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This is the final paper in a series of four in which we incorporate backreaction among the homogeneous
and between the homogeneous and inhomogeneous degrees of freedom in quantum cosmological
perturbation theory using space adiabatic methods. Here, we consider the gauge-invariant scalar
(Mukhanov-Sasaki) and tensor (primordial gravitational wave) perturbations of general relativity coupled
to a scalar field which arise from a careful constraint analysis of this system up to second order in the
perturbations. The simultaneous quantization of the homogeneous and inhomogeneous degrees of freedom
requires the use of a suitable constructive perturbation scheme for which we employ space adiabatic
perturbation theory, a rigorous extension of the standard Born-Oppenheimer theory. We are confronted
with several challenges arising for theories with an infinite number of degrees of freedom. We are able to
compute the backreaction effects up to second order in the adiabatic parameter and find modifications as
compared to earlier derivations of the effective quantum dynamics of the homogeneous sector.
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I. INTRODUCTION

The present paper represents the culmination of a series
of four papers [1–3] in which we use space adiabatic
perturbation theory (SAPT) [4,5] together with the hybrid
approach to quantum cosmology [6] in order to capture
quantum backreaction effects between the homogeneous
and inhomogeneous degrees of freedom of both matter and
geometry. In summary, we aim at describing the earliest
moments of the Universe, based on the premise that the
Universe should be described in its entirety by a theory of
quantum gravity back then. Since we do not have a
complete theory of quantum gravity at our disposal (despite
the numerous promising approaches in this direction such
as asymptotic safety [7–10], string theory, in particular in
its ADS/CFT incarnation [11,12], causal dynamical trian-
gulations [13,14], and loop quantum gravity (LQG) [15–
18]; see also [19,20] for extensive overviews), but still do
not want to limit ourselves to a pure homogeneous quantum
cosmology, we consider a cosmological perturbation theory
with gauge-invariant variables [21,22]. We treat both the
homogeneous and the inhomogeneous degrees of freedom
quantum mechanically and focus particularly on the back-
reaction of the inhomogeneities on the homogeneous
degrees of freedom.

Our work and investigations are primarily driven by the
growing evidence that standard cosmology, based on
general relativity and the Standard quantum Model of
particle physics, needs to be extended or even rethought.
Many cosmological observations point to the incomplete-
ness of the concordance cosmological paradigm (more
precisely, the ΛCDM model with cosmological perturba-
tions and an inflaton) even though we emphasize the great
successes of this model. Indirect measurements of dark
energy and dark matter [23–25] or the possible tension
between different measurement methods of the Hubble
parameter [26–29] underline these difficulties. On the
theoretical side, there already exist several approaches to
overcome some of the standard model problems, both
classical approaches such as theories of modified gravity
[30] or cyclic universes [31], and theories of quantum
cosmology such as string cosmology [32], spin-foam
cosmology [33], and canonical loop quantum cosmology
(LQC) [34–36]. Many of these approaches suggest that the
cosmological big bang singularity should be replaced by a
“big bounce,” which would lead to phenomenological
consequences. To test whether this prediction survives
the incorporation of (quantum) fluctuations of the inho-
mogeneous sector is obviously of utmost importance.
As we concentrate on a quantum mechanical analysis of

the problem, the most obvious proposal to answer this
question consists in quantizing a classical cosmological
perturbation theory. This is precisely the idea behind the
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hybrid approach to quantum cosmology, which was first
applied in the context of LQC [6] but which applies as well
to other theories of quantum cosmology. The approach
considers the inhomogeneous sector as a quantum field
theory (QFT) and the homogeneous sector as a quantum
mechanical system, which are mutually in interaction. To
precisely capture this interaction and to adequately estimate
how it influences the effective dynamics of the homo-
geneous degrees of freedom is a complicated task. It has
(partially) been addressed using approximations that rest on
various assumptions, and we point to the dressed metric
[37], the rainbow metric [38], the deformed algebra [39],
and the hybrid approach [6] in this regard. Here, we employ
the SAPT approach, inspired by the standard Born-
Oppenheimer approximation [40], in order to study the
effects of the cosmological quantum perturbations on the
homogeneous quantum degrees of freedom. SAPT is a
thorough extension of the Born-Oppenheimer scheme
which reduces the error of the scheme up to the desired
order in a perturbation theory.
In the molecular standard field of application, SAPT

employs the tiny mass ratio of a molecule’s constituents,
i.e., the electrons and the nuclei, to define the adiabatic
perturbation parameter that guides the perturbative scheme.
The Born-Oppenheimer theory represents its restriction to
the zeroth perturbative order. In addition to the improved
accuracy, SAPT is also applicable to a much larger variety
of models, in particular to constrained systems which is of
importance for the cosmological case. Besides, it applies to
models for which the coupling of the two system compo-
nents is provided by noncommuting operators of the slow or
homogeneous sector. Here, this is important since the Fock
space vacua depend on both momentum and configuration
variables of the homogeneous sector. SAPT treats this
situation using Weyl quantization techniques [41,42].
In this series, we therefore advertise the space adiabatic

scheme as an unbiased approach to the question of quantum
cosmological perturbations and their backreaction. It is
ideally suited to the problem under investigation in that it
lifts the idea of classical cosmological perturbation theory
to the quantum level, which allows one to employ the
formalism of quantum field theory on curved spacetimes
(QFT on CST) [43]. The adiabatic parameter is unsurpris-
ingly related to the ratio of mass scales of matter and of
geometry (namely the Planck mass) and, thus, is expected
to be rather tiny. This is an ideal starting point for a
perturbative expansion as is needed for space adiabatic
perturbation theory.
The previous papers dealt with the many subtleties that

one encounters when transferring the SAPT scheme devel-
oped for quantum systems with finitely many degrees of
freedom to the field theory context. First, the space
adiabatic perturbation scheme implies a formal dependence
of the inhomogeneous quantum field representations on the
homogeneous degrees of freedom. This raises the question

whether these representations are equivalent in the field
theoretical sense, a prerequisite for the applicability of
SAPT [44–46]. Fortunately, since exactly the same ques-
tion occurs in the hybrid scheme of quantum cosmology
[47–51], this question can be answered in the affirmative
once a suitable canonical transformation, exact up to
second order in classical cosmological perturbation theory,
has been carried out.
The second challenge for applying SAPT to the quantum

field case occurs partly due to these transformations. In
particular, the transformations imply that the new effective
Mukhanov-Sasaki and tensor mass terms of the cosmo-
logical inhomogeneities are not positive in all regions of the
homogeneous phase space. This leads to tachyonic modes.
Let us, however, stress that these indefinite mass squared
functions are not due to the SAPT scheme itself or the
specific transformations considered here, but already occur
in standard cosmological perturbation theory as soon as one
uses gauge-invariant perturbation fields [21], e.g., the well-
known Mukhanov-Sasaki variables. While such tachyonic
instabilities appear frequently in the literature (see our
comment in [3]), they entail a number of questions
regarding for example Lorentz invariance and renormaliz-
ability [52]. In this respect, we again draw attention to
Ref. [53] where a suitable set of transformations was
employed to ensure positivity of the mass. However, these
transformations are only known up to solving a system of
semilinear partial differential equations while for SAPT, we
need the explicit expressions of these functions. In our
companion papers, in particular in [1], we have therefore
advertised several solutions to the tachyonic issue. Our
suggestions include an ad hoc removal of the tachyonic
modes or an ad hoc restriction of the classical phase space
to regions where the mass terms are manifestly positive. In
lack of a better proposal, we adopt the second solution in
the current paper for simplicity. Nevertheless, this very
interesting and important problem deserves further inves-
tigation in the future.
The third challenge of cosmological SAPT becomes

manifest when searching for solutions of the resulting
effective Hamilton constraint or operator for the homo-
geneous sector. They depend on the effective mass terms
which contain inverse powers of momentum and configu-
ration variables of the homogeneous part. This leads to a
more singular situation than one is used to in quantum
cosmology, in particular in LQC where one can deal with
inverse powers of the configuration variables by adopting a
different quantum representation. This situation raises
domain questions for the resulting effective Hamiltonian
for each Fock energy band. These issues are addressed and
partly solved in a more general context in [54] which we
adopt for the current paper.
The final point regarding the cosmological implementa-

tion of SAPT concerns the backreaction contributions
to the effective Hamiltonian which involves a sum over
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inhomogeneous modes that can easily diverge. Fortunately,
this does not occur up to the second adiabatic order
considered here.
At the end, let us point out that the adiabatic perturbative

expansion of SAPT has nothing to do with the so-called
adiabatic vacua of a given order encountered in QFT on
CST [55,56]. The latter define (approximate) Hadamard
two-point functions in the sense of QFT on cosmological
spacetimes with a fixed time dependence while in our case,
the time dependence is a priori unspecified as we allow for
backreaction between the homogeneous quantum scale
factor of the cosmological background and the second
order inhomogeneities in both the metric and the infla-
ton field.
This being said, the architecture of the remaining paper is

as follows: In Sec. II, we introduce our model which is
gauge-invariant cosmological perturbation theory and
review the corresponding constraint analysis. These con-
siderations follow the ideas presented in [48]. In Sec. III,
we carry out the space adiabatic scheme for gauge-invariant
cosmological perturbation theory. The fourth section
introduces transformations that lead to a model with
positive effective mass values, and we apply the space
adiabatic scheme here as well. In Sec. V, we summarize and
conclude. In the Appendix, we present some details of the
straightforward but tedious calculations that lead to the
effective Hamiltonian.

II. COSMOLOGICAL PERTURBATION
THEORY AND CONSTRAINTS

A. Constraint analysis and Dirac algorithm

We consider standard cosmological perturbation theory
on a four-dimensional globally hyperbolic space ime
manifold M ¼ R × B where B are the three-dimensional
spatial hypersurfaces. For the gravity part, we include a
two-times covariant, symmetric, and nondegenerate metric
field g with Lorentzian signature ð−;þ;þ;þÞ, and for the
matter part a real-valued scalar field Φ with mass m ∈ Rþ
as well as a cosmological constantΛ ∈ Rþ. We choose B to
be the compact flat three-torus T 3 with side length l in all
three directions. For simplicity, we directly set l≡ 1. We
emphasize that the torus comprises any compact and flat
manifold since they are all finitely covered by tori accord-
ing to a theorem by Bieberbach [57,58]. This models a flat
universe which agrees with observations as long as the side
lengths of the torus are large compared to the size of the
observable universe.
The space adiabatic theory as developed in [4,5] requires

a Hamiltonian formulation of the problem, and conse-
quently we adopt a (3þ 1) split of spacetime following
Arnowitt, Deser, and Misner [59] (see also [18] which gives
a detailed treatment of this approach). The Cauchy surfaces
Σt which are parametrized by a global time function t
correspond to the spatial hypersurfaces T3. Let n be the unit

normal vector field to these hypersurfaces. Furthermore, let
N and N be the (standard) lapse and shift functions which
parametrize the normal and the tangential parts of the
foliation of the hypersurfaces. Then, it is possible to
formulate an initial value problem for the theory, and the
task of specifying constraints or equations of motion for the
metric field g translates into finding the time evolution of
the spatial metric hμν ¼ gμν þ nμnν on the hypersurfaces
induced by g. The complete definition of the initial value
problem requires in addition the specification of the
extrinsic curvature Kμν ¼ qρμqλν∇ρnλ which is associated
with the “time derivative” of h. ∇ is the unique torsion-free
covariant derivative associated with g. After pulling back
the tensor fields to R × T 3 and denoting spatial indices on
the spatial hypersurfaces with lowercase latin symbols
a; b; c;… ∈ f1; 2; 3g, the Einstein-Hilbert Lagrange den-
sityLEH of gravity and the scalar field Lagrange densityLΦ
are given by

LEH ¼ 1

2κ

ffiffiffiffiffiffi
jhj

p
NðRð3Þ þ KabKab − ðKa

aÞ2 − 2ΛÞ; ð1Þ

LΦ ¼ 1

2λ

ffiffiffiffiffiffi
jhj

p
N

�
−

1

N2
_Φ2 þ 2

N a

N2
_Φ∂aΦ

þ
�
hab −

N aN b

N2

�
∂aΦ∂bΦþm2Φ2

�
: ð2Þ

κ ¼ 8πG is the gravitational coupling constant, λ is the
coupling constant of the scalar field, and Rð3Þ is the
curvature scalar associated with the three-metric h and
its Levi-Civita covariant derivativeD. We assume λ to have
the dimension of an inverse mass squared. We stress that in
usual considerations of inflation λ is set to unity for
convenience.
The cosmological setting in this work suggests to

consider a homogeneous and isotropic restriction of the
gravitational theory up to small deviations. These sym-
metry reductions imply that the only remaining degrees of
freedom for the homogeneous and isotropic part of the
system are the zeroth order lapse function N0 and the scale
factor a, associated with the zeroth order spatial metric
h0ðt; xÞ ¼ a2ðtÞh̃0ðxÞwhere we introduced the fixed spatial
metric h̃0 on the spatial hypersurfaces. Note that for the
three torus h̃0 is simply the standard Euclidean metric with
a determinant equal to one. We will consequently omit it
whenever possible. We then introduce perturbations of the
spatially homogeneous and isotropic metric tensor, and for
the scalar field. In this respect, it is convenient to decom-
pose the perturbative fields into scalar, vector, and tensor
parts according to their properties regarding SOð3Þ trans-
formations (in the limit of an infinite compactification
scale). This is reasonable because the respective equations
of motion decouple. Note that the procedure of introdu-
cing perturbative fields on a homogeneous and isotropic
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background introduces a gauge freedom for the perturba-
tions since the choice of coordinates is a priori arbitrary. A
detailed analysis of cosmological perturbation theory
within the Hamiltonian framework for closed Friedman-
Lemaître-Robertson-Walker (FLRW) universes can be
found in [60]. There, however, the gauge freedom of
the perturbations was fixed by choosing one particular
gauge. We therefore refer to [48], at least regarding the
scalar part of the perturbations, where the authors use
gauge-invariant Mukhanov-Sasaki perturbations. For the
tensor perturbations, we point to [61]. Similar to the
definitions in [48,61], we define the perturbed lapse, shift,
spatial metric, and matter scalar field, respectively, as

Nðt; xÞ≕N0ðtÞ þ a3ðtÞηðt; xÞ; ð3Þ

N aðt; xÞ≕ a2ðtÞDakðt; xÞ þ a2ðtÞϵbca Dbkcðt; xÞ; ð4Þ

habðt; xÞ≕ a2ðtÞ
�
ð1þ 2αðt; xÞÞh̃0abðxÞ

þ 6

�
DaDb −

1

3
h̃0abðxÞΔ

�
βðt; xÞ

þ 4
ffiffiffi
3

p
DðaVbÞðt; xÞ þ 2

ffiffiffi
6

p
tabðt; xÞ

�
; ð5Þ

Φðt; xÞ≕ϕðtÞ þ φðt; xÞ; ð6Þ

where Δ ≔ DaDa denotes the Laplace-Beltrami operator
on T 3. The homogeneous and isotropic degrees of free-
dom are hence ðN0; a;ϕÞ while the inhomogeneous fields
are subdivided into the scalar perturbations ðη; k; α; β;φÞ,
the vector degrees of freedom va and ka, and the tensor
field perturbations tab. For notational reasons, we intro-
duce the fields ǩ ≔ Δk and ǩa ≔ ϵbca Dbkc as new degrees
of freedom associated with the shift function. In contrast
to the proceeding in [48,61], we stick to a spacetime
representation of the perturbative fields instead of choos-
ing a particular Fourier mode decomposition, at least for
the time being.
The next step toward a thorough constraint analysis of

the system consists of inserting the perturbed variables of
the definitions (3), (4), (5), and (6) into the Lagrange
density (1), (2), and then to expand the Lagrangian and the
action functional S up to second order in the perturbations.
As the three-torus does not have a boundary, total
divergences vanish. The resulting action depends neither
on the velocities of the lapse variables N0 and η nor on the
velocities of the shift variables ǩ and ǩa. This implies that
lapse and shift are Lagrange multipliers and will hence be
associated with primary constraint equations in the
Hamiltonian formalism. In order to pass over to the
Hamiltonian picture, we perform a Legendre transforma-
tion in the lines of [48,60]. Thereby, we define the
conjugate momenta ðPa; PϕÞ for the homogeneous and

isotropic degrees of freedom ða;ϕÞ in the standard manner
by means of the Lagrange function L ¼ R

dxL,

Pa ≔
∂L
∂ _a ¼ −

6

κN
a _a; Pϕ ≔

∂L
∂ _ϕ ¼ a3

λN
_ϕ: ð7Þ

We denote the corresponding phase space by Γhom.
Furthermore, the perturbation fields α, β, φ, va, and tab
together with their conjugate momenta πα, πβ, πφ, πav, and
πabt span the perturbative phase space Γpert. The momenta
are defined in the standard way according to

πθ ≔
∂L
∂ _θ ; ð8Þ

for any field θ ∈ fα; β;φ; va; tabg. On the other hand, the
variables N0, η, ǩ, and ǩa induce the lapse and shift

primary constraints ΠN0

0 , Πη
1, Πǩ

1, and Πǩa;b
1 because the

Lagrangian does not depend on any of the velocities of
these variables. The Legendre transformation yields a
Hamiltonian density of the form

H¼N0½H0þHs
2þHv

2þHt
2�þη ·Hη

1þ ǩa ·H
ǩd;a
1 þ ǩ ·Hǩ

1

þλN0
·ΠN0

0 þλη ·Π
η
1þλǩ ·Π

ǩ
1þλǩa;b ·Π

ǩa;b
1 : ð9Þ

Here, H0 denotes the zeroth order Hamiltonian contribu-
tion associated with the completely homogeneous and
isotropic model. The contributions Hs

2, H
v
2, and Ht

2 are of
second order in the perturbations and contain only scalar,
vector, and tensor variables, respectively. The functions

Hη
1, Hǩd;a

1 , and Hǩ
1 represent first order contributions

which factorize with the respective lapse and shift vari-
ables. The second line only lists the primary constraints
associated with lapse and shift and their Lagrange multi-
pliers λN0

, λη, λǩ, and λǩa;b.
Before we give the concrete representation of the

Hamiltonian (9), we carry out a Dirac analysis to filter
out the relevant terms of H. As a matter of fact, the system
is completely constrained such that it is indeed reasonable
to perform a Dirac analysis. Thereby, we encounter
several difficulties: First, the perturbation variables that
we introduced are not all gauge invariant. Therefore, a
canonical transformation to gauge-invariant variables is
necessary in order to have a covariant perturbation theory.
Indeed, it is straightforward to introduce the gauge-invari-
ant Mukhanov-Sasaki variable ϑ in the scalar sector of the
perturbations; see for example [21,22]

ϑ ≔ af þ 6λPϕ

κPa
ðα − ΔβÞ: ð10Þ

Thereby, we perform a transformation for the perturbations
only but which depends on the homogeneous degrees of

S. SCHANDER and T. THIEMANN PHYS. REV. D 105, 106012 (2022)

106012-4



freedom. In order to preserve the canonical structure of the
system, it is mandatory to find a suitable transformation for
the homogeneous and isotropic variables, too. This appears
to be a cumbersome mission. However, the authors of [48]
have shown that it is possible to find a transformation for
the homogeneous and isotropic degrees of freedom which
preserves the canonical structure of the system up to second
order in the cosmological perturbations.
The second difficulty regarding the Dirac algorithm

concerns the closure of the constraint algebra. In general,
the algorithm might entail a large number of constraints
which are not well manageable. The idea, put forward in
[48,61] which we will also apply in this work, is to use
some of the secondary constraints of the Dirac algorithm as
the canonical variables themselves. Thereby, the Dirac
algorithm becomes partly trivial just by implementing
the first set of secondary constraints. This will be demon-
strated in the sequel. In summary, the aim of the following
procedure is then threefold: First, we introduce gauge-
invariant variables for the perturbations. Second, we aim at
keeping the canonical structure of the theory, at least up to
second order in the cosmological perturbations. Therefore,
we review the Dirac algorithm for constrained systems and
implement additional transformations for the homogeneous
and isotropic degrees of freedom. In particular, we modify
the homogeneous variables by adding second order con-
tributions of the perturbations. Third, wewish to construct a
theory whose dynamics will be unitarily implementable at
the quantum level. Therefore, we consider further canonical
transformations with respect to the perturbations. Their
effects on the homogeneous variables will be taken into
account accordingly.
Following [48,61], the formalism proceeds as follows:

We first consider the homogeneous and isotropic degrees of
freedom as nondynamical background variables. This
offers the possibility to introduce perturbation variables
which build a canonical set with respect to the dynamical,
perturbative system only. We start with the canonical pair of
the tensor perturbations ðtab; πabt Þ which is already gauge
invariant. However, we aim at obtaining classical pertur-
bation variables whose dynamics is unitarily implement-
able in the quantum realm. As shown for example in
[47,50,51], this simply amounts to eliminating contribu-
tions in the Hamiltonian which couple the perturbation
variables with their respective momenta. In this way, the
final Hamiltonian at second order will only consist of terms
proportional to squares of the perturbation variables or
squares of the perturbation momenta. In other words, after a
Fourier transformation the Hamiltonian has the form of a
sum of harmonic oscillators with masses and frequencies
that possibly depend on the homogeneous and isotropic
degrees of freedom. Indeed, these transformations guaran-
tee the unitarity of the perturbation’s quantum dynamics
when considered in a semiclassical framework of QFT on
CST. We employ the transformations from [61] for the

tensor perturbations and thereby transform the homo-
geneous degrees of freedom accordingly by adding second
order field contributions. We denote the shifted, new
homogeneous variables by ðǎ; P̌a; ϕ̌; P̌ϕÞ. The transforma-
tions yield additional terms in the Hamiltonian which are of
second order in the tensor perturbations. We absorb these
terms in Ht

2 and denote the new tensor Hamiltonian as Ȟt
2.

Furthermore, the transformations result in a shift of the
lapse function by second order contributions which we take
into account by a function denoted by Ň2.
Regarding the vector perturbations, we can identify the

constraints Hǩd;a
1 and their conjugate variables Cǩd

1;a ¼
2

ffiffiffi
3

p
va as canonical pairs. The transformation for these

perturbation variables entails a transformation for the
homogeneous degrees of freedom in order to keep the
(almost) canonical structure, just as for the tensor pertur-
bations. The new variables, which also include the trans-
formations due to the tensor perturbations, are denoted by
ð à; P̀a; ϕ̀; P̀ϕÞ. The transformations result in a new second

order vectorial part of the Hamiltonian, H̀v
2, which is

proportional to the constraintHǩd;a
1 itself. Note that we also

express the linear constraint Hǩd;a
1 in terms of the new

variables. However, the form of the constraint does not
change since we cut after the second perturbative order and
the new homogeneous variables only differ by contribu-

tions in the second order. Thus, if we demand that Hǩd;a
1

vanishes as a constraint, this implies that H̀v
2 vanishes

automatically. We can therefore omit the further analysis of
the vector perturbations.
In the scalar sector, we employ the Mukhanov-Sasaki

scalar field ϑ as introduced above. As suggested in [48], it
is clever to additionally consider the first order constraints
Hη

1 and Hǩ
1 as new perturbation variables. Since these

constraints do not commute with respect to the perturbation
Poisson brackets, we shift Hη

1 by a linear term in the
perturbations and we denote the new constraint variable by
H̄η

1. The latter Poisson commutes with Hǩ
1, if for the time

being we only consider the perturbations as dynamical
degrees of freedom. This procedure entails another shifting
of the lapse function which yields the new lapse function,
N̄2 from Ň2. In the next step, we construct the conjugate
variables with respect to the inhomogeneous Poisson
brackets, denoting them by πϑ, Cη

1, and Cǩ
1. The new

canonical pairs in the scalar sector of the perturbations are,
thus, ðϑ; πϑÞ, ðCη

1; H̄
η
1Þ, and ðCǩ

1;H
ǩ
1Þ. Finally, we complete

the transformation in the homogeneous sector by adding
second order contributions to the initial homogeneous
canonical pairs. The procedure for obtaining the correct
contributions can be found in [48]. It yields a new set of
variables ðã; P̃a; ϕ̃; P̃ϕÞ in the homogeneous sector.
The implementation of the transformations yields new
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contributions to H: Some of them include only the
Mukhanov-Sasaki canonical variables, and we corres-
pondingly absorb them into a new second order scalar
Hamiltonian H̃s

2; another contribution is proportional to the
zeroth order Hamiltonian H0 such that it is possible to
absorb them into N̄2 giving N̆2. In addition, the trans-
formations result in new second order contributions which
are proportional to the linear constraints H̄η

1 and Hǩ
1.

We denote these contributions as G1 and K1, respectively.
In total, the transformations result in the following
Hamiltonian density:

H̃ ¼ ðN0 þ N̆2Þ · ½H0 þ H̃s
2 þ H̀v

2 þ Ȟt
2�

þ ðηþG1Þ · H̄η
1 þ ðk̃þ K1Þ ·Hǩ

1 þ ǩa ·H
ǩd;a
1

þ λN0
· ΠN0

0 þ λη · Π
η
1 þ λǩ · Πǩ

1 þ λǩb;a · Π
ǩb;a
1 : ð11Þ

We emphasize that the constraint H̃ is to be expressed in
terms of the new homogeneous variables ðã; P̃a; ϕ̃; P̃ϕÞ,
which finally amounts to simply replacing nondashed
variables by the dashed ones as we truncate after
the second order in perturbations. The second line in
Eq. (11) accounts for the set of primary constraints

ðΠN0

0 ;Πη
1;Πǩ

1;Π
ǩb;a
1 Þ with their respective Lagrange multi-

pliers, ðλN0
; λη; λǩ; λǩb;aÞ. These primary constraints already

appeared in Eq. (9) and have remained unchanged under
the preceding transformations. The system restricts to the
submanifold of the phase space defined by the primary
constraints,

ΠN0

0 ¼ 0; Πη
1 ¼ 0; Πǩ

1 ¼ 0; Πǩb;a
1 ¼ 0: ð12Þ

Consequently, the associated Lagrange multipliers can be
chosen arbitrarily. In a second step, consistency of the
dynamics requires that the primary constraints remain zero
under the evolution generated by the full Hamilton con-
straint H̃. This requirement gives rise to the secondary
constraints,

fH̃;ΠN0

0 g ¼ H0 þ H̃s
2 þ H̀v

2 þ Ȟt
2 ≈ 0; ð13Þ

fH̃;Πη
1g ¼ H̄η

1 ≈ 0; ð14Þ

fH̃;Πǩ
1g ¼ Hǩ

1 ≈ 0; ð15Þ

fH̃;Πǩb;a
1 g ¼ Hǩb;a

1 ≈ 0; ð16Þ

where “≈0” means that the expression on the left-hand side
must vanish at least weakly, i.e., on the primary constraint
surface. Note that now the Poisson brackets include
the dynamics with respect to all canonical pairs of
the transformed system, both the homogeneous and the

inhomogeneous ones. Indeed, the formalism allows us to
compute the dynamics for the full system in the standard
Hamiltonian framework. The next step consists in checking
whether the secondary constraints in Eqs. (13)–(16) are
preserved under the dynamics of H̃, or if they entail further
secondary constraints. The computations are in fact trivial
since the preceding transformations imply that the first

order constraints ðH̄η
1;H

ǩ
1;H

ǩd;a
1 Þ are canonical variables,

and hence commute with all other variables except with

their conjugate variables, ðCη
1; C

ǩ
1; C

ǩd;a
1 Þ. Indeed, Cη

1

appears in H̃ within the first order functions G1 and K1

and, thus, entails nonvanishing Poisson brackets with H̄η
1.

Since these Poisson brackets enter, however, with an
additional constraint factor, they vanish at least weakly,
namely

fH̃;H0 þ H̃s
2 þ H̀v

2 þ Ȟt
2g ¼ 0; ð17Þ

fH̃; H̄η
1g ¼ fG1; H̄

η
1gH̄η

1 þ fK1; H̄
η
1gHǩ

1 ≈ 0; ð18Þ

fH̃;Hǩ
1g ¼ fG1;Hǩ

1gH̄η
1 þ fK1;Hǩ

1gHǩ
1 ¼ 0: ð19Þ

In summary, the constraint algebra closes and we are able to
solve the dynamics of the system. Therefore, the primary
constraints (12), as well as the secondary constraints,

H̄η
1 ¼ 0; Hǩ

1 ¼ 0; Hǩb;a
1 ¼ 0;

H0 þ H̃s
2 þ H̀v

2 þ Ȟt
2 ¼ 0; ð20Þ

must be satisfied on the constraint surface. Since H̄η
1, H

ǩ
1,

and Hǩb;a
1 were simply defined as canonical momenta, it is

not necessary to analyze these constraints further. We recall
that the second order vector constraint H̀v

2 is zero whenever

Hǩb;a
1 ¼ 0 holds true. Hence, the only nontrivial constraint

of the cosmological system amounts to be

C ≔ H0 þ H̃s
2 þ Ȟt

2 ¼ 0: ð21Þ

The total constraint C ¼ R
dxC splits into the three parts

H0 ≔ −κ
P̃2
a

12ã
þ Λ

κ
ã3 þ λP̃2

ϕ

2ã3
þ 1

2λ
m2ã3ϕ̃2; ð22Þ

H̃s
2≔

1

2ã

Z
T3

dx
�
λπ2ϑþϑ

�
−
Δ
λ
þMMSðã; P̃a; ϕ̃; P̃ϕÞ2

�
ϑ

�
;

ð23Þ

Ȟt
2≔

1

2ã

Z
T3

dx

�
κπabt πtab

6
þtab

�
−
3Δ
κ
þMTðã;P̃a;ϕ̃Þ2

�
tab

�
;

ð24Þ
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where we recall that ðϑ; πϑ; tab; πabt Þ are inhomogeneous
and thus x-dependent fields. We defined the Mukhanov-
Sasaki mass function MMSðã; P̃a; ϕ̃; P̃ϕÞ and the tensor
mass function MTðã; P̃a; ϕ̃Þ according to

M2
MS ≔−

κ2P̃2
a

18λã2
þ7κP̃2

ϕ

2ã4
−12m2

ã ϕ̃ P̃ϕ

λP̃a
−18

λP̃4
ϕ

ã6P̃2
a
þm2

λ
ã2;

M2
T ≔

κP̃2
a

6ã2
−3

m2

λ
ã2ϕ̃2−6

Λ
λ
ã2: ð25Þ

The total Hamiltonian C ¼ H0 þ H̃s
2 þ Ȟt

2 is the object of
interest in this work, and we will prepare it accordingly for
the application to the space adiabatic scheme.

B. The Hamilton constraint

First, we recall that the system variables consist, on the
one hand, of the homogeneous and isotropic canonical
pairs ðã; P̃aÞ and ðϕ̃; P̃ϕÞ. These are associated with the
standard cosmological scale factor a and the homogeneous
and isotropic parts of the scalar matter field ϕ but have been
shifted by second order contributions in the cosmological
perturbations in order to maintain the (almost) canonical
structure of the system. In order to make the space adiabatic
scheme work at the technical level, we rescale several
variables and we define the dimensionless parameter ε
according to

ε2 ≔
κ

λ
: ð26Þ

To see that ε2 is indeed tiny recall that the reduced Planck
mass is given by MPl ¼

ffiffiffiffiffiffiffiffiffiffi
ℏc=κ

p
≈ 2.43 × 1018 GeV=c2,

while the mass of the heaviest known Standard Model
particle (the Higgs boson) is MH ≈ 125.09 GeV=c2 ≪
MPl. Assuming that λ−1=2 does not exceed MH substan-
tially, we have indeed that ε2 ∼ 10−32. Note that we
implicitly choose the fields ϕ and φ to be dimensionless.
In this way, we do not need to introduce additional mass
scales into more general than quadratic inflaton potentials.
The scheme suggests to rescale the homogeneous degrees
of freedom according to

p̆a ≔ ε2P̃a; p̆ϕ ≔ εP̃ϕ; ð27Þ

as well as the Mukhanov-Sasaki field variables ðϑ; πϑÞ and
the tensor field variables ðtab; πabt Þ as

ϑ̆≔
ϑ

ε
; π̆ϑ ≔ επϑ and t̆ab ≔

tab
ε2

; π̆abt ≔ ε2πabt : ð28Þ

We directly relabel the rescaled variables by removing the
breves such that the notation remains as simple as possible.
Besides, we omit the dashes on ã and ϕ̃. Because the
function C is constrained to vanish, it is admissible to

multiply it by a global factor of ε2. This gives the final
classical Hamilton constraint C ¼ H0 þ H̃s

2 þ Ȟt
2 ¼ 0

where now any of the terms are rescaled by a factor of
ε2 such that

H0 ¼ −
p2
a

12a
þ p2

ϕ

2a3
þ 1

2
ε2m2a3ϕ2 þ Λa3; ð29Þ

H̃s
2 ¼

1

2a

Z
T3

dxðπ2ϑ þ ϑε4ð−ΔþM2
MSÞϑÞ; ð30Þ

Ȟt
2¼

1

2a

Z
T3

dx

�
πabt πtab

6
þ tabε4ð−3ΔþðεMTÞ2Þtab

�
; ð31Þ

for which we employed the corresponding Mukhanov-
Sasaki and tensor mass squared functions

M2
MS ¼ −

p2
a

18a2
þ 7p2

ϕ

2a4
− 12εm2

aϕpϕ

pa
− 18

p4
ϕ

a6p2
a
þm2a2;

ð32Þ

ðεMTÞ2 ¼
p2
a

6a2
− 3ε2m2a2ϕ2 − 6Λa2: ð33Þ

Note that the transformations for the perturbation fields
(28) are canonical while the canonical structure of the
homogeneous degrees of freedom changes due to the
rescaling in (27). This becomes evident when considering
the canonical quantum commutation relations in the fol-
lowing. Indeed, SAPT considers the whole system as a
quantum system—it does not rely on any semiclassical
approximation.
Therefore, we employ a standard Schrödinger represen-

tation in the homogeneous sector of the quantum theory, and
we introduce hats for indicating quantum operators. We
denote the Hilbert spaces of the gravitational subsystem
associatedwith the scale factor asHa ¼ L2ðRþ; daÞ and the
homogeneous scalar matter subsystem Hϕ ¼ L2ðR; dϕÞ.
The total homogeneous Hilbert space is given as the
topological tensor product Hhom ¼ Ha ⊗ Hϕ. The opera-
tors for the homogeneous sector ðâ; p̂a; ϕ̂; p̂ϕÞ are associ-
ated with the standard multiplication and derivative
operators in the Schrödinger position representation on
the respective dense domains. Note that due to the rescaling
with ε, the momentum operators always enter with an
additional factor ε2 or ε, respectively. Their Weyl elements
satisfy the Weyl algebra relations which lead to the formal
quantum commutation relations,

½â; p̂a�a ¼ iε21̂a; ½ϕ̂; p̂ϕ�ϕ ¼ iε1̂ϕ: ð34Þ

The operators 1̂a and 1̂ϕ denote the unity operators in the
respective quantum algebras. The application of SAPT to
our cosmological model considers the homogeneous and
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isotropic degrees of freedom as the ones whose canonical
structure becomes rescaled by a very small parameter.
Indeed, we have shown in [1] that the homogeneous
variables can be understood as the slow and heavy center
of mass modes of the system.
The fast sector of the model is thus associated with the

cosmological inhomogeneities, i.e., the Mukhanov-Sasaki
and tensor perturbations. We choose bold characters to
indicate quantum operators of the inhomogeneous system
just as in the preceding papers of the series. In particular,
the basic quantum fields of the theory are given for any
fixed time t ∈ R by the operator-valued distributions
ðϑ; πϑ; tab; πab

t Þ on the spatial manifold T3. We denote
the Hilbert space of the Mukhanov-Sasaki quantum system
byHMS and the Hilbert space of the tensor perturbations by
HT, and the total Hilbert space of the inhomogeneities
arises naturally as the tensor product of the two latter
Hpert ¼ HMS ⊗ HT. We employ the standard canonical
commutation relations for the perturbation fields and
therefore introduce two contravariant test tensor fields
fðxÞ and FabðxÞ of rank 0 and 2, respectively, as well
as two covariant test tensor fields jðxÞ and JabðxÞ of rank 0
and 2, respectively. The quantum commutation relations
consequently have the form

½jðϑÞ;πϑðfÞ�MS ¼ ihf;ji1MS;

½JðtÞ;πtðFÞ�T ¼ ihFab;Jabi1t;

where h·; ·i denotes the standard L2-inner product on the
three-torus. SAPT makes explicit use of the Hilbert space
representation for the perturbative fields as employed here.
However, it uses a different representation for the homo-
geneous degrees of freedom, as explained in [5] but also in
[1,2] in more detail. In particular, the homogeneous sector
is subject to a phase space or deformation quantization [62–
65] which represents quantum operators as scalar functions
on phase space. In this representation, the commuting
pointwise product of functions from the classical theory
transforms into a noncommuting product of the phase space
functions which has here the form of a power series
expansion in the perturbation parameter ε. The product
is well-known as Moyal or star product in the theory of
phase space quantization [66,67].
We emphasize that this quantization scheme is physi-

cally equivalent to the standard Hilbert space representation
but it allows for a perturbative treatment of the coupled
quantum systems that we have in mind. The relation
between the phase space scheme and the Hilbert space
approach is established by associating the phase space
functions of the first approach with integral kernels of
operators in the Hilbert space picture. In the following, we
explicitly employ quantum operators on Hilbert spaces
with respect to the inhomogeneous fields while using the
phase space picture of the homogeneous sector, thus
treating the homogeneous variables formally as real-valued

functions on the homogeneous phase space. This leads us
to introduce operator-valued functions on the homogeneous
phase space Γhom, also denoted as operator-valued “symbol
functions,” and we generically write for the class of such
functions SðΓhom;LðHpertÞÞ. The theory of pseudodiffer-
ential calculus (see, e.g., [68]) addresses the question about
which of these symbol functions leads to well-defined
operators on different function spaces.
Therefore, let us introduce the relevant operator-valued

functions here. For our purposes, it is useful to perform a
transformation to annihilation and creation operators.
Therefore, let us consider the one-particle Hilbert space
HT3 ¼ L2ðT3; dxÞ on the compact three-torus. A suitable
choice of basis is the set of functions ffkðxÞ ¼ expðikxÞgk
labeled by the discrete vectors k ∈ k ≔ 2πZ3nf0g. The
Hilbert spaces of the perturbative quantum field theories
are then given as the symmetric Fock spaces F sðHT3Þ
associated with the one-particle Hilbert space. More pre-
cisely, the total perturbative Hilbert space comprises the
Mukhanov-Sasaki real scalar field Fock space, F s;MS, as
well as two Fock spaces associated with the tensor degrees
of freedom. Indeed, the tensor field carries only two
independent degrees of freedom corresponding to the
two polarizations of the tensor modes. These will be
labeled by the index τ ¼ fþ;−g, and we write for the
Fock spaces F s;T;�. The total Hilbert space is given as the
topological tensor product

Hpert ¼ F s;MSðHT3Þ ⊗
τ¼fþ;−g

F s;T;τðHT3Þ: ð35Þ

The relevant annihilation and creation operators act by
destroying and, respectively, generating one-particle states
f ∈ HT3 on Fock space. Let us therefore define the one-
particle frequency operators for the Mukhanov-Sasaki and
the tensor systems by

ωMS ≔ ε2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ΔþM2

MS

q
; ωT≔ ε2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−18Δþ6ðεMTÞ2

q
:

ð36Þ

Note that both operators depend on the homogeneous
degrees of freedom as they contain the mass functions
MMSða; pa;ϕ; pϕÞ and MTða; pa;ϕÞ. To define annihila-
tion and creation operators of the Mukhanov-Sasaki sys-
tem, we define ða; pa;ϕ; pϕÞ-dependent representations
πða;pa;ϕ;pϕÞ∶AQ → LðF s;MSÞ that maps the field Weyl
algebra to the space of linear operators on the
Mukhanov-Sasaki Fock space. For some one-particle state
f ∈ HT3 we obtain the following expression:

bðða;pa;ϕ;pϕÞ;fÞ

≔
1ffiffiffi
2

p πða;pa;ϕ;pϕÞ½ð
ffiffiffiffiffiffiffiffiffi
ωMS

p
ϑÞðfÞ− ið ffiffiffiffiffiffiffiffiffi

ωMS
p −1πϑÞðfÞ�: ð37Þ
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The creation operator b�ðfÞ derives from bðfÞ by taking its
adjoint. Likewise, one defines annihilation and creation
operators d�ðfÞ and d��ðfÞ for the two tensor modes by
replacing ωMS by ωT and by replacing the fields ðϑ; πϑÞ by
the two pairs of tensorial fields which we denote by
ðt�; πt;�Þ.
For fixed homogeneous variables ða; pa;ϕ; pϕÞ, the

canonical quantum commutation relations for the
Mukhanov-Sasaki field evaluate to ½bðf1Þ; b�ðf2Þ�MS ¼
1MShf1; f2i where f1; f2 ∈ HT3 . Again, the commutation
relations for the tensor part arise completely analogously.
For our purposes, it is simplest to pass to a mode
representation, and in the following we refer to the
annihilation and creation operators of a mode k for the
Mukhanov-Sasaki system by bk and b�k. For the tensor
modes, we define the set of vectors K ∈ K ≔ fk; τg to
denote the annihilation and creation operators by dK and
d�K . The commutation relations have the form

½bk; b�k0 �MS ¼ δk;k01MS; ½dK; d�K0 �T ¼ δK;K01T; ð38Þ

and the δ’s are Kronecker deltas. To evaluate the
frequency operators ω with respect to the mode functions
fkðxÞ, we note that the fk’s are eigenfunctions of the
Laplace-Beltrami operator, namely ðΔfkÞðxÞ¼−k2fkðxÞ.
Therefore, it is possible to label the frequency operators
accordingly by ωMS;k and ωT;K when evaluated on fk. It is
then straightforward to express the Hamilton constraint
symbol function by means of the creation and annihilation
operators and the associated frequency functions.
Therefore, recall that SAPT employs a phase space quan-
tization scheme for the homogeneous sector such that the
homogeneous variables appear as real functions on the
homogeneous phase space while the perturbations are
subject to the standard operator quantization. Using the
standard techniques of QFT on CST, the normal-ordered
Hamilton constraint C ∈ SðΓhom;LðHpertÞÞ arising from
the classical Hamilton constraint C ¼ H0 þ H̃s

2 þ Ȟt
2 with

the specifications in (29)—(31) is given by

C ¼
�
−

p2
a

12a
þ p2

ϕ

2a3
þ 1

2
ε2m2a3ϕ2 þ Λa3

�
1pert

þ 1

a

X
k∈k

ωMS;kb�kbk þ
1

6a

X
K∈K

ωT;Kd�KdK; ð39Þ

where we omitted the trivial unity factors. In the following,
we denote the function in the large brackets by
Ehomða; pa;ϕ; pϕÞ. 1pert is the unity operator on Hpert,
and this is simply the tensor product of all individual Fock
space unities. We emphasize that not only the zeroth order
offset energy contribution Ehom depends on the homo-
geneous phase space variables but also the frequency
functions ωMS;k and ωT;K as well as any of the annihilation
and creation operators of the Mukhanov-Sasaki and tensor

systems. In the following, we first verify that our model fits
into the space adiabatic perturbation scheme and apply the
theory subsequently.

III. SPACE ADIABATIC PERTURBATION
THEORY

A. Conditions for space adiabatic perturbation theory

To apply SAPT to the cosmological model, the Hamilton
constraint symbol Cða; pa;ϕ; pϕÞ in Eq. (39) has to meet
certain requirements. We closely follow Panati, Spohn, and
Teufel [4,5] although the conditions there are quite restric-
tive. We will point to occurring difficulties while discussing
the following four conditions.
(C1) The state space of the system decomposes as

H ¼ L2ðRn; dxÞ ⊗ Hf ¼ L2ðRn;HfÞ; ð40Þ

where L2ðRn; dxÞ is the state space of the slow
subsystem. The state space of the fast subsystem
Hf must be separable.

In the given case, the state space of the homogeneous
system which we associate with the “slow” system of SAPT
is modeled on Rþ ×R since the scale factor can only take
values on the positive real line. This will also lead to
domain questions when it comes to the definition of certain
operators (e.g., the momentum operator p̂a). Nevertheless,
we can define the corresponding Hilbert space as
L2ðRþ ×R; dadϕÞ, where the measure is the standard
Lebesgue measure. We also point to the possibility of
using triadlike variables as in Ref. [3] which solves the
domain issues mentioned before. The “fast” Hilbert space
Hf will be associated with the perturbative Fock spaces
subsumed under Hpert which is separable. We emphasize
that SAPT (implicitly) requires that the Fock spaces for all
different representations depending on a and ϕ be the same.
As explained earlier this is not granted without further ado.
However, the almost canonical transformations that were
performed in Sec. II guarantee just that. The next condition
is the following.
(C2) The Hamilton constraint operator Ĉ is the Weyl

quantization of a function on the slow phase space
Cða; pa;ϕ; pϕÞ which belongs to the symbol class
Smρ ðΓs;BðHfÞÞ with values in the bounded oper-
ators BðHfÞ on the fast Hilbert space. The Weyl
quantization refers to the slow subsystem and the
function Cða; pa;ϕ; pϕÞ has values in the self-
adjoint operators on Hf .

In fact, it is straightforward to perform a Weyl quantization
of the symbol Cða; pa;ϕ; pϕÞ in Eq. (39). Therefore, it is
most convenient to consider the classical Hamilton con-
straint C with its components in Eqs. (29)–(31) from which
we have obtained the symbol function C by performing
standard Fock quantizations. Starting from C, it is useful to
consider each of the terms individually and then to perform
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a separate Weyl quantization of the homogeneous parts and
a Fock quantization of the inhomogeneities. After a
tensorial multiplication of the resulting operators and
summation, we obtain the final Hamilton operator con-
straint Ĉ. The same outcome results from Weyl quantizing
C in (39).
Then, the question arises whether the symbol C belongs

to the correct symbol class alluded to in (C2). The class
Smρ ðΓhom;BðHpertÞÞ consists of the functions on Γhom that
have values in the bounded operators on Hpert, and for
which there exists a set of positive constants Cα;β for every
α; β ∈ N2 such that for every p ≔ ðpa; pϕÞ, it holds true
that

sup
q∈Rþ×R

kð∂α
q∂β

pCÞðq; pÞkBðHpertÞ ≤ Cα;βð1þ p2Þ12ðm−ρjβjÞ;

ð41Þ

and q ≔ ða;ϕÞ is a short form for the configuration
variables. It is easy to check that C fails to satisfy these
conditions: It is neither a bounded function with respect to
a and ϕ nor is it polynomially bounded with respect to p.
Besides, it does not have values in the bounded operators
onHpert. A possible solution to this problem is to define an
adapted auxiliary Hamilton symbol Haux which satisfies
these requirements. We have discussed this in great detail in
[2] but the idea goes as follows. First, we cut the sums over
all possible mode vectors of the Mukhanov-Sasaki and
tensor contributions in Eq. (39). This makes the constraint a
bounded operator on the associated Fock spaces for some
fixed values ðq; pÞ. In order to make Cðq; pÞ a bounded
function with respect to q and a polynomially bounded
function with respect to p, one can replace the scalar and
symbol functions appearing in (39) by an accordingly
bounded function that agrees, however, with Cðq; pÞ below
a certain threshold value Et. This would even make
it a bounded function with respect to the momenta p.
Although this is not required for satisfying (C2), we will
see that condition (C4) requires just that. Hence, we can
follow this procedure and obtain a symbol Cauxðq; pÞ that
lies in S00ðΓhom;BðHpertÞÞ.
While this new auxiliary Hamiltonian satisfies all the

conditions alluded to in this section, it is not possible to
compare it or its dynamics with the original Hamilton
constraint. The latter is an unbounded operator while the
former is bounded, and hence the corresponding solutions
will not be similar. On the other hand, the SAPT scheme
associated with the original Hamiltonian will not obey any
convergence results. Nevertheless, we will remain here with
the original Hamilton constraint in order to show the
principle possibility of applying the SAPT scheme to this
model, even if convergence results would need to be
implemented by different methods.

Finally, let us stress that in the original SAPT scheme
the constraint C is formally split into its power series
coefficients with respect to ε. Since both the homogeneous
and the inhomogeneous contributions to C depend on ε,
either via Ehom or via ωMS;k and ωT;K , there are several
nonvanishing power series coefficients. Nevertheless,
we will subsume the whole constraint C under its zeroth
order contribution C0 in order to simplify the task of
applying SAPT. This procedure does not change the
final result when carefully sorting the contributions
after the application of SAPT. Since this paper should
rather be seen as a first explorative investigation of SAPT
for gauge-invariant cosmological perturbation theory, we
will defer this task to a later publication and simply
set C≡ C0.
(C3)γ Gap condition. For any fixed value ðq; pÞ ∈ Rþ ×

R3 of the homogeneous phase space, the
spectrum σðq; pÞ of the Hamilton symbol
Cðq; pÞ contains at least one isolated subset
σðνÞðq; pÞ associated with a fixed set of quantum
numbers (ν), which is uniformly bounded from the
remainder σremðq; pÞ ≔ σðq; pÞnσðνÞðq; pÞ. In par-
ticular, the minimal distance between the elements
of σðνÞ and the remainder of the spectrum is
nonvanishing for every single ðq; pÞ ∈ Γhom.
More precisely, there exists an enclosing interval
Iðq; pÞ for the relevant part of the spectrum σðνÞ
such that for every value ðq; pÞ, the distance
dist½σremðq; pÞ; Iðq; pÞ� is larger than or equal to
Cgð1þ p2Þγ2, where Cg ≥ 0 is the “gap” constant
and γ ∈ R.

To discuss ðC3Þγ , let us assume for the time being
that C is a physical Hamilton operator, and we are
interested in its entire spectrum. From Eq. (39), it is
easy to deduce that C admits a discrete spectrum for any
fixed ðq; pÞ ∈ Γhom because the sums over the (general-
ized) wave vectors in the Hamilton constraint are discrete
and so is the spectrum of the number operators b�kbk and
d�KdK when applied to vectors in the total Fock space
Hpert. Any Fock state ξðnÞ ∈ Hpert with finite energy
identifies with a finite set of nonvanishing quantum
numbers ðnÞ ≔ f…; nMS;k1 ; nMS;k2 ;…; nT;τ;k̃1 ; nT;τ;k̃2 ;…g
where we distinguished between the quantum
numbers of the Mukhanov-Sasaki and the tensor
perturbations, and k1; k2; k̃1; k̃2;… run over 2πZ3nf0g.
We also introduce degeneracy labels which take the
possibility of degenerate eigenstates into account, and
we denote them by b ¼ 1;…; d for the Mukhanov-Sasaki
system and b0 ¼ 1;…; d0 for the tensor system. To shorten
the notation, we integrate the degeneracy labels in β ≔
fb; b0g and the degeneracy numbers in δ ≔ fd; d0g.
According to Eq. (39), the discrete eigenvalue pro-
blem for any finite set of quantum numbers (n) then
has the form
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Cðq; pÞξðnÞðq; pÞ ¼ EðnÞðq; pÞξðnÞðq; pÞ;

EðnÞðq; pÞ ≔ Ehomðq; pÞ þ
1

a

X
k∈k

nMS;k;bωMS;k

þ 1

6a

X
K∈K

nT;K;b0ωT;K: ð42Þ

The spectrum of Cðq; pÞ thus consists of the set of all
energy bands fEðnÞðq; pÞgðnÞ for all possible combina-
tions of excitation numbers (n). Since these eigenvalue
problems are discrete (recall that the wave vectors k and
K are discrete), it is always possible to find, at least
locally, a region in the homogeneous phase space where
the energy band EðνÞ of some fixed set of quantum
numbers (ν) is well separated from the remainder. One
could hence restrict our problem to such a region but one
has then to deal with domain issues with respect to the
homogeneous quantization scheme and review it care-
fully. As a consequence, it is not possible to satisfy the
gap condition in a strict sense and we must consequently
abandon any convergence results for the time being.
(C4) Convergence condition. If the system satisfies the

gap condition ðC3Þγ for some γ ∈ R, the Hamilton
symbol Cðq; pÞ must be in Sγρ. If ρ ¼ 0, also γ
must vanish. If ρ > 0, γ can be any real number
but the Weyl quantization Ĉ must be essentially
self-adjoint on the Hilbert vector-valued Schwartz
space, SðR;HfÞ.

According to the discussion of condition (C2), the
Hamilton symbol Cðq; pÞ with the correspondent cutoffs
is in S00ðΓhom;BðHpertÞÞ. Hence, if we employed the
auxiliary Hamiltonian, we would fall into the category
γ ¼ 0, in line with condition ðC3Þγ . As pointed out earlier,
we will abandon the convergence of the perturbative
series and remain with the original Hamiltonian in the
following.

B. Perturbative construction scheme

The space adiabatic perturbation scheme divides into
three steps and relies on the existence of the three following
symbol functions. For the construction of these symbols,
one needs a so-called star or Moyal product ⋆ which is
nothing but the operator product of the slow (here homo-
geneous) quantum theory pulled back to the corresponding
phase space. Recall that SAPT relies on a phase space
quantization scheme with respect to the homogeneous
sector. After providing the construction steps, we define
the star product ⋆ε adapted to the given model, which has
the form of a formal power series in ε. Given the Hamilton
symbol Cðq; pÞ ∈ S00, the SAPT construction steps are
given by [4]
(S1) there exists a formal symbol π ¼ P

i≥0 ε
iπi with πi ∈

S00 and such that π0 is the spectral projection of
Cðq; pÞ corresponding to σðνÞðq; pÞ. We can construct

πðIÞ ≔
P

i≤I ε
iπi up to order I ∈ N and with the

properties

ðS1 − 1Þ πðIÞ⋆επðIÞ − πðIÞ ¼ O0ðεIþ1Þ; ð43Þ

ðS1 − 2Þ π�
ðIÞ − πðIÞ ¼ O0ðεIþ1Þ; ð44Þ

ðS1 − 3Þ C⋆επðIÞ − πðIÞ⋆εC ¼ O0ðεIþ1Þ: ð45Þ

It can be shown that the Weyl quantization of a
formal resummation of π (see [1] for more details) is
O0ðε∞Þ close to a true projection operator Π̂ ∈ BðHÞ
that almost commutes with the Hamilton operator,
i.e., ½Ĉ; Π̂� ¼ O0ðε∞Þ. The estimate means that for all
m ∈ N, there exists a constant Cm ≥ 0 such
that k½Ĉ; Π̂�kBðHÞ ≤ Cmε

m.
(S2) Let πp ∈ S00ðΓhom;BðHpertÞÞ be the projection on

some reference subspace Kpert ⊂ Hpert. We assume
that there exists a symbol u0 ∈ S00ðBðHpertÞÞ such that
u0 · π0 · u�0 ¼ πp, where “·” denotes the operator
product within BðHpertÞ. Then, there is a formal
symbol u ¼ P

i≥0 ε
iui such that its restriction to

the Ith order uðIÞ satisfies

ðS2 − 1Þ u�ðIÞ⋆εuðIÞ − 1pert ¼ O0ðεIþ1Þ; ð46Þ

ðS2 − 2Þ uðIÞ⋆εu�ðIÞ − 1pert ¼ O0ðεIþ1Þ; ð47Þ

ðS2 − 3Þ uðIÞ⋆επðIÞ⋆εu�ðIÞ − πp ¼ O0ðεIþ1Þ: ð48Þ

The construction of this almost unitary symbol has
the purpose to map the dynamics of the Hamilton
operator to a simpler subspace such that we can
actually solve the dynamics on this simpler subspace.
Therefore, we note that the Weyl quantized resum-
mation of the symbol function u gives rise to a true
unitary operator Û ∈ BðHÞ which intertwines the
projection operator Π̂ and π̂p in the sense that
Û Π̂ Û† ¼ π̂p holds true.

(S3) The last step consists in constructing an “effective”
Hamilton symbol Ceff ¼

P
i≥0 ε

iCeff;i, or more pre-
cisely its restriction to the Ith order according to

Ceff;ðIÞ ¼ uðIÞ⋆εC⋆εu�ðIÞ: ð49Þ

For systems with an external time parameter t and the
Weyl quantizations ûðIÞ and Ĉeff;ðIÞ it holds true that

e−iĈt − û†ðIÞe
−iĈeff;ðIÞtûðIÞ ¼ O0ðεIþ1jtjÞ: ð50Þ

Hence, after unitarily transforming back to the
original Hilbert space, the dynamics generated by
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Ĉeff corresponds “almost” to the dynamics of the
original Hamiltonian Ĉ.

In Appendix, we will be much more precise about the
explicit construction steps and give concrete formulas for
the relevant computational steps in order to obtain the
effective Hamilton symbol up to second order in the
adiabatic perturbations. We also refer to [1] for an iterative
construction scheme for any desired perturbative order and
to [2] for concrete applications of the scheme to simpler
models. In the following, we apply SAPT to the cosmo-
logical model with gauge-invariant perturbations. We will
construct πð1Þ as well as uð1Þ in order to finally deter-
mine Ceff;ð2Þ.
Therefore, we recall that the perturbation parameter of

the scheme is here provided by the dimensionless ratio of
the coupling constants, namely by ε2 ¼ κ=λ. Since the
construction of the space adiabatic symbols is subject to
two different perturbative scalings, namely with respect to ε
for the homogeneous scalar field and with respect to ε2

for the homogeneous gravitational degrees of freedom
(recall the definition of pϕ and pa), the Moyal product
takes for two operator-valued functions Aðq; pÞ, Bðq; pÞ ∈
Smρ ðΓhom;BðHpertÞÞ the form

ðA⋆εBÞðq; pÞ ≈
�
A exp

�
iε
2
ð∂⃖ϕ∂⃗pϕ

− ∂⃖pϕ
∂⃗ϕÞ

−
iε2

2
ð∂⃖a∂⃗pa

− ∂⃖pa
∂⃗aÞ

�
B

�
ðq; pÞ; ð51Þ

where the vectors indicate the direction in which
the partial derivatives act. As we will see in the
following, the Moyal product with respect to the gravita-
tional degrees of freedom does not contribute to the
computations up to second order in the perturbation
scheme. Up to the two different scalings, the scheme
proceeds in the lines of [3]. Up to first order, the Moyal
product is given by

ðA⋆εBÞðq;pÞ¼ ðA ·BÞðq;pÞþ iε
2
fA;Bghomðq;pÞþOðε3Þ;

ð52Þ

where we used the Poisson bracket notation fA;Bghom ≔
ð∂ϕAÞ · ð∂pϕ

BÞ − ð∂pϕ
AÞ · ð∂ϕBÞ. Since wewill give all the

details regarding the construction scheme in Appendix, we
will only provide the most relevant formulas in the
following.

1. Construction of the projector symbol πð1Þ
To construct the symbol function πð1Þ we use the iterative

ansatz πð1Þ ¼ π0 þ επ1, and we start by defining the zeroth
order symbol π0. According to the construction step (S1),
π0ðq; pÞ corresponds to the spectral projection of Cðq; pÞ

onto one of its energy bands σðνÞðq; pÞ. In particular, we
choose π0 to be defined as

π0ðq; pÞ ¼
XδðνÞ
β¼1

ξðνÞβðq; pÞhξðνÞβðq; pÞ; ·iF s
; ð53Þ

where ðνÞβ ¼ fνk;K;βgk∈k;K∈K is the set of excitation
numbers of the chosen Fock state and β ¼ 1;…; δðνÞ is
the associated degeneracy label. The projector symbol
π0ðq; pÞ exists for every point ðq; pÞ ∈ Γhom for which
the energy gap between EðνÞðq; pÞ and the remainder of the
spectrum persists. Because of the continuity of the map
ðq; pÞ ↦ Cðq; pÞ, also ðq; pÞ ↦ π0ðq; pÞ is continuous.
By construction, π0 satisfies the construction rules (S1)
restricted to the zeroth order in ε. In particular, it satisfies
(S1–1) π0 · π0 − π0 ¼ 0, (S1–2) π�

0 ¼ π0, and (S1–3)
½C; π0�pert ¼ 0. Consequently, the symbol (53) satisfies
the base clause for the inductive construction scheme.
The next perturbative order of the rules (S1) serves to

determine the first order symbol π1. By means of the Moyal
product expansion from above, the rule (S1–1) restricted to
its first order components provides an equation for deter-
mining the diagonal parts of π1, namely

i
2
fπ0; π0ghom þ π0 · π1 þ π1 · π0 ¼ π1: ð54Þ

This implies that the diagonal contributions can be split into
two parts which we define as πD;0

1 ≔ π0 · π1 · π0 and
πD;⊥ ¼ π⊥

0 · π1 · π⊥
0 , where we introduced the orthogonal

complement of π0, namely π⊥
0 ≔ 1pert − π0. As discussed

in the companion paper [1], the diagonal part will,
however, not enter the computations for the effective
Hamilton symbol, and so we omit its further discussion
and come to the construction rule (S1–3). This gives the
off-diagonal part of π1. Its restriction to the first order in ε is
given by

1

2
fC; π0ghom −

1

2
fπ0;Cghom þ C · π1 − π1 · C ¼ 0: ð55Þ

We extract the off-diagonal contributions πOD;1
1 ≔

π0 · π1 · π⊥
0 and πOD;2

1 ≔ π⊥
0 · π1 · π0 by multiplying

Eq. (55) with π0 and π⊥
0 from the left and the right,

respectively, and vice versa. We define the orthogonal part
of C by C⊥ ≔ C · π⊥

0 , and we use that C · π0 ¼ EðνÞ1pert.
This yields for the total symbol π1 ¼ πOD;1

1 þ πOD;2
1 ,

π1¼−
i
2
ðπ0 ·fπ0;CþEðνÞ1pertghom · ðC⊥−EðνÞ1pertÞ−1 ·π⊥

0

þðC⊥−EðνÞ1pertÞ−1 ·π⊥
0 ·fπ0;CþEðνÞ1pertghom ·π0Þ:

ð56Þ
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For a concrete evaluation of π1, it is necessary to evaluate
the derivatives of the eigenfunctions ξðnÞðq; pÞ with respect
to ϕ and pϕ according to the definition of the homogeneous
Poisson bracket. Therefore, we use the explicit ðq; pÞ-
dependence of the creation operators b�kðq; pÞ and
d�Kðq; pÞ. Therefore, let us start by defining the perturbative
states in more detail.
Every excited state in the Hilbert space Hpert can be

constructed from the vacuum state Ωðq; pÞ by applying the
desired number ðnMS;k; nT;k0;þ; nT;k00;−Þ of creation operators
for every set of wave numbers k; k0; k00. SAPT chooses
formally one such eigenstate with quantum number(s) ðνÞβ
given by

ξðnÞðq; pÞ ¼
Y
k∈k

Y
K∈K

ðb�kÞnMS;kffiffiffiffiffiffiffiffiffiffiffiffi
nMS;k!

p ðd�KÞnT;Kffiffiffiffiffiffiffiffiffiffi
nT;K!

p Ωðq; pÞ; ð57Þ

where Ωðq; pÞ ∈ Hpert is the vacuum state of this
representation defined by the requirement to satisfy
bkðq; pÞΩðq; pÞ ¼ 0 and dKðq; pÞΩðq; pÞ ¼ 0 for every
k ∈ k and K ∈ K. We introduce the explicit representation
of the Mukhanov-Sasaki wave function and the tensor wave
functions as a product by

ξðnÞ≕ ξMS
ðνMSÞ ·

Y
τ

ξT;τðνTÞ: ð58Þ

Recall that the creation and annihilation operators for the
Mukhanov-Sasaki and the tensor modes depend explicitly
on the homogeneous phase space variables through the
masses within the frequency functions,

ωMS;kðq; pÞ ¼ ε2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

MSðq; pÞ
q

;

ωT;Kðq; pÞ ¼ ε2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18k2 þ 6ðεMTÞ2ðq; pÞ

q
: ð59Þ

We deduce the derivatives of the annihilation operators
with respect to λ ∈ fq; pg, namely

∂bkðq; pÞ
∂λ ≔ αMS

λ;k ðq; pÞb�kðq; pÞ

¼ −
1

8

ε4∂λM2
MSðq; pÞ

ω2
MS;kðq; pÞ

b�kðq; pÞ; ð60Þ

∂dKðq; pÞ
∂λ ≔ αTλ;Kðq; pÞd�Kðq; pÞ

¼ −
3

4

ε6∂λM2
Tðq; pÞ

ω2
T;kðq; pÞ

d�Kðq; pÞ; ð61Þ

and we implicitly defined the functions αMS
λ;k and αTλ;K .

The defining equations for the vacuum Ωðq; pÞ, together
with the derivatives of the annihilation and creation

operators, give rise to a formula for the λ-derivative of
the vacuum state

∂Ωðq; pÞ
∂λ ¼

X
k∈k

αMS
λ;k ðq; pÞðb�kb�kΩÞðq; pÞ

þ
X
K∈K

αTλ;Kðq; pÞðd�Kd�KΩÞðq; pÞ: ð62Þ

With this, it is straightforward to compute the λ-derivative
of any excited state ξðnÞ using that ξðnÞ can be expressed by
application of an appropriate number of creation operators
on the vacuum state [see Eq. (57)]. It is convenient (see
[1,3]) to express the derivative of the eigenstates with
respect to the homogeneous parameters as an application of
a connection Aλ ∈ C∞ðΓhom;LðHpertÞÞ on the global
Hilbert bundle H, and we write

∂ξðnÞðq; pÞ
∂λ ≕AλξðnÞ≕AðmÞ

λðnÞξðmÞ;

AðmÞ
λðnÞðq; pÞ ∈ C∞ðΓhom;RÞ ∀ ðnÞ; ðmÞ; ð63Þ

where the summation over (m) includes essentially all
possible excitation numbers within the Fock space Hpert.
However, there is only a countable number of (m)’s for

which AðmÞ
λðnÞ is nonvanishing if (n) is a finite set of

nonvanishing excitation numbers. Therefore, let us state
again that the notation (n) is a short form for a set of finitely
many, nonvanishing excitation numbers that we can write
more explicitly as f…; nMS;k1 ; nMS;k2 ;…; nT;K1

; nT;K2
;…g.

Besides, we denote a set of quantum numbers which only
differs from (n) in the single quantum number nMS=T;k=K by
�2 by f…; nMS=T;k=K � 2;…g. We are therefore led to
write the connection coefficients in the direction λ that link
the state (n) and the state f…; nMS=T;k=K � 2;…g as

A
nMS;k;β−2

λnMS;k;β
ðq; pÞ ≔ −αMS

λ;k ðq; pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnMS;k;β − 1Þ · nMS;k;β

q
;

ð64Þ

A
nMS;k;βþ2

λnMS;k;β
ðq;pÞ≔ αMS

λ;k ðq;pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnMS;k;βþ1Þ · ðnMS;k;βþ2Þ

q
;

ð65Þ

A
nT;K;β0−2

λnT;K;β0
ðq; pÞ ≔ −αTλ;Kðq; pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnT;K;β0 − 1Þ · nT;K;β0

q
;

ð66Þ

Aλ
nT;K;β0þ2

nT;K;β0 ðq; pÞ ≔ αTλ;Kðq; pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnT;K;β0 þ 1Þ · ðnT;K;β0 þ 2Þ

q
:

ð67Þ

In this notation, the derivative of some state ξðnÞðq; pÞ with
respect to λ has the form
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∂ξðnÞðq; pÞ
∂λ ¼

X
k∈k

�
A

nMS;k;β−2
λnMS;k;β

ξMS
f…;nMS;k;β−2;…g

þA
nMS;k;β

þ2

λnMS;k;β
ξMS
f…;nMS;k;βþ2;…g

�Y
τ

ξ T;τ
ðnTÞ

þ ξMS
ðnMSÞ

Y
τ

X
k∈k

�
A

nT;K;β0
−2

λnT;K;β0
ξT;τf…;nT;k;β0−2;…g

þA
nT;K;β0

þ2

λnT;K;β0
ξT;τf…;nT;k;β0þ2;…g

�
ξT;τ

0≠τ
ðnTÞ : ð68Þ

Coming back to the actual construction scheme, we are
now ready to explicitly compute an expression for π1 as
defined in Eq. (56). The homogeneous Poisson brackets
give rise to several derivatives with respect to ϕ and pϕ. The
derivatives of the symbol functions π0, etc., can be obtained
by using the Riesz representation used in Eq. (53). Thereby
note that the eigenstates, and hence also the connection
coefficients, are real valued. A straightforward, but tedious
computation (see Appendix), gives

πOD
1 ¼ i

2

Xδ
β¼1

X
ðnÞ≠ðνÞβ

AðνÞβðnÞ
EðνÞβ − EðnÞ

× ðξðνÞβhξðnÞ; ·iF s
− ξðnÞhξðνÞβ ; ·iF s

Þ; ð69Þ

and the function AðνÞβðnÞðq; pÞ is defined according to

AðνÞβðnÞ ≔ AðnÞ
ϕðνÞβ

∂ðEðnÞ þ EðνÞβÞ
∂pϕ

−AðnÞ
pϕðνÞβ

∂ðEðnÞ þ EðνÞβÞ
∂ϕ

þ ðEðnÞ − EðmÞÞðAðmÞ
pϕðνÞβA

ðnÞ
ϕðmÞ −AðmÞ

ϕðνÞβA
ðnÞ
pϕðmÞÞ:

ð70Þ

For the final construction rule (S1–2), it is easy to check
that πð1Þ indeed equals π�

ð1Þ by simply transposing and

complex conjugating our results for π0 and π1. For closing
this subsection, we emphasize that the Weyl quantization of
the Moyal projector πð1Þ is a very nontrivial operator on the
total Hilbert space H due to the dependence of πð1Þ on
ðq; pÞ and ε. SAPT therefore suggests to construct a Moyal
unitary symbol u which maps the dynamical subspace
related to π, or more precisely here to πð1Þ, to a suitable
reference subspace Kpert ⊂ Hpert.

2. Construction of the Moyal unitary uð1Þ
We choose an arbitrary but suitable reference subspace

Kpert ⊂ Hpert to which we map the relevant dynamics
of the problem. The idea is to select one fixed point
ðq0; p0Þ ∈ Γhom. We denote the eigenbasis of Cðq0; p0Þ at
this point by fζðnÞg ≔ fξðnÞðq0; p0Þg, and we define the
reference projection by

πp ≔
XδðνÞ
β¼1

ζðνÞβhζðνÞβ ; ·iF s
: ð71Þ

We denote the subspace associated with the projection
symbol πp by Kpert as outlined before. In order to mediate
between πHpert and Kpert, and vice versa, a unitary symbol
function uðq; pÞ is necessary. The space adiabatic scheme
assumes the symbol to have the form of a formal power
series in ε. We restrict its computation to the first order,
uð1Þ ¼ u0 þ εu1, and we define its zeroth order component
to be

u0ðq; pÞ ≔
X
ðnÞ

ζðnÞhξðnÞðq; pÞ; ·iF s
; ð72Þ

where the sum over (n) is a sum over all possible
combinations of excitation numbers in the field Fock
space. It is straightforward to show that u0 and πp together
with π0 satisfy the base clause of the construction rules
(S2), namely (S2–1) u�0 · u0 ¼ 1pert, (S2–2) u0 · u�0 ¼ 1pert,
and (S2–3) u0 · π0 · u�0 ¼ πp. For the construction of u1, it
is useful to split u1 into a Hermitian and an anti-Hermitian
part h1 ¼ h�1, and k1 ¼ −k�1 such that u1 ≕ ðh1 þ k1Þ · u0.
The construction rule (S2–1) serves to determine h1 for our
choice of πp and u0. In particular, its restriction to first order
is given by

i
2
fu0;u�0ghom þ 2h1 ¼ 0: ð73Þ

The Hermitian part of u1ðq; pÞ is accordingly given
in terms of the connection coefficients and the fast
eigenstates by

uh1ðq; pÞ ¼
i
4

X
ðnÞ;ðmÞ;ðkÞ

ðAðmÞ
ϕðnÞA

ðkÞ
pϕðmÞ

−AðmÞ
pϕðnÞA

ðkÞ
ϕðmÞÞζðnÞhξðkÞ; ·iF s

: ð74Þ

To determine the remaining anti-Hermitian piece, let us
consider the construction rule (S2–3). By separating
the contribution from the anti-Hermitian part from this
rule restricted to first order, we define a new operator K1

such that

uð1Þ⋆επ⋆εu�ð1Þ − πp≕ εðK1 þ ½k1; πp�pertÞ þO0ðε2Þ: ð75Þ

By expanding the star products in this equation, we obtain
an explicit expression for K1 given by

K1 ¼ h1 · πp þ πp · h1 þ u0 · π1 · u�0 þ
i
2
u0 · fπ0; u�0ghom

þ i
2
fu0; u�0ghom · πp: ð76Þ
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Using that a solution to k1 arises as k1 ¼
−½πp; ½K1; πp�pert�pert, we finally get

u1 ¼ ½πp; u0 · πOD
1 · u�0�pert · u0 þ

i
4
½πp; fu0; u�0ghom�pert · u0:

ð77Þ

With the already known solution of π1, the solution u1 can
be obtained from a simple algebraic computation. More
precisely, we have

u1 ¼
i
2

XδðνÞ
β¼1

X
ðnÞ≠ðνÞβ

AðνÞβðnÞ
EðνÞβ − EðnÞ

× ðζðνÞβhξðnÞ; ·iF s
þ ζðnÞhξðνÞβ ; ·iF s

Þ: ð78Þ

3. Construction of the effective Hamiltonian Ceff;ð2Þ
The last step of the perturbation scheme consists in

pulling the dynamics of the chosen subspace associated
with the Weyl quantization of π to the ε-independent
subspace π̂pHpert. The effective Hamiltonian Ĉeff acting
on this subspace is the Weyl quantization of the symbol
function Ceff which obeys the construction rule (S3),
namely Ceff ¼ u⋆εC⋆εu�. Again, we assume a power
series ansatz with respect to ε for the symbol Ceff that
we are going to determine up to second order, i.e.,
Ceff;ð1Þ ¼ Ceff;0 þ εCeff;1 þ ε2Ceff;2. In the following, we
restrict our attention to the dynamics within the relevant
subspace and thus project Ceff;ð2Þ on πp. At zeroth order,
this yields

Ceff;0;p ¼
Xd;d0
b;b0¼1

�
Ehomða; pa;ϕ; pϕÞ þ

1

a

X
k∈k

νMS;k;bωMS;k

þ 1

6a

X
K∈K

νT;K;b0ωT;K

�
ζðνÞβhζðνÞβ ; ·iF s

; ð79Þ

which includes the standard zeroth order Hamilton con-
straint for an FLRW universe with a homogeneous and
isotropic scalar field denoted here by Ehomða; pa;ϕ; pϕÞ,
and the bare energy contributions from the relevant energy
band ξðνÞβ . Note that these additional terms are finite as we
chose the relevant quantum numbers fνMS;k;b; νT;K;b0 g to be
nonvanishing for only a finite number of wave vectors k
and K. If we considered the vacuum state for which any of
the numbers fνMS;k;b; νT;K;b0 g vanish, there would be no
additional contributions to Ehom.
We also note that in the above result Ehom, ωMS;k;ωT;K as

well as ζðνÞβ depend on ε by definition. These ε-dependent
terms should actually be removed and added to higher order
contributions of the effective constraint. Regarding Ehom
this task is relatively simple but for the other occurrences of

ε the analysis is more difficult because ε appears in
summands under a square root. Since, however, the explicit
analysis and the finding of quantum solutions for this
constraint are not in the scope of this paper, we defer this
task to a later publication and continue with the SAPT
scheme regardless.
For the first and second order contributions of Ceff , it is

useful to star multiply the condition (S3) by u from the right
such that the double star product does not have to be carried
out. The restriction of the resulting equation to the first
order in ε yields (cf. [2,5])

Ceff;1 ¼
�
u1 · C − Ceff;0 · u1 þ

i
2
fu0;Cghom

−
i
2
fCeff;0; u0ghom

�
· u�0: ð80Þ

To evaluate Ceff;1, recall that u1 has no diagonal contribu-
tions. Therefore, Ceff;1 has no diagonal contributions at all
such that Ceff;1;p ≔ πp · Ceff;1 · πp vanishes identically. The
same strategy for determining Ceff;1;p applies for deriv-
ing Ceff;2;p.
In fact, the second order effective Hamilton symbol

includes several contributions but we will show that only
one of them is of second order in the perturbative
parameter, and hence relevant. First, notice that at second
perturbative order one should also include contributions
from the ε2-scheme of the geometric degrees of freedom
ða; paÞ. This corresponds to a first order contribution in the
perturbation scheme with respect to the homogeneous
gravitational degrees of freedom. Consequently, Ceff;2;p

includes the first order effective Hamilton constraint
regarding the gravitational ε2-scheme. However, we
already know that the first order effective Hamilton con-
straint within the relevant energy band vanishes identically,
and so we can simply drop this term. The remaining
contributions are due to the ε-scheme with respect to the
homogeneous scalar matter field. The first of them arises by
computing contributions of the first order Moyal product,
and the second from second order contributions to the
Moyal product, namely

Ceff;2;p ¼
i
2
fπp · u1;Cþ EðνÞ1fghom · u�0 · πp

þ πp · ð½u0⋆εC�2 − ½EðνÞ⋆εu0�2Þ · u�0 · πp; ð81Þ

where the square brackets with subscript 2 indicate that the
inside is restricted to exactly second order in the perturba-
tive scheme. As it turns out, not all contributions to this
operator (which is given in terms of the connection
coefficients in Appendix) give terms of second order in
ε, and we therefore review their components and select the
contributions that effectively enter at second order in the
perturbative scheme. The appearance of terms that actually
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enter at higher orders in ε stems from the fact that the
perturbative Mukhanov-Sasaki and tensor contributions to
C are by definition of second order in ε. Nevertheless, it
was necessary to include them as zeroth order contributions
to make the space adiabatic scheme work at the technical
level. This does not undermine the results but a careful
analysis of all terms is required. We recall that the effective,
ða; pa;ϕ; pϕÞ-dependent masses of the Mukhanov-Sasaki
and the tensor systems depend polynomially on ε with
different exponents, and so will their derivatives with
respect to the homogeneous variables. Most importantly,
we find by inspecting their explicit expressions in Eqs. (32)
and (33) that

∂ðεMTÞ2
∂ϕ ∝ ε2a2ϕ∼ε2;

∂M2
MS

∂ϕ ∝ ε
apϕ

pa
∼ ε; ð82Þ

∂ðεMTÞ2
∂pϕ

¼ 0;
∂M2

MS

∂ϕ ∝ ε
apϕ

pa
∼ ε;

p3
ϕ

a6p2
a
∼ 1: ð83Þ

Since the coefficients of the connection depend directly on
these derivatives of the masses, it is straightforward to
deduce their dependence on ε, namely

A ðmÞ
ϕðnÞ

���
T
∝

∂ϕðεMTÞ2
18k2þ6ðεMTÞ2

∼ε2; A ðmÞ
pϕðnÞ

���
T
¼ 0; ð84Þ

A ðmÞ
ϕðnÞ

���
MS

∝
∂ϕM2

MS

k2þM2
MS

∼ε;

A ðmÞ
pϕðnÞ

���
MS

∝
∂pϕ

M2
MS

k2þM2
MS

∼1; ð85Þ

where the vertical lines with subscripts “MS” and “T”
indicate the restriction of the connection coefficients to
those which contain only nontrivial factors with respect to
the Mukhanov-Sasaki or the tensor perturbations, respec-
tively. In addition, there are several other factors that enter
the formula for the effective, second order Hamilton
constraint, in particular,

EðmÞ − EðnÞ ∼ ε2; ðEðmÞ − EðnÞÞ−1 ∼ ε−2; ð86Þ

∂ϕEhom ∝ ε2a3ϕ ∼ ε2; ∂pϕ
Ehom ∝

pϕ

a3
∼ 1: ð87Þ

With this information, we examine all terms contributing to
heff;2;p carefully and identify only one single term which is
of order ε0, and consequently enters at the correct order for
our scheme. All other terms include additional factors in ε.
This relevant contribution comes from the first order Moyal
product expressions and is given by

Ceff;2;p ¼ −
X
β;ðnÞ

1

EðνÞβ − EðnÞ
A ðnÞ

ϕðνÞβ

���
MS

A
ðνÞβ

ϕðnÞ
���
MS

�∂Ehom

∂pϕ

�
2

ζðνÞβhζðνÞβ ; ·iF s
: ð88Þ

The sum over all possible excitation numbers (n) reduces to a sum over the wave modes by evaluating the connection
coefficients. In particular, we have that

X
ðnÞ

A ðnÞ
ϕðνÞβ

���
MS

A
ðνÞβ

ϕðnÞ
���
MS

EðνÞβ − EðnÞ
¼

X
k∈k

�
−

a
2ωMS;bðk2Þ

ðA νMS;k;b−2
ϕνMS;k;b

Þ2 þ a
2ωMS;bðk2Þ

ðA νMS;k;bþ2

ϕνMS;k;b
Þ2
�

¼
X
k∈k

aðαMS
ϕ;kÞ2

2ωMS;bðk2Þ
ð−ðνMS;k;b − 1ÞνMS;k;b þ ðνMS;k;b þ 1ÞðνMS;k;b þ 2ÞÞ

¼
X
k∈k

1

ðk2 þMMSÞ5=2
�
νMS;k;b −

1

2

�
9

2

m4a3p2
ϕ

p2
a

: ð89Þ

This result, together with ð∂pϕ
EhomÞ2 ¼ p2

ϕ=a
6, yields the second order effective Hamilton constraint

Ceff;2;pða; pa;ϕ; pϕÞ ¼ −
Xd
b¼1

X
k∈k

1

ðk2 þM2
MSÞ5=2

�
νMS;k;b þ

1

2

�
9

2

m4p4
ϕ

a3p2
a
ζðνÞbhζðνÞb ; ·iF s

: ð90Þ

Hence, we recover an explicit expression for the effective
Hamilton symbol Ceff;ð2Þ;p ¼ Ceff;0;p þ ε2Ceff;2;p which in-
cludes the backreaction of the perturbative energy band
with quantum number ðνÞβ on the homogeneous degrees of

freedom. Interestingly, the backreaction solely comes from
the Mukhanov-Sasaki scalar degrees of freedom. Note that
M2

MS as well as ζðνÞb in Eq. (90) depend on ε, and so there
will be certain contributions to Ceff;2;p that are actually of
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higher than second order in ε. A careful analysis would be
necessary to remove these terms. Here, however, we defer
from entering this analysis and postpone it to a later
publication.
The final step of the scheme consists in Weyl quantizing

this symbol function with respect to the homogeneous
sector and in finding an appropriate domain and possible
solutions that are annihilated by the constraint. Then, by
application of the Weyl quantization of uð2Þ, one can rotate
the solutions back to the original Hilbert space, which will
be solutions to the original constraint Ĉ up to errors of order
ε3. The computation of uð2Þ will be part of a future
publication.
Finding solutions to this Hamilton constraint appears to

be a difficult task. The symbol contains nontrivial (and
nonpolynomial) dependencies on the homogeneous phase
space variables, and besides the mass term M2

MS is an
indefinite function on Γhom and hence leads to tachyonic
instabilities for the solutions of the effective Hamilton
symbol. In this respect, let us emphasize that this pecu-
liarity is not due to the application of the SAPT scheme
itself, but already occurs when introducing standard gauge-
invariant perturbation fields in cosmology [21]. Therefore,
M2

MS can become negative and hence cancel or even
surpass the wave vector squared in the denominator here.
Regarding the first case, in particular if a nonpositive mass
squared cancels the wave number contribution, we observe
that for every wave vector k ∈ k, there is a (possibly
nonconnected) three-dimensional region γk ⊂ Γhom in the
four-dimensional homogeneous phase space for which this
single summand diverges. Since the summation over k is
discrete, we expect the divergent surfaces to lie discretely in
Γs. For the first part of the effective Hamiltonian, we have a
finite number of such surfaces while for the second part, we
have a countably infinite number of divergent surfaces. In
addition, the global (third) factor in Ceff;2;p diverges in the
limits a → 0, pa → 0, and pϕ → �∞.
Despite these divergencies, we emphasize that the

symbol Hamilton constraint still needs to be Weyl quan-
tized. It might still be possible to find appropriate solutions.
Of course, the divergencies narrow the set of admissible
quantum states for which Ĉeff;2;p is a well-defined quantum
operator. Besides, the absolute value of a negative mass
term might be larger than the wave vector squared such that
the total Hamilton constraint symbol would have imaginary
contributions. Hence, the question arises whether the final
effective Hamilton operator of the theory is self-adjoint or
allows for self-adjoint extensions. It is therefore reasonable
to seek strategies to circumvent these problems, and we
have discussed such solutions in [1] in great detail. In the
next section, we employ one of these solutions by per-
forming a symplectic embedding of the homogeneous
phase space.
Let us shortly mention that the sum over the infinite

number of modes in the effective Hamiltonian is in fact

convergent (in case that we have M2
MS > 0). Also note that

the second order effective Hamiltonian contains a Casimir
effect–like term: Namely, even if we compute the back-
reaction of the vacuum, i.e., considering ðνÞ ¼ 0, there will
be backreaction.

IV. POSITIVE MASS RESTRICTED MODEL

In this section, we apply one of the strategies proposed in
[1] in order to circumvent the problems associated with the
indefinite mass squared functions. In particular, we are
going to restrict the classical phase space of the homo-
geneous degrees of freedom to a set of points ðq; pÞ ∈ Γhom
for which both the effective Mukhanov-Sasaki effective
mass squared MMSðq; pÞ2 and the effective tensor mass
MTðq; pÞ2 are manifestly positive. We achieve this by
defining two new sets of homogeneous phase space
variables which we denote by ðb; q0Þ and ðω; u0Þ.

A. Symplectic embedding

For simplicity, we restrict our considerations to the case
of a vanishing scalar field potential and zero cosmo-
logical constant, i.e., m ¼ 0 ¼ Λ. Consequently, the
model does not represent one of the standard inflationary
theories. Then, we consider the rescaled homogeneous
variables ða; paϕ; pϕÞ with Poisson brackets fa; pag ¼ ε2

and fϕ; pϕg ¼ ε. Referring to the definition of the
Mukhanov-Sasaki and tensor mass squared functions in
Eqs. (32) and (33), the mass squared functions are given
here by

M2
MS ¼−

1

18

p2
a

a2
þ7p2

ϕ

2a4
−18

p4
ϕ

a2p2
a
; ðεMTÞ2¼

p2
a

6a2
: ð91Þ

Note that because of V ¼ 0, the variable ϕ is cyclic.
Evidently, ðεMTÞ2ðq; pÞ ≥ 0 is manifestly positive, but
this is not the case for MMSðq; pÞ2. However, after some
algebraic manipulations, we can writeM2

MS as a manifestly
positive quantity. Therefore, we define y ≔ apa, and we
write

M2
MS ¼

18

a4y2
ðcþy2 − p2

ϕÞðp2
ϕ − c−y2Þ; with

c2� ¼ 1

72
ð7�

ffiffiffiffiffi
33

p
Þ ∈ R: ð92Þ

Note that the constant parameters c� satisfy the inequalities
cþ > 1 > c− > 0. This tells us that if we requireM2

MS > 0,
we must constrain p2

ϕ by

c2þy2 > p2
ϕ > c2−y2: ð93Þ

This can most easily be achieved by introducing a new
explicit parametrization with the variable w defined by
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pϕ≕ yω; ð94Þ

for which we require that ω ∈ I ≔ ½−cþ;−c−� ∪ ½c−; cþ�.
With this information, let us introduce the two variables

ω ¼ pϕ

y
; u0 ≔ −yϕ; ð95Þ

and pursue the aim to define two canonical sets of which
ðω; u0Þ is one. Therefore, we also define α ≔ ln a. By this
parametrization, the symplectic structure of the homo-
geneous subsystem can be pulled back. Dropping total
differentials, we obtain

ε2Θ ¼ −ðadpa þ εϕdpϕÞ ¼ −ððαþ εϕωÞdy − εu0dωÞ:
ð96Þ

It is manifest to identify u0 as a new momentum variable
and ω as its conjugate variable. Similarly, y can serve
as a new momentum variable with conjugate variable
ðαþ εϕωÞ. In a final step, it is useful to introduce another
canonical transformation. Therefore, we define as a canoni-
cal variable

b ≔ expðαþ εϕωÞ ¼ a · exp

�
ε
ϕpϕ

apa

�
: ð97Þ

It can easily be checked that the variable q0 with y≕ bq0
serves as a conjugate momentum for b, and in terms of the
initial variables, it is given by

q0 ¼ pa · exp
�
−ε

ϕpϕ

apa

�
: ð98Þ

Note also that the following identity holds:

ε
ϕpϕ

apa
¼ −ε

ωu0

bq0
: ð99Þ

Then, we can identify the total transformation T∶R4 ⊃ U ∋
ðq̃; p̃Þ → ðq; pÞ ∈ W ⊂ R4, where U, W are subsets of R4,
which maps the new variables canonically on the initial
ones, and which is explicitly given by

a¼ b · exp

�
ε
ωu0

bq0

�
; pa ¼ q0 · exp

�
−ε

ωu0

bq0

�
; ð100Þ

ϕ ¼ −
u0

bq0
; pϕ ¼ bq0ω: ð101Þ

We emphasize that in the new space adiabatic perturbation
scheme, we can treat q0 as pa with rescaling ε2 and u0 as pϕ

with rescaling ε. In the new variables, the homogeneous
part of the Hamilton constraint Ehom and the masses, M2

MS,
ðεMTÞ2, are given by

Ehom ¼ ðq0Þ2
2b

exp

�
−ε

ωu0

bq0

��
ω2 −

1

6

�
; ð102Þ

M2
MS ¼ 18

ðq0Þ2
b2

exp

�
−4ε

ωu0

bq0

�
ðcþ − ω2Þðω2 − c−Þ;

ð103Þ

ðεMTÞ2 ¼
1

6

ðq0Þ2
b2

exp

�
−4ε

ωu0

bq0

�
: ð104Þ

Now, both mass squared terms are manifestly positive in
terms of the two new canonical sets ðb; q0Þ and ðω; u0Þ.
Note that b is non-negative and ω ∈ I is defined on a union
of two compact intervals in R. We emphasize that this
restriction of the phase space requires us to properly revise
the definition of the integral Weyl quantization procedure
and the Moyal product. We will discuss this point in the
sequel but first formally apply the space adiabatic scheme
to the presented model using the standard Weyl formulas
available on the whole real line.

B. Space adiabatic construction scheme

We apply SAPT to the inhomogeneous cosmological
model with gauge-invariant perturbations and the appro-
priate transformations as discussed in Sec. II, but employ
the new phase space variables ðw; u0; b; q0Þ. The Hamilton
symbol from (39) expressed with these new variables takes
the form

Cðω; u0; b; q0Þ ¼ Ehomðω; u0; b; q0Þ1pert

þ e−ε
ωu0
bq0

b

�X
k∈k

ωMSðk2Þb�kbk

þ
X
K∈K

ωTðk2Þ
6

d�Kd
�
K

�
; ð105Þ

in close analogy to the original model. The frequency
functions ωMSðk2Þ and ωTðk2Þ have the same form as
before but are expressed in terms of the new variables, as
well as similarly for the creation and annihilation operators.
Therefore, also the application of SAPT proceeds in the
very same manner. The functions αMS

λ;k and αTλ;K which serve
to quantify the derivatives of the annihilation operators bk
and dK in the direction λ ∈ fω; u0; b; q0g have the same
form with respect to the masses and frequencies as before,

and so do the coefficients of the connections AðmÞ
λðnÞ. The

explicit expression in terms of the new variables looks of
course different from before. We observe again that the
connections relate only states which differ by �2 excita-
tions in one quantum number.
Since all formal expressions are identical to the ones in

Sec. III, we are content to directly present the expression
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for the effective Hamilton constraint up to second order in
the perturbations. As before, we therefore define an
operator-valued symbol πp associated with the fast
eigensolution(s) ζðνÞγ ≔ ξðνÞγ ðw0; u00; b0; q

0
0Þ ∈ Hpert at

some fixed phase space point ðw0; u00; b0; q
0
0Þ ∈ Γhom.

Thereby, we allow for degenerate eigenstates with degen-
eracy labels γ ¼ ðc; c0Þ and the degrees of degeneracy δ ¼
ðd; d0Þ for the Mukhanov-Sasaki and the tensor perturba-
tions, respectively. At zeroth order, the scheme generates
the standard Born-Oppenheimer result that we directly
restrict to the relevant subspace associated with πp,

Ceff;0;p ¼
Xd;d0
c;c0¼1

�
Ehomðω; u0; b; q0Þ

þ e−ε
ωu0
bq0

b

�X
k∈k

νMS;k;cωMSðk2Þ

þ
X
K∈K

νT;K;c0
ωTðk2Þ

6

��
· ζðνÞγ hζðνÞγ ; ·iF s

: ð106Þ

The first contribution is simply the standard FLRW
Hamiltonian constraint. The two remaining contributions
correspond to the bare energy of the chosen excitation
number (ν) associated with the Mukhanov-Sasaki and the
tensor perturbations. At first order of the scheme, the
effective Hamilton constraint vanishes. This is because we
assumed that the standard Moyal product applies to the
given case, and hence the formulas from the previous
section and Appendix can be used. In this case, the first
order effective Hamiltonian vanishes identically. At second
order, it is again possible to split the contributions into a
part that only contains the bare symbols and their Poisson
brackets, and a part which involves the second order Moyal
product. The symbolic form of the first part evidently
remains the same, and we only need to replace the
Poisson brackets with respect to the old variables by the
Poisson brackets with respect to the new variables. We refer
to the previous section for the explicit computations.
Analogously, it turns out that many contributions are
actually of higher order in ε and can thus be omitted for
our choice of truncation. This yields

i
2
fπp ·u1;CþEðνÞ1pertghom ·u0 ·πp¼−bexp

�
ε
ωu0

bq0

� Xd;d0
c;c0¼1

ζðνÞγ hζðνÞγ ; ·iF s

�X
k∈k

2νMS;k;cþ1

64ωMSðk2Þ5
·

�∂M2
MS

∂u0
Ehom

∂ω −
∂M2

MS

∂ω
∂Ehom

∂u0
�

2

þ
X
K∈K

27

8

2νT;K;c0 þ1

ωTðk2Þ5
·

�∂ðεMTÞ2
∂u0

∂Ehom

∂ω
�

2
�
: ð107Þ

In contrast to the result using the original variables, the
tensor modes generate second order backreaction. This is
not very surprising. Even if the two sets of variables are
classically related by a canonical embedding, the quantum
theories lead to different physical theories. This is a well-
known feature of standard quantum theory, and only the
comparison with experimental data provides the means to
distinguish the physically relevant from the nonrelevant
theories.
A priori, the scheme includes also contributions to the

second order effective Hamilton constraint that are due to
the second order Moyal product. However, as before it
turns out that these contributions are all of higher than
second order in ε, and hence are not relevant for our

computations. This finally yields the effective
Hamiltonian with respect to the transformed variables
ðb; q;ω; uÞ, i.e., without the ε-scaling for the momentum
variables. It is important to note that because we use these
unscaled variables ðb; q;ω; uÞ the expression for the
Hamiltonian can and will in fact depend explicitly on
ε. If we used the original variables ðb; q0;ω; u0Þ (similar to
what we have done in all previous examples) with q0 ¼
ε2q and u0 ¼ εu, there would be no explicit dependence on
ε for the zeroth order part (106) and only a global factor ε2

for the second order contribution (107). Expressing the
latter explicitly as a function of the transformed variables,
we obtain

Ceff;ð2Þ;p ¼
Xd;d0
c;c0¼1

ζðνÞγ hζðνÞγ ; ·iF s
·

�
1

2

ε2q2

b2
exp

�
−
ωu
bq

��
ω2 −

1

6

�

þ
exp ð− ωu

bqÞ
b

�X
k∈k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

MS

q
νMS;k;c þ

1

6

X
K∈K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18k2 þ 6ðεMTÞ2

q
νT;K;c0

�

þ
X
k∈k

2νMS;k;c þ 1

ðk2 þM2
MSÞ5=2

hMSðω; u; b; qÞ þ
X
K∈K

2νT;K;c0 þ 1

ð18k2 þ 6ðεMTÞ2Þ5=2
hTðω; u; b; qÞ

�
; ð108Þ
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where now the variables u and q refer to the ε-freed u0 and q0 variables, and we introduced the Hamiltonian backreaction
functions

hMS ¼ exp

�
−13

ωu
bq

��
−
81ε12q6ω4

64b7

�
ð2cþω2 þ c−ð−8cþ þ 2ω2 þ 1Þ þ cþ þ 4ω4 − 2ω2Þ2;

hT ¼ − exp

�
−13

ωu
bq

�
·
3ε12q6ω4

2b7
: ð109Þ

We emphasize again that these expressions are indeed of
zeroth and of second order, respectively, in ε with respect to
the ε-scaled variables ðb; q0;ω; u0Þ and that the explicit
dependence on ε in the previous equations only appears
because we used the unscaled variables ðb; q;ω; uÞ.
Again, we identify the standard purely homogeneous and

isotropic Hamilton constraint of our cosmological model in
the first line of this result. Together with the bare energy
band contributions from the Mukhanov-Sasaki and tensor
perturbations in the ensuing line, this yields the zeroth order
contribution of our perturbative scheme. The last line
shows the second order contributions of the scheme.
These depend partly on the relevant excitation numbers
that we have chosen, but there are also contributions which
do not, and hence, present a vacuum backreaction from the
perturbative degrees of freedom on the homogeneous
degrees of freedom. Note that effectively, after having per-
formed a transformation to the unscaled momenta ðu; qÞ,
they both enter with a factor ε12, and terms containing
polynomials of them should thus remain very small within
our perturbative scheme.
An interesting question that arises for this model is that

of conformal invariance. In fact, we did not consider any
conformal coupling to curvature here but it would be
interesting to know whether the SAPT corrections preserve
such a classical conformal invariance or contribute to the
trace anomaly. We leave this for future investigation.
Finally, we emphasize once again that we do not expect

the same results as for the previous model without the
transformations in the homogeneous sector. Another reason
for this to happen is that the restriction to the positive mass
region is accomplished by a symplectic embedding rather
than a symplectomorphism which in particular changes the
entire topology of the slow phase space. Thus, the quantum
theories cannot be unitarily equivalent. Note that even if the
phase spaces were the same and the transformation was
strictly canonical, the quantum theories are likely to differ.

C. Review of the quantization procedure

As shown in Sec. IVA, the symplectic embedding
employed there restricts the variable ω to the union of
two compact intervals on the real line I ¼ I1 ∪ I2 ≔
½−cþ;−c−� ∪ ½c−; cþ�. The standard Weyl quantization
procedure is, however, defined for systems with the
cotangent bundle over the real line (or products thereof)

as their phase space, and hence, the Weyl quantization
procedure is a priori not available for this model. In
particular, the Moyal product underlying the SAPT scheme
might be subject to modifications which would conse-
quently alter the results obtained so far.
There are now two possible strategies. For the first

possibility, we take the restriction of the phase space
seriously and try to define a Weyl quantization scheme
for that model. One would need to redefine the integral
representation of the Weyl quantization scheme and pos-
sibly define a new form of operator kernels. Since the
classical observables as well as the wave functions are only
defined on a compact configuration space (or rather a sum
of compact spaces), it necessitates the use of a discrete
Fourier series with respect to the respective modes instead
of the continuous Fourier transform when defining Weyl
quantization. It effectively corresponds to considering the
phase space T�S1 ⊕ T�S1 instead of T�R2. It is also
important to note that due to the restriction to a finite
interval, ambiguities occur in the definition of the momen-
tum operator as it admits an infinite number of self-adjoint
extensions [69]. This must also be taken into account when
considering the direct sum of two T�I (we will be more
precise in the next paragraph). We also refer to the work
by [70] in this respect. In order to recover, the correct
product formula for operators and hence a star product on
the space of symbol functions, it is advisable to follow the
detailed proof for the standard Weyl product formula by
Folland [68]. We refrain here from performing this com-
putation and refer to the work by Stottmeister and
Thiemann [45] in which such a restrictedWeyl quantization
in application to LQC has been discussed.
The second possibility is to perform yet another trans-

formation that maps the two intervals on the real line,
respectively. Therefore, note that theHilbert spaceL2ðI; dwÞ
of square integrable functions ψ over I is uniquely specified
by the restrictions ψ1 ¼ ψ jI1 and ψ2 ¼ ψ jI2 which shows
that L2ðI; dωÞ ¼ L2ðI1; dωÞ ⊕ L2ðI2; dωÞ. Now each Ik is
of the form ½a; b� and using suitable maps, one can define
new variables. Let us consider for example

ω ¼ fðxÞ ¼ aþ
�
1þ 2

arctanðxÞ
π

�
b − a
2

; ð110Þ

for which it is true that dfdx ðxÞ > 0. The associated conjugate
momentum is given by
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y ≔ u0
∂f
∂x ; i:e:; u0 ¼ y

�∂f
∂x

�
−1
; ð111Þ

and we can easily check that indeed the canonical structure
passes over to the new variables, fx; yg ¼ 1. As a conse-
quence, we may think of T�Ik as T�R. We pick the Hilbert
spaceL2ð½a; b�; dωÞ onwhichω acts bymultiplication and u
as the derivative operator−i ∂

∂ω of course subject to boundary
conditions to make it self-adjoint. On the other hand, we
can promote the variables x and y to quantum operators such
that the latter satisfy the standard commutation relation
½x̂; ŷ� ¼ i1̂hom. One can thus think of x̂ as a multiplication
operator and ŷ as the (−i)-scaled derivative operator with
respect to x. Since x and y are defined on the wholeR2, it is
reasonable to impose a symmetric Weyl quantization
scheme in order to connect with the previous considerations.
Namely, let us consider the symmetric operators

q̂ ≔ f−1ðωÞ and p̂≔
ffiffiffiffiffiffiffiffiffiffi
f0ðxÞp

u
ffiffiffiffiffiffiffiffiffiffi
f0ðxÞp jx¼f−1ðωÞ which sat-

isfy the canonical commutation relations ½q̂; p̂� ¼ −i and
the unitary map

U∶L2ð½a; b�; dωÞ → L2ðR; dxÞ∶ψ ↦
ffiffiffiffiffiffiffiffiffiffi
f0ðxÞ

p
ψðfðxÞÞ

¼ ψ̂ðxÞ; ð112Þ

with inverse ðU−1ψ̂ÞðωÞ ¼ ðψ̂=
ffiffiffiffi
f0

p
Þðf−1ðωÞÞ. Then

one may check that Q̂ ¼ Uq̂U−1 acts by multiplication
by x and P̂ ¼ Up̂U−1 by i∂=∂x. Now in every symbol, we
express u0 and ω in terms of x and y and use their Weyl
quantization for Q̂; P̂ on L2ðR; dxÞ. Using the above
formulas, the result may then be translated back in terms
of u0;ω; L2ð½a; b�; dωÞ. For instance, the Weyl quantization
of u0ω ¼ fðxÞ=f0ðxÞy on L2ðR; dxÞ yields
1

2
½fðQ̂Þ=f0ðQ̂ÞP̂þ P̂fðQ̂Þ=f0ðQ̂Þ�

¼ 1

2
U½fðqÞ=f0ðqÞpþ pfðqÞ=f0ðqÞ�U−1

¼ 1

2
U

�
w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðωÞÞ

q
u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðωÞÞ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðωÞÞ

q
u0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f0ðf−1ðωÞÞ
q

ω

�
U−1

¼ 1

2
ðωu0 þ u0ωþ ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðwÞÞ

q �
u0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðωÞÞ

q �

−
�
ω;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðwÞÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðf−1ðωÞÞ

q
ω

�
U−1

¼ U
1

2
ðu0ωþ ωu0ÞU−1; ð113Þ

which shows that Weyl quantization of uw on
L2ð½a; b�; dωÞ yields the expected symmetric result.
Concluding, we simply have to rewrite the formulas of

the previous section given there in terms of ða; pa;ϕ; pϕÞ
now in terms of ðb; q0;ω; u0Þ and symmetrically order the
outcome of the space adiabatic perturbation analysis as if
ðω; u0Þ would take values in R. The quantization of ðω; u0Þ
takes place on L2ð½−cþ;−c−�; dωÞ ⊕ L2ð½c−; cþ�; dωÞ.

V. CONCLUSION AND OUTLOOK

In this paper, we applied SAPT to quantum cosmological
perturbation theory and demonstrated that the challenges
due to the QFT nature of the problem for which SAPTwas
not designed can be faced squarely. What we now have at
our disposal is the machinery to compute the corrections
from every energy band of the inhomogeneous Fock space
to the effective homogeneous Hamiltonian, in principle to
arbitrary adiabatic order. Here, we carried out this program
to second adiabatic order. While the computations are
rather tedious already to this order, it is clear how to
proceed to arbitrary order; the scheme is similar in nature to
standard textbook quantum mechanical perturbation theory
of pure point spectra.
The treatment of the backreaction problem beyond the

semiclassical regime, which we believe to be very impor-
tant especially in the Planck era of the Universe where we
expect the semiclassical approximation to be poor, has
revealed many new interesting challenges, including
Hilbert-Schmidt conditions that require the mixture of
homogeneous and inhomogeneous degrees of freedom in
which to formulate the QFT, Weyl-Moyal calculus to feed
the quantum nature of the background into the Fock space
construction of the inhomogeneous sector, tachyons,
and their avoidance and adiabatic backreactions of the
Casimir type. Note that, in contrast to the plain Casimir
term in quantum electrodynamics, this contribution con-
verges. It is not clear from the current status of the
calculations that this also happens at higher adiabatic order
in which case presumably also nontrivial renormalization
would be required.
What is left to do is to evaluate the phenomenological

consequences of this computation and to compare to
similar ones in the literature, which mostly focuses on
the vacuum energy band. From the explicit expression of
our end result, it is evident that the corrections to the
effective homogeneous contribution of the Hamiltonian
constraint that one unambiguously obtains from the space
adiabatic treatment of the backreactions are, unsurprisingly,
of a rather new type not previously encountered in more
semiclassical treatments [37–39], and it will be interesting
to see how these terms affect the previous analysis of the
effective dynamics.
In particular, in view of [54] we are in the position to use

the standard Schrödinger representation to quantize the
effective homogeneous Hamiltonian which in view of the
Weyl quantization techniques used by SAPT is more
natural than the LQC representation and not plagued by
discretization ambiguities as one can directly quantize

QUANTUM COSMOLOGICAL BACKREACTIONS. IV. … PHYS. REV. D 105, 106012 (2022)

106012-21



position and momentum operators rather than Weyl
element approximants. The results of this investigation
are reserved for a future publication.
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APPENDIX: SPACE ADIABATIC
CONSTRUCTION SCHEME

In this Appendix, we provide the detailed algebraic
relations that led to the formulas for the space adiabatic
construction scheme. The considerations are general in the
sense that they apply to any system that satisfies the
conditions (C1)–(C4). We therefore identify the system
associated before with the homogeneous sector as the
“slow” system (and label it with the letter “s”), and the
inhomogeneous system as the “fast” subsystem (labeling it
with the letter “f”). We restrict ourselves to second order in
the adiabatic perturbations.

1. Construction of the Moyal projector

We recall that the goal of the first step is to construct the
symbol function πðq; pÞ associated with a projection oper-
ator Π̂ that commutes up to small errors in ε with a full
Hamilton operator Ĥ (or constraint). In order to construct the
effectiveHamilton symbol heff;ð2Þ;p up to second order in ε, it
suffices to construct the first order symbol πð1Þ ≔ π0 þ επ1.
We recall that conditions (C2) and ðC3Þγ assure that the zero
order Hamilton symbol H0ðq; pÞ admits a discrete eigen-
basis fξnðq; pÞgn which serves as a good starting point for
the construction of the Moyal projector. n is the short form
for any set of excitation numbers here. In particular, the
eigenvalue problem has the form

H0ðq;pÞξnðq;pÞ¼Enðq;pÞξnðq;pÞ; ξnðq;pÞ∈Hf :

ðA1Þ
Since these eigenvalue problems appear to be “fibered” over
the homogeneous phase space, it is convenient to introduce
the notion of a gauge connectionA similar to the definition
in the theory of fiber bundles for Hilbert bundles. More
precisely, we define

ð∇ξÞnðq; pÞ ≔ ðAξÞnðq; pÞ
¼ Aqn

mðq; pÞξmðq; pÞ ⊗ dq

þApn
mðq; pÞξmðq; pÞ ⊗ dp: ðA2Þ

To determine the components Aqn
m and Apn

m for any n,
m ∈ N, it suffices to compute the partial derivatives of
ξnðq; pÞ with respect to q and p, namely we define

∂ξnðq; pÞ
∂ρ ≔ Aρn

mðq; pÞξmðq; pÞ; ρ ∈ fq; pg: ðA3Þ

Let us assume that the eigenfunctions ξnðq; pÞ are real
valued for any n ∈ N, as well as the coefficient functions
Aρn

mðq; pÞ for any ρ ∈ fq; pg and n, m ∈ N. By deriving
the orthonormality relation hξn; ξmif ¼ δn;m with respect to
ρ (which obviously yield zero), where the angular brackets
denote the inner product inHf , we obtain that the connection
is antisymmetric,

Aρn
m ¼ −Aρm

n: ðA4Þ

As a consequence, the connection cannot have any diagonal
contributions, namely Aρn

n ¼ 0 for every n ∈ N. These
results and definitions will prove useful for the space
adiabatic scheme because the Moyal product of the
phase space quantization involves the derivatives of several
operator-valued functions with respect to q and p, and we
are going to express them in terms of the connection
coefficients.
By choosing one physically appropriate eigenstate

ξνðq; pÞ ∈ Hf , the scheme suggests to define the zeroth
order projection symbol as

π0ðq; pÞ ≔ ξνðq; pÞhξνðq; pÞ; ·if : ðA5Þ

It is straightforward to check that this symbol satisfies the
conditions (S1) at zeroth order by construction, namely

ðS1 − 1Þ π · π0 − π0 ¼ 0; ðS1 − 2Þ π�
0 ¼ π0;

ðS1 − 3Þ ½π0;H0�f ¼ 0; ðA6Þ

and we assume that the wave functions ξnðq; pÞ are real
valued. To construct π1ðq; pÞ, the scheme divides the
symbol into a diagonal part and an off-diagonal part.
The following, first condition determines the diagonal part.

a. Condition (S1–1): π⋆επ − π = 0
By means of the series expansion of πð1Þ and the star

product in Eq. (51), the expansion of the first condition
(S1–1) in ε yields up to first order

π0 · π0 þ ε

�
i
2
fπ0; π0gs þ π0 · π1 þ π1 · π0

�

¼ π0 þ επ1 þO0ðε2Þ: ðA7Þ

Comparing the terms of the same order in ε on both sides,
the zeroth order contributions yield the equation π0 · π0 ¼
π0 which is simply (S1–1). The first order contributions
determine the diagonal contribution to π1 by requiring that

0¼a1þπ1 ·π0þπ0 ·π1−π1; with a1≔
i
2
fπ0;π0gs; ðA8Þ
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where we tie in with the notation of the general construction
scheme in Sec. III. The evaluation of the symbol a1 requires
one to build the q- and p-derivatives of π0ðq; pÞ. Using the
connection components Aρn

mðq; pÞ from above and the
functional representation of π0 due to Riesz in Eq. (A5), we
obtain

∂π0

∂ρ ¼ Aρν
mðξνhξm; ·if þ ξmhξν; ·ifÞ; ðA9Þ

and we emphasize that ν is a fixed number while we sum
overm ∈ N. We recall that h·; ·if is the inner product within
the fast Hilbert space Hf . Using that Aρn

m has no diagonal
contributions, this gives for the symbol a1

a1 ¼
i
2

�∂π0

∂q ;
∂π0

∂p
�
f
¼ Aqν

mApν
kðξmhξk; ·if − ξkhξm; ·ifÞ:

ðA10Þ
The total diagonal contribution πD

1 of π1 can be expressed
by means of a1 by multiplying with π0 and π⊥

0 ¼ 1f − π0

from the left and the right such that

πD
1 ¼ −π0 · a1 · π0 þ π⊥

0 · a1 · π⊥
0 ¼ π⊥

0 · a1 · π⊥
0 ; ðA11Þ

where the first term vanishes because, again, the connection
has no diagonal terms. In order to determine the remaining
off-diagonal part πOD

1 ≔ π1 − πD
1 , we consider condition

(S1–3).

b. Condition (S1–3): H⋆επ − π⋆εH = 0

The expansion of (S1–3) up to first order in ε yields the
determining equation for πOD

1 ,

½H0;π0�f þ ε

�
i
2
fH0;π0gs−

i
2
fπ0;H0gsþH0 ·π1−π1 ·H0

�

¼O0ðε2Þ: ðA12Þ

Again, the zeroth order contribution is trivially satisfied
½H0;π0�f ¼ 0 as the symbol π0 is an orthogonal projection
operator on the eigensolutions of H0. Regarding the first
order contributions, the scheme requires that the term in the
brackets vanishes, in particular,

0¼! − b1 þ ½H0; π1�f ; with

b1 ≔
i
2
ðfH0; π0gs − fπ0;H0gsÞ: ðA13Þ

The off-diagonal contributions πOD;1
1 ≔ π0 · π1 · π⊥

0 and
πOD;2
1 ≔ π⊥

0 · π1 · π0 follow from the multiplication of π0

and π⊥
0 , respectively, once from each the left and the right.

With H⊥
0 ¼ H0 · π⊥

0 and using that π0 and π⊥
0 commute

with H0 as operators on Hf , we obtain for the total off-
diagonal operator πOD

1 ¼ πOD;1
1 þ πOD;2

1 ,

πOD
1 ¼ π0 · b1 · π⊥

0 · ðEν1f −H⊥
0 Þ−1

− ðEν1f −H⊥
0 Þ−1 · π⊥

0 · b1 · π0

¼ i
2
½π0 · fπ0;H0 þ Eν1fgs · ðEν1f −H⊥

0 Þ−1

· π⊥
0 þ ðEν1f −H⊥

0 Þ−1 · π⊥
0 · fH0 þ Eν1f ; π0gs · π0�:

ðA14Þ
In order to evaluate πOD

1 in terms of the connection
coefficients, we recall that the Hamilton operator symbol
can be written in its spectral form as

H0ðq; pÞ ¼
X
n∈N

Enðq; pÞξnðq; pÞhξnðq; pÞ; ·if ; ðA15Þ

where Enðq; pÞ is the real-valued energy band function for
the quantum number n. Consequently, derivations of
H0ðq; pÞ with respect to q and p consist of three con-
tributions for every n due to the product rule. This is for
example relevant for the Poisson brackets that enter
Eq. (A14). To illustrate the explicit evaluation of the
respective terms, we compute the left contributions of
the first term in πOD

1 , i.e.,

π0 · fπ0;H0 þ Eν1fgs ¼ π0 ·

�∂π0

∂q
∂ðH0 þ Eν1fÞ

∂p −
∂π0

∂p
∂ðH0 þ Eν1fÞ

∂q
�

¼ ξν

	∂ξν
∂q ; ·



f

X
n

�∂ðEn þ EνÞ
∂p ξnhξn; ·if þ En

�∂ξn
∂p hξn; ·if þ ξn

	∂ξn
∂p ; ·



f

��

− ξν

	∂ξν
∂p ; ·



f

X
n

�∂ðEn þ EνÞ
∂q ξnhξn; ·if þ En

�∂ξn
∂q hξn; ·if þ ξn

	∂ξn
∂q ; ·



f

��
:

Then, let us replace the partial derivatives by their connection representatives and relabel certain indices in order to obtain
the following result:

π0 · fπ0;H0 þ Eν1fgs≕
X
n

ξνhξn; ·ifAνnðq; pÞ; ðA16Þ
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where we defined the real-valued function Aνnðq; pÞ ∈
C∞ðΓs;RÞ according to

Aνn ≔
��

Aqν
n ∂ðEn þ EνÞ

∂p −Apν
n ∂ðEn þ EνÞ

∂q
�

þ ðEn − EmÞðApν
mAqm

n −Aqν
mApm

nÞ
�
: ðA17Þ

Note that the quantum number ν is fixed while n and m run
over all natural numbers. To obtain the first term of πOD

1 ,
we still need to multiply by the remaining factor
ðEν1f −H⊥

0 Þ−1 · π⊥
0 from the right which yields

i
2
π0 · fπ0;H0 þ Eν1fgs · ðEν1f −H⊥

0 Þ−1 · π⊥
0

¼ i
2

X
n

ξνhξn; ·ifAνnðq; pÞ ·
X
l≠ν

ξlhξl; ·if
Eν − El

¼ i
2

X
n≠ν

Aνn

Eν − En
ξνhξn; ·if : ðA18Þ

Note that this operator has indeed only off-diagonal
contributions as it projects on the state ξν from any other
state ξn, n ≠ ν. It is then easy to evaluate the remaining
contribution to πOD

1 without further calculations. According
to the construction step (S1–2) the scheme requires that
the projection symbol is self-adjoint π ¼ π� such that the
remaining contribution of πOD

1 must evaluate to yield the
total result

πOD
1 ¼ i

2

X
n≠ν

Aνn

Eν − En
ðξνhξn; ·if − ξnhξν; ·ifÞ: ðA19Þ

Thereby, note that any of the functions Aνn, En, and ξn are
real valued. It is easy to check that indeed an explicit
evaluation of the second summand in Eq. (A14) for πOD

1

yields the same result. We have thus determined all
contributions to πð1Þ. For closing this section, we empha-
size that πð1Þðq; pÞ depends on the heavy phase space
variables. Quantizing it with respect to the slow phase
space variables yields a nontrivial operator with respect to
the heavy subsystem and, hence, does not simplify the task
to find (approximate) solutions for the quantum problem.
The next step of the scheme consists in constructing a
unitary symbol u which maps the dynamical subspace
related to πð1Þ to a suitable reference subspace Kf ⊂ Hf .

2. Construction of the Moyal unitary

We choose an arbitrary, but suitable, reference
subspace Kf ⊂ Hf by selecting one fixed set of values
ðq0; p0Þ ∈ Γs. We denote the eigenbasis of Hf at ðq0; p0Þ
by fξnðq0; p0Þgn∈N ≕ fζngn∈N and define the reference
projection as

πp ≔ ξνðq0; p0Þhξνðq0; p0Þ; ·if ≕ ζνhζν; ·if : ðA20Þ

In order to mediate betweenKf and the subspace associated
with π, the scheme suggests to compute a unitary symbol u
given as a formal power series in ε. We restrict the
computation to the first order uð1Þ ¼ u0 þ εu1. It makes
sense to choose

u0ðq; pÞ ≔
X
n≥0

ζnhξnðq; pÞ; ·if ; ðA21Þ

as initial data of the iteration. This is of course a choice
which should be adapted to the physical situation at hand.
The given option trivially satisfies the zeroth order of the
space adiabatic scheme, namely

ðS2 − 1Þ u0 · u�0 ¼ 1f ; ðS2 − 2Þ u�0 · u0 ¼ 1f ;

ðS2 − 3Þ u0 · π0 · u�0 ¼ πp: ðA22Þ

In order to determine u1, it is useful to split it into a
Hermitian and an anti-Hermitian part using the symbols
h1¼h�1 and k1¼−k�1 such that uð1Þ ≔ u0 þ εðh1 þ k1Þ · u0.

a. Conditions (S2–1) and (S2–2): u⋆εu� = 1f = u�⋆εu

The unitarity conditions (S2–1) and (S2–2) yield the
same results, and so we restrict our interest to the first
condition. It evaluates in terms of h1 to the equation

u0 · u�0 − 1f þ ε

�
i
2
fu0; u�0gs þ 2h1

�
¼ O0ðε2Þ; ðA23Þ

and likewise for the second condition (S2–2). At zeroth
order, the resulting conditions u0 · u�0 − 1f ¼ 0 and u�0 ·
u0 − 1f ¼ 0 are trivially satisfied for the choice of u0 in
(A21). For the first order contribution, the scheme requires
that the terms in the brackets vanish identically. This yields
a determining equation for h1 for which we evaluate

∂u0
∂ρ ¼

X
n

ζn

	∂ξn
∂ρ ; ·



f
¼

X
n

Aρn
mζnhξm; if ; ðA24Þ

∂u�0
∂ρ ¼

X
n

∂ξn
∂ρ hζn; ·if ¼

X
n

Aρn
mξmhζn; ·if : ðA25Þ

The total Hermitian part uh1 ≔ h1 · u0 is then given accord-
ing to Eq. (A23) by

uh1 ¼ −
i
4
fu0; u�0gs · u0

¼ i
4

X
n;m;k

ðAqn
mApm

k −Apn
mAqm

kÞζnhξk; ·if : ðA26Þ
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The anti-Hermitian part k1 is determined by condition
(S2–3).

b. Condition (S2–3): u⋆επ⋆εu� = πp

We evaluate condition (S2–3) up to first order in the
perturbations and obtain at zeroth order the obvious result
u0 · π0 · u�0 ¼ πp. In order to determine the first order
contributions and hence k1, we closely follow Teufel
[[5], p. 86] and make the following definition:

wð1Þ ≔ u0 þ εh1 · u0 ¼ uð1Þ − εk1 · u0; ðA27Þ

which simply separates the Hermitian and the anti-
Hermitian part of uð1Þ. Due to the conditions (S2–1) and
(S2–2), we know that w1 satisfies wð1Þ⋆εw�

ð1Þ ¼ 1f þO0ðε2Þ,
and w�

ð1Þ⋆εwð1Þ ¼ 1f þO0ðε2Þ. Let us then introduce a
symbol function K1 to subsume the contributions in
(S2–3) coming from the symbol wð1Þ according to

wð1Þ⋆επ⋆εw�
ð1Þ − πp≕ εK1 þO0ðε2Þ: ðA28Þ

With this definition, the evaluation of (S1–3) up to first
order yields

uð1Þ⋆επ⋆εu�ð1Þ − πp≕ εðK1 þ ½k1; πp�fÞ þO0ðε2Þ: ðA29Þ

The term in the round brackets must vanish to satisfy the
requirements of SAPT. A possible solution to this is given
by k1 ¼ ½πp;K1� if K1 is Hermitian and off-diagonal with
respect to πp; namely we must ensure that

πp · K1 · πp ¼ 0 ¼ π⊥
p · K1 · π⊥

p : ðA30Þ

To show the second equality, we use that wð1Þ satisfies
(S1–1) and (S1–2) up to second order in the perturbations
such that π⊥

0 can be written as

1f − πp ¼ wð1Þ⋆εw�
ð1Þ − πp þO0ðε2Þ

¼ wð1Þ⋆εw�
ð1Þ þ wð1Þ⋆επ⋆εw�

ð1Þ þ εK1 þO0ðε2Þ
¼ wð1Þ⋆εð1f − πÞ⋆εw�

ð1Þ þ εK1 þO0ðε2Þ: ðA31Þ

We also recall the definition K1 ≔ ε−1ðwð1Þ⋆επ⋆εw�
ð1Þ −

πpÞ þO0ðε1Þ which underlines that K1 is the zeroth order
symbol of the given expression. Besides, note that π as a
Moyal projector satisfies the relation π⋆εð1f − πÞ ¼ 0.
Omitting any terms of higher than zeroth order in ε yields

π⊥
p · K1 · π⊥

p ¼
�
1

ε
π⊥
p · ðwð1Þ⋆επ⋆εw�

ð1Þ − πpÞ · π⊥
p

�
0

¼
�
1

ε
π⊥
p ⋆εwð1Þ⋆επ⋆εw�

ð1Þ⋆επ⊥
p

�
0

¼
�
1

ε
π⊥
p ⋆εwð1Þ⋆επ⋆εw�

ð1Þ⋆εðwð1Þ⋆εð1f − πÞ⋆εw�
ð1Þ þ εK1Þ

�
0

¼ ½ðwð1Þ⋆εð1f − πÞ⋆εw�
ð1Þ þ εK1Þ⋆εwð1Þ⋆επ⋆εw�

ð1Þ⋆εK1�0
¼ 0: ðA32Þ

The very same reasoning leads to πp · K1 · πp ¼ 0. This shows that K1 contains indeed only an off-diagonal contribution
and it is admissible to determine k1 according to k1 ¼ ½πp;K1�. According to (S2–3), we have that

K1 ¼ h1 · πp þ πp · h1 þ u0 · π1 · u�0 þ
i
2
u0 · fπ0; u�0gs þ

i
2
fu0;u�0gs · πp: ðA33Þ

To simplify ½πp;K1�, we use several identities. First, we
employ h1 ¼ −ði=4Þfu0; u�0gs from above. We also use that

½πp; u0 · fπ0; u�0gs�f ¼ ½πp; fu0; u�0gs�f ; ðA34Þ

which can easily be shown by using the Riesz representa-
tion of the symbols and the connection representation of
their derivatives. In total, this yields for the anti-Hermitian
part uah1 ≔ k1 · u0 of u1

uah1 ¼ ½πp; u0 · πOD
1 · u�0�f · u0 þ

i
4
½πp; fu0; u�0gs�f · u0:

ðA35Þ

One could finally insert the formula for πOD
1 that we already

computed in order to express uð1Þ by only zeroth order
symbols.

3. Construction of the effective Hamiltonian

We construct heff;ð2Þ iteratively by using the condition
(S3), i.e., heff ≔ u⋆εH⋆εu�. Moreover, we project on the
relevant energy band associated with πp. The zeroth order
contribution is of course trivial and yields

heff;0;p ¼ πp · u0 ·H0 · u�0 · πp ¼
X
n

Enðq; pÞζnhζn; ·if :

ðA36Þ
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The quantization of this symbol with respect to the slow
degrees of freedom yields the standard Born-Oppenheimer
approximation. For the higher order contributions of
heff;ð2Þ;p, the evaluation of the double star product would
be cumbersome. It is therefore useful to star multiply (S3)
by u from the right. For the first order effective Hamilton
symbol this yields

u⋆εH − heff;0⋆εu ¼ εheff;1⋆εuþO0ðε2Þ
¼ εheff;1 · u0 þO0ðε2Þ: ðA37Þ

The determining equation for heff;1 is thus given by

heff;1¼
�
u1 ·H0−heff;0 ·u1þ

i
2
fu0;H0gs−

i
2
fheff;0;u0gs

�
·u�0:

ðA38Þ

We desist from evaluating this expression further as we are
mainly interested in the projection on the relevant energy
band. In particular, we compute

heff;1;p¼ πp ·heff;1 ·πp

¼ πp ·u1 · ðH0−EνÞ ·u�0 ·πp

þ i
2
πp ·fu0;H0þEν1fgs ·u�0 ·πp

¼ i
2
πp ·fu0;H0þEν1fgs ·u�0 ·πp; ðA39Þ

where the first two contributions cancel each other since
H · u0 · πp ¼ Eνu0 · πp. Using the connection representa-
tion, it is easy to show that also the remaining contributions
vanish identically. Therefore, we consider the following
identity:

πp ·
∂u0
∂ρ ¼ Am

ρνζνhξm; ·if ¼ u0 · π0 ·
∂π0

∂ρ : ðA40Þ

As a consequence, we can reformulate heff;1;p such that it is
possible to use the identities that we found for determining
πOD
1 , in particular (A16) and the subsequent definition. This

gives

heff;1;p ¼ u0 · π0 · fπ0;H0 þ Eν1fgs · u�0 · πp

¼
X
n

ζνhξn; ·ifAνnξνhζν; ·if

¼ Aννζνhζν; ·if ¼ 0: ðA41Þ

The last equality follows because Aνn has no diagonal
contributions, simply because Aρn

m has none and because
Am

ρn ¼ −An
ρm. The very same reasoning for determining

heff;1 applies for heff;2, i.e., star-multiplying condition (S3)
by u from the right yields

heff;2;p¼πp ·

�
−heff;1 ·u1þ

i
2
fu1;H0gs−

i
2
fEν;u1gs

−
i
2
fheff;1;u0gsþ½u0⋆εH0�2− ½Eν⋆εu0�2

�
·u�0 ·πp;

ðA42Þ

where the brackets with index “2” select the contributions
of second order in ε of the terms inside the brackets. The
following discussion simplifies the individual terms, start-
ing with the first contribution to heff;2;p which vanishes
identically. To see this, it suffices to consider the left-hand
side πp · heff;1;p in which we will employ the explicit
expression for u1, namely

πp ·heff;1;p¼πp ·u1 · ðH0−Eν1fÞ ·u�0
þ i
2
πp ·fu0;H0þEν1fgs ·u0

¼−
i
2
πp ·u0 ·fπ0;H0þEν1fgs · ð1f −π0Þ ·u�0

þ i
2
πp ·fu0;H0þEν1fgs ·u�0

−
i
4
πp · ½fu0;u�0gs−πp ·fu0;u�0gs

þfu0;u�0gs ·πp� ·u0 · ðH0−Eν1fÞ ·u�0
¼ i
2
πp ·fu0;H0þEν1fgs ·π0 ·u�0 ¼ 0: ðA43Þ

The second line in this computation obviously yields the
fourth line by comparing the terms. The third line vanishes
because the first and the second terms cancel each other
while we use for the last term that fu0; u�0gs has no diagonal
contributions. The fourth line corresponds simply to the
diagonal first order effective Hamiltonian heff;1;p, and we
have already shown that this vanishes identically. The two
following contributions can be merged into one term, and
by pulling πp into the Poisson bracket, they yield

i
2
fπp · u1;H0 þ Eν1fgs · u�0 · πp

¼ 1

4
ffπp · u0;H0 þ Eν1fgs · ðH0 − Eν1fÞ−1 · π⊥

0 ;H0

þ Eν1fgs · u�0 · πp: ðA44Þ

In terms of the fast eigenstates and the connection coef-
ficients it is given by
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i
2
fπp · u1;H0 þ Eν1fgs · u�0 · πp

¼ −
1

4

X
n≠ν

� ∂
∂q

�
Aνn

Eν − En

�
ðEν − EnÞApν

n

− 2
∂Eν

∂p
AνnAqν

n

Eν − En
− AνnAqn

mApm
ν Eν − Em

Eν − En

�

þ 1

4

X
n≠ν

½− − − ðp ↔ qÞ − −−�; ðA45Þ

where in the second line we add the terms of the first line
with every occurrence of “q” replaced by “p,” and vice
versa. We emphasize the difference between the connection
symbols A and the functions A which we used for
expressing π1. The fourth contribution to heff;2;p vanishes
again trivially as it includes πp · heff;1. The two remaining
contributions involve the second order Moyal product and
are given by

πp · ½½u0⋆εH0�2 − ½Eν⋆εu0�2� · u�0 · πp

¼ πp ·

�
−
1

8

∂2u0
∂q2

∂2ðH0 − EνÞ
∂p2

þ 1

4

∂2u0
∂p∂q

∂2ðH0 − EνÞ
∂q∂p

−
1

8

∂2u0
∂p2

∂2ðH0 − EνÞ
∂q2

�
· u�0 · πp: ðA46Þ

To represent these contributions in terms of the states and
connection coefficients, we make the following definitions:

πp ·

�
−
1

8

∂2u0
∂q2

∂2ðH0 − EνÞ
∂p2

�
· u�0 · πp≕Beff;1ðq; pÞπp;

ðA47Þ

πp ·
�
1

4

∂2u0
∂p∂q

∂2ðH0 − EνÞ
∂q∂p

�
· u�0 · πp≕Beff;2ðq; pÞπp;

ðA48Þ

and the functions Beff;1ðq; pÞ and Beff;2ðq; pÞ are then given
according to

Beff;1ðq;pÞ¼−
1

8

�
2
∂ðEn−EνÞ

∂p Apn
νþðEn−EνÞ

∂Apn
ν

∂p
þðEn−2EmþEνÞApn

mApm
ν

�

·

�∂Aqν
n

∂q þAqν
kAqk

n

�
·πp;

Beff;2ðq;pÞ¼
1

4

�∂ðEn−EνÞ
∂q Apν

nþ∂ðEn−EνÞ
∂p Aqν

n

þðEn−EνÞ
∂Aqν

n

∂p þðEm−EνÞAqν
mApm

n

þðEm−EnÞApν
mAqm

n

��∂Aqn
ν

∂p −Apn
kAqk

ν

�
:

ðA49Þ

The total contribution coming from the second order
components of the Moyal product in heff;2;p has then the
form

πp · ½½u0⋆εH0�2 − ½Eν⋆εu0�2� · u�0 · πp

¼ ½Beff;1ðq; pÞ þ Beff;2ðq; pÞ þ Beff;1ðp; qÞ� · πp;

and we emphasize that the last term simply arises from the
first term by interchanging any occurrence of q by p and
vice versa. These contributions together with those in
Eq. (A45) build then the total effective Hamiltonian symbol
heff;2;pðq; pÞ.
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