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The dilaton gravity models in two dimensions, including the Jackiw–Teitelboim model and its
deformations, are particular cases of Poisson sigma models. Target space diffeomorphisms map one
Poisson sigma model to another. We propose to use these diffeomorphisms to identify asymptotic
conditions, boundary actions, and asymptotic symmetries in distinct dilaton gravity models. As an
example, we use the asymptotic conditions in Jackiw–Teitelboim gravity to construct an asymptotic
problem with Virasoro symmetry in a class of asymptotically Rindler models. We show that the method can
be applied to a wide class of pairs of dilaton gravities and discuss possible generalizations.
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I. INTRODUCTION

The discovery [1–3] that the Sachdev-Ye-Kitaev (SYK)
model [4,5] is a holographic dual of the Jackiw–Teitelboim
(JT) gravity [6,7] has opened a whole new area of research
in two-dimensional holography. The JT gravity is a
member of a large family of two-dimensional dilaton
gravities [8]. All 2D dilaton gravities are classically and
locally quantum integrable [9,10]. Quite naturally, many
works were dedicated to the search of extensions of the JT/
SYK paradigm. In particular, matrix model boundary duals
were suggested in [11] and studied in [12–16]. Generalized
sets of asymptotic conditions leading to larger asymptotic
symmetry algebras were suggested in [17,18]. Some limits
of JT gravity were analyzed in [19,20]. The dilaton gravity
models other than JT were considered from the early days
of AdS2=CFT1 correspondence [21]. Some other non-JT
holographic correspondences in two dimensions have been
considered in [22–29]. We refer to [30] for an overview of
2D holography. Despite the growing number of examples it
is still unclear whether a given dilaton gravity model can
possess a consistent set of asymptotic conditions with an
interesting symmetry algebra.

The dilaton gravities in two dimensions are particular
cases of Poisson sigma models (PSMs) [31]. For a generic
PSM with a specific set of boundary conditions the
boundary correlation functions may be expressed through
star-products of a quantum mechanics defined on the
boundary [32,33], which can already be considered as a
sort of a holographic correspondence. The target spaces of
PSMs are Poisson manifolds. A target space diffeomor-
phism maps one PSM to another. We propose to use these
diffeomorphisms to identify the models asymptotically
rather than in the whole space. If one model has a boundary
action and a set of asymptotic conditions leading to a
consistent variational problem, the same will apply to the
model obtained through a target space diffeomorphism.
More precisely, our proposal is as follows A dilaton

gravity has an asymptotic region for larger values of the
dilaton field X (at X → ∞) if the symplectic leaves of
corresponding Poisson structure satisfy some restrictions at
this region. These restrictions imply existence of a selected
coordinate system on the target space manifold. If another
model also satisfy the same restrictions, the coordinate
systems may be identified. In other words, these two
models may be related through a target space diffeomor-
phism. Note, that the field X may be used as a coordinate in
classical solutions of dilaton gravities. Thus X → ∞
defines an asymptotic region on the base manifold as well.
If the diffeomorphism is applied to the asymptotic con-
ditions and to the action (including all boundary terms)
which define a consistent variational problem in one model,
one automatically gets a consistent variational principle in
the second model as well. The asymptotic symmetries also
follow this scheme, but there is subtlety. The PSMs are
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formulated by using the coordinates on target Poisson
manifold as field variables. The coordinates do not behave
covariantly under diffeomorphisms. As a consequence, the
gauge transformation rules are also not covariant, except
for the case when all fields are on-shell (see [34] for a
discussion of covariance properties of PSMs). Therefore,
the correspondence between asymptotic symmetries can be
established on-shell only. Fortunately, this restriction does
not reduce the asymptotic symmetry algebra.
Dilaton-dependent conformal transformations of the

metric, which are particular cases of PSM target space
diffeomorphisms, have been used to construct asymptotic
conditions in dilaton gravities in [28].
We illustrate our method with an example of asymptotic

correspondence between JT and so-called asymptotically
Rindler models. We show, how a known asymptotic
problem for JT model gives rise to a new set of consistent
asymptotic conditions in asymptotically Rindler models
with a Virasoro symmetry algebra. Note, that such asymp-
totic symmetry is rather nontypical for asymptotically flat
space holography.
This paper is organized as follows. In the next section,

we review the dilaton gravities in first and second order
formulations and their relations to PSMs. The general
scheme for establishing asymptotic correspondence
between dilaton gravity models is presented in Sec. III
where we derive the transformation rules for all fields and
parameters of the asymptotic symmetry algebra. Is is worth
noting already here that the asymptotic Killing vectors in
asymptotically equivalent models coincide. In Sec. IV we
derive asymptotic correspondence between JT and Rindler
models. In Sec. V we analyse the presence of asymptotic
regions in a two-parameter family of dilaton gravity
models. We show, that such regions are present in a large
subset of this family including most of physically interest-
ing one. Thus, the proposed method is very general.
Section VI contains some concluding remarks.

II. DILATON GRAVITIES AND POISSON SIGMA
MODELS

Practically all1 pure dilaton gravity models in two
dimensions are described by the following second order
action

I2nd ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p ½XR − UðXÞð∂XÞ2 − 2VðXÞ�: ð1Þ

Here U and V are two arbitrary functions (potentials) of the
dilaton field X, R is the curvature scalar of two-dimensional
metric gμν on the manifold M. In this paper, we work with
Euclidean signature models. Modifications to the case of
Minkowski signature are straightforward.

The action (1) is classically equivalent to the first-order
action

I1st ¼
Z
M

�
eα ∧ dXα þ ω ∧ dX þ ϵαβXαω ∧ eβ

−
1

2
ϵαβVeα ∧ eβ

�
; ð2Þ

where eα and ω are the zweibein and connection one-forms,
respectively. The indices α; β ∈ f1; 2g are lowered and
raised with the Kronecker symbol δαβ while ϵαβ is the
antisymmetric Levi-Civita symbol, ϵ12 ¼ 1. Xα denotes
auxiliary fields generating the torsion constrains, and

V ¼ 1

2
UðXÞXγXγ þ VðXÞ: ð3Þ

We like to embed the dilaton gravities in an even more
general class of 2-dimensional models. To this end, let us
consider a Poisson manifold2 P with local coordinates XI

and a Poisson bivectorΠIJðXÞ satisfying the Jacobi identity

ΠIL∂LΠJK þ ΠKL∂LΠIJ þ ΠJL∂LΠKI ¼ 0: ð4Þ

This bivector defines a Poisson bracket

fF;Gg ≔ ΠIJ∂IF∂JG ð5Þ

for F;G ∈ C∞ðPÞ and makes C∞ðPÞ a Poisson algebra.
Let us make P a target space of a sigma model. Then XI

become functions of x. I.e., they are interpreted as maps
M → P. We also take fields AIðxÞ which are one-forms on
M with values in the cotangent space of P. The action of a
PSM reads [31]

IPSM ¼
Z
M

�
AI ∧ dXI þ 1

2
ΠIJðXÞAI ∧ AJ

�
ð6Þ

Note that Poisson sigma models may be formulated also
without relying on the choice of a local coordinate system
on P [34].
Through the identifications XI ¼ ðX;XαÞ and AI ¼

ðω; eαÞ we see that the dilaton gravity action (2) is a
particular case of Poisson sigma model action correspond-
ing to

Παβ ¼ −Vϵαβ; ΠXβ ¼ −ΠβX ¼ Xαϵ
αβ: ð7Þ

It is an easy exercise to check that the Poisson tensor (7)
satisfies the Jacobi identities (4).
Under a change of the target space coordinates XI → X0I0

the fields A and Π change according to the rule

1An even more general class of models was considered in [35].
Holographic aspects of these models were studied recently in [36].

2The interested reader may consult the textbook [37] for an
introduction to the Poisson geometry.
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A0
I0 ¼AI

∂XI

∂X0
I0
; ΠI0J0 ðX0Þ¼ΠIJðXðX0ÞÞ∂X

0I0

∂XI

∂X0J0

∂XJ : ð8Þ

The PSM gauge transformations read

δλXI ¼ ΠIJλJ;

δλAI ¼ −dλI − ð∂IΠJKÞAJλK; ð9Þ

where λI is a parameter. The relations between these
transformations and gauge symmetries of dilaton gravities
will be explained in the next section.

III. ASYMPTOTIC EQUIVALENCE

Given a Poisson manifold P, symplectic leafs are
defined as submanifolds in P to which the Hamiltonian
vector fields ΠIJ∂JFðXKÞ are tangential at each point
for any smooth function F. Symplectic leaves are even-
dimensional. Since for Poisson sigma models associated
with dilaton gravities dimP ¼ 3, the symlectic leaves may
have dimension 2 or 0.
Consider the function

C ¼ wðXÞ þ 1

2
XαXαeQðXÞ ð10Þ

with

QðXÞ ¼
Z

X
dyUðyÞ; wðXÞ ¼

Z
X
dyVðyÞeQðyÞ: ð11Þ

Since

fC; XIg ¼ 0; ð12Þ

C is a Casimir function. It is constant on each symplectic
leaf. Moreover, the PSM equations of motion yield
dCðX;XαÞ ¼ 0. Thus any classical solution of a PSM
always stays within a single symplectic leaf.
Two-dimensional symplectic leaves3 are the surfaces

C ¼ const. Note, however, that the same value of C may
correspond to several symplectic leaves. Locally on these
surfaces one introduces the coordinates ðX; θÞ, where

θ ¼ arctanðX2=X1Þ: ð13Þ

It can be easily verified that

fX; θg ¼ 1: ð14Þ

Thus, ðX; θÞ form a Darboux coordinate system on sym-
plectic leaf. The coordinate systems consisting of Casimir
functions and Darboux coordinates on symplectic leaves
are called the Casimir-Darboux coordinate systems.
Let us consider a dilaton gravity model with an asymp-

totic region at X → ∞. In this work, this means that for
each value of C there is a critical value X, XcrðCÞ such that at
X > Xcr the Eq. (10) has a unique positive solution for
XαXα smoothly depending on C and X. By the construction,
the line XαXα ¼ 0 is excluded from the asymptotic region.
In this region, the coordinates ðX; C; θÞ form a regular
coordinate system in the configuration space. Thus, by
making the change of variables ðX;X1; X2Þ → ðX; C; θÞ we
can establish a correspondence between asymptotic con-
ditions in our model and in the PSM with the action

IPSM0
¼

Z
M

½AC ∧ dC þ Aθ ∧ dθ þ AX ∧ dX þ AX ∧ Aθ�:

ð15Þ
Note, that this model does not correspond to any dilaton
gravity.
In 2D dilaton gravities, the dilaton field itself can be used

as a coordinate in classical solutions. Thus by defining as
asymptotic region in terms of X we also define an
asymptotic region on M.
Consider two dilaton gravity models with target space

coordinates ðX;X1; X2Þ and ðY; Y1; Y2Þ and with Poisson
tensors ΠðXÞðXIÞ and ΠðYÞðYIÞ, respectively. If both models
have asymptotic regions at X → ∞ and Y → ∞, by the
change of variables ðX;X1; X2Þ → ðX; C; θÞ → ðY; Y1; Y2Þ
one establishes an asymptotic correspondence between
these models. This correspondence is valid in the inter-
section of asymptotic regions of the models. We shall call
this intersection the asymptotic region until the end of this
section.
By the construction, the Poisson tensors ΠðXÞðXIÞ and

ΠðYÞðYIÞ in asymptotic regions and the one-forms AðXÞ and
AðYÞ are related through the Eqs. (8). Now, we are going to
establish relations between boundary actions, variational
problems, and asymptotic symmetries.
To ensure consistency of the variational principle for a

given set of asymptotic conditions, one had to add to IPSM a
boundary action Ibd defined at X → ∞, so that the full
action reads

I ¼ IPSM þ Ibd: ð16Þ

One may like to identify full actions in both models
IðXÞðXðYÞ; AðXÞðAY; YÞÞ ¼ IðYÞðY; AðYÞÞ before and after
the change of variables. This is not possible however since
the transformation X → Y is defined in the asymptotic
region only. Thus, we have to assume that there is some
asymptotic region also in the base manifold M such that
for x belonging to this asymptotic region the fields XIðxÞ

30-dimensional symplectic leaves are the points where
X1 ¼ X2 ¼ VðXÞ ¼ 0. The classical solutions belonging to such
leaves are the constant dilaton solutions. Their (somewhat trivial)
holographic aspects have been discussed in [23,38].
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are in the asymptotic region of target space P. This
assumption will be a part of the asymptotic conditions.
The principle describing the correspondence between
classical actions is formulated as follows. Consider four
sets of the fields, ðX; AðXÞÞ, ðX̄; ĀðXÞÞ, ðY; AðYÞÞ, ðȲ; ĀðYÞÞ,
such that (i) the pairwise differences X − X̄, AðXÞ − ĀðXÞ,
Y − Ȳ, AðYÞ − ĀðYÞ have support inside the asymptotic
region in M, and (ii) the fields ðX; AðXÞÞ (respectively,
ðX̄; ĀðXÞÞ) are related to ðY; AðYÞÞ [respectively, to ðȲ; ĀðYÞÞ]
through in the diffeomorphisms (8) within the asymptotic
region. Then

IðXÞðX;AðXÞÞ − IðXÞðX̄; ĀðXÞÞ ¼ IðYÞðY; AðYÞÞ − IðYÞðȲ; ĀðYÞÞ:
ð17Þ

In other words, the variations of both actions should agree
provided these variations are confined to asymptotic
regions.
It can be checked by a direct computation that the bulk

action IPSM satisfies the condition (17). This allows us to
identify the boundary actions as well

IbdðXÞðXðYÞ; AðXÞðAY; YÞÞ ¼ IbdðYÞðY; AðYÞÞ: ð18Þ

This boundary action is well defined since the asymptotic
boundary clearly belongs to the asymptotic region. The
relations (17) and (18) allow us to conclude that the
equations in both theory agree in the asymptotic region.
The asymptotic conditions in both models are also iden-
tified through the target space diffeomorphisms. If the
variational problem for one model is consistent, the
variational problem for the other is also consistent.
The asymptotic symmetries are the gauge symmetries of

bulk theory which preserve asymptotic conditions but are
no longer gauge symmetries of the full theory as they
change the boundary action and correspond to nonzero but
finite asymptotic charges. Thus, to understand the asymp-
totic symmetries we have to find out how the gauge
symmetries change under target space diffeomorphisms.
One may expect a tensorial behavior as

δλXI ¼ ∂XI

∂X0J0 δλ0X
0J0 ; λ0I0 ¼

∂XJ

∂X0I0 λJ: ð19Þ

(We have returned to simpler notations compatible with
Eqs. (8) and (9) above.) These rules are obviously con-
sistent with transformation of X and Π. However, the
compatibility between gauge and diffeomorphism trans-
formations of A requires equations of motion. For us, this
means that the asymptotic symmetries in the PSM models
related by through asymptotic target space diffeomorphism
coincide on shell only.
The necessity of going on shell is related to noncovar-

iance of the variables used in PSMs. The field XI is a

coordinate on P rather than a vector in the tangent space to
P. This is exactly the reason for non-covariance of gauge
transformations with respect to the tangent space diffeo-
morphisms. The situation improves on shell, where the
gauge transformations become covariant and close with
respect to the commutator. This situation was discussed in
detail in [34] where also a covariant extensions of PSMs
were proposed.
On shell, the PSM gauge transformations can be related

to diffeomorphism of M with the parameters ξμ and
Euclidean Lorentz transformations with the parameter σ
which constitute the symmetries in geometric formulation
of 2D dilaton gravities [8,39], λI ¼ λIðξÞ þ λIðσÞ.

λIðξÞ ¼ −AμIξ
μ; λXðσÞ ¼ σ; λαðσÞ ¼ 0: ð20Þ

To restore ξ it is enough to use the equation

λα ¼ −eαμξμ: ð21Þ

Since ∂X=∂X0α ¼ 0 both sides of this equation transform
identically and do not mix with the λX component under the
target space diffeomorphisms. Therefore, ξμ does not
transform,

ξ0μ ¼ ξμ: ð22Þ

This means in particular that in asymptotically equivalent
models asymptotic Killing vectors coincide. This is a
remarkably simple relation.

IV. AN EXAMPLE: JT AND ASYMPTOTICALLY
RINDLER MODELS

In this section, we show how the known asymptotic
conditions of JT gravity can be mapped to a new set
asymptotic conditions of asymptotically Rindler models.

A. The JT model

The JT gravity corresponds to the dilaton potentials
VðXÞ ¼ −X and UðXÞ ¼ 0. The Casimir function reads

C ¼ 1

2
ð−X2 þ XαXαÞ: ð23Þ

The two-dimensional symplectic leaves are paraboloids,
except for C ¼ 0, when they are two cones without the
point X ¼ X1 ¼ X2 ¼ 0 (which is a zero-dimensional leaf).
For a positive C there is single symplectic leaf, while for
C < 0 there are two symplectic leaves. Obviously, for X >
Xcr ¼

ffiffiffiffiffiffiffiffiffi
−2C

p
when C ≤ 0 and for all X when C > 0, the

equation (23) has a unique positive smooth solution for
XαXα. Thus, the JT model has an asymptotic region
at X → ∞.
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The asymptotic conditions for JT model in the first-order
formulation have been constructed in a number of papers
[17,38,40]. We give a short overview here. The metric is
taken in the Fefferman-Graham form

ds2 ¼ dρ2 þ h2ðτ; ρÞdτ2; ð24Þ

and the zweiben reads

eτ1 ¼ h; eρ2 ¼ 1: ð25Þ

The Eqs. (24) and (25) mean that the diffeomorphism and
Lorentz gauges have been partially fixed. The asymptotic
boundary corresponds to ρ → ∞ with τ being a coordinate
on this boundary. In the first-order formalism, one can
separate the equations of motions containing the derivatives
with respect to ρ and the ones containing ∂τ only. The
former are used to find a consistent set of asymptotic
conditions. They yield

ωρ ¼ 0; ωτ ¼ ∂ρh; ð26Þ

X ¼ xRðτÞeρ þ xLðτÞe−ρ; X1 ¼ −xRðτÞeρ þ xLðτÞe−ρ;
ð27Þ

X2 ¼ lðτÞ; h ¼ eρ þ LðτÞe−ρ: ð28Þ

Here xR, xL, l, and L are arbitrary functions of τ. They
characterize the holographic theory. On shell, they obey the
rest of the equations of motion containing τ-derivatives
(denoted by a dot over corresponding functions)

_xR ¼ l; _xL ¼ lL; _l ¼ 2ðxRLþ xLÞ ð29Þ

The asymptotic conditions consist in requesting that for
ρ → ∞ the corrections to X, X1, X2, and h are smaller than
the smallest function of ρ appearing on the right-hand sides
of the Eqs. (27) and (28). The same apply to the formulas
for transformation parameters given below. We do not write
the correction terms explicitly in this subsection. As a part
of the asymptotic conditions, we also have to request that
the fields XI belong to the asymptotic region of target space
for sufficiently large values of ρ. Thus, xR has to be
separated from zero, i.e., 0 < c ≤ xRðτÞ for all values of τ
and some constant c. Note that the consistency of varia-
tional problem requires that the average value of x−1R over
the boundary does not fluctuate [17]. This also implies that
x−1R is regular.
These asymptotic conditions are invariant under the

gauge transformations (9) with

λ1 ¼ εeρ −
�
1

2
̈ε − Lε

�
e−ρ; ð30Þ

λ2 ¼ −_ε; ð31Þ

λX ¼ εeρ þ
�
1

2
̈ε − Lε

�
e−ρ; ð32Þ

where ε is arbitrary function of τ, cf. [40]. The trans-
formation law

δεL ¼ −2L_ε − _Lεþ 1

2
⃛ε ð33Þ

reveals Virasoro asymptotic symmetry with a nonvanishing
central charge. Other asymptotic variables transform as

δεxR ¼ xR _ε − lε; ð34Þ

δεxL ¼ −xL _εþ
1

2
l̈ε − Llε; ð35Þ

δεl ¼ xRð̈ε − 2LεÞ − 2xLε: ð36Þ

It is important to note that we have three equations of
motion (29) for four independent functions on the boun-
dary. One of these functions, say L, remains unrestricted
even on shell. According to Eq. (33), this boundary degree
of freedom may be described in terms of the orbits of
Virasoro group.
The asymptotic Killing vectors are the generators of

diffeomorphisms of M which preserve asymptotic con-
ditions for the metric. They read in our case

ξρ ¼ _ε; ξτ ¼ −εþ 1

2
̈εe−2ρ: ð37Þ

We conclude this subsection with a simple example of
the behavior of gauge symmetries under target space
diffemorphisms. By using the rules (8), one gets for the
connections in the model (15)

Aθ ¼ A1

∂X1

∂θ þ A2

∂X2

∂θ ¼ −e1X2 þ e2X1; ð38Þ

which yields in the asymptotics

Aρ;θ ≃ −xReρ þ xLe−ρ; Aτ;θ ≃ −leρ − lLe−ρ ð39Þ

Then,

δεAρ;θ ≃ −ðxR _ε − lεÞeρ þ…;

δεAτ;θ ≃ ð−xR ̈εþ 2xRLεþ 2xLεÞeρ þ… ð40Þ

The first of the equations above is a gauge transformation
with λθ ¼ ðxR _ε − lεÞeρ þ � � � However, the variation
δεAρ;θ is reproduced only if one takes into account the
equations of motion (29).
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We do not write explicitly the asymptotic conditions for
other fields in the Casimir-Darboux coordinates ðX; C; θÞ.
Instead, in the next subsection we will directly transform
the JT variables to asymptotically Rindler variable. This
latter way appears to be shorter and simpler.

B. Asymptotically Rindler models

Among 2D dilaton gravities where is an interesting
family with asymptotically Rindler solutions. The
Euclidean version of this family corresponds to the poten-
tials

UðYÞ ¼ −
a
Y
; VðYÞ ¼ −

1

2
Ya; ð41Þ

where a is a real parameter. Then

QðYÞ¼−a lnY; wðYÞ¼−
1

2
Y; C¼1

2
ð−YþYαYαY−aÞ:

ð42Þ

The curvature scalar on the solutions is R ¼ −2aCYa−2.
Thus, for a < 2 the region Y → ∞ is asymptotically flat.

Our method allows to find asymptotic conditions with
Virasoro symmetry in asymptotically Rindler models. In
the known cases [28] these models in 2D have a twisted
warped conformal asymptotic symmetry algebra.4Being
written through the Fourier modes of generators T and
P, this algebra reads

i½Tn; Tm� ¼ ðn −mÞTnþm;

i½Tn; Pm� ¼ −mPmþn þ ikðn2 − nÞδmþn;0;

i½Pn; Pm� ¼ 0: ð43Þ

The only central extension with a central charge k appears
in the ½Tn; Pm� commutator. This central extension cannot
be moved to other commutators by means of a change of
the basis. This algebra has a Schwarzian [41] which differs
from that of Virasoro algebra and the corresponding
Schwarzian action is a limiting case [27] of complex
SYK model [1,42–44]. Thus, the known cases are very
different from what we suggest here.
Since we consider noninteger values of a, negative

values of Y must be excluded from the beginning. For
Y > −2C, the quantity YαYα is a smooth positive function
of Y and C, so that the models under consideration have an
asymptotic region at Y → ∞.

We identify X ¼ Y and equate C in both models to obtain

XαXα ¼ X2 − X þ YβYβX−a; YβYβ ¼ XaðX − X2 þ XαXαÞ: ð44Þ

Equating the angles θ in both models yields

Xα ¼ Yα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − X þ YβYβX−a

YγYγ

s
; Yα ¼ Xα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XaðX − X2 þ XβXβÞ

XγXγ

s
ð45Þ

meaning the following asymptotic expansion for Yα

Y1 ¼ −x
1
2
ðaþ1Þ
R e

1
2
ðaþ1Þρ

�
1þ ðl2 − 4xLxRÞ

2xR
e−ρ þOðe−2ρÞ

�
; ð46Þ

Y2 ¼ lx
1
2
ða−1Þ
R e

1
2
ða−1Þρ

�
1þ ðl2 − 4xLxRÞ

2xR
e−ρ þOðe−2ρÞ

�
: ð47Þ

The asymptotic conditions for connections A in the Rindler models are the target space diffemorphisms of corresponding
conditions in JT. After long but otherwise straightforward computations one obtains for the spin connection

ωρ ¼ l
�
1

xR
e−ρ −

ð1þ aÞ
2x2R

e−2ρ þOðe−3ρÞ
�
; ð48Þ

ωτ ¼
ð1þ aÞ
2xR

þ ½ð2þ aÞl2 − 4ð1þ aÞxLxR − 4Lx2R�
2x2R

e−ρ þOðe−2ρÞ: ð49Þ

4See also [29] where the BMS asymptotic symmetry in flat JT model was discussed in detail.
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The asymptotic expansions for zweibein components read

e1ρ ¼ lx
−1
2
ðaþ3Þ

R e−
1
2
ðaþ3Þρ

�
xReρ −

1

2
ð2þ l2 − 4xLxRÞ þOðe−ρÞ

�
; ð50Þ

e1τ ¼ x
−1
2
ða−1Þ

R e−
1
2
ða−1Þρ

�
1

xR
þ ð3l2 − 4xLxRÞ

2x2R
e−ρ þOðe−2ρÞ

�
; ð51Þ

e2ρ ¼ x
−1
2
ða−1Þ

R e−
1
2
ða−1Þρ

�
1 −

ðl2 − 4xRxLÞ
2xR

e−ρ þOðe−2ρÞ
�
; ð52Þ

e2τ ¼ lx
−1
2
ðaþ3Þ

R e−
1
2
ðaþ3Þρ

�
xRe2ρ −

ð2þ l2 − 4xLxRÞ
2

eρ þOð1Þ
�
: ð53Þ

In this subsection, the fields ωμ and eμ always refer to asymptotically Rindler models. We do not introduce any special
notation for them.
The parameters of PSM asymptotic symmetry transformations take the form

λY ¼ 1þ a
xR

εþ ð2þ aÞl2ε − 4ð1þ aÞxLxRε − 4Lx2Rε − 2lxRεþ 2x2R ̈ε
2x2R

e−ρ þOðe−2ρÞ; ð54Þ

λ1 ¼ x
−1
2
ða−1Þ

R e−
1
2
ða−1Þρ

�
1

xR
εþ 3l2ε − 4xLxRε − 2l_ε

2x2R
e−ρ þOðe−2ρÞ

�
; ð55Þ

λ2 ¼ x
−1
2
ða−1Þ

R e−
1
2
ða−1Þρ

��
l
xR

ε − _ε

�
þ
�
−
lð2þ l2 − 4xLxRÞε

2x2R
þ ðl2 − 4xLxRÞ_ε

2xR

�
e−ρ þOðe−2ρÞ

�
: ð56Þ

The first nontrivial check for these relations is that
Eqs. (21) and (22) indeed reproduce the asymptotic
Killing vector (37). One can also check that PSM gauge
transformations with the parameters (54)–(56) match the
world volume diffeomorphisms of M,

δεgμν ¼ Lξgμν; ð57Þ

where L denotes the Lie derivative. Both checks can be
done with the help of Mathematica.
We like to use this opportunity to illustrate the

differences between Killing vectors and asymptotic
Killing vectors. The Virasoro asymptotic symmetry algebra
has an slð2;RÞ subalgebra. In the JT model, the asymptotic
Killing vectors corresponding to this subalgebra can be
extended to global Killing vectors of the AdS2 space of
C ¼ 0 solution. These Killing vectors leave the metric
invariant, but they change the dilaton. Since the metric of
asymptotically Rindler models depends on the JT metric
and the dilaton X, this metric is no longer invariant under
slð2;RÞ transformations. In other words, the asymptotic
Virasoro symmetry algebra of course contains an slð2;RÞ
subalgebra also in the asymptotically Rindler case, but this

subalgebra does not correspond to any Killing vectors of
the solutions.
To obtain a suitable boundary action one has to take the

boundary action for the first-order JT gravity in one of
available forms [17,45] and transform it to new variables
according to (18). Note that our bulk action differs from the
one used in [17,45] by an integration by parts and thus by
an additional boundary integral of XIAI , which also has to
be transformed. The resulting expression is quite compli-
cated and not very instructive, so that we do not write it
explicitly.
One cannot identify full actions (16) in both models.

Only the variations of bulk actions are equal, see (17). Let
us assume, however, that both actions coincide on shell,

IJTjon shell ¼ IRindlerjon shel: ð58Þ

Practically, we need this equation to hold between the parts
of full actions which depend on asymptotic variables. The
on-shell action for JT model has been calculated in [17]:

IJTjon shell ¼
1

2

Z
dτ

1

xR
½ð_xRÞ2 − 2ẍRxR þ 4x2RL�: ð59Þ
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As we have mentioned above, even on-shell one of the
asymptotic variables remains free. Let this variable be xR.
Let L be a constant representative of a Virasoro orbit. After
introducing a new boundary coordinate v such that _v ¼ x−1R
and some elementary calculations (see in [28]), one obtains

IJTjon shell ¼
Z

dv½2Lð∂vτÞ2 − Sch½τ�ðvÞ�;

Sch½τ�ðvÞ≡ ∂3
vτ

∂vτ
−
3

2

�∂2
vτ

∂vτ

�
2

; ð60Þ

which is the Schwarzian action. Thus the conjecture (58)
leads to an asymptotic Schwarzian action for Rindler
models and our asymptotic conditions.
The asymptotic correspondence works both ways. One

may use the twisted warped conformal asymptotic con-
ditions of Rindler models [28] to define JT asymptotic
conditions with the same symmetry.

V. OTHER MODELS

In order to understand the limits of applicability of our
method let us consider a family of dilaton potentials

UðYÞ ¼ −
a
Y
; UðYÞ ¼ −

B
2
Yaþb ð61Þ

depending on two real parameters a and b and on a scale
factor B. We refer to [8] for a detailed description of this
family and further references. For this family, the Casimir
function reads

C ¼ −
B

2ðbþ 1ÞY
bþ1 þ 1

2
YαYαY−a: ð62Þ

This equation can be used to express YαYα through C and Y.
A unique positive smooth solution exists for any C and Y
larger than some critical value if

bþ 1 > 0 and B > 0: ð63Þ

Any model which satisfies these restrictions has an asymp-
totic region at Y → ∞. This includes the JT gravity (a ¼ 0,
b ¼ 1, B ¼ 2) and the asymptotically Rindler models
(b ¼ 0, B ¼ 1) which we have considered above.
Besides, all spherically reduced gravities and the Callan-
Giddings-Harvey-Strominger [46] model also satisfy (63).
If the asymptotic conditions, the boundary action, and the

asymptotic symmetry algebra are known for one of the
models satisfying (63), they can be immediately translated
to all other models in this class.
We conclude, that the method proposed is indeed very

general.

VI. CONCLUSIONS

In this section, we briefly describe how our method can
be improved and generalized.
The necessity to impose equations of motion in order to

achieve equivalence of the asymptotic symmetry algebras
poses a limitation to the applicability of our results. This
limitation can be probably removed in a covariant extension
of PSMs [34]. Reformulation of known holographic results
including the consistent variational problem in a covariant
way even for JT requires much extra work which, however,
may be worth doing.
Instead of identifying the variables ðX; C; θÞ one can

equate any other pairs of coordinate systems as long as they
have identical Poisson brackets. In particular, the Casimir
function in one model can be identified with some
expression depending on the Casimir function in the other
model. In some cases, this can bring at least technical
advantages. Even more, instead of identifying asymptotic
regions, one may identify near-horizon regions to study the
relations between near-horizon symmetries.
The method which has been described above can be

extended with very few modifications to holographic
correspondence in other 2D models admitting a PSM
description as higher-spin models [40,45,47,48] and dilaton
supergravities in 2D [49–53]. It is also interesting to see
how the quantum group symmetries [54] transform under
the target space diffeomorphisms. The inclusion of matter
fields in this approach is hardly possible since the matter
couplings are not covariant with respect to target space
diffeomorphisms. We do not know yet how the canonical
boundary charges of two-dimensional gravities (see, e.g.,
[55] for a recent analysis) transform under the target space
diffeomorphisms.
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