases again. Red: the other MM GUP obtained
from Eq. (37), which can be associated to a quantum-to-classical
transition where ½xi; pj� ¼ 0 when Δp is larger than a critical
value. Shaded regions are regions excluded by the corresponding
uncertainty relation.
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½xi; pj� ¼ iℏδij

�
1þ β0

�
p

MPc

�
2
�

ð30Þ

results in the GUP (see Fig. 1, green line),

ΔxiΔpj ≥
ℏ
2
δij

�
1þ β0

ðΔpÞ2
ðMPcÞ2

�
: ð31Þ

Similarly to Eq. (25), this expression also implies the
existence of a minimal position uncertainty

Δx ≥ LP

ffiffiffiffiffi
β0

p
; ð32Þ

which is attained for Δp ¼ Mpc=
ffiffiffiffiffi
β0

p
. However, for

Δp ≫ MPc, we have

Δx≳ ℏ
2

β0
MPc

Δp
MPc

; ð33Þ

meaning that the position uncertainty now grows without
bounds as the momentum uncertainty increases.

III. GENERALIZED UNCERTAINTY PRINCIPLE
AND QUANTUM-TO-CLASSICAL TRANSITION

We now turn attention to the solution of Eqs. (5) and (6)
obtained by setting aðpÞ ¼ þ1. In this case, Eq. (7)
becomes

fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α −

p2

κ2c2

s
: ð34Þ

With the choice of integration constant α ¼ 1, we have

½xi; xj� ¼
�
ℏ
κc

�
2

iϵijkJk; ð35Þ

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

p2

κ2c2

s
: ð36Þ

Similarly, with the choice of integration constant analogous
to that leading to Eq. (12), we get

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E2

κ2c4

s
: ð37Þ

This solution is intriguing. Since the square root on the
right-hand side is a decreasing function of momentum
(always smaller than one), it no longer produces a term in
the uncertainty principle that induces a minimum observ-
able length, which was the initial motivation of these
investigations. Rather, it describes a situation in which a
system becomes more and more classical as its momentum

(or its energy) approaches a critical value, of the order
of the Planck scale, where eventually the commutator
vanishes. Beyond this energy, one can then simply set
½xi; pj� ¼ 0, by continuity. Note that, if set fðpÞ ¼ 0 for p
larger than the critical value κc [or for E larger than the
critical value κc2, if we use Eq. (37)], Eq. (6) also implies
aðpÞ ¼ 0 for p > κc (or, respectively, E > κc2), so the
geometry becomes commutative. It therefore describes a
sort of quantum-to-classical transition, in which, beyond a
critical energy or momentum, the ½x; p� commutator van-
ishes (see Fig. 1, red line), and also ½xi; xj� ¼ 0.4

For E smaller than κc2, but close to it, Eq. (37) becomes

½xi; pj� ≃ iℏδij
ffiffiffi
2

p �
1 −

E
κc2

�
1=2

: ð38Þ

The energy dependence on the right-hand side has the
typical form of the behavior of an order parameter at a
second-order phase transition, with a critical index equal
to 1=2. The prototype example of this is the magnetization
as a function of the temperature in the Ising model, which,
in the mean field approximation, is given by

MðTÞ ≃M0

�
1 −

T
Tc

�
1=2

: ð39Þ

Note also that, contrary to some interpretation in the
literature, an equation such as Eq. (36) or Eq. (37) does
not necessarily imply the existence of a maximum momen-
tum, since the commutator can just be set to zero by
continuity above the critical value. This is similar to the
fact that Eq. (39) does not imply the existence of a
maximum temperature for the Ising model; rather,
MðTÞ ¼ 0 for T > Tc.

IV. ALGEBRAIC GUP AND TIME
DISCRETIZATION AT THE PLANCK SCALE

The algebraic formulation of the GUP given in Eqs. (8)
and (12), as well as that in Eqs. (35) and (37), has an
interesting relation with deformations of the Poincaré
algebra and to a discretization of time at the Planck scale
[12]. We review this idea here, following the discussion
presented in Ref. [14].

4This solution was already mentioned in [11], where it was
observed that it leads to a vanishing ½x; p� commutator at a
limiting energy scale. The possibility that deformed commutation
relations can result in a vanishing commutator at some energy
scale was found again, much later, in [20,21], from different
considerations, and, recently, in Ref. [19], which indeed pro-
poses, on purely phenomenological grounds, the commutator
Eq. (36), that was originally found in [11] from algebraic
considerations.
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A. Discretized spatial dimensions and deformed
Poincaré symmetry

Let us begin by considering a 1þ 1 dimensional system
with a continuous time variable, while space is discretized
on a regular lattice, with lattice spacing d. Awave equation,
such as a Klein-Gordon equation, becomes in this frame-
work (setting, for simplicity, ℏ ¼ c ¼ 1 in the intermediate
steps)

�
−

1

c2
∂2
t þ Δ2

x −m2

�
ϕ ¼ 0; ð40Þ

where

Δxϕðt; xÞ ¼
ϕðt; xþ dÞ − ϕðt; x − dÞ

2d
ð41Þ

is a discretization of the spatial derivative. The dispersion
relation that follows is5

E2 ¼ sin2ðdpÞ
d2

þm2: ð42Þ

Momentum is periodically identified, and there is a
maximum energy that can be carried by a wave solution,
Emax ¼ ðd−2 þm2Þ1=2. If we replace the speed of light c
(that here we have set to unity) by a speed v < 1, this
equation describes the propagation of phonons in 1þ 1
dimensions.
A system described by Eq. (40) has an underlying Lie

algebra with two symmetry generators: the generator H of
continuous time translations and the generator P of discrete
spatial translations, satisfying the Lie algebra ½H;P� ¼ 0,
supplemented by the identification P ∼ Pþ 2π=d. The
symmetry under boosts is broken, and no generator is
associated to it. However, it was observed long ago [22]
that this system has an alternative description in terms of a
deformed algebra: one introduces also the boost generator
K, and considers the algebra

½P;H� ¼ 0; ½K;P� ¼ iH; ð43Þ

½K;H� ¼ i
sinð2dPÞ

2d
: ð44Þ

In the limit d → 0, this reduces to the Poincaré algebra
of a 1þ 1 continuous relativistic system. The algebra given
by Eqs. (43) and (44), however, is well defined also at finite
d, since the commutators obey the Jacobi identities.
Equations (43) and (44) provide an example of a deformed
algebra, in which d is the deformation parameter. Its

relevance, in connection with a system described by
Eq. (40), is that this deformed algebra has a quadratic
Casimir C2 given by

C2 ¼ H2 −
sin2ðdPÞ

d2
: ð45Þ

Therefore, the dispersion relation (42) is simply the
condition C2¼m2, and in this sense, this deformed
Poincaré algebra can be considered as the symmetry of a
relativistic system living in discrete one-dimensional space
and continuous time.6

Comparing the Lie algebra and the deformed algebra
descriptions of the symmetries in this system, we see that,
in the Lie algebra approach, when d ≠ 0, there are only
two generators, H and P; d ¼ 0 is a point of enhanced
symmetry, where a new symmetry transformation, boosts,
emerges, and the corresponding generator K suddenly
appears. In the deformed algebra description, instead, we
always have a description in terms of three generatorsH, P,
K even for finite d, but we pay this with a nonlinear
structure. The value d ¼ 0 is a special point at which this
algebraic structure linearizes.

B. Discreteness of time and the algebraic GUP

Consider next a system in which time is discrete, in steps
of size τ, and space is continuous. We begin with 1þ 1
dimensions, and we consider the equation (still setting for
the time being ℏ ¼ c ¼ 1)

ð−Δ2
t þ ∂2

x −m2Þϕ ¼ 0; ð46Þ

where

Δtϕðt; xÞ ¼
ϕðtþ τ; xÞ − ϕðt − τ; xÞ

2τ
; ð47Þ

and τ is the discrete time step. The corresponding
dispersion relation is

sin2 τE
τ2

¼ p2 þm2: ð48Þ

We can find a quantum algebra description of this
system, just by exchanging the roles of H and P in
Eqs. (43) and (44), and replacing the spatial step d with
the temporal step τ,

½P;H� ¼ 0; ½K;H� ¼ iP; ð49Þ

5As mentioned in footnote 1, we keep E as a notation for
ðp2c2 þm2c4Þ1=2 and now use the symbol E for the actual energy
of the system.

6Note that the particular choice (47) for the discretization of
the spatial derivative is irrelevant here. A different discretization
would just produce a different function of P on the right-hand
side of Eq. (44), but the Jacobi identities are satisfied even if,
on the right-hand side of Eq. (44), we have an arbitrary function
of P.
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½K;P� ¼ i
sinð2τHÞ

2τ
: ð50Þ

The quadratic Casimir operator of this algebra is

C2 ¼
sin2ðτHÞ

τ2
− P2; ð51Þ

so the dispersion relation (48) corresponds again to the
conditionC2 ¼ m2, with E identified with the eigenvalue of
the operator P0 and pwith the eigenvalue of the operator P.
The above construction can be generalized to the case

of discrete time and more continuous spatial dimensions.
Indeed, Eqs. (49) and (50) are just the restriction to
1þ 1 dimensions of the κ-deformed Poincaré algebra, a
deformation of the Poincaré algebra that can be written in
any number of dimensions as it follows [23,24]. All
commutators involving the angular momentum Jij are
the same as in the undeformed Poincaré algebra. Hence,
the group of spatial rotations is not deformed. Similarly, for
space-time translations, ½Pμ; Pν� ¼ 0 still holds. The com-
mutators involving the boosts Ki ¼ Ji0 are instead

½Ki;H� ¼ iPi; ½Ki; Pj� ¼ iδij
sinð2τHÞ

2τ
ð52Þ

and

½Ki;Kj� ¼ −iJij cosð2τHÞ− iτ2PkðPiJjk þPjJki þPkJijÞ:
ð53Þ

The quadratic Casimir is

C2 ¼
sin2ðτHÞ

τ2
− P2; ð54Þ

and therefore, C2 ¼ m2 gives

sin2 τE
τ2

¼ p2 þm2: ð55Þ

The relation between the κ-deformed Poincaré algebra
and the algebraic formulation of the GUP emerges in the
following way [12,14]. In standard quantum mechanics, we
quantize a particle imposing

½xi; pj� ¼ iδij: ð56Þ

(Recall that we are temporarily setting ℏ ¼ 1. We restore ℏ
and c at the end). In momentum space, the operator xi can
then be represented as

xi ¼ i
∂
∂pi

; ð57Þ

and the velocity of the particle in the Heisenberg repre-
sentation is given by

_xi ¼ i½H; xi� ¼
∂E
∂pi

: ð58Þ

For the case of a discretized spatial dimension, discussed
in Sec. IVA, using Eq. (42) (and setting for simplicity
m ¼ 0) gives

∂E
∂pi

¼ p̂i cosðdpÞ; ð59Þ

where p̂i is the unit vector in the direction of p. This is the
standard result for the group velocity of a massless particle
on a regular spatial lattice.
However, the same procedure applied to the case of a

discrete time dimension gives immediately a puzzling
result. If we assume the validity of Eq. (56), and therefore
of Eq. (57), using Eq. (55) we get

vi ¼
∂E
∂pi

¼
�

piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �
1

cosðτEÞ : ð60Þ

The term in parenthesis is just the standard expression for
the velocity in terms of momentum. However, the cosine at
the denominator makes no sense, and if we take Eq. (60) as
an expression for the velocity, we find that v > 1, and even
diverges when τE approaches π=2.
Clearly, Eq. (57) cannot be the correct expression for the

position operator when time is discrete and the dispersion
relation has the form (55). Rather, a natural approach is
to define the position operator requiring that the relation
between velocity and momentum, vi ¼ pi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
,

stays unchanged, so that, in particular, v increases mono-
tonically from zero to the speed of light (that we have set
here to 1) as momentum ranges from zero to infinity. This
can be obtained defining, in momentum space,

xi ¼ i cosðτEÞ ∂
∂pi

: ð61Þ

By construction, we now have

vi ¼ i½H; xi� ¼ cosðτEÞ ∂E∂pi
¼ piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p : ð62Þ

Then, using Eq. (61), we can compute explicitly the ½xi; xj�
and ½xi; pj� commutators, and we find (restoring the correct
powers of ℏ and c)

½xi; xj� ¼ iðcτÞ2Jij; ð63Þ

½xi; pj� ¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

τ2

ℏ2
ðp2c2 þm2c4Þ

r
; ð64Þ
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where we have defined

Jij ¼ −i
�
pi

∂
∂pj

− pj
∂
∂pi

�
: ð65Þ

We thus recovered the modified algebra given in Eqs. (35)
and (37), with the identification τ ¼ ℏ=ðκc2Þ.
This result is quite remarkable. It shows that the GUP

given by Eqs. (35) and (37) [which, apart from a choice of
integration constant, is one of the only two possible
expressions fixed by algebraic arguments, once one cor-
rectly takes into account that Eq. (5) requires da=dp ¼ 0 in
order for the argument to be valid for particles with
arbitrary spin] has an intriguing physical interpretation
as the natural form of the uncertainty principle when the
time variable becomes discrete at the Planck scale.
Therefore, a discretization of time at the Planck scale
implies that a system becomes classical as its energy
approaches the Planck energy, since there the commutator
½xi; pj� vanishes.
We can now ask what setting corresponds to the other

allowed form of the algebraic uncertainty principle, given
by Eqs. (8) and (12). As discussed in Ref. [14], this GUP
emerges automatically when we start from an euclidean KG
equation (here for simplicity in one spatial dimension),

ðΔ2
t þ ∂2

x −m2Þϕ ¼ 0: ð66Þ

The corresponding dispersion relation is

−
sin2 τE
τ2

¼ p2 þm2: ð67Þ

We then perform a Wick rotation back to Minkowski space,
which is equivalent to transforming E → −iE, and the
dispersion relation becomes

sinh2 τE
τ2

¼ p2 þm2: ð68Þ

Formally, Eqs. (48) and (68) are related by τ → iτ.
Substituting τ → iτ into Eqs. (49) and (50), we therefore
find a deformation of the Poincaré algebra whose Casimir
reproduces the dispersion relation (68),

½P;H� ¼ 0; ½K;H� ¼ iP; ð69Þ

½K;P� ¼ i
sinhð2τHÞ

2τ
: ð70Þ

This algebra can be generalized to more spatial dimensions,
and it is the other version of the κ-Poincaré algebra found in
[24,25]. The deformed commutators are

½Ki;H� ¼ iPi; ½Ki; Pj� ¼ iδij
sinhð2τHÞ

2τ
; ð71Þ

½Ki;Kj� ¼−iJij coshð2τHÞþ iτ2PkðPiJjkþPjJkiþPkJijÞ;
ð72Þ

with all other commutators undeformed, and the quadratic
Casimir

C2 ¼
sinh2ðτHÞ

τ2
− P2: ð73Þ

In this case, proceeding as above, one realizes that the
correct definition of the position operator is [12,14]7

xi ¼ i coshðτEÞ ∂
∂pi

; ð74Þ

and computing the ½xi; xj� and ½xi; pj� commutators, one
finds the GUP in the form given in Eqs. (8) and (12).

V. GUP FOR COMPOSITE SYSTEMS

A well-known problem concerning the GUP is how
to extend it from microscopic degrees of freedom to
composite objects and, eventually, to macroscopic objects.
The nonlinearity of the GUP commutators implies that the
commutator obeyed by the center of mass position and total
momentum of a composite object is not the same as that of
the fundamental constituents (see below). A first question,
then, is to what “fundamental” constituents the GUP, in any
of the forms discussed above, is supposed to apply. If the
GUP emerges from a fundamental theory of gravity, it is
natural to assume that it will apply to the elementary
excitations of that theory. The next issue is what happens to
composite systems and, in particular, to macroscopic
objects. In the realm of elementary particles, terms such
as E2=ðκ2c4Þ in Eq. (12) or (37) represent small corrections,
if we take κ of order of MP, and E ≪ MPc2. However, for
macroscopic objects, these terms are huge. The Planck
mass corresponds to about 10−5 gr, so for a macroscopic
object of mass m, even m=κ can be large. Naively, this
seems to imply that GUP effects become very large for
macroscopic objects. This, however, is not necessarily the
case, as is shown in [15] (see also the Supplementary
Material in [26] and [27,28]) for the KMM form of the

7In general, the definition of the position operator includes also
a term proportional to pi, that ensures the Hermiticity with
respect to the scalar product invariant under the Poincaré group
(or its deformations). For the undeformed Poincaré group, this
gives xi ¼ i½∂=∂i − ðpi=2p2

0Þ�. The corresponding expressions
for the deformed Poincaré group can be found in [12]. In any
case, as long as ½pi; pj� ¼ 0, as we assume here, the term
proportional to pi does not affect the ½xi; xj� and the ½xi; pj�
commutators, and, for simplicity, we omit them.
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GUP. The argument is as follows. Consider a macroscopic
body made of N particles, taken for simplicity to have all
the same mass, and labeled by an index α ¼ 1;…; N, with
coordinates xiα and momenta pi

α. The center of mass
coordinates Xi and the total momentum Pi of the composite
system are defined as

Xi ¼ 1

N

XN
α¼1

xiα; Pi ¼
XN
α¼1

pi
α: ð75Þ

Assuming a GUP of the form (18) with Fðp2Þ ¼ βp2, we
have

½xiα; pj
α0 � ¼ iℏδijδαα0 ð1þ βp2

αÞ: ð76Þ

Then,

½Xi; Pj� ¼ 1

N

XN
α¼1

XN
α0¼1

½xiα; pj
α0 �

¼ iℏδij
1

N

XN
α¼1

ð1þ βp2
αÞ

¼ iℏδij
�
1þ β

N

XN
α;β¼1

p2
α

�
: ð77Þ

For an object moving in an quasi-rigid manner, in order of
magnitude, pα ∼ P=N, where P is the modulus of the total
momentum, and therefore,

½Xi; Pj� ¼ iℏδij
�
1þO

�
βP2

N2

��
: ð78Þ

Therefore, for a macroscopic object, β in Eq. (76) has been
replaced by β=N2, and for N of the order of the number of
constituent of a macroscopic object, this quantity is utterly
negligible. More precisely, Eq. (77) can be rewritten as [15]

½Xi; Pj� ¼ iℏδij
�
1þ βP2

N2
þ β

N

XN
α;β¼1

�
p2
α −

P2

N2

��
: ð79Þ

The last term is the variance of p2
α, multiplied by β=N, and

vanishes for an exactly rigid body. For nonrigid objects,
depending on the details of the internal structure, one could
hope that the variance leaves, overall, an effect that scales
as ðβP2=NαÞ, with α a power in the range 0 < α < 2 [29].
In any case, the effect of the GUP appears to be strongly
suppressed for macroscopic objects.
Essentially, the same derivation can be adapted to the

GUP in the forms (9) or (36) [or in the forms written in
terms of energy, Eqs. (12) and (37)]. Using for definiteness
Eq. (20), expanding the square root as in Eq. (22) and
replacing pα ¼ P=N for an exactly rigid object, we get

½Xi; Pj� ¼ iℏδij
1

N

XN
α¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βp2

α

q

¼ iℏδij
1

N

XN
α¼1

X∞
n¼0

cnð2βp2
αÞn

¼ iℏδij
1

N

XN
α¼1

X∞
n¼0

cnð2βP2=N2Þn

¼ iℏδij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βP2

N2

s
: ð80Þ

In summary, if the GUP applies to the constituent particles
of a rigid macroscopic body, the same form of the modified
commutator applies to the center of mass position and
momentum with a rescaling β → β=N2.

VI. FURTHER EXTENSIONS OF THE
ALGEBRAIC STRUCTURE

When discussing the consequences of a GUP, one should
not forget that the structure of the commutators is only one
side of the aspect, and the dynamics, e.g., the form of the
Hamiltonian, is another. These two are tied together by the
possibility of redefining variables. Consider, for instance, a
one-dimensional system, characterized by a commutator of
the form

½x; p� ¼ iℏfðpÞ: ð81Þ

In momentum space, the operator x can be represented as

x → iℏfðpÞ ∂
∂p : ð82Þ

Then, defining kðpÞ from requiring

fðpÞ dk
dp

¼ 1; ð83Þ

at the corresponding operator level we get the canonical
commutator

½x; k� ¼ iℏfðpÞ ∂
∂p k ¼ iℏ: ð84Þ

From the point of view of the dynamics, consider the
Hamiltonian of the system to be

H½x; p� ¼ p2

2m
þ VðxÞ: ð85Þ

In terms of the ðx; pÞ variables, we have a “normal”
Hamiltonian, but a deformed commutator (81). On the
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other hand, if we rather use the variables ðx; kÞ, we have a
canonical commutation relation (84), at a price of a
modified Hamiltonian,

H½x; k� ¼ p2ðkÞ
2m

þ VðxÞ: ð86Þ

For a general function, fðpÞ, H½x; k� contains arbitrarily
high powers of k and therefore, in coordinate space,
contains spatial derivatives of arbitrarily high order (i.e.,
it is nonlocal, in the field-theoretical sense).
Note however that, if we take as the Hamiltonian

H ¼ k2ðpÞ
2m

þ VðxÞ ð87Þ

in terms of the ðx; pÞ variables, this would look as a very
complicated quantum system described by deformed com-
mutation relations and nonlocal Hamiltonian; even if, once
one passes to the ðx; kÞ variables, one realizes that this
is just a normal quantum system, with a standard local
Hamiltonian and canonical commutation relation. This
trivial example shows that the algebraic structure of the
commutation relations is only one side of the coin and must
always be examined together with the dynamics of the
system (see also the discussions in [9,30]).
The above example, where the commutator could be

reduced to the underformed one, is however specific to a
one-dimensional system. In more dimensions, in fact, the
situation is more complex. First of all, one also has to
consider the ½xi; xj� commutator, which is nontrivial.
Furthermore, there is also the possibility of adding a term
pipj to the right-hand side of Eq. (3). The most general
algebra consistent with rotational invariance is thus

½xi; xj� ¼
�
ℏ
κc

�
2

aðpÞiϵijkJk; ð88Þ

½xi; pj� ¼ iℏ½fðpÞδij þ gðpÞpipj�; ð89Þ

which depends on three functions aðpÞ, fðpÞ, and gðpÞ. In
the momentum representation, the position operator can
then be written as

xi → iℏ

�
fðpÞ ∂

∂pi
þ gðpÞpipk

∂
∂pi

�
: ð90Þ

The nontrivial Jacobi identities now reduce to two differ-
ential equations for the three functions aðpÞ, fðpÞ, and
gðpÞ, and these are no longer enough to find a unique
solution (modulo a sign); rather, after imposing them, one
remains with a solution parametrized by a free function.
However, consider the transformation to a new

momentum variable of the form ki ¼ uðpÞpi, which is

the most general transformation consistent with rotational
invariance. Then, for the associated operators, we get

½xi; kj� ¼ fðpÞuðpÞδij
þ
�
u0ðpÞ
p

ðfðpÞ þ gðpÞp2Þ þ gðpÞuðpÞ
�
pipj:

ð91Þ

We can then choose uðpÞ so that the term proportional to
pipj in Eq. (91) vanishes, and after renaming fðpÞuðpÞ as
fðpÞ, we get back the structure in Eq. (4), with now ki as
momentum variable. In this sense, one can always restrict
to Eqs. (3) and (4), possibly at the price of nonlocal terms in
the Hamiltonian, induced by the elimination of the term
proportional to pipj.
Alternatively, we can restrict the freedom by imposing

aðpÞ ¼ 0. In this case, we get ½xi; xj� ¼ 0, ½pi; pj� ¼ 0,
and then, the Jacobi identities fix the ½xi; pj� commutator
to [31,32]

½xi; pj� ¼ iℏ

�
δijð1 − αpþ α2p2Þ þ pipj

�
−
α

p
þ 3α2

��
:

ð92Þ

VII. CONCLUSIONS

In this paper, we have revisited some aspects of the
algebraic approach to the generalized uncertainty principle
and to deformations of the commutation relations. We have
pointed out an important difference between the approaches
by MM [11] and by KMM [13], emphasizing that the
KMM approach implicitly selects a branch of solution of
the Jacobi identities that only holds for spin-zero particles.
In contrast, requiring, as in [11], that the algebraic
formulation is consistent (in the sense of obeying the
Jacobi identities) independently of the particle spin provides
an approach which appears more suited to emerge from a
fundamental theory of gravity (although, in the end, Nature
will decide if a GUP holds, and in what form) and also has
some remarkable consequences. First, the algebraic structure
becomes fixed, modulo a sign; in contrast, in the KMM
approach, the ½x; p� commutator is an arbitrary function of
momentum, which is then fixed on rather arbitrary grounds.
Second, the two solutions that emerge (in correspondence
with the two possible signs) describe quite different physics.
One gives a GUP with a minimum length uncertainty of the
type found in string theory or with the Gedanken experiment
with black holes; at energies (or momenta) well below the
Planck scales, it becomes the same as the KMM commu-
tator, while it differs from it at Planckian energies, where the
corresponding minimal length saturates to a constant value
rather than growing without bounds. The other solution
describes a system that, near the Planck scale, becomes
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classical. Moreover, these two solutions have a very in-
triguing interpretation, namely, as the natural commutation
relations obtained in theories where time becomes discrete at
the Planck scale. The two different solutions emerge, in this
context, either discretizing directly Minkowski time, or
discretizing time in the Euclidean formulation, and then
rotating back to Minkowski space.
Finally, we have also reexamined, in our context, the issue

of GUP for a composite system, confirming the conclusion
that the GUP does not extend trivially to macroscopic
objects. If the deformed commutator is applied at the level
of the constituent particles, then its effects are suppressed by

powers of the number of constituents, thus suggesting that
the effects of GUP will be limited to the realm of elementary
particles with Planckian energies.
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