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We consider a gauge theory on the 5D κ-Minkowskiwhich can beviewed as the noncommutative analog of
aUð1Þ gauge theory.We show that the Hermiticity condition obeyed by the gauge potentialAμ is necessarily
twisted. Performing a Becchi-Rouet-Stora-Tyutin gauge-fixing with a Lorentz-type gauge, we carry out a
first exploration of the one loop quantum properties of this gauge theory.We find that the gauge-fixed theory
gives rise to a nonvanishing tadpole for the time component of the gauge potential, while there is no
nonvanishing tadpole 1-point function for the spatial components of Aμ. This signals that the classical
vacuum of the theory is not stable against quantum fluctuations. Possible consequences regarding the
symmetries of the gaugemodel and the fate of the tadpole in other gauges of noncovariant type are discussed.
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I. INTRODUCTION

It is currently believed that noncommutative structures
are likely to show up at the Planck scale [1,2], where
quantum gravity effects become sizeable [3–5] hence
rendering questionable the standard description of space-
time as a smooth manifold to reconcile quantum mechanics
and gravity. Among the noncommutative (quantum) spaces
considered so far, the κ-Minkowski space [6–8] has
received a considerable attention for more than two decades
[9] as it appears to be a good candidate for a quantum space
underlying the description of quantum gravity at least in
some regime [3–5]. Numerous related works focus on
algebraic aspects [9] while more phenomenological inves-
tigations resulted in a huge literature in connection in
particular with doubly special relativity [10–14], relative
locality [15–17] or with the quest of possible detectable
effects [3–5]. The simplest description of the (d-dimen-
sional) κ-Minkowski space Md

κ is to view it as the
enveloping algebra of the Lie algebra of noncommutative
coordinates defined by ½x0; xi� ¼ i

κ xi, ½xi; xj� ¼ 0, for
i; j ¼ 1;…; ðd − 1Þ, where κ is the deformation parameter
with mass dimension 1, often identified with the Planck
mass in four dimensions. The bicrossproduct structure of
the κ-Poincaré Hopf algebra Pd

κ exhibits clearly its role as

coding the quantum symmetries ofMd
κ , as first pointed out

in [8], this latter being the dual of the subalgebra of Pd
κ

generated by the so-called deformed translations.
Md

κ can be conveniently modeled [18,19], by an
associative � algebra equipped with the following star
product and involution1

ðf ⋆ gÞðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

fðx0 þ y0; x⃗Þgðx0; e−p0=κx⃗Þ;

ð1:1Þ

f†ðxÞ ¼
Z

dp0

2π
dy0e−iy0p

0

f̄ðx0 þ y0; e−p
0=κx⃗Þ; ð1:2Þ

for any functions f, g in a suitable multiplier algebra of the
algebra of Schwartz functions in Rd (f̄ is the complex
conjugate of f). It will be also denoted hereafter by Md

κ.
2

The construction basically combines the essential features of
the Weyl-Wigner quantization map with properties of the
convolution algebra of the affine group R ⋉ Rðd−1Þ. It is
nothing but the extension of the old construction related to
the Moyal product which used the notion of twisted
convolution related to the Heisenberg group [20] (instead
of the affine group) aiming to rigorously formalize the
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1Conventions: latin indices i; j; � � � ¼ 1; 2;…; ðd − 1Þ refer to
space coordinates. Timelike quantities are indexed by 0.
We set x ≔ ðxμÞ ¼ ðx0; x⃗Þ, x:y ≔ xμyμ ¼ x0y0 þ x⃗ y⃗. The
Fourier transform of f ∈ L1ðRdÞ is defined by ðFfÞðpÞ ≔R
ddxe−iðp0x0þp⃗:x⃗ÞfðxÞ with inverse F−1.
2This algebra involves the smooth functions with polynomial

bounds as well as all their derivatives, such that their inverse
Fourier transform has compact support in the x0 direction [18].
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correspondence between classical and quantum observables
initially introduced by Weyl [21] throughout the (Weyl-
Wigner) quantization map. Notice that a somewhat similar
extension to the case of R3

λ , a deformation of R3, based
however on the SUð2Þ group algebra, underlies the studies
of quantumproperties of field theories on this latter quantum
space [22–24].
The star product (1.1) is especially convenient for

practical purpose, a fact exploited in recent explorations
of quantum properties of κ-Poincaré invariant scalar field
theories on M4

κ [19,25,26]. The κ-deformed relativistic
symmetries of Md

κ can be actually viewed as coded in the
κ-Poincaré algebra. Hence, requiring κ-Poincaré invariance
is physically natural. It is known [18,19] that this invariance
is achieved provided the action is of the form

R
ddxLwhere

L is some Lagrangian density and
R
ddx is the simple

Lebesgue measure which however is no longer cyclic with
respect to the star product (1.1), since one has for any
f; g ∈ Md

κ

Z
ddxðf ⋆ gÞðxÞ ¼

Z
ddxððEd−1 ⊳ gÞ ⋆ fÞðxÞ; ð1:3Þ

where Ed−1, called the modular twist, is defined by

ðE ⊳ fÞðxÞ ¼ f

�
x0 þ

i
κ
; x⃗

�
; E ¼ e−P0=κ; ð1:4Þ

with ðPμ⊳fÞðxÞ¼−i∂μfðxÞ, μ¼0;…;d−1. Equation (1.3)
defines a twisted tracewith respect to (1.1) which, as pointed
out in [19,27,28], promotes the action to the status of Kubo-
Martin-Schwinger (KMS) weight [29,30] a new property
which replaces the lost cyclicity.3 The loss of cyclicity
complicates a priori the construction of a suitable gauge-
invariant action for a κ-Poincaré invariant gauge theory,
starting from any standard (untwisted) noncommutative
differential calculus. Indeed, the usual compensation
between unitary gauge factors in the noncommutative gauge
transformation of the curvature Fμν, which takes the generic
form Fg

μν ¼ g† ⋆ Fμν ⋆ g, g† ⋆ g ¼ g ⋆ g† ¼ 1, cannot
occur [33], due to the twisted trace relation (1.3). This
prevents the construction of a gauge invariant polynomial
action depending on the curvature. For a review on earlier
algebraic and field theoretic developments on gauge theories
on κ-Minkowski space and related problems, see [34].
As shown in [33], the troublesome effect of the modular

twist can be neutralized, leading to a κ-Poincaré invariant
and gauge invariant action with physically suitable com-
mutative limit. This happens thanks to the existence of a
unique twisted noncommutative differential calculus based

on a family of twisted derivations related to the deformed
translations of the κ-Poincaré algebra [33]. This forces the
gauge transformations of the curvature to be twisted thus
allowing now the unitary gauge factors to balance each
other, which actually occurs for a unique value of d, namely
d ¼ 5 [33]. This comes from the fact that the modular twist
(1.4) depends on the dimension d. Otherwise stated,
the main physical prediction is that the coexistence of
κ-Poincaré invariance and gauge invariance implies the
existence of one extra dimension. For a first exploration of
phenomenological features of the four-dimensional theory
obtained from compactification scenarios, see [35].
Notice that the analysis carried out in [33] used the

notion of noncommutative connection on a right module E.
It was assumed to be one copy of the algebra M5

κ in order
to describe a noncommutative analog of a Uð1Þ Yang-Mills
theory while the action of the algebraM5

κ on E was chosen
to be m ⊲ a ¼ m ⋆ a, for any m ∈ E, a ∈ M5

κ , owing to
E ≃M5

κ . One may wonder if a suitable choice for this
action would lead to another value for d, since the
corresponding gauge transformations should be modified.
Algebraic constraints from right module structure together
with physical requirement lead to actions of the form
m ⊲ a ¼ m ⋆ ϕðaÞ where ϕ is any regular automorphism
of the algebra, i.e., ðϕðaÞÞ† ¼ ϕ−1ða†Þ. Again, one finds
[36] that d ¼ 5 is the only allowed value for which the
κ-Poincaré invariant gauge theories exist. Thus, occurrence
of one extra dimension seems to be a rather robust feature
of these gauge theories on κ-Minkowski, which motivates
further investigation on their quantum properties.
This is the purpose of the present paper which will

exploit the Becchi-Rouet-Stora-Tyutin (BRST) symmetry
linked to the twisted gauge symmetry elaborated in [37]. As
a first step in the investigation, we will compute the one-
loop 1-point (tadpole) function for this five-dimensional
noncommutative gauge theory without matter. We will also
pay attention to the Hermiticity condition obeyed by the
gauge potential. We find that this latter Hermiticity con-
dition is twisted. Furthermore, we find that the gauge-fixed
theory gives rise to a nonvanishing tadpole for the time
component of the gauge potential, while there is no
nonvanishing tadpole 1-point function for the spatial
components of Aμ. This signals that the classical vacuum
of the theory is not stable against quantum fluctuations.
Some possible consequences from the viewpoint of sym-
metries, namely Lorentz symmetry and noncommutative
gauge symmetry are then discussed.
The paper is organized as follows. In Sec. II A, we first

collect the useful properties which will be needed in the
course of the analysis, including essential features of the
twisted differential calculi singled out in [33,35]. We then
show that the Hermiticity condition affecting the (non-
commutative analog of the) gauge potential Aμ becomes
twisted. In Sec. II B, we present the BRST gauge-fixing of
the classical action. Section III is centered on the one-loop

3KMS weights which are basically KMS states up to a
normalization, are linked to the Tomita group of modular auto-
morphisms [31] whose generator here is Ed−1. For discussions on
physical consequences of KMS property, see [32].
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computation of the tadpole 1-point function for the gauge
potential. We find that the ghost-gauge vertex and the
trilinear vertex of the gauge-fixed action give nonvanishing
contributions only to the 1-point function for A0, the time
component of Aμ. The tadpole function for the spatial
components of Aμ are all zero. In Sec. IV, we discuss the
results and conclude.

II. GAUGE THEORIES ON
κ-MINKOWSKI SPACE

A. Basic features of the classical action

The classical gauge-invariant action is given by [33]

Scl ¼
1

4

Z
d5xðFμν ⋆ F†

μνÞðxÞ; ð2:1Þ

where the curvature can be expressed as

Fμν ¼ E−2γ ⊳ ðXμAν − XνAμÞ þ ðE1−γ ⊳ AμÞ ⋆ ðEγ ⊳ AνÞ
− ðE1−γ ⊳ AνÞ ⋆ ðEγ ⊳ AμÞ; ð2:2Þ

in which γ is a real parameter and Aμ denotes as usual (the
noncommutative analog of) the gauge potential which is
assumed in the following to be real valued. Notice that in
five dimensions the action (2.1) should normally be
rescaled by a dimensionful parameter 1

g2 where g
2 has mass

dimension −1. As this parameter is not essential in the
following discussion, we will omit it.
In (2.1), the Xμs are the generators of an Abelian Lie

algebra of twisted derivations denoted by Dγ. These are
built from the so-called deformed translations which
generate a sub-Hopf algebra of the κ-Poincaré algebra.
The twisted derivations are given by

X0 ¼ κEγð1 − EÞ; Xi ¼ EγPi; i ¼ 1; 2; 3; 4; ð2:3Þ

and satisfy the following twisted Leibniz rule

Xμða⋆bÞ¼XμðaÞ⋆ðEγ⊳bÞþðEγþ1⊳aÞ⋆XμðbÞ; ð2:4Þ

for any elements a, b ofM5
κ . The twisted derivations ofDγ

generate the twisted noncommutative differential calculus
underlying the analysis. The corresponding relevant prop-
erties are collected in the Appendix. For general algebraic
properties of (untwisted) derivation-based differential cal-
culus, see e.g., [38] and references therein.
Note that interesting twisted differential calculi for

κ-Minkowski spaces stemming from the use of twist
deformation formalism applied to Abelian and Jordanian
twists are considered and discussed in [34]. These are not
relevant here. Besides, interesting bicovariant (untwisted)
differential calculi on κ-Minkowski spaces [39,40] cannot

give rise to κ-Poincaré invariant and gauge invariant action
functionals as discussed in [33].
In this paper, we will use a twisted version of the notion

of noncommutative connection on a right module overM5
κ,

introduced in [33]. The main mathematical properties of the
notion of untwisted connection on a right (or left) module
are characterized in details in [38] and further developed in
[41–43]). Notice that untwisted connections on the right
module underly the pioneering works [44–46].
Recall that the gauge group U is defined as the set of

automorphisms of the right module overM5
κ, denoted by E,

assumed here to be one copy of M5
κ , i.e., E ≃M5

κ , which
are required to preserve the canonical Hermitian structure

hðm1; m2Þ ¼ m†
1 ⋆ m2 ð2:5Þ

for any m1; m2 ∈ M5
κ. It is a simple matter of algebra to

find that

U ¼ fg ∈ M5
κ ; g ⋆ g† ¼ g† ⋆ g ¼ Ig; ð2:6Þ

which can be viewed as the noncommutative analog of the
Uð1Þ group.
Now, recall that the twisted connection is defined [33] as

a map ∇Xμ
∶ E → E, for any Xμ ∈ Dγ, fulfilling the

following properties:

∇XμþX0
μ
ðmÞ ¼ ∇Xμ

ðmÞ þ∇X0
μ
ðmÞ; ð2:7Þ

∇z:Xμ
ðmÞ ¼ ∇Xμ

ðmÞ ⋆ z; ð2:8Þ

∇Xμ
ðm ⋆ fÞ ¼ ∇Xμ

ðmÞ ⋆ ðEγ ⊳ fÞ þ ðEγþ1 ⊳ mÞ ⋆ XμðfÞ;
ð2:9Þ

for any m ∈ E ≃M5
κ, Xμ; X0

μ ∈ Dγ, z ∈ ZðM5
κÞ (the

center of M5
κ), f ∈ M5

κ . In (2.9) the factor ðEγþ1 ⊳ mÞ
in the second term must be understood as a morphism
β̃∶ E → E acting on the module as β̃ðmÞ ¼ Eγþ1 ⊳ m for
any m in E ≃M5

κ . Set

Aμ ≔ ∇Xμ
ðIÞ; ∇μ ≔ ∇Xμ

: ð2:10Þ

Then, observe that the noncommutative analog of the
“gauge potential” Aμ defined above and verifying

∇μðfÞ ¼ Aμ ⋆ Eγ ⊳ f þ XμðfÞ ð2:11Þ

obtained by setting m ¼ I in (2.9), does not generally
satisfy the usual relation A†

μ ¼ Aμ. This is a mere conse-
quence of the fact that the Xμs are twisted and are not real
derivations. Indeed, one has

ðXμðfÞÞ† ¼ −E−2γ−1 ⊳ ðXμðf†ÞÞ ≠ Xμðf†Þ: ð2:12Þ
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In fact, one finds after standard algebraic calculations that
Aμ satisfies

Aμ ¼ E2γþ1 ⊳ A†
μ; ð2:13Þ

together with the following twisted Hermiticity condition
for the connection

hðE−2γ−1⊳ i∇Xμ
ðm1Þ;Eγ ⊳m2ÞþhðE−γ−1⊳m1;i∇Xμ

ðm2ÞÞ
¼ iXμhðm1;m2Þ; ð2:14Þ

which holds true for any Xμ ∈ Dγ, m1; m2 ∈ M5
κ .

Note that somewhat similar deformed Hermiticity con-
dition for noncommutative connections also appeared
within the framework of ε derivations giving rise to the
notion of ε connections [43].
It is known that Hermitian connections play a central role

in the physics described by (commutative) Yang-Mills
theories. The present situation obviously deals with a
noncommutative analog of a Uð1Þ Yang-Mills theory.
Accordingly, we assume from now on that the twisted
Hermitian condition for the connection (2.13) holds true.
To simplify the analysis, we will further assume that

γ ¼ 0; ð2:15Þ

which will not alter the conclusions of this paper.
It will be useful in the sequel to introduce the 1-form

connection A and its associated curvature 2-form F. The
main properties of the corresponding noncommutative
differential calculus and the related notations introduced
in [33] are collected for convenience in the Appendix. This
provides a convenient formalism to deal with the BRST
symmetry.
We will introduce below the material used in the ensuing

analysis. The curvature 2-form F ∈ Ω2ðD0Þ is easily found
to be given by

F ¼ dAþ ððE ⊳ AÞ × AÞ; ð2:16Þ

where A ∈ Ω1ðD0Þ, × denotes the associative product of
forms and d is the twisted differential with

d2 ¼ 0 ð2:17Þ

satisfying the twisted Leibniz rule

dðω × ηÞ ¼ dω × ηþ ð−1ÞδðωÞðE ⊳ ωÞ × dη ð2:18Þ

for any ω; η ∈ Ω•, where δðωÞ is the form degree of ω.
Recall that one has AðXμÞ ¼ Aμ and FðXμ; XνÞ ¼ Fμν.
In (2.16), (2.18) and in the sequel of the discussion,

the action of E on the forms must be understood as

ðE ⊳ ωÞðX1;…; XpÞ ¼ ðE ⊳ ðωðX1;…; XpÞÞÞ for any
ω ∈ Ω•, i.e., E acts on the “components of the forms.”
One can verify that the classical action is invariant under

the gauge transformations

Ag
μ ¼ ðE ⊳ g†Þ ⋆ Aμ ⋆ gþ ðE ⊳ g†Þ ⋆ XμðgÞ; ð2:19Þ

Fg
μν ¼ ðE2 ⊳ g†Þ ⋆ Fμν ⋆ g; ð2:20Þ

or equivalently on the connection 1-form and curvature
2-form

Ag ¼ ðE ⊳ g†Þ × A × gþ ðE ⊳ g†Þ × dg; ð2:21Þ

Fg ¼ ðE2 ⊳ g†Þ × F × g; ð2:22Þ

which hold true for any g of the gauge group U.

B. BRST symmetry and the gauge-fixed action

The BRST symmetry associated with (2.19)–(2.22) is
defined by the following structure equations [37]

s0A ¼ −dC − ðE ⊳ CÞ × A − A × C; ð2:23Þ

s0C ¼ −C × C; ð2:24Þ

so that the BRST transformation of the curvature 2-form is

s0F ¼ F × C − ðE2 ⊳ CÞ × F; ð2:25Þ

and one has s20 ¼ 0. Here, C is the Fadeev-Popov ghost, a
real-valued field with ghost number þ1 while s0 is the
Slavnov operation associated with the gauge transforma-
tions (2.19), (2.20), whose action on any field increases its
ghost number by þ1. The relevant technical materials
needed in the ensuing discussion are collected in the
Appendix.
The transformations of the components are easily found

to be given by

s0Aμ ¼ XμðCÞ − ðE ⊳ CÞ ⋆ Aμ þ Aμ ⋆ C; ð2:26Þ

s0C ¼ −C ⋆ C; ð2:27Þ

s0Fμν ¼ Fμν ⋆ C − ðE2 ⊳ CÞ ⋆ Fμν ð2:28Þ

upon using ðA×CÞðXμÞ¼−Aμ⋆C, ðC×AÞðXμÞ¼C⋆Aμ,
ðdCÞðXμÞ ¼ −XμðCÞ. Furthermore, one can verify that

s0Scl ¼ 0: ð2:29Þ

Recall that a suitable framework encompassing the
differential calculus and the BRST symmetry is obtained
by introducing a bigraded differential calculus. For more
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mathematical details relevant to the present situation,
see [37].
In particular, s0 acts as an untwisted graded derivation.

Namely, it satisfies the following Leibniz rule

s0ðω × ηÞ ¼ s0ω × ηþ ð−1Þjωjω × s0η ð2:30Þ

for any bigraded forms ω; η ∈ Ω̂ ¼ ⨁p;qΩp;qðD0Þ, where
jωj denotes the total degree of ω defined as the sum of the
form degree δðωÞ and the ghost number of ω. Accordingly,
the Leibniz rule for d (2.18) still holds for any bigraded
forms ω; η ∈ Ω̂ with however δðωÞ replaced by jωj.
Notice by the way that one should have C ¼ C†,

stemming from the fact that s0 can be viewed as a
Grassmann version of the infinitesimal gauge transforma-
tions. This, combined with the Hermiticity relation (2.13)
together with (2.23) yields s0ðA†Þ ¼ ðs0ðAÞÞ†.
The BRSToperation s0 generates the functional Slavnov

identity which serves to control the UV behavior of the
action Scl after its gauge fixing. This latter is obtained by
adding a BRST-exact term. A convenient gauge fixing is
given by

S ¼ Scl þ s0

Z
d5xðC̄† ⋆ ðE−4 ⊳ XμðAμÞÞ; ð2:31Þ

supplementing theBRST structure equations (2.26)–(2.28) by

s0C̄† ¼ b†; ð2:32Þ

s0b† ¼ 0; ð2:33Þ

where C̄ (b) is the antighost (Stückelberg) real-valued field
with ghost number −1 (0). A simple calculation yields

S ¼ Scl þ
Z

d5xðb:XμðAμÞ þ C̄:X2ðCÞ

− C̄:XμððE ⊳ CÞ ⋆ Aμ − Aμ ⋆ CÞÞ; ð2:34Þ

where we set X2 ¼ XμXμ and we used the twisted trace
property (1.3) for

R
d5x together with the useful identity

Z
d5xðf ⋆ g†ÞðxÞ ¼

Z
d5xfðxÞ:ḡðxÞ: ð2:35Þ

The quadratic part of the action defines the kinetic terms
for the gauge potential and the ghosts. It is given by

Skin ¼
Z

d5x
1

2
AμðX2δμν − XμXνÞAν þ C̄:X2ðCÞ; ð2:36Þ

where the term involving Aμ is easily obtained upon using
ha; XμðbÞi ¼ hXμðaÞ; bi for any a; b ∈ M5

κ where

ha; bi ≔
Z

d5xa† ⋆ b ð2:37Þ

is the Hermitian product introduced in [19].
Performing the functional integration over the b field in

the generating functional of the Green functions enforces
the constraint XμðAμÞ ¼ 0 everywhere in the gauge-fixed
action (2.34). Accordingly, the kinetic terms for the gauge
potential and the ghosts are, respectively, given by

SkinðAÞ ¼
1

2

Z
d5xd5yAμðxÞKðx − yÞAμðyÞ; ð2:38Þ

SkinðC̄; CÞ ¼
Z

d5pd5qC̄ðxÞKðx − yÞCðyÞ; ð2:39Þ

with

Kðx − yÞ ¼
Z

d5peipðx−yÞTðpÞ ð2:40Þ

in which

TðpÞ ¼ ðp⃗2 þ κ2ð1 − e−p0=κÞ2Þ: ð2:41Þ

Notice that Kðx − yÞ ≠ Kðy − xÞ which simply comes
from the exponential e−p0=κ in the second term of (2.41) so
that TðpÞ ≠ Tð−pÞ. It is convenient to reexpress (2.38) as

SkinðAÞ ¼
1

2

Z
d5xd5yAμðxÞSðx − yÞAμðyÞ; ð2:42Þ

with

Sðx − yÞ ¼ 1

2

Z
d5peipðx−yÞðTðpÞ þ Tð−pÞÞ: ð2:43Þ

The trilinear gauge potential interaction can be written as

SAAA¼hðXμAν−XνAμÞ†;ððE⊳AμÞ⋆Aν− ðE⊳AνÞ⋆AμÞ†i
þc:c: ð2:44Þ

The corresponding vertex function can be read off
from [we use the obvious notation for the momenta:
p ¼ ðp0; p⃗Þ]

SAAA ¼
Z

d5pd5qd5rAμðpÞAνðqÞAνðrÞVA
μ ðp; q; rÞ

× δðp0 þ q0 þ r0Þ ð2:45Þ

with

VA
μ ðp; q; rÞ ¼ Qμðq0; q⃗Þðe−3p0=κδðp⃗e−p0=κ þ q⃗e−p0=κ þ r⃗Þ

− e−3r0=κδðp⃗þ q⃗e−r0=κ þ r⃗e−r0=κÞÞ; ð2:46Þ
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where

Qμðq0; q⃗Þ ¼ ðκð1 − e−q0=κÞ; qiÞ: ð2:47Þ

The trilinear gauge-ghost interaction can be cast into the
form

SACC̄¼
Z

d5xC̄ðxÞ:ððE⊳AμÞ⋆XμðCÞ−ðE⊳XμðCÞÞ⋆AμÞ;

ð2:48Þ

where use has been made of the gauge function XμAμ ¼ 0.
After some algebra, it can be put into the form [again we
use the obvious notation for the momenta: p ¼ ðp0; p⃗Þ]

SACC̄ ¼
Z

d5pd5qd5rC̄ðpÞAμðqÞCðrÞVϕπ
μ ðp; q; rÞ

× δðp0 þ q0 þ r0Þ; ð2:49Þ

with

Vϕπ
μ ðp; q; rÞ ¼ Qμðr0; r⃗Þðe−q0=κδðp⃗þ q⃗þ r⃗e−q0=κÞ

− e−r0=κδðp⃗þ r⃗þ q⃗e−r0=κÞÞ; ð2:50Þ

where Qμ is still defined by (2.47).
One easily verifies that both vertex functions vanish in

the commutative limit, which is consistent with the usual
electrodynamics for which ghosts decouple.

III. COMPUTATION OF THE
1-POINT FUNCTION

A. Perturbative setup

Introduce the generating functional of the connected
Green functions WðJ; η̄; ηÞ defined by

eWðJ;η̄;ηÞ ¼
Z

dAdC̄dCe−ðSþSsourcesÞ; ð3:1Þ

where S is given by (2.34) and J; η̄; η are as usual sources to
be defined just below. The part of the action relevant for the
ensuing calculation involves the kinetic part together with
the cubic vertices. We write the source term as

Ssources ¼
Z

d5xAμðxÞJμðxÞþ η̄ðxÞCðxÞþ C̄ðxÞηðxÞ; ð3:2Þ

where J, η̄, η are sources associated, respectively, to Aμ, C,
C̄ with respective ghost numbers 0;−1, 1.
Recall that functional derivatives obey obvious graded

Leibniz rules with grading defined by the ghost number.
Besides, Green functions involving ghost fields are gen-
erated by the action on (3.1) of functional derivatives δ

δη̄ and
δ
δη, acting, respectively, from left and right. Namely, one has

δ

δη̄ðxÞ e
R

d5yη̄ðyÞCðyÞþC̄ðyÞηðyÞ ¼ CðxÞe
R

d5yη̄ðyÞCðyÞþC̄ðyÞηðyÞ;

ð3:3Þ

δ

δηðxÞ e
R

d5yη̄ðyÞCðyÞþC̄ðyÞηðyÞ ¼ e
R

d5yη̄ðyÞCðyÞþC̄ðyÞηðyÞC̄ðxÞ:

ð3:4Þ

The perturbative expansion is generated by the following
functional relation

WðJ; η̄;ηÞ¼W0ðJ; η̄;ηÞ
þ lnð1þe−W0ðJ;η̄;ηÞ½e−Sint −1�eW0ðJ;η̄;ηÞÞ ð3:5Þ

up to an unessential additive constant, where W0ðJ; η̄; ηÞ
denotes the free generating functional of the connected
Green functions. It is given by

W0ðJ; η̄; ηÞ ¼
Z

d5xd5y

�
1

2
JμðxÞS−1ðx − yÞJμðyÞ

þ η̄ðxÞK−1ðx − yÞηðyÞ
�
; ð3:6Þ

with

S−1ðx − yÞ ¼ 2

Z
d5peipðx−yÞðTðpÞ þ Tð−pÞÞ−1; ð3:7Þ

K−1ðx − yÞ ¼
Z

d5peipðx−yÞT−1ðpÞ; ð3:8Þ

where TðpÞ still given by (2.41).
In (3.5), one has

Sint ¼ Sint

�
δ

δJ
;
δ

δη̄
;
δ

δη

�

¼ SAAA

�
δ

δJ

�
þ SACC̄

�
δ

δJ
;
δ

δη̄
;
δ

δη

�
; ð3:9Þ

which is obtained by replacing each field in SAAA and SACC̄,
respectively, (2.46), (2.49), by its associated functional
derivative. We did not explicitly write the quartic inter-
action since it will not generate contributions to the tadpole
1-point function.

B. The tadpole at one-loop

The one-loop contribution to the 1-point tadpole function
can be extracted from
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WðJ; η̄; ηÞ ¼ W0ðJ; η̄; ηÞ

− e−W0ðJ;η̄;ηÞSint

�
δ

δJ
δ

δη̄
;
δ

δη

�
eW0ðJ;η̄;ηÞ: ð3:10Þ

The relevant part ofWðJ; η̄; ηÞ corresponding to the one-
loop ghost contribution to the 1-point Green function for
Aμ, denoted hereafter by Wϕπ

1 ðJÞ, is obtained by simply
combining (2.49), (2.50), (3.6), (3.9) with (3.10). A
standard calculation yields

Wϕπ
1 ðJÞ ¼

Z
d5pd5qd5rd5xd5yd5zd5we−iðpxþqyþrzÞ

× K−1ðz − xÞS−1ðy − wÞJμðwÞδðp0 þ q0 þ r0Þ
× Vϕπ

μ ðp; q; rÞ; ð3:11Þ

where Vϕπ
μ ðp; q; rÞ is still given by (2.50). By further

making use of the Legendre transform δW
δJμðxÞ ¼ AμðxÞ which

at the first order, relevant here, reduces to

AμðxÞ ¼
Z

d5yS−1ðx − yÞJμðyÞ; ð3:12Þ

one readily derives from (3.11), combined withWϕπ
1 ðJÞ, the

corresponding ghost contribution to the one-loop effective
action, denoted by Γϕπ

1 ðAÞ. By taking into account the
various delta functions occurring in Wϕπ

1 ðJÞ, we find that
the expression reduces to

Γϕπ
1 ðAÞ ¼

Z
d5qδðqÞAμðqÞIμ; ð3:13Þ

in which

Iμ ¼
Z

d5s
1 − e3s0=κ

s⃗2 þ κ2ð1 − e−s0=κÞ2 ×QμðsÞ: ð3:14Þ

From (3.14), one immediately infers that the spatial
components of Iμ vanish since the following relationR
ds⃗ si

s⃗2þM2 ¼ 0, i ¼ 1;…; 4 (M2 is some positive quantity)
holds true. Hence, one concludes that the ghosts only
contribute to the 1-point function for A0. One obtains finally

Γϕπ
1 ðAÞ ¼

Z
d5xA0ðxÞI0: ð3:15Þ

Notice that one can easily verify that limκ→∞ I0 ¼ 0

hence signaling the vanishing of Γϕπ
1 ðAÞ at the commutative

limit as expected.
The relevant part ofWðJ; η̄; ηÞ corresponding to the one-

loop Aμ contribution to the 1-point Green function for Aμ,
denoted hereafter by WA

1 ðJÞ, can be computed in a similar
way. We find

WA
1 ðJÞ ¼

Z
d5pd5qd5rd5xd5yd5zd5we−iðpxþqyþrzÞ

× δðp0 þ q0 þ r0ÞVA
μ ðp; q; rÞ

× JμðwÞð5S−1ðx − wÞS−1ðy − zÞ
þ S−1ðy − wÞS−1ðz − xÞ
þ S−1ðz − wÞS−1ðx − yÞÞ: ð3:16Þ

Upon using (3.12), the corresponding contribution of the
gauge potential to the one-loop effective action, denoted by
Γϕπ
1 ðAÞ can be written as a sum of three terms

ΓA
1 ðAÞ ≔ Γ11ðAÞ þ Γ12ðAÞ þ Γ13ðAÞ ð3:17Þ

with

ΓA
11ðAÞ ¼

Z
dθμS−1ðz − xÞAμðyÞ; ð3:18Þ

ΓA
12ðAÞ ¼

Z
dθμS−1ðx − yÞAμðzÞ; ð3:19Þ

ΓA
13ðAÞ ¼ 5

Z
dθμS−1ðy − zÞAμðxÞ; ð3:20Þ

where

dθμ ≔ d5pd5qd5rd5xd5yd5ze−iðpxþqyþrzÞ

× δðp0 þ q0 þ r0ÞVA
μ ðp; q; rÞ: ð3:21Þ

The first contribution ΓA
11ðAÞ vanishes. Indeed, from

simple manipulations of the various delta functions occur-
ring in ΓA

11ðAÞ, one easily realizes that the contribution to
A0 vanishes, due to the fact basically that one factor
∼δðq0ÞQ0ðqÞ appears in the expression which upon inte-
grating over q0 gives 0. For the spatial contributions, one
arrives at

ΓA
11ðAÞ ∼

Z
d5qds0d5yAiðyÞqie−iqyδðq0Þ

× ðS−1ð−q⃗Σðs0Þ; q0Þ − S−1ðq⃗Σðs0Þ; q0ÞÞ
¼ 0; ð3:22Þ

where the last equality comes from the fact that S−1ðpÞ is
an even function of p⃗. Hence

ΓA
11ðAÞ ¼ 0: ð3:23Þ

The second contribution ΓA
12ðAÞ can be cast into the form

ΓA
12ðAÞ ¼

Z
d5xAμðxÞJ μ ð3:24Þ
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with

J μ ¼
Z

d5s2QμðsÞ
e3s0=κ − 1

TðsÞ þ Tð−sÞ : ð3:25Þ

By observing that J i ¼ 0, i ¼ 1;…; 4, one concludes
that

ΓA
12ðAÞ ¼

Z
d5xA0J 0: ð3:26Þ

Finally, the last contribution ΓA
13ðAÞ yields

ΓA
13ðAÞ ¼ −5

Z
d5xAμðxÞJ μ ¼ −5

Z
d5xA0J 0: ð3:27Þ

From (3.23), (3.26), (3.27) and (3.15), one concludes
that the contribution of the 1-point function for the gauge
potential is given by

Γ1ðAÞ ¼
Z

d5xA0ðxÞðI0 − 4J 0Þ; ð3:28Þ

which, in view of (3.14) and (3.25), is nonzero.
Hence, only the time component A0 of the gauge

potential has a nonzero 1-point function at the one-loop
order.

IV. DISCUSSION

We have considered a gauge theory on the (necessarily
5D) κ-Minkowski space which can be viewed as the
noncommutative analog of a Uð1Þ gauge theory. First,
we have shown in Sec. II A that the Hermiticity condition
obeyed by the gauge potential Aμ is twisted. Then, we have
carried out a first exploration of the quantum properties of
this gauge theory suitably gauge-fixed using the twisted
BRST symmetry framework elaborated in [37]. Assuming
that Aμ is real valued and working at the one-loop order,
we have find that the gauge-fixed theory gives rise to a
nonvanishing tadpole for the Aμ corresponding to the
occurrence in the 1-loop effective action of a term linear
in Aμ of the form

Γ1ðAÞ ∼
Z

d5xσμAμðxÞ ¼
Z

d5xKðκÞA0ðxÞ; ð4:1Þ

where the diverging quantity KðκÞ can be read of from
(3.28) and must then be suitably regularized.
Had we have relaxed the assumption on Aμ to be real

valued,4 thus starting from a complex-valued Aμ, then we
would have find again a nonvanishing tadpole. This can be
verified from a computation similar to the one presented in

Sec. III. Indeed, to compute the 1-point contribution for Aμ,
simply replace everywhere Sðx − yÞ defined in (2.42),
(2.43) by Kðx − yÞ (2.40), (2.41), with the relevant trilinear
vertex now given by

SAAA ¼
Z

d5pd5qd5rĀμðpÞAνðqÞĀνðrÞQμðqÞ

× VA
μ ðp; q; rÞδðp0 − q0 þ r0Þ

× ðe3p0=κδðp⃗ep0=κ − q⃗ep0=κ þ r⃗Þ
− e3r0=κδðp⃗ − q⃗er0=κ þ r⃗er0=κÞÞ; ð4:2Þ

and the gauge-ghost vertex unchanged, leading to
Γ1ðA; ĀÞ ∼

R
d5xA0ðxÞI0. One proceeds similarly for the

Āμ contribution.
Notice that the inclusion of fermions,5 obtained

by supplementing the action with the following gauge
invariant coupling

SF ¼
Z

d5xðψ†γ0 ⋆ E−1γμ∇μψÞðxÞ; ð4:3Þ

with ∇μψ ¼ Aμ ⋆ ψ þ XμðψÞ, does not change the conclu-
sion. This simply stems from the fact that the corresponding
fermionic contribution to the 1-point function identically
vanishes as in the commutative case, being proportional to
the trace of a single gamma matrix, which can be easily
verified by using the fermion propagatorwhose expression is
given by K−1

F ðx − yÞ ¼ R
d5xeipðx−yÞγμQμðpÞT−1ðpÞ.

The appearance of a nonzero tadpole at the 1-loop order
has already been evidenced in various classes of gauge
theories on quantum spaces. For instance, this shows up in
the massless gauge theory on R3

λ , a deformation of the 3D
space [47].
In the same way, a tadpole appears in a family of gauge

matrix models on the Moyal plane R2
θ [48]. Recall that in

these gauge models, the relevant field variable is a tensor
form, sometimes called the covariant coordinate, which is
the difference of two form connections, one of them having
a distinguished status.6 The corresponding (classical)
action functional is quadratic and quartic in the tensor
form but must be expanded around a symmetric vacuum
[50] in order to obtain a dynamically nontrivial model,
which generates an additional cubic vertex upon expansion.
This results in a nonzero tadpole so that a term linear in Aμ,
albeit absent at the classical order, is induced by quantum
fluctuations in the 1-loop effective action.
Note that in both cases, the relevant BRST symmetry is

untwisted. Note also that the analysis in [47] is based on a

4The commutative limit would however involve two gauge
potentials.

5Recall that the corresponding commutative limit would lead
to a nonrenormalizable model.

6This latter is the canonical gauge invariant connection rigidly
linked with the coordinates of the Moyal space. For more details,
see e.g., [41,49].
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temporal gauge, giving rise to a nonvanishing tadpole. We
will discuss more closely the consequences implied by the
use of such a temporal gauge at the end of this section.
The complicated vacuum structure [50] of the gauge

matrix models on 4D Moyal spaces R4
θ [49,51] forbids, so

far, their complete exploration at the quantum level. Note
however that a class of intensively studied gauge theories on
R4

θ [52–58], bearing a formal similarity with the (commu-
tative) Yang-Mills theories, do not produce 1-loop tadpoles.
This stems from the mere algebraic structure of the trilinear
gauge potential vertices which produces automatically van-
ishing tadpole contributions. Unfortunately, these noncom-
mutative gauge theories suffer from UV/IR mixing [59],
which thus likely precludes the achievement of their pertur-
bative renomalizability.7

At this stage, some comments are in order.
A nonvanishing tadpole is linked with a nonvanishing

1-point function, i.e. vacuum expectation value (VEV), for
the gauge potential, say hAμi ≠ 0, which may have some
noteworthy consequences as gauge symmetry breaking as
well as Lorentz symmetry breaking may occur. In the
present situation, the occurrence of the extra term Γ1ðAÞ in
the 1-loop effective action Γeff signals that the classical
vacuum of the theory is not stable against quantum
fluctuations. This can be traced back to the fact that the
term linear in Aμ induced by “radiative corrections”
obviously prevents the classical vacuum configuration
characterized by Aμ ¼ 0 to be an extremal point of Γeff

(i.e., it no longer verifies the equations of motion related to
Γeff ). Note that Γ1ðAÞ is not gauge (BRST) invariant and
that it seems unlikely possible to balance its gauge variation
by another variation of some other higher order terms
involved in Γeff suggesting that the classical symmetry is
broken.
Getting rid of the linear term in Aμ is achieved as usual

by expanding Γeff around the new vacuum Ãμ,
8 i.e., setting

Aμ ¼ Ãμ þ αμ in Γeff where the new field variable is αμ,
while the resulting (background) symmetry of the
expanded action should be presumably obtained from
the BRST operation (2.26), (2.27) combined with the field
expansion. Its full characterization would require to carry
out the complete 1-loop renormalization which is beyond
the scope of this paper.
Besides, we note that having hAμi ≠ 0 from (3.28) is

reminiscent of some instance in which a Lorentz symmetry
breaking does occur. Among the numerous models describ-
ing possible Lorentz violations (for a review, see for
instance [5] and references therein), some effective models
leading to a spontaneous Lorentz symmetry breaking [62]

have been considered for some time, see e.g., [63–66]. In
these models, defined either in flat space or coupled to a
gravitational field, a nonzero VEVof a vector field, mostly
obtained through the introduction of a suitable potential at
the classical level, triggers the Lorentz symmetry breaking
which may possibly exhibit some interplay with a kind of
generation of a gauge symmetry [67].
The gauge theory on κ-Minkowski space considered in

this paper bears at a first sight somewhat similar gross
features with the models mentioned above. However, it
differs in some respects. Indeed, one starts with a nonzero
VEVof a gauge potential, instead of a simple vector field.
This nonzero value is induced by radiative corrections and
is not present at the classical level. Besides, the gauge
theory under consideration is non local while the models
mentioned above are essentially local. Nevertheless, note
that the relevant field variable αμ obtained after achieving
the expansion of the effective action around the new
vacuum Ãμ is a vector field as being equal to the difference
of two connections.
It is instructive to notice that the expression (4.1) actually

depends on the gauge choice. This gauge dependence can
be made more apparent by choosing a one-parameter
family of “noncovariant” gauges involving the temporal/
Weyl gauge A0 ¼ 0 for a special value of the parameter. It is
worth recalling that this latter gauge choice generates some
difficulties when performed within commutative gauge
theories, stemming, for instance in QED, from the peculiar
momentum dependence of the gauge-fixed photon propa-
gator. Other noncovariant gauges are as well not free from
difficulties. However, some of these difficulties can be
(partly) overcome or circumvented. For technical details on
noncovariant gauges, see e.g., [68,69].
For our present purpose, it is convenient to start, instead

of (2.31), from the following gauge-fixing action

SGF ¼ s0

Z
d5x

�
C̄† ⋆ E−4 ⊳

�
λ

4
b − A0

��

¼
Z

d5xC̄

�
s0A0 þ b

�
λ

4
b − A0

��
; ð4:4Þ

where λ is a real parameter. The functional integration over
the Stückelberg field b yields

SGF ¼
Z

d5x−
1

λ
A2
0 þ C̄X0Cþ C̄ðA0 ⋆ C− E ⊳ C ⋆ A0Þ:

ð4:5Þ

By carrying out a computation similar to the one
presented in Sec. III B, one easily realizes that (4.5) gives
rise to a nonzero contribution to a tadpole for A0 of the

form (to be suitably regularized) Γϕπ
1 ðA0Þ ∼

R
d5xA0ðxÞ ×

ðR d5k Fðk0Þ
ð1−e−k0=κÞÞ where Fðk0Þ is a function whose exact

7Note that an interesting interpretation of the UV/IR mixing in
term of an induced gravity action has been presented in e.g.,
[60,61]. It takes place in a matrix formulation of the gauge
theories on Moyal space.

8Solving the equations of motion related to Γeff .
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expression is not needed here. But this latter contribution
cannot be balanced by the corresponding contribution
from the cubic self-interaction for the Aμ which is
easily found to be of the form ΓA

1 ðA0Þ ∼
R
d5xA0ðxÞ×

ðR d5kðQ0ðkÞK00ðkÞ þQiðkÞK0iðkÞÞÞ, where K00ðkÞ and
K0iðkÞ are the components of the gauge-fixed propagator
for Aμ.

9 Again, a suitable regularization is understood. In
view of the expressions for K00ðkÞ and K0iðkÞ, one obtains
a contribution proportional to the gauge parameter λ,
namely ΓA

1 ðA0Þ ∼ λ
R
d5xA0ðxÞJ, where J is some constant.

Hence, there is a nonvanishing tadpole for A0 in this gauge,

Γ1ðA0Þ ∼ Γϕπ
1 ðA0Þ þ λ

Z
d5xA0ðxÞJ: ð4:6Þ

Besides, there is no tadpole for the spatial components
of the gauge potential. To see that, one computes the
corresponding 1-point function Γ1ðAIÞ for a given compo-
nent I. Simple algebraic manipulations yield Γ1ðAIÞ∼R
d5xAIðxÞ×ðR d5kKI0ðkÞQ0ðkÞþKIjðkÞQjðkÞÞ in obvious

notations. But KI0ðkÞQ0ðkÞ and KIjðkÞQjðkÞ are linear in
the internal spatial momentum ki so that the corresponding
integrals in Γ1ðAIÞ vanish. Hence

Γ1ðAIÞ ¼ 0: ð4:7Þ

The usual temporal gauge A0 ¼ 0 is obtained by
taking the limit λ → 0 at which the ghosts decouple so
that Γϕπ

1 ðA0Þ ¼ 0. One can verify that (4.7) still holds true
while the remaining contribution from the cubic gauge
interaction also vanishes, simply because it is proportional
to the gauge parameter λ as it is apparent in (4.6).
Summarizing this last observation, no tadpole occurs

when the temporal gauge is used for the gauge fixing. Note
however that one can check by inspection that the temporal
gauge does not fix the x0-dependant U gauge transforma-
tions (2.6), as it is the case for the commutative case, so that
the corresponding gauge-fixed theory should support a
residual gauge symmetry.
In view of the above discussion dealing with different

natural choices for gauge conditions, it would be worth
analyzing the consequences of the (possibly) nonvanishing
1-point function for Aμ from the viewpoint of Lorentz and
noncommutative U gauge symmetries (2.6). We will come
back to these aspects in a forthcoming work.
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APPENDIX: TWISTED
DIFFERENTIAL CALCULUS

Let Dγ denotes the set of twisted derivation defined in
Eq. (2.3) and satisfying the Leibniz rule (2.4). One can
verify that ½Xμ; Xν� ¼ XμXν − XνXμ ¼ 0 so that Dγ is an
Abelian Lie algebra. Let ZðMd

κ Þ be the center of Md
κ . We

denote by ΩnðDγÞ the linear space of n-linear antisym-
metric forms. Note that linearity of forms holds with respect
to ZðMd

κ Þ. The twisted differential calculus based onDγ is
an extension of the derivation-based differential calculus
introduced a long time ago. See e.g., [38] and references
therein.
In the present situation, n-forms are defined from

ΩnðDγÞ. For any α ∈ ΩnðDγÞ, one has α∶ Dγ → Md
κ

together with

αðX1; X2;…; XnÞ ∈ Md
κ ;

αðX1; X2;…; Xn:zÞ ¼ αðX1; X2;…; XnÞ ⋆ z; ðA1Þ

for any z in ZðMd
κ Þ and any X1;…; Xn ∈ Dγ.

Define now the linear space Ω• ≔ ⨁d
n¼0ΩnðDγÞ, with

Ω0ðDγÞ ¼ Md
κ . Then ðΩ•;×Þ is an associative algebra

where the product of forms is defined for any α ∈ ΩpðDγÞ,
β ∈ ΩqðDγÞ by α × β ∈ ΩpþqðDγÞ with

ðα × βÞðX1;…; XpþqÞ

¼ 1

p!q!

X
s∈SðpþqÞ

ð−1ÞsignðsÞαðXsð1Þ;…; XsðpÞÞ

⋆ βðXsðpþ1Þ;…; XsðqÞÞ: ðA2Þ

In (A2), Sðpþ qÞ is the symmetric group of a set of
pþ q elements, signðsÞ is the signature of the permutation
s. Notice that α × β ≠ ð−1ÞδðαÞδðβÞβ × α, where δðαÞ is
the degree of α. Now the triple ðΩ•;×;dÞ is a graded
differential algebra where the differential d satisfies
d∶ ΩpðDγÞ → Ωpþ1ðDγÞ, p ¼ 0;…; ðd − 1Þ and

ðdαÞðX1; X2;…; Xpþ1Þ

¼
Xpþ1

i¼1

ð−1Þiþ1XiðαðX1;…;∨i;…; Xpþ1ÞÞ; ðA3Þ

where the symbol ∨i indicates the omission of Xi. The
differential satisfies d2 ¼ 0 and the following twisted
Leibniz rule

9K0iðpÞ ¼ λ
Q0ðp0Þpi, K00ðpÞ ¼ λ, KijðpÞ ¼ 1

p̂2 ðδijþ
ðλp̂2 þ 1Þ pipj

Q0ðp0Þ2Þ, where p̂2 ¼ Q0ðp0Þ2 þ p⃗2.
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dðα × βÞ ¼ dα × EγðβÞ þ ð−1ÞδðαÞE1þγðαÞ × dβ; ðA4Þ

where ExðαÞ is defined for any x ∈ R and any
α ∈ ΩnðDγÞ by ExðαÞ ∈ ΩnðDγÞwith ExðαÞðX1;…; XnÞ ¼
Ex ⊳ ðαðX1;…; XnÞÞ.
The inclusion of the BRSToperation s0, i.e., the Slavnov

operation, in the above framework amounts to introduce
bigraded forms which carry a ghost number in addition of
the form degree. One has now d∶ Ωp;gðDγÞ → Ωpþ1;gðDγÞ

and s0∶Ωp;gðDγÞ → Ωp;gþ1ðDγÞ where Ωp;gðDγÞ is the
space of p forms with ghost number g. The Slavnov
operation s0 acts as a graded but untwisted derivation with
the Leibniz rule s0ðρ × ηÞ ¼ s0ðρÞ × ηþ ð−1Þjρjρ × s0ðηÞ
for any ρ; η ∈ Ω̂ðDγÞ, where jρj ¼ δðρÞ þ g with
Ω̂ðDγÞ ¼ ⨁p;gΩp;gðDγÞ, while (A4) still holds with how-
ever δðαÞ replaced by jαj. For more mathematical details,
see [37].
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