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Quantum instability of gauge theories on x-Minkowski space
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We consider a gauge theory on the SD x-Minkowski which can be viewed as the noncommutative analog of
U(1) gauge theory. We show that the Hermiticity condition obeyed by the gauge potential A, is necessarily
twisted. Performing a Becchi-Rouet-Stora-Tyutin gauge-fixing with a Lorentz-type gauge, we carry out a
first exploration of the one loop quantum properties of this gauge theory. We find that the gauge-fixed theory
gives rise to a nonvanishing tadpole for the time component of the gauge potential, while there is no
nonvanishing tadpole 1-point function for the spatial components of A,. This signals that the classical

vacuum of the theory is not stable against quantum fluctuations. Possible consequences regarding the
symmetries of the gauge model and the fate of the tadpole in other gauges of noncovariant type are discussed.
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I. INTRODUCTION

It is currently believed that noncommutative structures
are likely to show up at the Planck scale [1,2], where
quantum gravity effects become sizeable [3-5] hence
rendering questionable the standard description of space-
time as a smooth manifold to reconcile quantum mechanics
and gravity. Among the noncommutative (quantum) spaces
considered so far, the x-Minkowski space [6-8] has
received a considerable attention for more than two decades
[9] as it appears to be a good candidate for a quantum space
underlying the description of quantum gravity at least in
some regime [3-5]. Numerous related works focus on
algebraic aspects [9] while more phenomenological inves-
tigations resulted in a huge literature in connection in
particular with doubly special relativity [10-14], relative
locality [15-17] or with the quest of possible detectable
effects [3—5]. The simplest description of the (d-dimen-
sional) x-Minkowski space M¢ is to view it as the
enveloping algebra of the Lie algebra of noncommutative
coordinates defined by [xo,x;] =Zix; [x.x;]=0, for
i,j=1,....(d — 1), where k is the deformation parameter
with mass dimension 1, often identified with the Planck
mass in four dimensions. The bicrossproduct structure of
the k-Poincaré Hopf algebra P¢ exhibits clearly its role as
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coding the quantum symmetries of MY, as first pointed out
in [8], this latter being the dual of the subalgebra of P¢
generated by the so-called deformed translations.

M¢ can be conveniently modeled [18,19], by an
associative * algebra equipped with the following star
product and involution'

(f*xg)(x /—dyoe D07’ £ (xg + o, X)g(xo, e P"/¥X),

(1.1)

/—dyoe yop f(xo + o, e P/RF x), (1.2)

for any functions f, g in a suitable multiplier algebra of the
algebra of Schwartz functions in R (f is the complex
conjugate of f). It will be also denoted hereafter by M2.>
The construction basically combines the essential features of
the Weyl-Wigner quantization map with properties of the
convolution algebra of the affine group R X R(@_ It is
nothing but the extension of the old construction related to
the Moyal product which used the notion of twisted
convolution related to the Heisenberg group [20] (instead
of the affine group) aiming to rigorously formalize the

!Conventions: latin indices i,j,---=1,2,...,(d = 1) refer to
space coordinates. Timelike quantities are indexed by O.
We set x:=(x,) = (xp,X), Xx.y:=x,0"=xy)+Xy. The
Fourier transform of f € L'(R?) is defined by (Ff)(p):=
fddxe"“’“x“*" ) f(x) with inverse F~'.

*This algebra involves the smooth functlons with polynomlal
bounds as well as all their derivatives, such that their inverse
Fourier transform has compact support in the x, direction [18].
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correspondence between classical and quantum observables
initially introduced by Weyl [21] throughout the (Weyl-
Wigner) quantization map. Notice that a somewhat similar
extension to the case of Ri, a deformation of R3, based
however on the SU(2) group algebra, underlies the studies
of quantum properties of field theories on this latter quantum
space [22-24].

The star product (1.1) is especially convenient for
practical purpose, a fact exploited in recent explorations
of quantum properties of x-Poincaré invariant scalar field
theories on M [19,25,26]. The k-deformed relativistic
symmetries of M¢ can be actually viewed as coded in the
k-Poincaré algebra. Hence, requiring x-Poincaré invariance
is physically natural. It is known [18,19] that this invariance
is achieved provided the action is of the form f d?xL where
L is some Lagrangian density and [d%x is the simple
Lebesgue measure which however is no longer cyclic with
respect to the star product (1.1), since one has for any

f.ge M¢
/ dix(f % g)(x) = / dx(E > g) « ). (13)

where £9!, called the modular twist, is defined by

€000 = (x+LF) E=eti (1)

with (P, > f)(x)=—=i0,f(x), u=0,...,d—1. Equation (1.3)
defines a twisted trace with respect to (1.1) which, as pointed
outin [19,27,28], promotes the action to the status of Kubo-
Martin-Schwinger (KMS) weight [29,30] a new property
which replaces the lost cyclicity.3 The loss of cyclicity
complicates a priori the construction of a suitable gauge-
invariant action for a x-Poincaré invariant gauge theory,
starting from any standard (untwisted) noncommutative
differential calculus. Indeed, the usual compensation
between unitary gauge factors in the noncommutative gauge
transformation of the curvature F,,, which takes the generic
form Fj, =g¢" x F, xg, g xg=g*g =1, cannot
occur [33], due to the twisted trace relation (1.3). This
prevents the construction of a gauge invariant polynomial
action depending on the curvature. For a review on earlier
algebraic and field theoretic developments on gauge theories
on x-Minkowski space and related problems, see [34].

As shown in [33], the troublesome effect of the modular
twist can be neutralized, leading to a x-Poincaré invariant
and gauge invariant action with physically suitable com-
mutative limit. This happens thanks to the existence of a
unique twisted noncommutative differential calculus based

JKMS weights which are basically KMS states up to a
normalization, are linked to the Tomita group of modular auto-
morphisms [31] whose generator here is £4~!. For discussions on
physical consequences of KMS property, see [32].

on a family of twisted derivations related to the deformed
translations of the x-Poincaré algebra [33]. This forces the
gauge transformations of the curvature to be twisted thus
allowing now the unitary gauge factors to balance each
other, which actually occurs for a unique value of d, namely
d = 5 [33]. This comes from the fact that the modular twist
(1.4) depends on the dimension d. Otherwise stated,
the main physical prediction is that the coexistence of
k-Poincaré invariance and gauge invariance implies the
existence of one extra dimension. For a first exploration of
phenomenological features of the four-dimensional theory
obtained from compactification scenarios, see [35].

Notice that the analysis carried out in [33] used the
notion of noncommutative connection on a right module E.
It was assumed to be one copy of the algebra M3 in order
to describe a noncommutative analog of a U(1) Yang-Mills
theory while the action of the algebra M3 on E was chosen
tobe m <t a =m % a, for any m € E, a € M2, owing to
E ~ M. One may wonder if a suitable choice for this
action would lead to another value for d, since the
corresponding gauge transformations should be modified.
Algebraic constraints from right module structure together
with physical requirement lead to actions of the form
m <\a=m * ¢(a) where ¢ is any regular automorphism
of the algebra, i.e., (¢(a))" = ¢~'(a"). Again, one finds
[36] that d =5 is the only allowed value for which the
k-Poincaré invariant gauge theories exist. Thus, occurrence
of one extra dimension seems to be a rather robust feature
of these gauge theories on xk-Minkowski, which motivates
further investigation on their quantum properties.

This is the purpose of the present paper which will
exploit the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
linked to the twisted gauge symmetry elaborated in [37]. As
a first step in the investigation, we will compute the one-
loop 1-point (tadpole) function for this five-dimensional
noncommutative gauge theory without matter. We will also
pay attention to the Hermiticity condition obeyed by the
gauge potential. We find that this latter Hermiticity con-
dition is twisted. Furthermore, we find that the gauge-fixed
theory gives rise to a nonvanishing tadpole for the time
component of the gauge potential, while there is no
nonvanishing tadpole 1-point function for the spatial
components of A,. This signals that the classical vacuum
of the theory is not stable against quantum fluctuations.
Some possible consequences from the viewpoint of sym-
metries, namely Lorentz symmetry and noncommutative
gauge symmetry are then discussed.

The paper is organized as follows. In Sec. II A, we first
collect the useful properties which will be needed in the
course of the analysis, including essential features of the
twisted differential calculi singled out in [33,35]. We then
show that the Hermiticity condition affecting the (non-
commutative analog of the) gauge potential A, becomes
twisted. In Sec. II B, we present the BRST gauge-fixing of
the classical action. Section III is centered on the one-loop
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computation of the tadpole 1-point function for the gauge
potential. We find that the ghost-gauge vertex and the
trilinear vertex of the gauge-fixed action give nonvanishing
contributions only to the 1-point function for A, the time
component of A,. The tadpole function for the spatial
components of A, are all zero. In Sec. IV, we discuss the
results and conclude.

II. GAUGE THEORIES ON
k-MINKOWSKI SPACE

A. Basic features of the classical action

The classical gauge-invariant action is given by [33]

Sy = éll/ de(Fm, * F/'L',,)(x), (2.1)

where the curvature can be expressed as

Fo=E%71> (XA, —X,A)+ (ET7T>A,)* (E>A)
— (£ > A) * (671> A), (2.2)

in which y is a real parameter and A, denotes as usual (the
noncommutative analog of) the gauge potential which is
assumed in the following to be real valued. Notice that in
five dimensions the action (2.1) should normally be
rescaled by a dimensionful parameter # where ¢* has mass

dimension —1. As this parameter is not essential in the
following discussion, we will omit it.

In (2.1), the X,s are the generators of an Abelian Lie
algebra of twisted derivations denoted by 9,. These are
built from the so-called deformed translations which
generate a sub-Hopf algebra of the x-Poincaré algebra.
The twisted derivations are given by

Xo=xE(1-8), X, =¢&P;, i=123,4, (2.3)
and satisfy the following twisted Leibniz rule
X, (axb)=X,(a)x(E>b)+ (&M >a)xX,(b), (24)

for any elements a, b of ./\/l,f The twisted derivations of D,
generate the twisted noncommutative differential calculus
underlying the analysis. The corresponding relevant prop-
erties are collected in the Appendix. For general algebraic
properties of (untwisted) derivation-based differential cal-
culus, see e.g., [38] and references therein.

Note that interesting twisted differential calculi for
k-Minkowski spaces stemming from the use of twist
deformation formalism applied to Abelian and Jordanian
twists are considered and discussed in [34]. These are not
relevant here. Besides, interesting bicovariant (untwisted)
differential calculi on k-Minkowski spaces [39,40] cannot

give rise to k-Poincaré invariant and gauge invariant action
functionals as discussed in [33].

In this paper, we will use a twisted version of the notion
of noncommutative connection on a right module over M2,
introduced in [33]. The main mathematical properties of the
notion of untwisted connection on a right (or left) module
are characterized in details in [38] and further developed in
[41-43]). Notice that untwisted connections on the right
module underly the pioneering works [44-46].

Recall that the gauge group U is defined as the set of
automorphisms of the right module over M3, denoted by E,
assumed here to be one copy of M3, i.e., E ~ M2, which
are required to preserve the canonical Hermitian structure

h(my, my) = m} * m, (2.5)
for any m;, m, € M. It is a simple matter of algebra to
find that

U={geM.grg =g »g=1}, (2.6
which can be viewed as the noncommutative analog of the
U(1) group.

Now, recall that the twisted connection is defined [33] as
a map Vx:E—E for any X, €D, fulfilling the
following properties:

Vx,x,(m) = Vx (m) + Vy, (m),

V., (m) = Vi, (m) * 2,

(2.7)
(2.8)

Vi, (m* f) = Vy,(m) x (& > ) + (£ & m) * X,(f).

(2.9)
for any me E~M;, X,.X, €D, z€Z(M]) (the
center of M3), f € M3. In (2.9) the factor (£ > m)
in the second term must be understood as a morphism
p: E = E acting on the module as f(m) = £&*! > m for
any m in E ~ M. Set

A” = VXM(H)’ v = Vxﬂ.

u"

(2.10)

Then, observe that the noncommutative analog of the
“gauge potential” A, defined above and verifying

V,(f)=A,x& > f+X,(f) (2.11)

obtained by setting m =1 in (2.9), does not generally
satisfy the usual relation A}, = A,. This is a mere conse-
quence of the fact that the X ;s are twisted and are not real
derivations. Indeed, one has

X, () == (X, (M) # X,(f).  (212)
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In fact, one finds after standard algebraic calculations that
A, satisfies
A, = E > A, (2.13)

together with the following twisted Hermiticity condition
for the connection

WEH " iV (my). & & my) +h(E7 > my. iV, (my))
:iXﬂh(ml,m2)a (214)

which holds true for any X, € D,, m;,m, € M.

Note that somewhat similar deformed Hermiticity con-
dition for noncommutative connections also appeared
within the framework of & derivations giving rise to the
notion of & connections [43].

It is known that Hermitian connections play a central role
in the physics described by (commutative) Yang-Mills
theories. The present situation obviously deals with a
noncommutative analog of a U(1) Yang-Mills theory.
Accordingly, we assume from now on that the twisted
Hermitian condition for the connection (2.13) holds true.
To simplify the analysis, we will further assume that

y =0, (2.15)
which will not alter the conclusions of this paper.

It will be useful in the sequel to introduce the 1-form
connection A and its associated curvature 2-form F. The
main properties of the corresponding noncommutative
differential calculus and the related notations introduced
in [33] are collected for convenience in the Appendix. This
provides a convenient formalism to deal with the BRST
symmetry.

We will introduce below the material used in the ensuing
analysis. The curvature 2-form F € Q?(9),) is easily found
to be given by

F=dA+ ((E>A) x A), (2.16)
where A € Q'(D,), x denotes the associative product of
forms and d is the twisted differential with

d2=0 (2.17)
satisfying the twisted Leibniz rule
dlwoxn) =doxn+ (-1 (E>w)xdy (2.18)

for any w,n € Q°, where §(w) is the form degree of w.
Recall that one has A(X,) = A, and F(X,,X,) = F,.

In (2.16), (2.18) and in the sequel of the discussion,
the action of £ on the forms must be understood as

(> w)(X;,...X,) = (> (0(X,....X,))) for any
w € Q' i.e., &£ acts on the “components of the forms.”

One can verify that the classical action is invariant under
the gauge transformations

Aj=(E>g)xA, xg+(E>g")*X,(9), (219

Fi, = (&> g') * F,, * g, (2.20)
or equivalently on the connection 1-form and curvature
2-form

A= (E> g xAx g+ (E>g") xdyg, (2.21)

FI=(&1>4g")xFxg, (2.22)

which hold true for any ¢ of the gauge group U.

B. BRST symmetry and the gauge-fixed action
The BRST symmetry associated with (2.19)—(2.22) is

defined by the following structure equations [37]

s)A=—-dC—(E> C)xA—AxC, (2.23)

50C = —C x C, (2.24)

so that the BRST transformation of the curvature 2-form is

so)F =FxC— (1> C)x F, (2.25)
and one has s% = 0. Here, C is the Fadeev-Popov ghost, a
real-valued field with ghost number +1 while s, is the
Slavnov operation associated with the gauge transforma-
tions (2.19), (2.20), whose action on any field increases its
ghost number by +1. The relevant technical materials
needed in the ensuing discussion are collected in the
Appendix.

The transformations of the components are easily found
to be given by

s0A, = X,(C) = (E>C) x A, +A, x C, (2.26)
50C=—-C* C, (2.27)
soFy =Fu,xC—(E&>C) % F,,  (228)

upon using (AxC)(X,)=-A,*C, (CxA)(X,)=Cx*A,,

(dC)(X,) = =X, (C). Furthermore, one can verify that
S()Sc] =0. (229)

Recall that a suitable framework encompassing the

differential calculus and the BRST symmetry is obtained
by introducing a bigraded differential calculus. For more

106013-4



QUANTUM INSTABILITY OF GAUGE THEORIES ON «- ...

PHYS. REV. D 105, 106013 (2022)

mathematical details relevant to the present situation,
see [37].

In particular, s, acts as an untwisted graded derivation.
Namely, it satisfies the following Leibniz rule

solw x 1) = sow xn+ (=Dl x sy (2.30)
for any bigraded forms w,n € Q = D, ,27(Dy), where
|w| denotes the total degree of w defined as the sum of the
form degree §(w) and the ghost number of . Accordingly,
the Leibniz rule for d (2.18) still holds for any bigraded
forms @, 7 € Q with however §(w) replaced by |a|.

Notice by the way that one should have C = CT,
stemming from the fact that s, can be viewed as a
Grassmann version of the infinitesimal gauge transforma-
tions. This, combined with the Hermiticity relation (2.13)
together with (2.23) yields so(AT) = (so(A))".

The BRST operation s, generates the functional Slavnov
identity which serves to control the UV behavior of the
action S, after its gauge fixing. This latter is obtained by
adding a BRST-exact term. A convenient gauge fixing is
given by

S =Sy + so/dSX(CT « (E9 > X,(A),  (231)

supplementing the BRST structure equations (2.26)—(2.28) by
50CT = b7, (2.32)
sobT =0, (2.33)

where C (b) is the antighost (Stiickelberg) real-valued field
with ghost number —1 (0). A simple calculation yields

S=2S84+ / &dx(b.X,(A,) + C.X*(C)

—CX,(E>C) A, —A, % C)), (2.34)

where we set X2 = X*X , and we used the twisted trace
property (1.3) for [ d°x together with the useful identity

/ Bx(f * g')(x) = / Frf) 5. (235)

The quadratic part of the action defines the kinetic terms
for the gauge potential and the ghosts. It is given by

1 _
S = / PxSA (K8, ~ X, XA, + CX(C), (236)

where the term involving A, is easily obtained upon using
(a,X,(b)) = (X,(a),b) for any a,b € M3 where

(a,b) = / Bxa + b (2.37)

is the Hermitian product introduced in [19].

Performing the functional integration over the b field in
the generating functional of the Green functions enforces
the constraint X, (A,) = 0 everywhere in the gauge-fixed
action (2.34). Accordingly, the kinetic terms for the gauge
potential and the ghosts are, respectively, given by

Sun(4) = 5 / BxdyA, (DK (x - VA().  (238)
5(C.C) = [ @pdgCOK(x-1)C0).  (239)
with
Kx=y) = [ &perer(p)  @40)
in which
T(p) = (P> +k*(1 — ePo/x)2). (2.41)

Notice that K(x —y) # K(y — x) which simply comes
from the exponential e~P/* in the second term of (2.41) so
that T'(p) # T(—p). It is convenient to reexpress (2.38) as

Sinl) = [ S, (05 -Da). (242)

1 .
S(x=3) =5 [ EperIT(p) + T(-p)).  (243)
The trilinear gauge potential interaction can be written as

SAAA = <(XMAD _XuAﬂ)T’ ((5 > Aﬂ) *Av - (5 > Au) *Aﬂ)T>
+c.c. (2.44)

The corresponding vertex function can be read off
from [we use the obvious notation for the momenta:

P = (po. P)]

Span = / B pd gd®rA, (p)A,(@)A (VA (p. q.7)
x 0(po + qo + 19) (2.45)
with

Vi(p.q.r) = 0,(q0. §)(e73Po/*5(pero/x + Gerolx + F)
— oK (B 4 Gero/x 4 Ferolx)), (2.46)
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where
0u(q0,3) = (k(1 = e=0/%), g;). (2.47)

The trilinear gauge-ghost interaction can be cast into the
form

SAC@:/deC(x).((é'DA”) X, (C)=(E5X,(C)) xA,),
(2.48)
where use has been made of the gauge function X,A, = 0.

After some algebra, it can be put into the form [again we
use the obvious notation for the momenta: p = (py, p)]

Spce = / & pdSqdrE(p) A, (q)C(r VI (p.q.7)

x 8(po + qo + r0)s (2.49)
with
Vfﬂ(P, q, r) - Qﬂ(ro, 7)(e“10/"5(p' + é —+ 76_‘]0/’()
— e (p 4+ Ger), (2.50)

where Q) is still defined by (2.47).

One easily verifies that both vertex functions vanish in
the commutative limit, which is consistent with the usual
electrodynamics for which ghosts decouple.

III. COMPUTATION OF THE
1-POINT FUNCTION

A. Perturbative setup

Introduce the generating functional of the connected
Green functions W(J,7,n) defined by

eW(Jsz”) — / dAdCdCe—(S+Ssources) s (3 1)

where S is given by (2.34) and J, 7§,  are as usual sources to
be defined just below. The part of the action relevant for the
ensuing calculation involves the kinetic part together with
the cubic vertices. We write the source term as

Suourees = / XA, (x)],(3) +7(x)C(x) + C@n(x). (3.2)

where J, 7, n are sources associated, respectively, to Ay C,
C with respective ghost numbers 0, —1, 1.

Recall that functional derivatives obey obvious graded
Leibniz rules with grading defined by the ghost number.
Besides, Green functions involving ghost fields are gen-
erated by the action on (3.1) of functional derivatives 5—5,_, and
%, acting, respectively, from left and right. Namely, one has

O [@t)co1Come) _ Clx)e] FACHIHEENE)
&7 (x)

)

(3.3)

o efdsyﬁ(y)c(yH@(y)n(y) — efdsyﬁ(y)C(yH@(y)n(y)C(x)‘
& (x)
(3.4)

The perturbative expansion is generated by the following
functional relation

W(J.i.n) =Wo(J.i1.1)

+1n(1 + e_WO(Jv;]-n) [e_Sint —_ l]eWO(JJ]-n)) (35)

up to an unessential additive constant, where W(J,7,7)
denotes the free generating functional of the connected
Green functions. It is given by

Wold.mn) = [ @xs(30,057 (6= 300,00

AR =) ). (36)
with

5 (r=3) =2 [ @per T )+ T(p) (37
KM =) = [@pere i) (38)

where T'(p) still given by (2.41).

In (3.5), one has
6 6 O
Sint - Sim (575_’7’5_”)
1) 5 6 O

=S — Sicel —,—,— |, 3.9
AAA <5J> + ACC<6J 57 577) (3.9)

which is obtained by replacing each field in S 44 and Sy ¢,
respectively, (2.46), (2.49), by its associated functional
derivative. We did not explicitly write the quartic inter-
action since it will not generate contributions to the tadpole
1-point function.

B. The tadpole at one-loop

The one-loop contribution to the 1-point tadpole function
can be extracted from
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W(J.ii,n) = Wo(J, 7, 1)
— e Mol g, iié eWollitn) - (3.10)
oJ oi on

The relevant part of W(J, 7, ) corresponding to the one-
loop ghost contribution to the 1-point Green function for

A,, denoted hereafter by W?”(J), is obtained by simply
combining (2.49), (2.50), (3.6), (3.9) with (3.10). A
standard calculation yields

Wzlfm(J) _ / d5pd5qd5 rd5xd5yd5stwe_i(pxw)%m)

x K™z =x)S7H(y = w)J,(w)8(po + qo + r0)

X V,”f”(p,q, r), (3.11)

where V,‘f”( p.q,r) is still given by (2.50). By further

making use of the Legendre transform M‘S—V(VX) = A,(x) which
H"

at the first order, relevant here, reduces to

A (x) = / Py (-0, (3.12)

one readily derives from (3.11), combined with W7 (), the
corresponding ghost contribution to the one-loop effective

action, denoted by I' ‘{’”(A). By taking into account the

various delta functions occurring in W‘f”(l ), we find that
the expression reduces to

{7 (A) = /dSq(S(q)A”(q)Iw (3.13)
in which
5 1 - e3s0/1<
IM :/d SEQ —I—Kz(l_e—so/K)QXQﬂ(s)' (3.14)

From (3.14), one immediately infers that the spatial
components of Z, vanish since the following relation
Jds=4m =0, i=1,....4 (M? is some positive quantity)
holds true. Hence, one concludes that the ghosts only
contribute to the 1-point function for A,. One obtains finally

7 (A) = / d5xA(x)Z,. (3.15)

Notice that one can easily verify that lim,_ . Zy =0
hence signaling the vanishing of I" ‘f” (A) at the commutative
limit as expected.

The relevant part of W(J, 7, ) corresponding to the one-
loop A, contribution to the 1-point Green function for A,

denoted hereafter by W+ (J), can be computed in a similar
way. We find

WI]A(J) = /dspdsqurdSXdSdestwg_i(l’x+qy+rz)

x 8(po +qo +1o)Vi(p. g 1)
x J,(w) (587 (x —=w)S™H(y — z)
+ Sy —w)S7 ! (z - x)

+ 85 z=w)SH(x—y)). (3.16)

Upon using (3.12), the corresponding contribution of the
gauge potential to the one-loop effective action, denoted by

I'/"(A) can be written as a sum of three terms

IH(A) =T (A) +T12(A) +T3(A) (3.17)
with
I, (A) = / 0,57 (z= DA, (). (3.18)
I (4) = / 40,5 (x— YA, (). (3.19)
L (A) = 5 / 0,57 (y - DA, (x).  (3.20)
where
do), = & pd’qd> rd>xd>yd’ze™ P+ a+72)
X 8(po+qo+ro)Vi(p.q.7). (3.21)

The first contribution '), (A) vanishes. Indeed, from
simple manipulations of the various delta functions occur-
ring in I'}; (A), one easily realizes that the contribution to
A, vanishes, due to the fact basically that one factor
~8(q9)00(q) appears in the expression which upon inte-
grating over ¢, gives 0. For the spatial contributions, one
arrives at

I (A) ~ / dqdsodyA;(y)q;e7¥5(qq)

x (S7H(=GZ(s0). 90) — S7'(GZ(s0). 90))

—0, (3.22)

where the last equality comes from the fact that S~!'(p) is
an even function of p. Hence
Y, (A) =0. (3.23)

The second contribution I}, (A) can be cast into the form

I (4) = / BxA, ()7, (3.24)
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with

e3S0/K' -1

Ty = /dSSZQﬂ(s)m.

(3.25)
By observing that 7; =0, i = 1,...,4, one concludes
that

I (4) = / BxAyTo. (3.26)

Finally, the last contribution I"};(A) yields
I (4) = -5 / BxA, ()T, = -5 / BxAgTo.  (3.27)

From (3.23), (3.26), (3.27) and (3.15), one concludes
that the contribution of the 1-point function for the gauge
potential is given by

Iy (4) = / BrAg(¥)(To—4Ty),  (3.28)

which, in view of (3.14) and (3.25), is nonzero.

Hence, only the time component A, of the gauge
potential has a nonzero 1-point function at the one-loop
order.

IV. DISCUSSION

We have considered a gauge theory on the (necessarily
5D) k-Minkowski space which can be viewed as the
noncommutative analog of a U(1) gauge theory. First,
we have shown in Sec. I A that the Hermiticity condition
obeyed by the gauge potential A, is twisted. Then, we have
carried out a first exploration of the quantum properties of
this gauge theory suitably gauge-fixed using the twisted
BRST symmetry framework elaborated in [37]. Assuming
that A, is real valued and working at the one-loop order,
we have find that the gauge-fixed theory gives rise to a
nonvanishing tadpole for the A, corresponding to the
occurrence in the 1-loop effective action of a term linear
in A, of the form

F,(A)~/d5xaMA,,(x) :/dsxK(K)Ao(x), (4.1)

where the diverging quantity K(x) can be read of from
(3.28) and must then be suitably regularized.

Had we have relaxed the assumption on A, to be real
valued,” thus starting from a complex-valued A,, then we
would have find again a nonvanishing tadpole. This can be
verified from a computation similar to the one presented in

“The commutative limit would however involve two gauge
potentials.

Sec. III. Indeed, to compute the 1-point contribution for A,
simply replace everywhere S(x —y) defined in (2.42),
(2.43) by K(x —y) (2.40), (2.41), with the relevant trilinear
vertex now given by

Span = / B pdqdSrA, (p)A,()A, (10, ()

X Vf}(P, q.1)8(po — qo + o)
X (e3po/l<5(13’epo/'< — GePo/x + 7)

— &3N/KS(p — Ge'o/x 4 Feo/¥)), (4.2)
and the gauge-ghost vertex unchanged, leading to
I'1(A,A) ~ [ dxAy(x)Z,. One proceeds similarly for the
A” contribution.

Notice that the inclusion of fermions,5 obtained
by supplementing the action with the following gauge
invariant coupling

Sp= /de(w*yO * EV ) (%), (4.3)

with V,y = A, x w + X, (y), does not change the conclu-
sion. This simply stems from the fact that the corresponding
fermionic contribution to the 1-point function identically
vanishes as in the commutative case, being proportional to
the trace of a single gamma matrix, which can be easily
verified by using the fermion propagator whose expression is
given by K7!'(x —y) = [ d®xe?> Yy Q, (p)T ' (p).

The appearance of a nonzero tadpole at the 1-loop order
has already been evidenced in various classes of gauge
theories on quantum spaces. For instance, this shows up in
the massless gauge theory on R?, a deformation of the 3D
space [47].

In the same way, a tadpole appears in a family of gauge
matrix models on the Moyal plane R3 [48]. Recall that in
these gauge models, the relevant field variable is a tensor
form, sometimes called the covariant coordinate, which is
the difference of two form connections, one of them having
a distinguished status.” The corresponding (classical)
action functional is quadratic and quartic in the tensor
form but must be expanded around a symmetric vacuum
[50] in order to obtain a dynamically nontrivial model,
which generates an additional cubic vertex upon expansion.
This results in a nonzero tadpole so that a term linear in A,,,
albeit absent at the classical order, is induced by quantum
fluctuations in the I-loop effective action.

Note that in both cases, the relevant BRST symmetry is
untwisted. Note also that the analysis in [47] is based on a

’Recall that the corresponding commutative limit would lead
to a nonrenormalizable model.

This latter is the canonical gauge invariant connection rigidly
linked with the coordinates of the Moyal space. For more details,
see e.g., [41,49].
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temporal gauge, giving rise to a nonvanishing tadpole. We
will discuss more closely the consequences implied by the
use of such a temporal gauge at the end of this section.

The complicated vacuum structure [50] of the gauge
matrix models on 4D Moyal spaces [R;‘ [49,51] forbids, so
far, their complete exploration at the quantum level. Note
however that a class of intensively studied gauge theories on
Rg [52-58], bearing a formal similarity with the (commu-
tative) Yang-Mills theories, do not produce 1-loop tadpoles.
This stems from the mere algebraic structure of the trilinear
gauge potential vertices which produces automatically van-
ishing tadpole contributions. Unfortunately, these noncom-
mutative gauge theories suffer from UV/IR mixing [59],
which thus likely precludes the achievement of their pertur-
bative renomalizability.7

At this stage, some comments are in order.

A nonvanishing tadpole is linked with a nonvanishing
1-point function, i.e. vacuum expectation value (VEV), for
the gauge potential, say (A,) # 0, which may have some
noteworthy consequences as gauge symmetry breaking as
well as Lorentz symmetry breaking may occur. In the
present situation, the occurrence of the extra term I'; (A) in
the 1-loop effective action 'y signals that the classical
vacuum of the theory is not stable against quantum
fluctuations. This can be traced back to the fact that the
term linear in A, induced by “radiative corrections”
obviously prevents the classical vacuum configuration
characterized by A, =0 to be an extremal point of I
(i.e., it no longer verifies the equations of motion related to
I.sr). Note that I'; (A) is not gauge (BRST) invariant and
that it seems unlikely possible to balance its gauge variation
by another variation of some other higher order terms
involved in I'.; suggesting that the classical symmetry is
broken.

Getting rid of the linear term in A, is achieved as usual
by expanding I'. around the new vacuum Aﬂ,s i.e., setting
A, = AM + a, in [y where the new field variable is @,
while the resulting (background) symmetry of the
expanded action should be presumably obtained from
the BRST operation (2.26), (2.27) combined with the field
expansion. Its full characterization would require to carry
out the complete 1-loop renormalization which is beyond
the scope of this paper.

Besides, we note that having (A,) # 0 from (3.28) is
reminiscent of some instance in which a Lorentz symmetry
breaking does occur. Among the numerous models describ-
ing possible Lorentz violations (for a review, see for
instance [5] and references therein), some effective models
leading to a spontaneous Lorentz symmetry breaking [62]

"Note that an interesting interpretation of the UV/IR mixing in
term of an induced gravity action has been presented in e.g.,
[60,61]. It takes place in a matrix formulation of the gauge
theories on Moyal space.

¥Solving the equations of motion related to Iy

have been considered for some time, see e.g., [63-66]. In
these models, defined either in flat space or coupled to a
gravitational field, a nonzero VEV of a vector field, mostly
obtained through the introduction of a suitable potential at
the classical level, triggers the Lorentz symmetry breaking
which may possibly exhibit some interplay with a kind of
generation of a gauge symmetry [67].

The gauge theory on x-Minkowski space considered in
this paper bears at a first sight somewhat similar gross
features with the models mentioned above. However, it
differs in some respects. Indeed, one starts with a nonzero
VEV of a gauge potential, instead of a simple vector field.
This nonzero value is induced by radiative corrections and
is not present at the classical level. Besides, the gauge
theory under consideration is non local while the models
mentioned above are essentially local. Nevertheless, note
that the relevant field variable a, obtained after achieving
the expansion of the effective action around the new
vacuum A , 1s a vector field as being equal to the difference
of two connections.

It is instructive to notice that the expression (4.1) actually
depends on the gauge choice. This gauge dependence can
be made more apparent by choosing a one-parameter
family of “noncovariant” gauges involving the temporal/
Weyl gauge Ay = 0 for a special value of the parameter. It is
worth recalling that this latter gauge choice generates some
difficulties when performed within commutative gauge
theories, stemming, for instance in QED, from the peculiar
momentum dependence of the gauge-fixed photon propa-
gator. Other noncovariant gauges are as well not free from
difficulties. However, some of these difficulties can be
(partly) overcome or circumvented. For technical details on
noncovariant gauges, see e.g., [68,69].

For our present purpose, it is convenient to start, instead
of (2.31), from the following gauge-fixing action

~ A
Sor :so/cﬁx(cﬁ xE4 > <4b—AO>)
:/dSXC<S0AQ+b<§b—A0)>,

where 4 is a real parameter. The functional integration over
the Stiickelberg field b yields

(4.4)

1 _ _
SGF = /dsx_/lA%+CXOC+C(AO * C—-ED> C*Ao).
(4.5)

By carrying out a computation similar to the one
presented in Sec. III B, one easily realizes that (4.5) gives
rise to a nonzero contribution to a tadpole for A, of the

form (to be suitably regularized) T'*(A,) ~ [ doxAg(x) x
( f Pk-L (ko)

(l—e'ko/")

) where F(ky) is a function whose exact
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expression is not needed here. But this latter contribution
cannot be balanced by the corresponding contribution
from the cubic self-interaction for the A, which is

easily found to be of the form I'{(Ag) f dxAq(x)x

(] @k(Qo(k)Koo(k) + Qi(k)Ko;(k))), where Koo(k) and
Ko;(k) are the components of the gauge-fixed propagator
for Aﬂ.9 Again, a suitable regularization is understood. In
view of the expressions for Ky(k) and K;(k), one obtains
a contribution proportional to the gauge parameter A4,
namely I'} (Ag) ~ A [ d®xAy(x)J, where J is some constant.
Hence, there is a nonvanishing tadpole for A, in this gauge,

Ty (Ag) ~T?"(Ag) + 2 / dxAy(x)J. (4.6)

Besides, there is no tadpole for the spatial components
of the gauge potential. To see that, one computes the
corresponding 1-point function I'; (4;) for a given compo-
nent /. Simple algebraic manipulations yield I'j(A;)~
JdxA;(x) x ([ dkK 1o (k) Qo (k) +K;;(k)Q;(k)) in obvious
notations. But K;y(k)Qy (k) and K;;(k)Q;(k) are linear in
the internal spatial momentum k; so that the corresponding
integrals in I''(A;) vanish. Hence

I'(A;) =0. (4.7)

The usual temporal gauge A, =0 is obtained by

taking the limit A — 0 at which the ghosts decouple so

that T9"(A,) = 0. One can verify that (4.7) still holds true
while the remaining contribution from the cubic gauge
interaction also vanishes, simply because it is proportional
to the gauge parameter A as it is apparent in (4.6).

Summarizing this last observation, no tadpole occurs
when the temporal gauge is used for the gauge fixing. Note
however that one can check by inspection that the temporal
gauge does not fix the xy-dependant I/ gauge transforma-
tions (2.6), as it is the case for the commutative case, so that
the corresponding gauge-fixed theory should support a
residual gauge symmetry.

In view of the above discussion dealing with different
natural choices for gauge conditions, it would be worth
analyzing the consequences of the (possibly) nonvanishing
1-point function for A, from the viewpoint of Lorentz and
noncommutative I/ gauge symmetries (2.6). We will come
back to these aspects in a forthcoming work.

ACKNOWLEDGMENTS

We thank the Action CA18108 QG-MM, “Quantum
Gravity Phenomenology in the multi-messengers
approach,” from the European Cooperation in Science

"Koi(p) = Ootom Pis Koo(p) = 4,

(AP + 1) 5oip52) where p* = Qg(po)* + p*.

K;i(p) :%(511"'

and Technology (COST). P. M. is supported by the NSF
Grant No. 1947155 and the JTF Grant No. 61521. J.-C. W.
thanks P. Martinetti for various discussions on twisted
structures in noncommutative geometry.

APPENDIX: TWISTED
DIFFERENTIAL CALCULUS

Let D, denotes the set of twisted derivation defined in
Eq. (2.3) and satisfying the Leibniz rule (2.4). One can
verify that [X,,X,] = X, X, — X, X, = 0 so that D, is an
Abelian Lie algebra. Let Z(MJY) be the center of M¢. We
denote by Q"(D,) the linear space of n-linear antisym-
metric forms. Note that linearity of forms holds with respect
to Z(M¢Z). The twisted differential calculus based on D, is
an extension of the derivation-based differential calculus
introduced a long time ago. See e.g., [38] and references
therein.

In the present situation, n-forms are defined from
Q"(D,). For any a € Q"(D,), one has a: D, - M¢
together with

a(X,, X5, ... X,) € MZ,
a(Xl,Xz,...,Xn.Z):a(Xl,Xz,...,Xn)*Z, (Al)
for any z in Z(M{) and any X;,....X, €D,

Define now the linear space Q" := @7_ Q" (D,), with
Q°(®,) = M. Then (Q°,x) is an associative algebra
where the product of forms is defined for any a € Q”(D,),
peQID,) by axpeQrti(D,) with

(axp) Xy, ... X i)
1 .
- [P Z (_I)SIgn(S)a(Xs(l)a "'7XS([7))
P ee(prq)
* ﬁ( s(p+1)» Xs(q))' (A2)

In (A2), &(p + g) is the symmetric group of a set of
p + g elements, sign(s) is the signature of the permutation
s. Notice that a x g # (=1)°@A)p x a, where (a) is
the degree of a. Now the triple (Q°, x,d) is a graded
differential algebra where the differential d satisfies

d: Q7(D,) » Q*(D,), p=0,....,(d—1) and
(da)(Xl,Xz,...,Xerl)
p+1 .
= (D)X (@(Xp. o Vi X)), (A3)

i=1

where the symbol V; indicates the omission of X;. The
differential satisfies d*> =0 and the following twisted
Leibniz rule
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d(axp) =dax & (B) + (1)@ (a) xdp,  (Ad)
where &%(a) is defined for any x€R and any
a € Q'(D,) by & (a) € Q"(D,) with & (a) (X, ... X,) =
E > (a(Xy, ..., X))

The inclusion of the BRST operation s, i.e., the Slavnov
operation, in the above framework amounts to introduce
bigraded forms which carry a ghost number in addition of
the form degree. One has now d: Q79(D,) — QF19(D,)

and s50:Q79(D,) - QIT(D,) where Q79(D,) is the
space of p forms with ghost number g. The Slavnov
operation s, acts as a graded but untwisted derivation with
the Leibniz rule so(p x ) = so(p) x 1+ (=1)PPlp x 50(17)
for any p,n€Q(D,), where |p|=8(p)+g with
Q(D,) =P, ,Q27(D,), while (A4) still holds with how-
ever &(a) replaced by |a|. For more mathematical details,
see [37].
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