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I. INTRODUCTION

In recent years, there has been a significant progress
in the understanding of the curvature corrections (higher
derivative interactions). In particular a great progress was
achieved on supergravity within the context of Double
Field Theory. That is connected with the fact that the
duality symmetries present on theories on toroidal back-
grounds constrain the possible interactions even before
compactification. In particular, a key result is that T-duality
is a symmetry to all orders in the α0 expansion of string
theory, at tree level [1]. These symmetries are precisely
realized by double field theory (DFT) [2] and therefore
lead to a very appropriate scheme for discussing higher-
derivative corrections. A comprehensive review on that
subject can be found in [3].
For instance, the complete Riemann squared terms of

the bosonic strings were obtained from duality arguments
in [4]. The first consistent deformation of DFT carrying α0
corrections was presented in [5], and later on it was
realized that this theory was a particular point in a two-
parameter family of consistent deformations of DFT [6].
The gauged version of the these theories were obtained in
[7] through a generalized Scherk-Schwarz reduction [8].
Alternative approaches that enlarge the duality group
while preserving the form of the action where proposed
in [9] and interesting applications on cosmological sol-
utions were discussed in [10].
A technique was proposed recently [11,12] that combines

both Lorentz symmetry and T-duality, which presumably
allows one to get information on (certain) higher-derivative
corrections to the effective actions of string theory in an

iterative way. This approach is based on symmetry argu-
ments and not on first principle grounds, but so far all the
outcomes are self-consistent and agree with scattering
amplitudes, at least up to Oðα02Þ. This approach is formu-
lated on DFT, hence a crucial aspect to make contact with
first principle computations is to have control on the passage
from DFT to the standard SUGRA frame variables.
DFTwith strong constraint is basically a T-dual covariant

formulation of supergravity. This is written in terms of
duality multiplets which admit a simple decomposition in
terms of physical fields (dilaton, metric and two-form, if we
restrict to the NS-NS sector). Nevertheless as soon as we
consider higher-derivative interactions, the simple GLðDÞ
decomposition of the OðD;DÞ multiplets is no longer
identified with the (Lorentz singlets) physical degrees of
freedom (d.o.f.) and the connection between SUGRA and
DFT frames becomes more and more subtle. The purpose
of this article is to shed light on this point.
Inspired by the heterotic supergravity, where anomaly

cancellation conditions [13] forced the two-form to get a
nontrivial behavior under Lorentz transformations, the
authors of [6] proposed a new duality covariant gauge
principle that shed light on α0-deformations of DFT through
a generalized Green Schwarz (GGS) mechanism. Actually,
it was shown that there are two inequivalent ways to embed
the Green Schwarz (GS) transformations in DFT and the
requirement of invariance of the action under these trans-
formations led to a two-parameter deformation of the
second-derivative action, containing both the heterotic as
well as the bosonic string.1

The invariance underGGS andOðD;DÞ transformations
was sufficient to determine the effective action up to quartic
order in derivatives. Despite the success of this new gauge
principle, it was early realized that the algebra of the
proposed GGS only closes at Oðα0Þ and the absence of a
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8th derivative order.
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GS like transformation at Oðα02Þ in SUGRA made it
difficult to get progress with this method at higher order.
A proposal to resolve this obstacle was presented in [11],

where a generalization of the GGS transformations was
suggested for the monoparametric case that exactly closes
at all orders in derivatives. The prescription from which the
perturbativeGGS are obtained has its origin on what is was
dubbed the generalized Bergshoeff-deRoo identification
(GBdRi). This identification is a dualization of the effective
symmetry found by Bergshoeff and de Roo in the heterotic
effective action between gauge and (composite) gravity
d.o.f., through the torsionful Lorentz connections [14].
Requiring invariance of the action under GGS ensures

both Lorentz and duality covariance of the theory.2 In the
frame formulation of DFT T-duality is linearly realized and
closes independently order by order in the Lagrangian,
Lorentz transformations instead connect interactions with
any number of derivatives. Contrarily, in the supergravity
framework duality mixes couplings at different orders
while Lorentz invariance is realized order by order (with
the exception of heterotic case where the Lorentz invariance
of the three-form requires higher derivative terms through
the Lorentz Chern-Simons).
Even it is formally possible to get the higher derivative

interaction terms requiring invariance under GGS, in the
practice it is not easily implemented. Fortunately, the same
technique leading to the GGS can be directly implemented
at the level of the action triggering a whole (iterative) tower
of interactions, to all orders in powers of α0, connected with
the second-derivative action through T-duality and Lorentz
symmetry. This was successfully implemented in [12], not
only for the heterotic (monoparametric case) but also for
the full family of biparametric duality invariant theories
introduced in [6].
Besides the symmetry requirements, it is desirable to

contrast the results with independent computations, as for
instance with scattering amplitudes or β function calcu-
lations. Interestingly, [15] verified that the α02 interactions
obtained in [12] lead to the expected coefficients for the
Riemann cube terms, both for the bosonic and heterotic
(zero coefficient in this case).
Even though this method allows to get α0n deformations

within the framework of DFT in an iterative way, the
contact with supergravity is not iterative in nature and the
necessary Lorentz noncovariant field redefinitions connect-
ing Lorentz and T-duality multiplets must be performed by
hand, a work which is hardly implemented beyond Oðα02Þ.
In the present article we go back over this point and

propose an all orders and iterative field redefinition for the

metric and the dilaton fields. The conjectured map relies on
scattering amplitude arguments concerning interactions
with the dilaton field. We explicitly verified agreement
with the expressions in [12] when reduced to α02. The
proposed exact maps are implicitly defined by Eqs. (4.11)
and (4.14), while the explicit expressions up to α02 are
displayed on (4.21).
The paper is organized as follows. In Sec. II we review

the generalized Bergshoeff de Roo identification (GBdRi),
in Sec. III we comment on the possible realization of
dilaton free schemes both in SUGRA and DFT. In Sec. IV
we give a proposal for an iterative map connecting physical
(Lorentz-invariant) d.o.f. with the duality multiplets. The
conclusions are given in Sec. V.

II. THE GENERALIZED BERGSHOEFF
DE ROO IDENTIFICATION

In this section we will briefly review the GBdRi, for an
extended discussion we recommend the reader to visit the
papers [11,12].
T-duality strongly constrains the allowed interactions at

low energy and it was proven that there is only a two-
parameter family of theories, at fourth-derivative level [6],
consistent with this symmetry. Particular points of the
parameter space are identified with the NS-NS sector of
bosonic, heterotic or type II (origin of the parameter space).
These deformations are sourced by the two possible ways
in which Lorentz transformations can be consistently
modified at Oðα0Þ. As opposed to the undeformed
Lorentz transformation which is an exact symmetry of
the quadratic action, the two-parameter modifications
inevitably call for further subleading corrections, as the
closure of the new transformations forces the addition of
new terms at Oðα02Þ.
Interestingly enough, there is an iterative way to con-

struct a two-parameter minimal completion of the previous
deformed transformations, as well as an infinite tower of
interaction terms being invariant under such a symmetry.
The whole biparametric deformation of DFT is embedded
in an artificial extended space, which is infinite dimen-
sional. Regardless of this complication, its dynamics is
described by a second-derivative Lagrangian that admits
exact local symmetries.
The infinite extra directions are actually related with

gauge d.o.f., which are frozen by an exact identification
between gauge vectors and spin connections in a duality
covariant way. Such a relation, dubbed the Generalized
Bergshoeff de Roo identification (GBdRi), relates objects
with different number of derivatives triggering all orders α0
corrections both in the action and the Lorentz (GGS)
transformations.
The gauged DFTwe referred to is formally defined on an

2ðDþ kÞ-dimensional extended space (where k is sub-
sequently assumed to be infinite) and the framework on
which the GBdR identification is naturally realized is the

2At this point only those interactions connected by Lorentz and
T-duality with the second-derivative action can be accessible, and
it is not clear yet whether any other requirement can be exploited
to get insight on other interactions, as for instance those being
proportional to ζð3Þα03 present in all string theories. See [15] for a
discussion about this point.
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frame formulation of DFT. The starting point is a gauged
flux formulation with rigid G ¼ OðDþ k;Dþ kÞ ¼
OðDþ pþ q0; Dþ qþ p0Þ and local H × H̄ ¼
OðDþ q0 − 1; p0 þ 1Þ ×Oðpþ 1; Dþ q − 1Þ symmetry.
It is important to keep in mind that the gauge group is
not physical but it is artificially introduced to account for
higher-derivative deformations of the Lorentz symmetry,
in particular the gauge couplings are not related with a
compactification scale but with the string length itself
through α0.
The index structure that follows from the group

decomposition is the following: M→ ðM; μ̂Þ¼ðM;μ
˜
; μ̃Þ

denotes the splitting of the rigid group G in terms of the
fundamental representation of G ¼ OðD;DÞ and g ¼
Oðk; kÞ respectively, and A ¼ ðA; ĀÞ → ða; α; ā; ᾱÞ
parametrizes the decomposition of the local groups H
into H ¼ OðD − 1; 1Þ and h ¼ Oðq0; p0Þ and H̄ into

H̄ ¼ Oð1; D − 1Þ and h̄ ¼ Oðp; qÞ.
The gauge mechanism introduced is not a minimal

gauging procedure as e.g., the heterotic formulation of
DFT [16]. Here instead the gauging process necessarily
introduces scalar fields on top of the gauge vectors
which can be embedded on a generalized frame of the
2ðDþ kÞ-dimensional space EM

A, admitting the following
decomposition

EM
A ¼ ðχ1

2ÞMNEN
A; EM

α̂ ¼ −AM
μ̂eμ̂α̂;

Eμ̂
A ¼ AM

μ̂EM
A; Eμ̂

α̂ ¼ ð□1
2Þμ̂ν̂eν̂α̂; ð2:1Þ

where the OðD;DÞ-valued EM
A is identified as the gen-

eralized vielbein of the double space and AM
ν̂ are the

(unphysical) gauge vectors. The functions χ and □ are
defined by

χMN ¼ ηMN −AM
μ̂ANμ̂; □μ̂ ν̂ ¼ ημ̂ ν̂ −AMμ̂AM

ν̂: ð2:2Þ

Here ηMN is the OðD;DÞ invariant metric, ημ̂ ν̂ ¼
diagðημ

˜
ν
˜
; ημ̃ ν̃Þ with ημ̃ ν̃ ¼ κμ̃ ν̃ and ημ

˜
ν
˜
¼ −κμ

˜
ν
˜
where κ

denotes the killing metric of H̄ and H, respectively.
Here eμ̂α̂ is Oðk; kÞ-valued, so it can be further para-

meterized as

eμ̃ᾱ ¼ ðΠ1
2Þμ̃ν̃ēν̃ᾱ; eμ̃α ¼ −Ωμ̃

ν
˜eν

˜

α;

eμ
˜

ᾱ ¼ Ων̃
μ
˜

ēν̃ᾱ; eμ
˜

α ¼ ðΠ1
2Þμ

˜

ν
˜eν

˜

α; ð2:3Þ

where ēμ̃ᾱ and eμ
˜

α are independent Oðp; qÞ and Oðq0; p0Þ
matrices respectively and

Πμ̃ ν̃ ¼ ημ̃ ν̃ −Ωμ̃

ρ
˜Ων̃ρ

˜

; Πμ
˜
ν
˜
¼ ημ

˜
ν
˜
−Ωρ̃

μ
˜

Ωρ̃ ν
˜
: ð2:4Þ

Local symmetries of the extended space are parameter-
ized by G-vectors ξM that account for both gauge trans-
formations and generalized diffeomorphisms in a duality
covariant way and by Lorentz parameters ΓAB. The
generalized frame transforms locally as

δEM
A ¼ ξN ∂NEM

A þ ð∂MξN − ∂N ξMÞEN
A

þ f̂MN
PξNEP

A þ EM
BΓB

A; ð2:5Þ

where the information on the gauge group is completely
determined by the gaugings f̂MN

P . Concerning the rigid
duality group G, the generalized vielbein does transform
linearly.
Regarding the generalized dilaton d, it turns out to be

invariant under Lorentz and the duality group but trans-
forms as a density under generalized diffeomorphisms

δd ¼ ξN ∂Nd −
1

2
∂N ξN : ð2:6Þ

The embedding of DFT with its α0-corrections in the
2ðDþ kÞ-dimensional extended space requires fixing
extra d.o.f. and symmetries. For instance, setting Eμ

˜

ᾱ

and Eμ̃
α to zero and eμ

˜

α, ēμ̃ᾱ to be constant partially break

the Lorentz group of the extended space. The remnant
symmetry is the usual Lorentz group of the double space,
OðD − 1; 1Þ ×Oð1; D − 1Þ. There are still extra d.o.f. of
the extended space as compared with those of the NS-NS
sector of DFT, and indeed both vectors AM

μ̂ and scalars
Ωμ̃ ν

˜
must be frozen. Here is where the GBdRi comes

into play,

−g1E
μ
˜
Āðtμ

˜

ÞBC¼FĀBC; −g2Eμ̃
Aðtμ̃ÞBC¼FABC; ð2:7Þ

where tμ
˜

, tν̃ are generators ofH and H̄ respectively and g1,

g2 their coupling constants.FABC are the generalized fluxes
of the extended space

FABC ¼ 3Ω½ABC� þ f̂MNPEM
AEN

BEP
C;

FA ¼ 2DAd −ΩBA
B; ð2:8Þ

defined in terms of the gaugings f̂MNP , generalized
Weitzenböck connection ΩABC and flat derivatives

ΩABC ¼ DAEN
BEP

CηNP ; DA ¼ EM
A∂M: ð2:9Þ

Equation (2.7) is supplemented with an identification
between gauge and Lorentz parameters of the extended
space (ΓB C̄, ΓB̄ C ¼ 0)
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ΓBC ¼ −g1ξ
μ
˜ ðtμ

˜

ÞBC; ΓBC ¼ −g2ξμ̃ðtμ̃ÞBC; ð2:10Þ

after which it can be verified that both the left-hand side and
right-hand side in (2.7) operate exactly in the same way
under local transformations (here L̂ξ denotes the general-
ized Lie derivative),3

δFABC ¼ L̂ξFABC þ FDBCΓ
D
A −DAΓBC þ 2FAD̄½B̄ΓC̄�D̄;

δFĀBC ¼ L̂ξFĀBC þ FD̄BCΓD̄
Ā −DĀΓBC þ 2FĀD½BΓC�D;

ð2:11Þ

Fluxes depend on the derivatives of the generalized
frame and so (2.7) leads to an iterative derivative expansion
of the former. If we further take into account the embedding
of EM

A into EM
A, then the (exact) generalized diffeo-

morphism and Lorentz symmetries of extended space
trigger a derivative expansion (α0-corrections) on the local
symmetries for the double space.
The resulting transformations comprise the usual (uncor-

rected) generalized diffeomorphism plus a deformed
Lorentz symmetry that closes order by order and reduces
to the known GGS transformations at Oðα0Þ. Similarly,
implementing the GBdRi on the second-derivative action
of the extended space leads to an infinite tower of
interactions, which again reduces to the known fourth-
derivative action at Oðα0Þ,4

L ¼ e−2d
X
n¼0

LðnÞ; ð2:12Þ

where LðnÞ ∼ α0n. Lð0Þ ¼ R1 þ R2, with

R1 ¼ 2ðDāFā −DaFaÞ − ðFāFā − FaFaÞ; ð2:13Þ

R2¼
1

2
ðFabcF

abc−FābcFābcÞþ1

6
ðFabcF

abc−FabcFabcÞ:
ð2:14Þ

Generalized fluxes are defined as

FABC ¼ 3Ω½ABC�; FA ¼ 2DAd −ΩBA
B;

ΩABC ¼ ðDAEN
BÞENC; ð2:15Þ

and DA ¼ EM
A∂M. Alternatively, after integration by parts

we can replace R1 with R̃1

R̃1 ¼ FāFā − FaFa: ð2:16Þ

As we have previously anticipated, the corrections on the
second-derivative action are described by two parameters,
denoted below by letters a and b, whose origin can be
traced back to the two coupling constants g1 and g2.

Lð1Þ ¼ aLð1Þ
a þ bLð1Þ

b

¼ aLð1Þ
a þ

�
a ↔ b

fā; b̄; c̄;…g ↔ fa; b; c;…g

�
; ð2:17Þ

where5

Lð1Þ
a ¼ 2DāðFb̄F

ā c dFb̄
c dÞ − FāFb̄F

ā c dFb̄
c d −DāDb̄ðFā c dFb̄

c dÞ
þ Fā c dFb̄

c dFā
c̄ bFb̄ c̄ b − 2D½āFb̄�c dDāFb̄ c d þ ðFā b̄ ēD

ēFā c d − Fā b̄ eD
eFā c dÞFb̄

c d

− 4DāFb̄a cFā a
bFb̄ c b þ 4=3Fā

a cFc̄ a
bFb̄ c bF

ā c̄ b̄ þ 2Fā
a cFb̄c

bFā
d½aFb̄ d

b�: ð2:18Þ

Similarly

Lð2Þ ¼ a2Lð0;2Þ þ abLð1;1Þ −
�

a ↔ b

fā; b̄; c̄;…g ↔ fa; b; c;…g

�
: ð2:19Þ

The interactions can be further organized according to the presence or absence of dilaton fluxes, FA:

Lðr;sÞ ¼ Lðr;sÞ
Φ þ Lðr;sÞ

=Φ . The complete expression is explicitly displayed in [12]. Here we only exhibit the Lðr;sÞ
Φ piece

which will be used later on

5The parameters a and b must not be confused with flat indices ā, b̄ and a, b.

4It is important to keep in mind that LðnÞ does not necessarily include all possible interactions compatible with scattering amplitudes,
it only contains the biparametric deformations of DFT, which is the minimal completion of the second-derivative action that exactly
closes under T-duality and the deformed Lorentz transformations (GGS) to all orders in derivatives.

3It is worth mentioning that this relation truncates the d.o.f. of the extended space but do not impose any condition on the double
space. Actually, it is after this truncation that the d.o.f. of the extended space exactly matches those of the double space.
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Lð0;2Þ
Φ ¼ Fd̄ð−2DbFd̄ e fDc̄DbFc̄ e f − 2DbFā e fDāDbFd̄

e f − 4Dc̄DēFc̄
c eFd̄

c fFē e
f

þ 2Db̄Db̄F
ē c eFd̄

c
fFē e f þ 2Db̄DfFb̄

d eFē
d eFd̄

ē f þ 2DfFā d eDāFē
d eFd̄

ē f

− 4DēDf̄Fd̄ c eFē c
fFf̄ e f þ 2DēDd̄Ff̄ c eFē c

fFf̄ e f þ 2DēDfFd̄d eFf̄
d eFē f̄ f

þ 4Dc̄Fc̄
c eDf̄Fd̄

c fFf̄ e
f − 2Dc̄Fc̄

c eDd̄Ff̄
c
fFf̄ e f þ 8Dd̄Fd̄ c eDf̄Fd̄ c

fFf̄ e f

− 2Dd̄Fē c eDf̄Fē c
fFf̄ e f − 2Db̄Fd̄ c eDb̄F

f̄
c
fFf̄ e f þ 2DdFd̄ e fDc̄Fc̄

f̄
dFf̄ e f

þ 2DdFā e fDāFd̄ f̄
dFf̄ e f þ 2DfFd̄d eDēFf̄

d eFē f̄ f − 2Db̄Fb̄
f̄ ḡFd̄ c eFf̄ c

fFḡ e f

− 2Db̄Fb̄
ē fFē

d eFḡ
d eFd̄

ḡ f þ 4DēFf̄ c eFd̄
c
fFḡ

e fFē f̄ ḡ − 8Dc̄Fē c eFd̄
c
gFc̄ e

hFē g h

þ 4DēFc̄ c eFd̄
c
gFc̄ e

hFē g h þ 4Db̄Fb̄
c eFd̄

c
gFē

e
hFē g h þDc̄Fē c dFd̄

c dFc̄
g hFē g h

þ 4Dc̄Fē e gFd̄ f hFc̄ e fFē g h − 4Db̄Fb̄
e gFd̄ f hFē

e fFē g h þDc̄Fē e fFd̄ g hFc̄ e fFē g h

þDb̄Fb̄
e fFd̄ g hFē

e fFē g h − 2Df̄Fḡ c dFē
c dFd̄

ē
fFf̄ ḡ f − 2Df̄Fē c dFḡ

c dFd̄
ē
fFf̄ ḡ f

þ 4Dc̄Ff̄ c eFc̄ c
fFḡ

e fFd̄
f̄ ḡ − 2Db̄Fb̄

c eFf̄
c
fFḡ

e fFd̄
f̄ ḡ − 2Df̄Fd̄ ḡ h̄Ff̄

c eFḡ c
fFh̄ e f

− 2DḡFd̄ ē fFē
d eFh̄

d eFḡ h̄ f − 2Df̄Fd̄ c eFḡ
c
fFh̄

e fFf̄ ḡ h̄ þ 4Dc̄Fd̄ c eFc̄ c
gFf̄

e
hFf̄ g h

− 4Df̄Fd̄ c eFē
c
gFē e

hFf̄ g h þDēFd̄ c dFf̄
c dFē

g hFf̄ g hÞ
þDāFb̄ð−2DcFā e fDcFb̄

e f − 4DēFb̄ c eFā
c fFē e

f − 4DēFā c eFb̄
c fFē e

f

þ 2DāFē c eFb̄
c fFē e

f þ 2Db̄Fē c eFā
c fFē e

f þ 2DfFā d eFē
d eFb̄

ē f

þ 2DfFb̄d eFf̄
d eFā

f̄ f − 2Fā c eFf̄
c
fFḡ

e fFb̄
f̄ ḡ − 2Fē c dFḡ

c dF
ā ḡ fFb̄ ēf

þ 4Fā cgFē
e
hFē g hFb̄ c e − 4Fd̄

c
gFd̄ e

hFā
g hFb̄ c e þ Fē

cdF
ā g hFē g hFb̄ c d − 2Ff̄

c
fFḡ

e fFb̄ c eFā
f̄ ḡÞ

þ FāFb̄ðDcFā e fDcFb̄
e f − 2DfFād eFē

d eFb̄
ē f − 2DāFē c eFb̄

c fFē e
f

þ 4DēFā c eFb̄
c fFē e

f þ 2Fā c eFē
c
fFf̄

e fFb̄
ē f̄ − 2Fā c eFd̄

e
hFd̄ g hF

b̄
c
g

þ 2Fā e gFd̄
e fFd̄ g hF

b̄ f h − 1=2Fāe fFd̄
e fFd̄ g hF

b̄ g h þ Fē c dFf̄
c dFā

ē
fFb̄

f̄ fÞ; ð2:20Þ

Lð1;1Þ
Φ ¼ Feð−DbDbF

c̄ f gFd̄
f gFc̄ d̄ e −Dd̄DēFf̄ d cFd̄ d cFē f̄ e −Dc̄Fc̄

c dDēFf̄
c dFē f̄ e

−DhDeF
c̄ f gFd̄

f gFc̄ d̄ h −DeF
b̄ g hDfFb̄

d̄
fFd̄ g h −DbFb̄ g hDbFb̄ d̄ eF

d̄
g h

−DeF
c̄ g fDhFd̄

g fFc̄ d̄ h −Dd̄Fē d fDf̄Fd̄ ē eFf̄ d f −
1

2
DēFf̄ ḡ h̄Fē

d aFf̄ d aFḡ h̄ e

−
1

2
Dc̄Ff̄ d cFc̄ d cFḡ h̄

eFf̄ ḡ h̄ −
1

2
Db̄Fb̄

d cFf̄
d cFḡ h̄

eFf̄ ḡ h̄ −
1

2
Dd̄Ff̄ ḡ

eFd̄
b fFh̄

b fFf̄ ḡ h̄

− 2Dc̄Fē d fFc̄ d
gFf̄

f gFē f̄ e þDb̄Fb̄
d fFē

d
gFf̄

f gFē f̄ e þDd̄Fē f̄
eFd̄

b gFē b
hFf̄ g h

þDd̄DdFē f̄ cFd̄ d cFē f̄ e þDcFē f̄ dDd̄Fd̄ c dFē f̄ e þDdFd̄ ē fDf̄Fd̄ ē eFf̄ d f

þ 1

2
Dd̄Fē f̄ cFc

f gFd̄ f gFē f̄ e þ
1

2
Db̄Fb̄

d cFd c
gFē f̄

eFē f̄ g þ
1

2
Db̄Fdf gFb̄ d fF

ē f̄
eFē f̄ g

þ 1

2
Dd̄Fē f̄

eF
f g hFd̄ f gFē f̄ h − 2DbFc̄ ē

bFc̄
f gFf̄

f gFē f̄ e þ 2DgFc̄ d fFē
d fFc̄

f̄
eFē f̄ g

þ 2DgFē d fFc̄
d fFc̄

f̄
eFē f̄ g − 2DhFc̄ ē

eFc̄
f gFf̄

f gFē f̄ h þ 2Dd̄Fē ḡ cFd̄ c
bFē

h̄
eFḡ h̄ b

−Db̄Fb̄
d cFē ḡ

eFē
h̄
dFḡ h̄ c −Dd̄Fē ḡ

eFd̄
b fFē

h̄
bFḡ h̄ fÞ
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−Dd̄FaDēFf̄ d eFd̄ d eFē f̄ a −DbFcDbF
c̄ f gFd̄

f gFc̄ d̄ c −DgFbDbF
c̄ e fFd̄

e fFc̄ d̄ g

−
1

2
Db̄FaFf̄

d eFb̄
d eFḡ h̄

aFf̄ ḡ h̄ þDb̄FaFē
d
gFf̄

f gFb̄
d fFē f̄ a þDdFē f̄ eDd̄FcFd̄ d eFē f̄ c

þ 1

2
Db̄FaFef gFb̄ e fF

ē f̄
aFē f̄ g þ 2DgFbFc̄ e fFē

e fFc̄
f̄
bFē f̄ g −Db̄FaFb̄

d eFē ḡ
aFē

h̄
dFḡ h̄ e

þDdFc̄ f gFdFeFd̄
f gFc̄ d̄ e − FaFbFc̄ e fFē

e fFc̄
f̄
aFē f̄ b þDd̄Fē d eFcFc̄Fc̄ d eFd̄ ē c

þ 1

2
FaFāFā

d eFē
d eFf̄ ḡ

aFē f̄ ḡ − FaFāFā
d fFē

f gFd̄
d
gFd̄ ē a: ð2:21Þ

Dilaton fluxes appear on Lð0Þ, Lð1Þ, Lð2Þ only up to
quadratic order. This is not an accidental fact, but a general
property that holds for all LðnÞ. Indeed, it is easily proven
from two observations. First, the source of interactions is
the quadratic action of the extended space which is
quadratic in dilaton fluxes [see (4.1) or (4.2)] and second,
FABC are independent of dilaton fluxes while FA are linear
on dilaton fluxes of the double space Fa, as can be easily
seen from the OðD;DÞ flux decomposition in Appendix A
of [12].
L as it is presented here through (2.12) has the nice

property of being exactly Lorentz invariant order by order;
nevertheless, the price to pay for that is a huge number of
terms in the action. Bianchi identities and section con-
ditions can be, in principle, implemented to further simplify
the Lagrangian. On the other hand, integration by parts or
field redefinitions can be implemented too, but at the cost of
realizing the Lorentz symmetry up to total derivative terms
or at the cost of modifying the form of the GGS trans-
formations, respectively.

III. DILATON FLUX CANCELLATIONS
IN THE α0-EXPANSION

It is well known that the dilaton at tree level in string
theory enters in the action, either in the global overall
factor e−2ϕ or through the derivatives thereof. That is
automatically satisfied by the GBdRi, as the generalized
dilaton on the extended space only appears in the overall
factor e−2dð¼ ffiffiffiffiffijgjp

e−2ϕÞ or through the dilaton fluxes. On
the other hand, as we have commented above, dilaton
fluxes are present at all orders in α0 but only in the form
ðFAÞn, with n ¼ 0, 1, 2. After moving to the SUGRA
scheme derivatives of the dilaton will appear then up to
∂mϕ∂nϕ,

6 and therefore can be absorbed after integration
by parts or by Lorentz covariant redefinitions of the
metric and dilaton fields, except for the dilaton kinetic
terms in Lð0Þ.
To see that, we first notice that terms linear in ∂ϕ can

be rewritten without dilaton after integration by parts.
Then, the only nontrivial couplings are those quadratic

in derivatives of the dilaton, which in addition can be
expressed as
ffiffiffi
g

p
e−2ϕ∇mϕ∇nϕTðNÞmn

≡ 1

2

ffiffiffi
g

p
e−2ϕ∇m∇nϕTðNÞmn þ 1

2

ffiffiffi
g

p
e−2ϕ∇nϕ∇mTðNÞmn

≡ 1

2

ffiffiffi
g

p
e−2ϕ∇m∇nϕTðNÞmn þ 1

4

ffiffiffi
g

p
e−2ϕ∇n∇mTðNÞmn;

ð3:1Þ
where “≡” means up to total derivatives and TðNÞmn is an
arbitrary (dilaton independent) tensor of Nth order in
derivatives. We learn from (3.1) that terms proportional
to ∂mϕ∂nϕ are equivalent to terms proportional to ∇m∇nϕ,
up to total derivatives and terms without derivatives of the
dilaton.
We will now show that terms like these can be properly

rewritten without dilatons after a suitable choice of variables.
Indeed, after a field redefinition of the metric gmn →

gmn þ δgmn and dilaton ϕ → ϕþ δϕ, with δgmn, δϕ ∼
Oðα0Þ the second derivative Lagrangian changes at linear
order as Lð0Þ þ δLð0Þ, with δLð0Þ ¼ Gmnδgmn þΦδϕ,
where Gmn and Φ refer to the equations of motion of
the metric and dilaton, respectively. If we consider a field
redefinition leaving d invariant, the net effect is the addition
of an extra piece at order Oðα0Þ; δLð0Þ ¼ ðGmnþ
1
4
gmnΦÞδgmn ¼ ðRmn þ 2∇m∇nϕ − 1

4
HmpqHn

pqÞδgmn.
Hence, the choice δgmn ¼ − 1

4
Tð2Þmn cancels dilatons at

orderOðα0Þ. Let usmove to the following order in derivatives.
In this case, on top of the original couplings

∼∇m∇nϕTð4Þmn, there are some extra dilaton dependent
terms at order Oðα02Þ. Schematically from δð2ÞLð0Þ and
δLð1Þ due to nonlinear effects of the field redefinition.
The crucial observation here is that these terms are still
quadratic in dilaton derivatives because the field redefini-
tions (parameterized by δgmn) are dilaton independent.
Plugging all these interactions leads to a new term
∇m∇nϕT̃ð4Þmn which again can be eliminated by a new
field redefinition parameterized by

δgmn ¼ −
1

4
T̃ð4Þmn ∼Oðα02Þ: ð3:2Þ

6That readily follows from Eqs. (4.9) and (4.10).
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Clearly, we can proceed inductively to prove a very
important lesson; there is a scheme in supergravity where
the interactions related with the biparametric-DFT contain
no dilaton beyond quadratic order, except for the expo-
nential factor e−2ϕ.
Nevertheless, not necessarily does exist a frame in DFT

where there is no dilaton flux beyond quadratic order. The
reason is simple, on SUGRAwe can only perform a change
of basis by Lorentz covariant fields redefinitions (so that for
instance the metric and dilaton remain being singlets).
Similarly, the only allowed change of basis on DFT is
due to duality covariant field redefinitions and therefore
the previous results not necessarily extend to the DFT
framework.
The answer to this question is relevant as it could offer a

simple scheme where the number of couplings in L is
significantly reduced, but also to better understand the
structure of the higher-derivative interactions in general and
the role of the dilaton in particular when it is desired to
linearly realize T-duality at the level of the Lagrangian.
The first observation is that interactions being linear

in dilaton fluxes can be moved from Rϕ into R=ϕ after

integration by parts. This follows easily from the identity

e−2dFATA ¼ e−2dDATA − ∂Mðe−2dEM
ATAÞ: ð3:3Þ

Hence the only nontrivial couplings are those quadratic
in dilaton fluxes or linear on derivatives thereof which in
fact are equivalent, up to total derivatives. Indeed,

e−2dDAFBTAB ¼ e−2dFAFBTAB þ ∂Mðe−2dEM
AFBTABÞ:

ð3:4Þ

Notice that antisymmetric derivatives (D½AFB�) are elim-
inated either after integration by parts or equivalently by
using the Bianchi identity

DCFCAB ¼ FCFCAB − 2D½AFB�: ð3:5Þ

Regarding the quadratic terms, we must discuss separately
the cases with mixed projections and those with equal
projections.
The former can be eliminated by field redefinitions as

bothDāFb as well asDaFb̄ match the equations of motion7

up to dilaton-independent or linear-dilaton terms.

G½ā b� ¼ DāFb þ ðDc − FcÞFābc − F
dcaF

b
c̄ d ; ð3:6Þ

or equivalently

G½ā b� ¼ 2DbFā − 2ðDc̄ − Fc̄ÞFāb c̄ − 2FdcaFc̄ d
b: ð3:7Þ

We are left with equal projection terms DāFb̄ and DaFb.
These are much more subtle. It turns out that those terms

appearing in the original expression in (2.12) with such a
structure can be absorbed at a given order but at a very high
cost as it requires a duality-covariant (dilaton-dependent)8

field redefinition of the generalized vielbein. Then, it
reintroduces dilaton dependence at the next order in
derivatives, and it can be shown that it occurs in a way
that cannot be reabsorbed any more. But more importantly,
once we study the nonlinear effects of the (dilaton-
dependent) field redefinitions, dilaton fluxes appear at any
order, not only quadratically as in the original expansion.

For instance let us consider Lð1Þ
a

Lð1Þ
a ⊃2DāðFb̄F

ācdFb̄
cdÞ−FāFb̄F

ācdFb̄
cd

¼FāFb̄F
ācdFb̄

cdþ2ðDā−FāÞðFb̄F
ācdFb̄

cdÞ; ð3:8Þ

where the last term in the second line is a total derivative
(after multiplication by e−2d). The first term can be
alternatively rewritten, up to total-derivative and dilaton-
independent couplings as DāFb̄F

ā c dFb̄
c d but it leads to a

dead end as there are no identities for DðāFb̄Þ. On the other
hand, the first term in (3.8) can be worked out by the use of
Bianchi identities as

FāFb̄F
ā c dFb̄

c d ¼ FāFBFā c dFB
cd − FāFbFā c dFb

c d

¼ FāFā c dð2DcFd þDBFBcdÞ −DbðFāFā c dFb
c dÞ þ ðDb − FbÞðFāFā c dFb

c dÞ
¼ 2DcFdFāFā c d −DbFāFā c dFb

c d þDāðFā cdDb̄Fb̄ c d −DbFā c dFb
cdÞ

þ ðDa − FaÞðFb̄F
b̄ c dFa

c dÞ − ðDā − FāÞðFā c dDb̄Fb̄ c d −DbFā c dFb
c dÞ: ð3:9Þ

7After a field redefinition with EM
A → EM

A þ δEM
A, δEM

A ∼Oðα0Þ, the Lagrangian changes, at linear order, as Lð0Þ þ G½ā b�δEāb

where δEAB ¼ δEM
AEMB and G½ā b� is the equation of motion of the generalized frame. The antisymmetry on the indices is due to the fact

that the generalized frame is a constrained field, and it must hold δEAB ¼ −δEBA. The components δEab and δEab vanish after use of
Bianchi identities.

8This must be contrasted with the SUGRA scheme where δgmn was dilaton independent.
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The last line is a total derivative, the last term in the first line is dilaton independent while the second term can be rewritten as

DbFāFācdFb
cd¼

1

2
G½āb�FācdFb

cd−FābēDēðFācdFb
cdÞþFef̄āF

f̄e
bFācdFb

cdþðDā−FāÞðFēbāFēcdFb
cdÞ: ð3:10Þ

The first term is proportional to the equation of motion and so can be absorbed in a (duality-covariant) field redefinition,
the second and third ones are dilaton independent and the last one is once again a total derivative.
Regarding the first term in the last equality of (3.9), it also can be worked out in order to eliminate the dilaton but at the

cost of implementing a dilaton-dependent field redefinition, indeed

2DcFdFāFā c d ¼ ðG½ā b� þ 2ðDē − FēÞFāb ē þ 2Fe f̄ āF
f̄ e

bÞðDc − FcÞFāb c þDāðFcd
BDBFā c dÞ

þ ðDā − FāÞð−Fcd
BDBFā c dÞ þ ðDa − FaÞð−2Fc̄ðDb − FbÞFc̄abÞ

¼ G½ā b�ðDc − FcÞFāb c − 2DaFēFc̄ a bFc̄ b
ē − 2FēFc̄ a bDaFc̄ b

ē

þ 2Fc̄abDaðDēFc̄ b
ē þ Fe f̄ c̄F

f̄ e
bÞ þDāðFcd

BDBFā c dÞ
− 2ðDa − FaÞ½Fc̄abððDē − FēÞFc̄b ē þ Fe f̄ c̄F

f̄ e
bÞ þ Fc̄ðDb − FbÞFc̄a b�

þ ðDā − FāÞð−Fcd
BDBFā c dÞ

¼ 2Fēb āDāðFc̄b dFc̄ d
ēÞ − 2Fd f̄ āF

f̄ d
bFc̄ b eFc̄ e

ā − 2DāðFc̄dbDdFc̄ b
āÞ

þ 2Fc̄abDaðDēFc̄ b
ē þ Fe f̄ c̄F

f̄ e
bÞ þDāðFcd

BDBFā c dÞ
þ G½ā b�½ðDc − FcÞFāb c − Fc̄b eFc̄ e

ā�
− 2ðDa − FaÞ½ððDē − FēÞFc̄b ē þ Fe f̄ c̄F

f̄ e
bÞFc̄ab þ Fc̄ðDb − FbÞFc̄a b�

þ ðDā − FāÞ½2Fc̄d bDdFc̄ b
ā − Fcd

BDBFā cd − 2Fēb
āFc̄ b dFc̄ d

ē�; ð3:11Þ

with the first two lines being dilaton independent, the third
line can be absorbed in a dilaton-dependent field redefi-
nition, and the last two lines are total derivatives. Plugging
in (3.9), (3.10), and (3.11) we indeed verify that dilaton
fluxes can be completely eliminated from Lð1Þ. Some
comments are in order

(i) It can be shown by a careful inspection of the first
term in (3.8) that there is no other way to eliminate
the dilaton.

(ii) Even though we managed to eliminate dilaton
fluxes, there is not a real simplification in Lð1Þ as
we end up with more terms in the Lagrangian than
the original ones.

(iii) We got rid of dilaton fluxes at order Oðα0Þ, but the
necessary dilaton-dependent field redefinitions
reintroduce dilaton fluxes at subleading orders and
they appear now at any power, not just quadratically.

(iv) Similar steps as those followed here can be imple-
mented to cancel the dilaton couplings appearing
on Lð2Þ in (2.20) and (2.21).9 Nevertheless, it can be
shown that the dilaton interactions at Oðα02Þ with

origin in the field redefinitions at orderOðα0Þ cannot
be completely eliminated by implementing field
redefinitions, integration by parts, and use of
Bianchi identities or section conditions.

(v) The absence of a dilaton-free frame in DFT is not in
conflict with SUGRA. What we state here is that the
dilaton cannot be eliminated by duality-covariant
field redefinitions, the situation drastically changes
if we move to the SUGRA variables which indeed
require duality noncovariant field redefinitions.

All the previous statements have tedious and technical
proofs, but only the last one is in some way interesting and
has useful implications and so we will focus on it in the
next section.

IV. PERTURBATIVE FIELD REDEFINITIONS
FOR THE METRIC AND DILATON FIELDS

The GBdRi is naturally established in the framework of
DFT; however, in order to make contact with supergravity it
is required to find appropriate noncovariant field redefini-
tions. This is the only step which is noniterative and must
be performed by brute force, i.e., by demanding the metric
and dilaton (as well as the two-form in the bosonic case;
a ¼ b) to be invariant under Lorentz transformations. In
this section we will show that the field redefinition for both

9Indeed, it is also possible to cancel all the original terms
containing dilatons at arbitrary order by implementing dilaton
field redefinitions directly in the extended space.
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the metric and the dilaton can be fixed by demanding the
derivatives of the dilaton cancel out when we move from
DFT to SUGRA variables.
The relevant piece of the action of the extended space is

e−2dR1 ¼ e−2d½2ðDĀF
Ā −DAFAÞ − ðFĀF

Ā − FAFAÞ�;
ð4:1Þ

or equivalently (up to total derivative terms)

e−2dR̃1 ¼ e−2dðFĀF
Ā − FAFAÞ: ð4:2Þ

The OðD;DÞ decomposition of the dilaton fluxes is
displayed in Appendix A of [12]. Nevertheless, these
expressions admit a further simplification after which the
FA components reduce to

F a ¼ ðFb − ∂bÞðχ1
2Þab;

F α ¼ e
μ
˜
α

�
ðFb − ∂bÞðΩν̃

μ
˜

E ν̃
bÞ − ðFb̄ − ∂ b̄Þ

�
ðΠ1

2Þν˜ μ
˜

Eν
˜

b̄

��
:

ð4:3Þ
Considering the other components, one arrives at

FĀF
Ā − FAFA ¼ FāFā − FaFa

− 2Π
μ
˜
ν
˜Eμ

˜

āEν
˜

b̄FāFb̄ þ 2Πν̃ρ̃E ν̃
aEρ̃

bFaFb þ 4ðΩν̃
μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

�
FaFb̄

− 2ðFā − ∂ āÞ
�
ðχ1

2Þā c̄∂ b̄ðχ1
2Þc̄ b̄ þ Ωμ̃

ν
˜Eν

˜

ā

�
∂ b̄ðΩμ̃

ρ
˜Eρ

˜

b̄Þ þ ∂b

�
ðΠ1

2Þρ̃ μ̃Eρ̃
b

��

þ
�
ðΠ1

2Þν˜ μ˜Eν
˜

ā

��
∂bðΩρ̃

μ
˜

Eρ̃
bÞ − ∂ b̄

�
ðΠ1

2Þρ˜ μ
˜

Eρ
˜

b̄

���

þ 2ðFa − ∂aÞ
�
ðχ1

2Þa c∂bðχ1
2Þc b þ ðΩν̃

μ
˜

E ν̃
aÞ
�
∂bðΩρ̃

μ
˜Eρ̃

bÞ − ∂ b̄

�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��

−
�
ðΠ1

2Þν̃ μ̃E ν̃
a

��
∂b

�
ðΠ1

2Þρ̃μ̃Eρ̃
b

�
− ∂ b̄ðΩμ̃

ρ
˜Eρ

˜

b̄Þ
��

− 2∂ ā

�
ðχ1

2Þā c̄∂ b̄ðχ1
2Þc̄ b̄ þ ðΩμ̃

ν
˜Eν

˜

āÞ
�
∂ b̄ðΩμ̃

ρ
˜Eρ

˜

b̄Þ þ ∂b

�
ðΠ1

2Þρ̃ μ̃Eρ̃
b

��

−
�
ðΠ1

2Þν˜ μ˜Eν
˜

ā

��
∂ b̄

�
ðΠ1

2Þρ˜ μ
˜

Eρ
˜

b̄

�
− ∂bðΩρ̃

μ
˜

Eρ̃
bÞ
��

þ
�
∂ āðχ1

2Þā c̄∂ b̄ðχ1
2Þc̄ b̄ þ ∂ āðΩμ̃

ν
˜Eν

˜

āÞ
�
∂ b̄ðΩμ̃

ρ
˜Eρ

˜

b̄Þ − ∂b

�
ðΠ1

2Þρ̃ μ̃Eρ̃
b

��

− ∂ ā

�
ðΠ1

2Þν˜ μ˜Eν
˜

ā

��
∂ b̄

�
ðΠ1

2Þρ˜ μ
˜

Eρ
˜

b̄

�
− ∂bðΩρ̃

μ
˜

Eρ̃
bÞ
��

þ 2∂a

�
ðχ1

2Þa c∂bðχ1
2Þc b þ ðΩν̃

μ
˜

Eν̃
aÞ
�
∂bðΩρ̃

μ
˜Eρ̃

bÞ − ∂ b̄

�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��

−
�
ðΠ1

2Þν̃ μ̃E ν̃
a

��
∂b

�
ðΠ1

2Þρ̃μ̃Eρ̃
b

�
þ ∂ b̄ðΩμ̃

ρ
˜Eρ

˜

b̄Þ
��

−
�
∂aðχ1

2Þc a∂bðχ1
2Þc b þ ∂aðΩν̃

μ
˜

Eν̃
aÞ
�
∂bðΩρ̃

μ
˜Eρ̃

bÞ − ∂ b̄

�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��

− ∂a

�
ðΠ1

2Þρ̃ μ̃Eρ̃
a

��
∂b

�
ðΠ1

2Þν̃μ̃E ν̃
b

�
þ ∂ b̄ðΩμ̃

ν
˜Eν

˜

b̄Þ
��

: ð4:4Þ

The first line gives the second-derivative interactions of the dilaton, R̃1 in (2.16). It is not difficult to see that the full R1

in (2.13) can be generated if we bypass the integration by parts in the extended space and perform the flux decomposition
in (4.1) instead of (4.2). The second line gives (implicitly) the higher-derivative interactions of the dilaton field in the DFT
framework, the third to sixth lines are total derivatives, and the remaining terms are dilaton independent.
The second line explicitly shows that there are no dilaton derivatives beyond quadratic order as Π, E, and Ω are dilaton

independent. The last term in the second line can be absorbed a priori in a field redefinition as it leads, after integration
by parts, to
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4ðΩν̃
μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

�
FaFb̄ ¼ 4½Fc̄d

aFdcb − Fb̄a c̄D
c̄ þDb̄Da�ðΩν̃

μ
˜

Eν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

�

þ 2G½b̄ a�ðΩν̃
μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

�
þ 4ðDc̄ − Fc̄Þ

�
Fb̄a c̄ðΩν̃

μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��

− 4ðDb̄ − Fb̄ÞDa

�
ðΩν̃

μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��
− 4ðDa − FaÞ

�
Fb̄ðΩν̃

μ
˜

E ν̃
aÞ
�
ðΠ1

2Þρ˜ μ˜Eρ
˜

b̄

��
:

ð4:5Þ

The right-hand side on the first line is dilaton independent, the first term in the second line can be absorbed in a (dilaton-
independent) field redefinition of the generalized vielbein, and the last three are total derivatives.
The first and second terms on the second line of (4.4) cannot be eliminated with duality-covariant (and dilaton-

independent) field redefinitions.

A. No dilaton ansatz and the field redefinitions

Let us consider once again (4.4), but this time let us perform the GL(D) decomposition of the dilaton fluxes,

FĀF
Ā−FAFA⊃ ðηā b̄−2Π

μ
˜
ν
˜Eμ

˜

āEν
˜

b̄ÞFāFb̄−ðηab−2Πν̃ρ̃Eν̃
aEρ̃

bÞFaFbþ4ðΩν̃
μ
˜

Eν̃
aÞððΠ1

2Þρ˜ μ˜Eρ
˜

b̄ÞFaFb̄

⊃2½ðgāb̄−2Π
ρ
˜
σ
˜Eρ

˜

āEσ
˜

b̄Þēmāēnb̄−ð−gab−2Πρ̃σ̃Eρ̃
aE σ̃

bÞēmaēnbþ4ðΩρ̃
σ
˜
Eρ̃

aÞððΠ1
2Þλ˜ σ˜Eλ

˜

b̄Þēmaēnb̄�∂mϕ̄∂nϕ̄

⊃2½ðgāb̄−2Π
ρ
˜
σ
˜Eρ

˜

āEσ
˜

b̄Þēmāēnb̄þðgabþ2Πρ̃ σ̃Eρ̃
aE σ̃

bÞēmaēnbþ4ðΩρ̃
σ
˜
Eρ̃

aÞððΠ1
2Þλ˜ σ˜Eλ

˜

b̄Þēmaēnb̄�∂mϕ∂nϕ;

ð4:6Þ

where in the second inclusion we have used10

Fā ¼
ffiffiffi
2

p
ēmā∂mϕ̄þ 1ffiffiffi

2
p ω̄ba

b̄ − ð∂m̃ − termsÞ;

Fa ¼ −
ffiffiffi
2

p
ēma∂mϕ̄ −

1ffiffiffi
2

p ω̄ba
b þ ð∂m̃ − termsÞ; ð4:9Þ

ω̄ in the first and second line denotes the spin connection
computed with the pair of independent vielbeins ēmā
and ēma respectively. The line over the fields is here to
distinguish them from the physical (Lorentz singlets)
variables.11 Finally, in the last inclusion we have used
the relation

ϕ̄ ¼ ϕþ 1

4
ln jḡ=gj; g ¼ detðgmnÞ; ð4:10Þ

which is a consequence of the fact that the generalized
dilaton d does not receive corrections neither under Lorentz
nor under OðD;DÞ.
The requirement of no derivative of dilaton at higher

orders leads to the identification of the last two lines in (4.6)
with the kinetic term of the dilaton; 4gmn∂mϕ∂nϕ, which
implies

gmn ¼ ḡmn þ Πρ̃ σ̃Eρ̃
aE σ̃

bēmaēnb − Π
ρ
˜
σ
˜Eρ

˜

āEσ
˜

b̄ēmāēnb̄

þ 2ðΩρ̃
σ
˜
Eρ̃

aÞððΠ1
2Þλ˜ σ˜Eλ

˜

b̄ÞēðmaēnÞb̄: ð4:11Þ

It is worth mentioning that exactly the same conclusion
is obtained if we avoid the integration by parts. This time
the flux decomposition is performed on R1 instead of
on R̃1 and the metric ansatz is obtained after comparison
with −4∂mϕ∂mϕþ 4∇m∇mϕ whose difference with
þ4∂mϕ∂mϕ is a total derivative.
Let us introduce Λā

b ¼ ēmāēmb ∈ Oð1; D − 1Þ, then the
physical and duality covariant frames are related, up to an
arbitrary Lorentz transformation Oa

b, via

ema ¼ ēmbðΞ−1
2ÞbcOc

a; ð4:12Þ

10It readily follows from the frame decomposition

EM
A ¼ 1ffiffiffi

2
p

�
ēma ēmā

ðb̄mn − ḡmnÞēna ðb̄mn þ ḡmnÞēnā
�
;

EM
A ¼ ηMNEN

BηBA; ð4:7Þ

and the invariant metrics

ηMN ¼
�

0 δm
n

δmn 0

�
; ηAB ¼

�−ḡab 0

0 ḡab

�
: ð4:8Þ

11∂m̃-terms vanish if we solve the strong constraint with the
standard supergravity section condition.
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with

Ξa
b ¼ δa

b þ Πρ̃ σ̃Eρ̃aE σ̃
b − Π

ρ
˜
σ
˜Eρ

˜

cEσ
˜

d̄Λc̄aΛd̄
b þ 2ðΩρ̃

σ
˜
Eρ̃ðaÞððΠ

1
2Þλ˜ σ˜Eλ

˜

c̄ÞΛjc̄jdÞḡdb; ð4:13Þ

so that

ϕ ¼ ϕ̄ −
1

4
ln½detðδab þ Πρ̃ σ̃Eρ̃aE σ̃

b − Π
ρ
˜
σ
˜Eρ

˜

c̄Eσ
˜

d̄Λc̄aΛd̄
b þ 2ðΩρ̃

σ
˜
Eρ̃ðaÞððΠ

1
2Þλ˜ σ˜Eλ

˜

c̄ÞΛjc̄jdÞḡdbÞ�: ð4:14Þ

These expressions simplify considerably in the monoparametric case (heterotic DFT) with, for instance a ¼ 0, as there is
no scalars (Ω ¼ 0), hence

gmn ¼ ḡmn þ Eμ̃
aEμ̃bēmaēnb; ð4:15Þ

ϕ ¼ ϕ̄ −
1

4
ln½detðδba þ Eμ̃

bEμ̃
aÞ�: ð4:16Þ

Unfortunately, this argument cannot be used to fix the field redefinitions of the two-form and therefore we still need to
compute it by hand.
In order to test the proposals we can work out (4.11) up to Oðα02Þ and compare with the expressions displayed in [12].

Actually, we do not need to compute it here as we can read it directly from L. Once again we follow the shorter route, we
integrate by parts on (2.13), (2.18), (2.20), and (2.21) to accommodate all dilaton fluxes, up to Oðα02Þ, on

L ⊃ FāFā − FaFa þ aFāFb̄F
ā a bFb̄

a b þ bFaFbFa ā b̄Fb
ā b̄

þ a2FāFb̄½−DcFā e fDcFb̄
e f − 4DēFb̄ c eFā

c fFē e
f þ 2Db̄Fē c eFā

c fFē e
f

þ 2DfFb̄ d eFf̄
d eFā

f̄ f − Fē
c dFḡ

c dFā
ḡ fFb̄ ēf þ 2Fā cgFē

e
hFē g hFb̄

c
e

− 2Fd̄
c
gFd̄ e

hFā
g hFb̄ c e þ 1=2Fē

c dF
ā g hFē g hFb̄ c d − 2Ff̄

c
fFḡ

e fFb̄ c eFā
f̄ ḡ�

− b2FaFb½−Dc̄Fa ē f̄Dc̄Fb
ē f̄ − 4DeFb c̄ ēFa

c̄ f̄Fe ē
f̄ þ 2DbFe c̄ ēFa

c̄ f̄Fe ē
f̄

þ 2Df̄Fb d̄ ēFf
d̄ ēF

a
f f̄ − Fe

c̄ d̄Fg
c̄ d̄F

a
g f̄F

b ef̄ þ 2Fa c̄ ḡFe
ē
h̄Fe ḡ h̄F

b
c̄
ē

− 2Fd
c̄
ḡFd ē

h̄Fa
ḡ h̄F

b c̄ ē þ 1=2Fe
c̄ d̄F

a ḡ h̄Fe ḡ h̄F
b c̄ d̄ − 2Ff

c̄
f̄Fg

ē f̄F
b c̄ ēFa

f g�

þ ab

�
FāFbðDdFē f̄ eFā d eFē f̄ b þ

1

2
Fef gFā e fFē f̄

bFē f̄ g − Fā
d eFē ḡ

bFē
h̄
dFḡ h̄ e

−Dd̄Fef ēFb d̄ ēFe f ā −
1

2
Fē f̄ ḡFb ē f̄F

e f
āFe f ḡ þ Fb

d̄ ēFe g
āFe

h
d̄
Fgh ēÞ

þ FāFb̄ðDb̄F
c ē f̄Fd

ē f̄Fc d ā − Fc ē f̄Fe
ē f̄Fc

f
b̄
Fe f āÞ

− FaFbðDbF
c̄ e fFd̄

e fFc̄ d̄ a − Fc̄ e fFē
e fFc̄

f̄
bFē f̄ aÞ

�
; ð4:17Þ

from which we read

gmn ¼ ḡmn þ a
2
ēmāēnb̄F

ā a bFb̄
a b þ

b
2
ēmaēnbFa ā b̄Fb

ā b̄

þ a2

2
ēmāēnb̄ð−DcFā e fDcFb̄

e f − 4DēFb̄ c eFā
c fFē e

f þ 2Db̄Fē c eFā
c fFē e

f

þ 2DfFb̄ d eFf̄
d eFā

f̄ f − Fē
c dFḡ

c dFā
ḡ fFb̄ ēf þ 2FācgFē

e
hFē g hFb̄

c
e

− 2Fd̄
c
gFd̄ e

hFā
g hFb̄ c e þ 1=2Fē

c dF
ā g hFē g hFb̄ c d − 2Ff̄

c
fFḡ

e fFb̄ c eFā
f̄ ḡÞ
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−
b2

2
ēmaēnbð−Dc̄Fa ē f̄Dc̄Fb

ē f̄ − 4DeFb c̄ ēFa
c̄ f̄Fe ē

f̄ þ 2DbFe c̄ ēFa
c̄ f̄Fe ē

f̄

þ 2Df̄Fb d̄ ēFf
d̄ ēF

a
f f̄ − Fe

c̄ d̄Fg
c̄ d̄F

a
g f̄F

b ef̄ þ 2Fa c̄ḡFe
ē
h̄Fe ḡ h̄F

b
c̄
ē

− 2Fd
c̄
ḡFd ē

h̄Fa
ḡ h̄F

b c̄ ē þ 1=2Fe
c̄ d̄F

a ḡ h̄Fe ḡ h̄F
b c̄ d̄ − 2Ff

c̄
f̄Fg

ē f̄F
b c̄ ēFa

f gÞ

−
ab
2

�
−ēmāēnb

�
DdFē f̄ eFā d eFē f̄ b þ

1

2
Fef gFā e fFē f̄

bFē f̄ g − Fā
d eFē ḡ

bFē
h̄
dFḡ h̄ e

−Dd̄Fef ēFb d̄ ēFe f ā −
1

2
Fē f̄ ḡFb ē f̄F

e f
āFe f ḡ þ Fb

d̄ ēFe g
āFe

h
d̄
Fg h ē

�

þ ēmāēnb̄ðDb̄F
c ē f̄Fd

ē f̄Fc d ā − Fc ē f̄Fe
ē f̄Fc

f
b̄
Fe f āÞ

− ēmaēnbðDbF
c̄ e fFd̄

e fFc̄ d̄ a − Fc̄ efFē
e fFc̄

f̄
bFē f̄ aÞ

�
: ð4:18Þ

This field redefinition is somehow more general than the one displayed in [12], as here we still preserve the full double
Lorentz group. To make contact with loc cit we partially fix the Lorentz group by imposing ēmā ¼ ēmbδ

b
ā and

ēma ¼ ēmbδ
b
a, which in addition implies Dā ¼ − 1ffiffi

2
p δā

b∂b y Da ¼ 1ffiffi
2

p δa
b∂b, with ∂b ¼ ēmb∂m as well as

Fābc ¼
1ffiffiffi
2

p δaāδ
b
bδ

c
cω̄

ðþÞ
abc; F ¯abc ¼ −

1ffiffiffi
2

p δaāδ
b
b̄
δcc̄ð2ω̄ðþÞ½abc� þ ω̄ð−Þ½abc�Þ;

Fabc ¼
1ffiffiffi
2

p δaaδ
b
b̄
δcc̄ω̄

ð−Þ
abc; Fabc ¼ −

1ffiffiffi
2

p δaaδ
b
bδ

c
cð2ω̄ð−Þ½abc� þ ω̄ðþÞ½abc�Þ; ð4:19Þ

where the torsionful spin connections are given by

ω̄ð�Þ
abc ¼ ēma

�
ω̄mbc �

1

2
H̄mnpēnbēpc

�
; ð4:20Þ

where the line over the spin connection and the three-form means these are computed in terms of the Lorentz noncovariant
fields ema and bmn. Hence,

gmn ¼ ḡmn þ a
4
ω̄ð−Þmbcω̄ð−Þn

bc þ
b
4
ω̄ðþÞmbcω̄ðþÞn

bc

þ a2

8
ēðmaēnÞb½∂cω̄ð−Þaef∂cω̄

ð−Þb
ef − 4∂cω̄ð−Þbdeω̄ð−Þa

dfω̄
ð−Þ

ce
f þ 2∂bω̄ð−Þcdeω̄ð−Þa

dfω̄
ð−Þ

ce
f

þ 2∂cω̄ð−Þbefω̄ð−Þ
defω̄

ðþÞ
c
da − ω̄ð−Þ

e
cd
ω̄ð−Þ

fcdω̄
ðþÞ

g
fa
ω̄ð−Þgbe þ 2ω̄ð−Þacdω̄ð−Þ

ge
f
ω̄ð−Þg

dfω̄
ð−Þb

c
e

− 2ω̄ð−Þd
c
gω̄ð−Þ

de
f
ω̄ð−Þa

gfω̄
ð−Þbce þ 1=2ω̄ð−Þg

cdω̄
ð−Þaefω̄ð−Þ

gefω̄
ð−Þbcd

− 2ω̄ð−Þ
fc

d
ω̄ð−Þ

gedω̄
ð−Þbceð2ω̄ðþÞ½afg� þ ω̄ð−Þ½afg�Þ�

þ b2

8
ēðmaēnÞb½∂cω̄ðþÞaef∂cω̄

ðþÞb
ef − 4∂cω̄ðþÞbedω̄ðþÞa

efω̄
ðþÞ

cd
f þ 2∂bω̄ðþÞdceω̄ðþÞa

cfω̄
ðþÞ

de
f

þ 2∂cω̄ðþÞbdeω̄ðþÞg
deω̄

ð−Þ
cg

a þ ω̄ðþÞ
e
cdω̄ðþÞg

cdω̄
ð−Þ

fg
aω̄ð−Þfeb þ 2ω̄ðþÞacfω̄ðþÞg

e
dω̄ðþÞ

gfdω̄
ðþÞb

c
e

− 2ω̄ðþÞd
c
gω̄ðþÞ

de
fω̄ðþÞa

gfω̄
ðþÞbce þ 1=2ω̄ðþÞe

cdω̄
ðþÞagfω̄ðþÞ

egfω̄
ðþÞbcd

− 2ω̄ðþÞ
dc

fω̄ðþÞ
gefω̄

ðþÞbceð2ω̄ð−Þ½adg� þ ω̄ðþÞ½adg�Þ�

þ ab
8
ēðmaēnÞb

�
−∂cω̄ðþÞdefω̄ð−Þa

cdω̄
ðþÞ

bef − ∂cω̄ð−Þdefω̄ðþÞb
cdω̄

ð−Þa
ef
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þ ∂bω̄ðþÞcefω̄ðþÞd
efω̄

ð−Þa
cd þ ∂bω̄ð−Þecdω̄ð−Þf

cdω̄
ðþÞa

ef

−
1

2
ð2ω̄ð−Þ½dgc� þ ω̄ðþÞ½dgc�Þω̄ð−Þa

dgω̄
ðþÞbefω̄ðþÞ

cef þ ω̄ð−Þadcω̄ðþÞbefω̄ðþÞ
de

gω̄ðþÞ
cfg

−
1

2
ð2ω̄ðþÞ½efg� þ ω̄ð−Þ½efg�Þω̄ðþÞb

efω̄
ð−Þacdω̄ð−Þ

gcd þ ω̄ðþÞbfeω̄ð−Þacdω̄ð−Þ
fc

gω̄ð−Þ
edg

− ω̄ðþÞcefω̄ðþÞg
efω̄

ð−Þb
c
dω̄ð−Þa

gd − ω̄ð−Þgcdω̄ð−Þe
cdω̄

ðþÞb
g
fω̄ðþÞa

ef

�
: ð4:21Þ

We have explicitly verified that (4.21) is in perfect
agreement with Eqs. (4.42), (4.48), and (4.50) of [12].
The precise matching is straightforward but tedious,
because the proposed map here sets the physical metric
in terms of spin connections associated to the duality
covariant frame ē, while in [12], was obtained the inverse
map. The first line in (4.21) is easily verified because ωð�Þ

and ω̄ð�Þ agree at leading order, but the remaining terms
require more work. We have used Cadabra software in
order to verify the matching [17].

V. OUTLOOK

Symmetries play a central role in the structure of
effective theories in string theory. Nevertheless, not all
of them can be made explicit simultaneously. That is
precisely the case with T-duality and Lorentz transforma-
tions, while the former is linearly realized in DFT, the
GLðDÞ decomposition of the duality multiplets ϕ̄, ḡmn, and
b̄mn transform in a very complicated way under Lorentz
transformations. On the other hand, SUGRA variables ϕ,
gmn, and bmn transform nonlinearly under T-duality.
Recently different approaches, within the context of

DFT, have used T-duality to get insight on possible
interactions beyond quadratic order. It is therefore desirable
to contrast all these results with e.g., scattering amplitude or
beta function computations. Having control on the map that
exchange between both DFT and SUGRA schemes is a
fundamental ingredient for that purpose.
In this paper we propose a map for gmn and ϕ in terms of

duality multiplets of the two-parameter deformation of
DFT introduced atOðα0Þ in [6] and extended to all orders in
[11,12]. This proposal was successfully contrasted with
previous results up to Oðα02Þ.
Unfortunately, the argument employed here cannot be

extended to cover the case of the two-form. It would be
interesting to shed light on this point in the near future.
We have proved that there is a basis in SUGRA where

(derivatives of the) dilaton can be completely eliminated in
the Lagrangian beyond quadratic order, at least for those
interactions related to the biparametric DFT. Notably, there

is not a dilaton free basis in the latter. It is probably related
with the fact that in order to linearly realize T-duality at
higher orders, it is required to further extend the Lorentz
group of SUGRA into a double Lorentz group. For
instance, a way to eliminate dilaton interactions is possible
if we partially fix it by identifying12 ema ¼ ēmb̄δ

b̄
a, but as

we said the full double Lorentz group is a crucial ingredient
to linearly realized T-duality.
Another relevant question that deserves attention is the

possibility of getting iterative expressions for the equations
of motion of the deformed DFT, these together with the
previously mentioned maps are relevant in the context of
generalized T-dualities regarding α0 corrections on solution
generating techniques and to simplify the calculation of
beta functions of sigma models (see for instance [18–21]).
The field redefinitions found in [12] were obtained

directly from the GGS transformations, whose definition
is supported by the explicit verification of the closure of the
algebra and by the fact that they reduce to the known GGS
transformations at Oðα0Þ. Here instead the map is derived
from the action obtained in [12]. Even though both the
GGS and the action follow from the GBdRi, they were
obtained from two independent computations and so the
agreement not only can be interpreted as a support for the
map but also for the consistency of the action, if we
interpret the closure of the GGS as an independent proof of
consistency. Further verifications in favor of the action
found on loc cit were explored in [15], this time regarding
certain pure gravity couplings.
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