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The thermodynamic Euler equation for high-energy states of large-N gauge theories is derived from the
dependence of the extensive quantities on the number of colors N. This Euler equation relates the energy of
the state to the temperature, entropy, number of degrees of freedom and its chemical potential, but not to the
volume or pressure. In the context of the gauge/gravity duality we show that the Euler equation is dual to
the generalized Smarr formula for black holes in the presence of a negative cosmological constant. We also
match the fundamental variational equation of thermodynamics to the first law of black hole mechanics,
when extended to include variations of the cosmological constant and Newton’s constant.
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I. INTRODUCTION

The thermodynamics of black holes remains one of the
most important theoretical advancements in gravitational
physics of the past half-century. In semiclassical general
relativity the energy E, entropy S, and temperature T of a
black hole can be identified with its mass, horizon
area A and surface gravity κ, respectively, [1–3] (setting
kB ¼ ℏ ¼ c ¼ 1)

E ¼ M S ¼ A
4G

T ¼ κ

2π
: ð1Þ

For static, asymptotically flat black holes these thermody-
namic quantities are simply related by the Smarr formula
[4] M ¼ d−1

d−2
κA
8πG in dþ 1 spacetime dimensions. The

dimension dependent factors are a peculiar property of
the Smarr formula, which typically do not appear in the
Euler equation of thermodynamics relating all extensive
and intensive quantities. Furthermore, for black holes in the
presence of a negative cosmological constant Λ there is an
additional term in the generalized Smarr formula M ¼
d−1
d−2

κA
8πG − 1

d−2
ΘΛ
4πG [5,6]. In an extended version of black hole

thermodynamics the cosmological constant is interpreted as
the pressure P ¼ −Λ=8πG, and is treated as a thermody-
namic state variable in its own right [6–9]. Its conjugate
quantity Θ in the extended first law of black holes is
regarded as (minus) the thermodynamic volume. An
important, but slightly odd aspect of this interpretation is

that the mass of the black hole is identified with the
enthalpy instead of the internal energy of the system (see
[10] for a recent review).
From a holographic perspective the dimension depen-

dent factors and the Λ term in the generalized Smarr
formula remain somewhat elusive. In holography, or gauge/
gravity duality, the thermodynamics of black holes in the
“bulk” spacetime is equivalent to the thermodynamics of
large-N strongly coupled gauge theories living on the
asymptotic boundary of the bulk spacetime [11–13]. In
particular, the thermodynamic variables (1) for black holes
correspond with the energy E, entropy S, and temperature T
of thermal states in the boundary theory [14,15]. The
generalized Smarr formula relating these variables in the
gravity theory should be dual to the Euler relation for
the thermodynamic quantities in the field theory. But the
pressure interpretation of the Λ term in the Smarr formula
does not directly carry over to the field theory, since the
bulk pressure P is not dual to the boundary pressure p and
the bulk thermodynamic volume is not related to spatial
volume V of the boundary [16].
In several works [6,16–20] it has been suggested that

varying Λ is related to varying the number of colors N, or
the number of degrees of freedom N2, in the boundary field
theory. For gauge theories arising from coincident D-
branes, varying N corresponds to varying the number of
branes. Further, in conformal field theories (CFTs) the
number of degrees of freedom is given by the central charge
C, whose variation takes us from one CFT to another. In
holographic CFTs dual to Einstein gravity the central
charge corresponds to C ∼ Ld−1=G [21–23], where L is
the curvature radius of the bulk geometry, related to the
cosmological constant via Λ ¼ −dðd − 1Þ=2L2, and G is
Newton’s constant in dþ 1 dimensions. So varying C in
the boundary CFT is dual to varying Λ and G in the bulk
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theory. In addition, it was argued in [20] that varying Λ in
the bulk does not only correspond to varying C (or N), but
also to varying the volume V of the spatial boundary
geometry. This is because the bulk curvature radius L is
equal to the boundary curvature radius for a particular
boundary metric. We show, however, that for a different
boundary metric varying Λ only corresponds to varying C
(and E) in the boundary theory, and not to varying V.
Overall, by building on (and refining) the holographic
dictionary in [20], we propose a precise boundary descrip-
tion of extended black hole thermodynamics.
In this paper we argue that the dual field theory

description of black hole thermodynamics requires a
chemical potential μ for the central charge (see also
[17,18]). From the large-N scaling properties of the field
theory we derive the holographic Euler equation

E ¼ TSþ νiBi þ μC; ð2Þ

and show that it is holographically dual to the generalized
Smarr formula. Here νi are additional chemical potentials
for the conserved quantities Bi (such as charge and angular
momentum). As expected, the dimension dependent factors
do not feature in (2), and the Λ term is incorporated in μ.
Moreover, E is the standard energy of the field theory and
not the enthalpy. Strikingly though, there is no pV term in
the large-N Euler equation. We explain why this is
consistent with the fundamental equation of thermodynam-
ics, dE ¼ TdS − pdV þ νidBi þ μdC, in which both V
and C are varied. Finally, we match this boundary varia-
tional equation with the extended first law of black holes.

II. THERMODYNAMICS
OF LARGE-N THEORIES

We first derive the Euler equation from the scaling
properties of gauge theories at finite temperature in the
large-N ’t Hooft limit [24], N → ∞ for fixed coupling
λ≡ g2N. Large-N SUðNÞ gauge theories on compact
spaces, with fields in the adjoint representation, exhibit a
separation between low-energy states with energy of
OðN0Þ, and high-energy states for which the energy scales
as E ∼ N2 [15,25,26]. This is because the low-energy
excitations consist of color singlets, whose energy is
independent of N, and at high energies all the N2 adjoint
degrees of freedom contribute on the same footing. The
low-energy states are in a confined phase and are charac-
terized by a thermal entropy that grows with energy,
whereas the high-energy states are in a deconfined phase
and behave as a gas of free particles (at nonzero λ there
could exist an intermediate phase [27]). Other gauge
theories at finite temperature display a similar (de)confine-
ment phase transition, but the energy in the deconfined
phase may scale with a different power of N, e.g., as N3 for
an exotic theory in d ¼ 6 with (0,2) supersymmetry [28].

In conformal theories the central charge C counts the
number of field degrees of freedom. For SUðNÞ gauge
theories with conformal symmetry the central charge scales
as C ∼ N2 at large N, so high-energy states satisfy E ∼ C.
Since holographic CFTs are the main examples of large-N
theories we have in mind, we denote the number of degrees
of freedom simply as C for all large-N theories.
High-energy states in large-N theories obey interesting

large-N scaling laws and are dual to black holes in holo-
graphic field theories. By definition the internal energy of
these equilibrium states depends on extensive quantities, such
as entropy S, volume V, and conserved quantities Bi, and on
the (intensive) central charge C, i.e., E ¼ EðS; V; Bi; CÞ.
Formally, we canvary the energywith respect to each of these
quantities,while holding theothers fixed. This leads toGibbs’
fundamental equation of thermodynamics,

dE ¼ TdS − pdV þ νidBi þ μdC; ð3Þ

where the temperature T, pressure p, chemical potentials
νi, and the chemical potential μ conjugate to C are
defined as

T ≡
�∂E
∂S

�
V;Bi;C

; p≡ −
�∂E
∂V

�
S;Bi;C

;

νi ≡
�∂E
∂Bi

�
S;V;C

; μ≡
�∂E
∂C

�
S;V;Bi

: ð4Þ

The variation of C in (3) moves one away from the original
field theory content to a theory with a different number of
degrees of freedom. On the other hand, for variations which
only compare different thermodynamic states within the
same theory, the variable C is kept fixed. Hence, depending
on the ensemble, the central charge could be varied or fixed
in the fundamental equation of thermodynamics. However,
we observe next that the central charge necessarily has to
appear in the large-N Euler relation.
The entropy and conserved quantities scale with the

central charge for high-energy states, S; Bi ∼ C, reflecting
the contribution from all the degrees of freedom. Thus, the
energy function obeys the following scaling relation:

EðαS; V; αBi; αCÞ ¼ αEðS; V; Bi; CÞ; ð5Þ

with α being a dimensionless scaling parameter. This
means that in the deconfined phase of large-N theories
on compact spaces the energy is not an extensive function.
Differentiating with respect to α and putting α ¼ 1 leads to
the Euler equation

E ¼ TSþ νiBi þ μC: ð6Þ

Notice that pressure and volume do not appear in this Euler
equation, since the volume does not generically scale
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with C. It does scale with C in the infinite-volume limit of
CFTs, i.e., pV ¼ −μC as V → ∞ (see Appendix C). In that
limit the energy becomes an extensive function, satisfying
EðαS; αV;αBiÞ ¼ αEðS; V; BiÞ. By varying the Euler
relation (6) and employing the fundamental variational
equation (3), we find a slightly unusual Gibbs-Duhem
equation

0 ¼ SdT þ pdV þ Bidνi þ Cdμ: ð7Þ

The variation of volume (instead of pressure) features in
this equation, since the Euler relation does not involve a
pV term.
Furthermore, in the grand canonical ensemble the

thermodynamic potential or free energy is defined as

W ≡ E − TS − νiBi ¼ μC: ð8Þ

It follows from the fundamental equation (3) that the grand
canonical free energy is stationary at fixed ðT; V; νi; CÞ.
The proportionality of free energy with C (or N2) is a
signature of deconfinement; in contrast, the free energy of
the confined phase is of order one [29]. In fact, the relation
W ∼ C can be viewed as the definition of the dimensionless
central charge C in this paper, which could hence be called
the “thermal free energy charge.” This charge is generically
not identical to other definitions of the central charge, such
as anomaly coefficients or the coefficient of the two-point
function of the stress-energy tensor, except in the special
case of d ¼ 2 and in the large-N limit of SUðNÞ conformal
gauge theories (where all central charges scale as N2).
The Euler equation (6), or equivalently W ¼ μC, only

holds in a regime where 1=C corrections can be neglected.
For generic CFTs on compact spaces this is the case in the
high-temperature or large-volume regime TR ≫ 1, where
R is the curvature radius, since the free energy satisfies
W ∼ ðTRÞd−1 in that regime and the central charge C is
defined as the dimensionless proportionality coefficient.
On the other hand, for holographic and 2d sparse CFTs the
free energy already scales with the central charge at low
temperatures TR ∼Oð1Þ (i.e., if ER ∼ C with C ≫ 1).
Further, the Euler equation is satisfied for any value of
λ, at weak and strong coupling, and for any large-N field
theory, including conformal and confining theories, and
theories with unusual scaling behavior like Lifshitz theo-
ries. Each of these theories, though, satisfies a different
equation of state, which is not encoded in the large-N Euler
equation [20]. For instance, the equation of state for
conformal theories is E ¼ ðd − 1ÞpV, and for Lifshitz
scale invariant theories with dynamical scaling exponent
z it is given by zE ¼ ðd − 1ÞpV (see Appendix C). The fact
that the Euler relation applies to both conformal and
Lifshitz theories, means that it not only holds for relativ-
istic, but also for nonrelativistic theories.

III. HOLOGRAPHIC BLACK HOLE
THERMODYNAMICS

The large-N Euler equation applies in particular to
strongly coupled large-N CFTs with a semiclassical,
gravitational dual description. We now investigate the
gravity dual of the Euler equation.
The best-established example of holography, the anti-de

Sitter/conformal field theory (AdS=CFT) correspondence,
states that the partition function of the CFT and of the
gravitational theory in asymptotically AdS spacetime are
equal ZCFT ¼ ZAdS [12,13]. For field theories at finite
temperature the thermal partition function is related to the
free energy via W ¼ −T ln ZCFT. On the other hand, the
gravitational partition function is given by the Euclidean
path integral, which in the saddle-point approximation is
computed by the on-shell Euclidean action, IE ¼ − ln ZAdS
[30]. Since thermal states in the CFT are dual to black
holes in AdS, the on-shell action should be evaluated on the
classical black hole saddle. Here, we consider rotating,
charged black hole solutions [5] to the Einstein-Maxwell
action with a negative cosmological constant, i.e.,
IE¼− 1

16πG

R
ddþ1x

ffiffiffi
g

p ðR−2Λ−F2Þ. In the grand canonical
ensemble (at fixed T and Φ) the free energy of the
holographic field theory corresponds to [31–33]

W ¼ TIE ¼ M −
κA
8πG

−ΩJ −ΦQ: ð9Þ

The final equality follows from evaluating the action—
including the Gibbons-Hawking boundary term [30] and a
background subtraction term—on the black hole solution
with angular momentum J and electric charge Q. The
corresponding chemical potentials are the angular velocity
Ω and the electric potential Φ of the horizon. We note it is
straightforward to generalize this equation to black holes
withmultiple electric charges and angularmomenta [34–36].
The thermodynamic Euler equation for these black holes

follows from (9) by inserting the holographic dictionary (1)
for energy, entropy, and temperature, and the dictionary for
the charge Q̃ ¼ QL and potential Φ̃ ¼ Φ=L [20,31], and
using the relation (8) between free energy and chemical
potential,

E ¼ TSþ ΩJ þ Φ̃Q̃þ μC: ð10Þ

The thermodynamic variables in this equation are well-
known black hole parameters, except for the chemical
potential and central charge. What is their gravitational dual
description? Essentially, μC is the on-shell Euclidean
action (times T). In addition, a different expression for
the chemical potential is obtained from the generalized
Smarr formula for AdS black holes, which relates all the
black hole parameters and is thus a gravitational reorgani-
zation of the Euler relation [5–8,32,37],
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M ¼ d − 1

d − 2

�
κA
8πG

þΩJ
�
þΦQ −

1

d − 2

ΘΛ
4πG

: ð11Þ

TheΛ term is absent for asymptotically flat black holes, but
is necessary for the consistency of the Smarr formula of
asymptotically AdS black holes. The quantity Θ can be
defined as

R
Σbh

jξjdV −
R
ΣAdS

jξjdV [38], where a subtrac-
tion with respect to the pure AdS background is imple-
mented to cancel the divergence at infinity. In this
definition the domain of integration ΣBH extends from
the horizon to infinity, while ΣAdS in the pure AdS integral
extends across the entire spacetime. Further, ξ is the
timelike Killing field ξ ¼ ∂t þ Ω∂ϕ, which (in the black
hole geometry) generates the event horizon, and jξj ¼ffiffiffiffiffiffiffiffiffiffiffi
−ξ · ξ

p
is its norm. In the literature [7,8] (minus) Θ is often

called the “thermodynamic volume,” since it is the con-
jugate quantity to Λ (the bulk pressure) in the first law of
black hole mechanics, see Eq. (13). For our purposes,
however, a geometric name is probably more suitable, such
as (background subtracted) “Killing volume,” because we
are interested in the field theory thermodynamics rather
than the bulk thermodynamics.
Comparing the Euler equation and the Smarr formula we

see that the chemical potential (times central charge)
corresponds to three combinations of the black hole
parameters

μC ¼ M −
κA
8πG

−ΩJ −ΦQ ¼ 1

d − 1

�
M −ΦQ −

ΘΛ
4πG

�

¼ 1

d − 2

�
κA
8πG

þ ΩJ −
ΘΛ
4πG

�
: ð12Þ

Note that the dimension dependent factors in the Smarr
formula are absorbed in the chemical potential. The
expression above for the chemical potential should also
follow from its definition in (4), μ≡ ð∂E∂CÞS;V;J;Q̃. We check
this explicitly by rewriting the extended first law of AdS
black hole mechanics as a thermodynamic variational
identity, where μ plays the role of the conjugate quantity
to the central charge variation dC. For CFTs dual to
Einstein gravity the holographic dictionary for the central
charge depends on both the cosmological constant Λ and
Newton’s constant G. In order to keep track of the central
charge variation, we vary both coupling constants as
“bookkeeping devices” in the bulk first law [18,20].
The mass of rotating, charged AdS black holes can be

regarded as the function MðA; J;Q;Λ; GÞ. From a scaling
argument [4,6] and from the generalized Smarr formula (11)
it follows that the extended first law for these black holes is

dM ¼ κ

8πG
dAþΩdJ þΦdQþ Θ

8πG
dΛ

− ðM −ΩJ −ΦQÞ dG
G

: ð13Þ

Usually, in extended black hole thermodynamics only the
variation of Λ is taken into account in the first law, but the
variation of Newton’s constant can be easily included by
noting that M; J;Q ∼ G−1 [39,40]. Remarkably, the Λ and
G variations in (13) cannot be combined into one single
term proportional to dðΛ=GÞ, because there is a term
remaining involving the variation of G. This seems to
imply that the standard interpretation of the extended first
law in terms of bulk pressure P ¼ −Λ=8πG is inconsistent,
if Newton’s constant is allowed to vary. On the other hand,
we can find a consistent boundary interpretation by
expressing the right-hand side of the first law in terms
of variations of the entropy S ¼ A=4G, electric charge
Q̃ ¼ QL, central charge C ∼ Ld−1=G, and spatial volume
V ∼ Ld−1 of the holographic field theory. To this end we
rewrite the extended first law above as

dM ¼ κ

2π
d

�
A
4G

�
þ ΩdJ þΦ

L
dðQLÞ − M

d − 1

dLd−1

Ld−1

þ
�
M −

κA
8πG

− ΩJ −
Φ
L
QL

�
dðLd−1=GÞ
Ld−1=G

: ð14Þ

Hereweused again the Smarr relation anddΛ=Λ¼−2dL=L,
and observed that ðd − 1ÞdL=L − dG=G is equal to the
fraction in the final term. It is crucial that the L and G
variations appear in this combination, otherwise the holo-
graphically dual first law would not involve a variation of
the central charge. Moreover, by allowing for variations of
G we can clearly distinguish the variation of the spatial
volume V from that of the central charge C [20].
Consequently, from the holographic dictionary we deduce
that the extended first law for AdS black holes is dual to the
fundamental equation in thermodynamics,

dE ¼ TdSþΩdJ þ Φ̃dQ̃ − pdV þ μdC: ð15Þ

By comparing (14) and (15) we see that the pressure p
satisfies the CFT equation of state, E ¼ ðd − 1ÞpV, and the
chemical potential μ fulfils the Euler equation (10). This
shows that our dictionary (12) for the chemical potential is
consistent, since the same expression follows from equat-
ing bulk and boundary free energy and from matching the
“first laws.” Note that we only used the scaling properties
V ∼ Ld−1 and C ∼ Ld−1=G to arrive at (15), but did not
need their proportionality constants, because the fractions
dV=V and dC=C appear in the first law and hence the
proportionality constants drop out.
As an aside, we mention that the precise match

between the first laws can be generalized to charged
Lifshitz black holes [41] by replacing the holographic
dictionary with: E¼ML1−z, T¼ðκ=2πÞL1−z and Φ̃¼Φ=Lz

(see Appendices C and D). The extended first law (13) with
J ¼ 0 still holds for Lifshitz black holes [42], and is dual to
the fundamental equation (15), if p satisfies the Lifshitz
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equation of state zE ¼ ðd − 1ÞpV and μ satisfies the Euler
relation [43].

IV. COMPARISON WITH PREVIOUS
LITERATURE

In Refs. [17,44] the chemical potential associated to the
central charge (or N2) was defined as μ≡ ð∂E∂CÞS for AdS-
Schwarzschild black holes. Compared to our Eq. (4) the
fixed volume requirement is lacking in this definition. From
the extended first law it follows that this definition of the
chemical potential is proportional to the Killing volume Θ,
which is inconsistent with the Euler equation and our
expressions for μ in (12). This definition is especially
problematic since these references take the boundary
curvature radius R to be equal to the bulk curvature radius
L, which implies that the spatial volume and central charge
are both proportional to Ld−1. Thus, in [17,44] they mix up
the bulk duals to spatial volume and central charge.
In [20] this issue was resolved by allowing for variations

of G, in addition to Λ, so that the central charge variation
can be distinguished from the volume variation. Our
matching above between the first laws is based on this
approach, but is still novel since [20] focused on finding the
boundary dual to the Smarr relation and not to the first law.
In [20] the free energy relationW ∼ N2 at large-N, which is
equivalent to our Euler equation (8), was identified as the
holographic origin of the Smarr formula. In addition, the
pressure and its equation of state played an important role
in their holographic derivation of the Smarr formula.
However, their proof only holds for a particular choice
of CFT metric, ds2 ¼ −dt2 þ L2dΩ2

k;d−1, where L is the
AdS radius (see Appendix E). The derivation can be
extended to a more general CFT metric with R ≠ L and,
remarkably, it does not depend on the boundary pressure in
this case. Rescaling the CFT metric above with the Weyl
factor λ ¼ R=L changes the CFT time into Rt=L and the
boundary curvature radius into R, so that the spatial volume
becomes V ∼ Rd−1. The added benefit of this more general
boundary metric is that V is clearly distinct from C (and Q̃).
The (refined) holographic dictionary for this metric is [45]

E¼M
L
R
; T ¼ κ

2π

L
R
; Ω̃¼ Ω

L
R
; Φ̃¼Φ

R
: ð16Þ

Importantly, with this dictionary the bulk and boundary
variational equations (13) and (15) still agree and the
chemical potential again satisfies the Euler relation. We can
even keep G fixed and only vary Λ in the bulk, since dV ∼
dRd−1 and dC ∼ dLd−1jG are obviously distinguishable
for R ≠ L.
Now, we derive the bulk Smarr formula purely from

the boundary Euler equation and the holographic dictionary
for R ≠ L. The Λ term in the Smarr formula can be
expressed as

−
ΘΛ
4πG

¼ L

�∂M
∂L

�
A;J;Q;G

¼ R

�∂E
∂L

�
A;J;Q;G

− E
R
L
: ð17Þ

Note that the bulk quantities A, J,Q andG are kept fixed in
the partial derivative. The boundary energy depends
implicitly on them as: E ¼ EðSðA;GÞ; J; Q̃ðL;QÞ; VðRÞ;
CðL;GÞÞ. This implies (see Appendix D for more details)

−
ΘΛ
4πG

¼ R
L
ðΦ̃Q̃þ ðd − 1ÞμC − EÞ; ð18Þ

where we used the definitions of Φ̃ and μ from (4). Finally,
inserting the Euler equation and the holographic dictionary
(16) precisely yields the Smarr formula (11). Note that this
derivation hinges on the chemical potential and not on the
pressure.

V. DISCUSSION

In gauge/gravity duality, black holes in the bulk corre-
spond to thermal states in the boundary theory. We
proposed a new dictionary between the bulk and boundary
thermodynamics by introducing a chemical potential for
the number of colors in the gauge theory. The chemical
potential is crucial for the correspondence between the
Euler equation for large-N theories and the Smarr formula
relating the black hole parameters. Since the Euler relation
determines the energy as a function of other variables, it
contains the essential thermodynamic information about
the field theory.
Our field theory interpretation of the extended thermo-

dynamics of black holes stands in contrast to the common
gravitational interpretation in terms of bulk pressure and
volume. One notable difference is that the black hole mass
is equivalent to the internal energy of the field theory,
whereas in [6] it is identified with the enthalpy of the
gravitational system. Moreover, we found that the extended
first law of black holes cannot be solely written in terms of
the variation of bulk pressure, P ¼ −Λ=8πG, if both Λ and
G are allowed to vary, but can be consistently interpreted as
a field theory first law. Thus, as the thermal field theory has
a natural thermodynamic description, the boundary inter-
pretation seems unavoidable.
As for future work, we expect that the dictionary for the

chemical potential can be generalized to a multitude of
black holes in the presence of a cosmological constant,
such as black holes in higher-curvature gravity, hyper-
scaling violating solutions, black rings and de Sitter black
holes. On the field theory side, an interesting problem is to
extend the Euler equation beyond the large-N limit, by
including 1=N corrections [20,46].
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APPENDIX A: EULER EQUATION
FOR TWO-DIMENSIONAL CFTs

Examples of large-N field theories are 2d modular
invariant CFTs with large central charge c. The micro-
canonical entropy for these theories is given by the Cardy
formula (setting cL ¼ cR ¼ c) [47]

SðEL; ER; cÞ ¼ 2π

ffiffiffiffiffiffiffiffiffi
c
6
EL

r
þ 2π

ffiffiffiffiffiffiffiffiffi
c
6
ER

r
; ðA1Þ

with EL;R the left- and right-moving energies. On a circle
of lengthV ¼ 2πR, the total energy and angular momentum
are, respectively, E ¼ ðEL þ ERÞ=R and J ¼ EL − ER. The
Cardy formula holds for CFTs with a sparse light spectrum
in the regime C → ∞ with ER ≥ C [48], where we nor-
malized the central charge (conjugate to μ) as C ¼ c=12. If
we view the entropy (A1) as the function S ¼ SðE;V; J; CÞ,
then the fundamental variational equation of thermodynam-
ics with νidBi ¼ ΩdJ, follows by taking partial derivatives
of the entropy function. Consequently, the products of
thermodynamic quantities are

TS ¼ 4

R

ffiffiffiffiffiffiffiffiffiffiffiffi
ELER

p
; pV ¼ E;

ΩJ ¼ E −
2

R

ffiffiffiffiffiffiffiffiffiffiffiffi
ELER

p
; μC ¼ −

2

R

ffiffiffiffiffiffiffiffiffiffiffiffi
ELER

p
; ðA2Þ

where Ω is the angular potential. They satisfy the relation

E ¼ TSþΩJ þ μC: ðA3Þ

Hence, the large-N Euler equation indeed holds for 2d
CFTs. In fact, the Euler relation splits up into two separate
equations, E ¼ ΩJ − μC and TS ¼ −2μC.
InAdS3 gravity the Smarr formula for the outer horizon of

a BTZ black hole is given by 0 ¼ TSþΩJ − ΘΛ=4πG
[49]. Comparing this to the Euler equation (A3) we find
that the chemical potential must correspond to μC ¼
E − ΘΛ=4πG. Using the holographic dictionary for the
central charge c ¼ 3L=2G [50,51], it can be shown that the
chemical potential is dual to μ ¼ −ðr2þ − r2−Þ=ðL2RÞ, where
r� are the outer and inner horizon radii of the rotating BTZ
black hole. Notably, μ vanishes for extremal black holes, if
rþ ¼ r− or ER ¼ jJj, which correspond to CFT states with
EL ¼ 0 or ER ¼ 0.

APPENDIX B: THE EXTENDED FIRST LAW
OF ENTANGLEMENT

In this Appendix we compare our chemical potential for
AdS black holes to the chemical potential in the extended
first law for entanglement entropy of ball-shaped regions in
the CFT vacuum [18,52]. This CFT first law takes the form

dĒ ¼ T̄dSent þ μ̄dC; ðB1Þ

where Ē denotes the modular Hamiltonian expectation
value, Sent is the vacuum entanglement entropy of the
ball-shaped region and C is the universal coefficient of
the entanglement entropy (commonly denoted as a�d)
[23,53,54]. The CFT first law is dual to the first law of
static hyperbolic AdS black holes which are isometric to
pure AdS space [55–57], a special case of the black holes
considered in the main text, with J ¼ Q ¼ 0. The boundary
first law follows from reformulating our fundamental
variational equation in terms of dimensionless quantities
Ē ¼ ML, T̄ ¼ κL=2π, and μ̄ ¼ μL. The volume variation
drops out of the first law, since it is a dimensionful quantity.
In the vacuum Ē ¼ 0, hence the chemical potential reduces
to μ̄ ¼ −T̄Sent=C, which agrees with the results in [18]
(where the temperature was normalized as T̄ ¼ 1).

APPENDIX C: EULER EQUATION
IN FLAT SPACE

In flat spacetime, static equilibrium states satisfy the
standard thermodynamic Euler equation,

E ¼ TSþ νiBi − pV; ðC1Þ

which is often formulated instead in terms of densities since
V is infinite. Note that the energy is purely extensive in this
formula, since it satisfies EðαS; αV; αBiÞ ¼ αEðS; V; BiÞ.
This Euler relation applies in particular to conformal and
Lifshitz theories on the plane (see e.g., [58,59]). It is not
immediately clear why this equation is consistent with the
large-N Euler equation, therefore in this Appendix we
explain the relation between the two for Lifshitz scale
invariant theories.
Anisotropic scaling symmetry ft; xig → fζzt; ζxig with

dynamical scaling exponent z implies that the product TRz

is Lifshitz scale invariant, where R is the curvature radius of
the compact space, such as a sphere. Therefore, for Lifshitz
theories with positive z the infinite-volume limit R → ∞ is
effectively the same as T → ∞, so on the plane these
theories are essentially always in the high-temperature
deconfining phase. In this limit, the energy scales as E ∼
T

d−1þz
z and entropy and conserved quantities as S; Bi ∼ T

d−1
z ,

so the scaling relation is Eðαd−1
z S; V; α

d−1
z Bi; CÞ ¼

α
d−1þz

z EðS; V; Bi; CÞ. This imposes the condition
ðd − 1þ zÞE ¼ ðd − 1ÞðTSþ νiBiÞ, which in combination
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with the large-N Euler equation yields zE ¼ −ðd − 1ÞμC.
We can now compare this to the Lifshitz equation of state
zE ¼ ðd − 1ÞpV, which is a consequence of the anisotropic
scaling relation EðS; αd−1V; Bi; CÞ ¼ α−zEðS; V; Bi; CÞ.
As a result, we find μC ¼ −pV as V → ∞, turning the
large-N Euler equation into the standard one. The same
argument works for conformal theories (by setting z ¼ 1),
hyperscaling violating theories and possibly other large-N
theories. Notably, the standard Euler equation only applies
in the infinite-volume limit of large-N theories. The large-
N Euler relation, on the other hand, also holds at finite
temperature on compact spaces for holographic field
theories and 2d sparse CFTs (but not for generic CFTs).

APPENDIX D: HOLOGRAPHIC DERIVATION
OF THE SMARR FORMULA FOR LIFSHITZ

BLACK HOLES

In this Appendix we derive the Smarr formula for
charged Lifshitz black holes [41], with curvature radius
L and scaling exponent z, from the holographic Euler
equation and the dictionary for the thermodynamic quan-
tities involved. We put the dual Lifshitz field theory on a
spatial geometry of curvature radius R. Our derivation
generalizes Sec. 2.3 of [20] to R ≠ L and z ≠ 1. Our aim is
to prove that even for Lifshitz black holes the boundary
pressure and its equation of state are not necessary input to
deduce the Smarr formula (although they are in the special
case R ¼ L considered in [20]).
The holographic dictionary for Lifshitz black holes reads

E¼M
L
Rz ; T ¼ κ

2π

L
Rz ; Φ̃¼ Φ

Rz ; Q̃¼QL: ðD1Þ

Note that the factors of R and L are chosen such that the
products ERz, TRz and Φ̃Rz are Lifshitz scale invariant (see
Appendix C). First, we express the Λ term in the Smarr
formula in terms of the boundary energy E

−
ΘΛ
4πG

¼ L

�∂M
∂L

�
A;Q;G

¼ Rz

�∂E
∂L

�
A;Q;G

− E
Rz

L
: ðD2Þ

The strategy is to show that the right-hand side satisfies the
Smarr formula. Note that the bulk quantities A,Q andG are
fixed in the partial derivative with respect to L. The
boundary energy depends on these bulk quantities as
follows

E ¼ EðSðA;GÞ; Q̃ðL;QÞ; VðRÞ; CðL;GÞÞ: ðD3Þ

Note that J ¼ 0. The partial derivative is hence
given by

�∂E
∂L

�
A;Q;G

¼
�∂E
∂Q̃

�
S;V;C

�∂Q̃
∂L

�
Q
þ
�∂E
∂C

�
S;V;Q̃

�∂C
∂L

�
G

¼ 1

L
ðΦ̃Q̃þ ðd − 1ÞμCÞ: ðD4Þ

In the second line we used Q̃ ¼ QL and C ∼ Ld−1=G, and
we recognized the definitions of the electric potential Φ̃ and
chemical potential μ (see Eq. (4) in the main text). Thus, we
find

−
ΘΛ
4πG

¼Rz

L
ðΦ̃Q̃þðd−1ÞμC−EÞ

¼Rz

L
ððd−2ÞE− ðd−1ÞTS− ðd−2ÞΦ̃Q̃Þ: ðD5Þ

Finally, by inserting the holographic dictionary (D1) we
recover the Smarr formula. Note that the Smarr formula for
Lifshitz black holes does not involve z and is hence the
same as for black holes in Einstein gravity [42]. Crucially,
the holographic Euler equation was employed in the second
line of (D5) and is therefore dual to the Smarr formula, as
pointed out in [20]. We emphasize that the boundary
pressure does not play a role in this derivation, whereas
the chemical potential μ does. For R ¼ L the pressure does
feature in the derivation, since in that case the boundary
volume depends on the bulk radius, i.e., VðLÞ, which yields
an extra term −ðd − 1ÞpV=L in (D4). But ultimately the
result in (D5) remains the same, since this pressure term
cancels, due to the Lifshitz equation of state, against a new
term zELz−1 on the right side of (D2).

APPENDIX E: THE RENORMALIZED
HOLOGRAPHIC EULER EQUATION

In the main text the energy was defined with respect to
the ground state, so the vacuum energy was effectively set
to zero. However, CFTs on a curved background exhibit the
Casimir effect, which implies that the ground state could
have nonvanishing energy. In AdS=CFT the ground-state
energy can be computed with the method of holographic
renormalization, by regularizing the gravitational action
with local counterterms at the boundary [21,60]. In this
Appendix we derive the renormalized holographic Euler
equation for static vacuum AdS black holes, and find that
the ground-state energy contributes a constant term to the
chemical potential.
We consider static, vacuum asymptotically AdS black

holes with hyperbolic, planar and spherical horizons [61]

ds2 ¼ −fkðrÞdt2 þ
dr2

fkðrÞ
þ r2dΩ2

k;d−1; ðE1Þ

where
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fkðrÞ ¼ kþ r2

L2
−

16πGM
ðd − 1ÞΩk;d−1rd−1

: ðE2Þ

For k ¼ 1 the unit metric dΩ2
k;d−1 is the metric on a unit

Sd−1 sphere, for k ¼ 0 it is the dimensionless metric
1
L2

P
d−1
i¼1 dx

2
i on the plane Rd−1, and for k ¼ −1 the unit

metric on hyperbolic spaceHd−1 is du2 þ sinh2udΩ2
k¼1;d−2.

The mass parameter M is related to the horizon radius
rþ via

M ¼ ðd − 1ÞΩk;d−1rd−2þ
16πG

�
r2þ
L2

þ k

�
: ðE3Þ

According to the Gubser-Klebanov-Polyakov-Witten
prescription in AdS=CFT [12,13], the CFT metric is
identified with the boundary metric of the dual asymptoti-
cally AdS spacetime up to a Weyl rescaling, i.e., gCFT ¼
limr→∞λ

2ðxÞgAdS where λðxÞ is a Weyl scale factor. As
r → ∞ the boundary metric approaches

ds2 ¼ r2

L2
dt2 þ L2

r2
dr2 þ r2dΩ2

k;d−1: ðE4Þ

A common choice of Weyl factor is λ ¼ L=r, so that the
CFT metric becomes −dt2 þ L2dΩ2

k;d−1. The boundary
curvature radius is then equal to the AdS radius and the
volume is V ¼ Ωk;d−1Ld−1=ðd − 1Þ. Moreover, the CFT
time is the same as the global AdS time t, which implies
that the CFT energy E can be identified (up to a constant)
with the ADM mass M, the conserved charge associated to
time t translations.
The temperature, entropy and energy of the black

holes are

T ¼ dr2þ þ kðd − 2ÞL2

4πL2rþ
; S ¼ Ωk;d−1rd−1þ

4G
;

Eren ¼
ðd − 1ÞΩk;d−1Ld−2

16πG

�
rdþ
Ld þ k

rd−2þ
Ld−2 þ

2ϵ0k
d − 1

�
: ðE5Þ

The energy was derived from the renormalized boundary
stress-energy tensor in [60] and from the on-shell Euclidean
gravitational action with counterterms in [62]. The resulting
energy, Eren ¼ M þ E0

k, differs from the mass parameter by
a constant term, the Casimir energy of the dual field theory

E0
k ¼

Ωk;d−1Ld−2

8πG
ϵ0k; ðE6Þ

with ϵ0k ¼ 0 for odd d and equal to [62]

ϵ0k ¼ ð−kÞd=2 ðd − 1Þ!!2
d!

for even d: ðE7Þ

For instance, ϵ0k ¼ −k=2 for d ¼ 2 and ϵ0k ¼ 3k2=8 for
d ¼ 4. The renormalized version of the Smarr formula
reads

Eren ¼
d − 1

d − 2
TS −

1

d − 2

ΘrenΛ
4πG

; ðE8Þ

with a new (counterterm subtracted) Killing volume

Θren ¼ −
Ωk;d−1

d

�
rdþ −

d − 2

d − 1
Ldϵ0k

�
: ðE9Þ

The holographic Euler equation still takes the form

Eren ¼ TSþ μrenC; ðE10Þ

since the Casimir energy is also proportional to the central
charge, which we normalize here as C¼Ωk;d−1Ld−1=16πG.
But the chemical potential is not given by Eq. (12) in the
main text anymore, since it receives a constant contribution
from the vacuum energy

μren ¼ −
rd−2þ
Ld−1

�
r2þ
L2

− k

�
þ 2

L
ϵ0k: ðE11Þ

For d ¼ 2 we find the chemical potential μren ¼ −r2þ=L3,
which agrees with the expression found in Appendix A (for
r− ¼ 0 and R ¼ L). For planar black holes (k ¼ 0) or very
large hyperbolic or spherical black holes (with rþ ≫ L),
the Casimir energy is effectively zero and hence there is no
distinction between the renormalized energy and the
vacuum-subtracted energy. As can be seen from (E5)
and (E11), there are additional thermodynamic relations
for these black holes

E ¼ −ðd − 1ÞμC and TS ¼ −dμC; ðE12Þ

consistent with the infinite-volume limit of Appendix C.
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