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This is the third paper in a series of four in which we incorporate backreaction among the homogeneous as
well as between the homogeneous and inhomogeneous degrees of freedom in quantum cosmological
perturbation theory using space adiabatic methods. Here, we consider a gauge-fixed version of cosmological
perturbation theory which uses Gaussian dust as a material reference system. The observable matter content is
a real-valued scalar field. We explore the sector of that theory which is purely homogeneous and isotropic
with respect to the geometry degrees of freedom but which contains inhomogeneous perturbations up to
second order of the scalar field. We explore the quantum field theoretical challenges of the space adiabatic
framework in a cosmological model of the early universe which is technically still relatively simple. We
compute the quantum backreaction effects from the inhomogeneous matter modes on the homogeneous
geometry up to second order in the adiabatic parameter. It turns out that these contributions are not negligible.
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I. INTRODUCTION

The considerable amount of cosmological measurement
data, collected especially within the last few years, allows
one to study ever more distant regions of the Universe [1–3].
Although many of these measurements provide a mostly
coherent picture of the Universe’s history, numerous ques-
tions remain open, e.g., the nature of dark matter and dark
energy [4,5] as well as the present discrepancies between
different measurement methods of the Hubble parameter
[6,7] (see also [8,9] for a different assessment of the data).
One possibility to extend the cosmological paradigm in

accordance with the successful Standard Model of particle
physics and general relativity is to combine the two into a
theory of quantum gravity. In this work, we take this
possibility as a premise to investigate a cosmological theory
for the earliest moments of the Universe. In particular, the
study aims at understanding the interactions between
the different components in a purely quantum mechanical
universe which consists of the purely homogeneous and
isotropic degrees of freedom of standard cosmology and
perturbations of a scalar matter field thereon. With this, we
build on the two previous works in this series of four papers
[10,11] which focus on the technical realization of our
approach and the investigation of a simplified cosmological
model. In the fourth paper [12], we consider a cosmological

perturbation theory with gauge-invariant perturbations of
gravity and scalar matter but, in contrast to the present work,
we do not introduce additional dust fields to deparametrize
the system.
The basic idea of our approach relies on the Born-

Oppenheimer theory for molecules for coupled quantum
systems that exhibit very different rates of change among
their constituents [13]. The scheme allows one to establish
effective quantum equations of motion for the so-called
“slow” degrees of freedom which take the backreactions of
the so-called “fast” degrees of freedom into account. In our
cosmological setting, the homogeneous and isotropic sub-
sector of the model identifies with the heavy degrees of
freedom while the perturbations play the role of the light
variables. That this assumption is indeed physically rea-
sonable results from the identification of the homogeneous
variables with a “heavy” and slow center of mass mode as
we argue in the first paper [10]. There, we further assert that
the Born-Oppenheimer theory has only a very limited range
of validity and that its approximations fail for interesting
dynamical time periods.
Fortunately, it is possible to resort to a more refined

approximation scheme which is known as space adiabatic
perturbation theory (SAPT) [14,15]. The Born-Oppenheimer
approximation is its restriction to zeroth perturbative order,
and also applies to a broader range of systems [10].
Since SAPT was initially developed for systems with a

finite number of degrees of freedom, it is first necessary to
extend the formalism to systems with an infinite number of
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degrees of freedom. This has been first considered in [16–
18], and subsequently in our first paper [10], and we will
come to the resulting challenges in the next section. Due to
its very structure, this extension will allow us to use the
framework of quantum field theory on curved spacetimes
(QFTon CST) [19], while accounting for the quantum nature
of the homogeneous degrees of freedom.
In this paper, we consider general relativity coupled to a

real Klein-Gordon matter field and to Gaussian dust [20].
The dust fields serve to deparametrize the theory [21] such
that the geometric degrees of freedom along with the scalar
field become (Dirac) observables. Consequently, the system
has a true conservative Hamiltonian which for Gaussian dust
reveals to be particularly simple: it solely consists of the
gravitational and scalar matter contributions to the Hamilton
constraint integrated over space. This classical Hamilton
function can then be decomposed into a homogeneous and a
linearly perturbed part (up to second order) in accordance
with standard classical perturbation theory. In Ref. [22,23],
this has been investigated in the same fashion in all detail for
a different material reference system [24].
For the illustrative purpose of this paper, we discard the

inhomogeneous geometry degrees of freedom and focus on
the inhomogeneous scalar matter fields as we aim at
illustrating the space adiabatic formalism in a cosmological,
quantum field theoretical context which is as simple as
possible. The study generalizes directly to the model with
inhomogeneous geometry modes [12]. In both cases, the
application of the space adiabatic scheme to a quantum field
model proceeds in the same lines as for the purely homo-
geneous quantum mechanical model in [11] but with two
important differences.
First, the scheme requires one to perform a transformation

which is canonical up to second order in the perturbations.
This has the crucial purpose of obtaining a new set of
variables in terms of which the background dependent Fock
representations of the scalar field modes employ all the same
Hilbert space (see [10] for more details). The transformations
employed here, as well as in [25,26] in a different context,
restore the unitary equivalence of the QFT Hilbert spaces
and allow one to employ SAPT.
The second step for the application of SAPT consists in a

canonical transformation exlusively for the homogeneous
degrees of freedom with the aim of avoiding tachyonic
quantum fields. Indeed, the preceding transformations can
cause the occurrence of indefinite mass squared values for
the quantum fields [10]. We emphasize, however, that the
occurrence of such tachyonic instabilities is not due to the
SAPT scheme itself, but already occurs in standard gauge-
invariant cosmological perturbations theory, e.g., when
using Mukhanov-Sasaki variables [27]. While cases of
indefinite mass squared functions appear frequently in
the literature (see for example [28]), the introduction of
such tachyonic fields raises some important questions, e.g.,
about the effects of such an instability, and the question of

renormalizability and Lorentz invariance [29,30]. Most
important, the issue here is the following: If one treats the
background variables as external parameters, one can res-
trict them by hand to a region of the homogeneous phase
space where the effective mass squared is positive. How-
ever, when taking the full backreaction into account, the
homogeneous quantum phase can no longer be restricted by
hand. One can also not use some kind of semiclassical
argument when performing the spectral analysis of the fully
backreacting total Hamiltonian. Hence, we pursue the stra-
tegy to avoid such instabilities (and all subsequent prob-
lems) and present an approach for how to obtain a positive
definite mass square for the matter scalar field by means of
canonical transformations for the homogeneous sector.
After these subtleties have been dealt with, we proceed

as in [11] and compute the second order space adiabatic
corrections to the dynamics of the homogeneous quantum
degrees of freedom including the backreactions from the
inhomogeneous quantum scalar field.
We emphasize that there are two different perturbation

schemes: The cosmological perturbation theory and the
space adiabatic perturbation scheme. The perturbative
adiabatic corrections due to SAPT turn out to be highly
nontrivial and to be sensitive to the Fock representation
chosen in the inhomogeneous sector.
In hitherto existing approaches to quantum cosmology,

such as loop quantum cosmology (LQC) [31–33], this
specific kind of adiabatic backreaction has not been
investigated in detail so far. We emphasize, however, that
the hybrid LQC approach [34] already includes a different
kind of backreaction by correcting the homogeneous
variables by perturbative contributions [25] (and which
is also taken into account in this series of papers). With this
work, we hope to make a decisive step toward a complete
implementation of the interactions and backreactions in
perturbative quantum cosmology.
The architecture of this paper is as follows. In Sec. II, we

briefly introduce the model and prepare it for the application
of SAPT by performing the aforementioned field truncations
and canonical transformations. In Sec. III, we apply the
space adiabatic framework to the model. Our result here
shows that the obtained adiabatic corrections display a rather
singular character with respect to the homogeneous degrees
of freedom. However, the corresponding operator has, in the
Schrödinger representation, the computationally conve-
nient dense and invariant domain of [35]. In Sec. IV, we
summarize our findings and conclude.

II. COSMOLOGICAL PERTURBATIONS
WITH DUST

A. The Hamiltonian

We consider a four-dimensional globally hyperbolic
spacetime manifold M which foliates into spatial hyper-
surfaces B according to M ≅ R × B. We assume B to be a
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three-dimensional compact and flat manifold with volume
l3. Since any compact and flat manifold can be reduced to a
torus of the corresponding dimension, we can assume
without loss of generality that B ¼ T 3. We identify points
and coordinates and use lowercase letters “x” for points and
coordinates on B. Our model consists, on the one hand, of
the gravitational degrees of freedom, i.e., the metric g and
its covariant derivative, based on Einstein’s general rela-
tivity with the Einstein-Hilbert action SEH [36]. We restrict
the gravitational degrees of freedom to its purely spatially
homogeneous and isotropic contribution such that the only
relevant degrees of freedom are the time-dependent scale
factor a, its velocity _a, and the lapse function N. On the
other hand, we include a real-valued and timelike scalar
dust field u with energy density ρ which is homogeneous
and isotropic as well [21,24]. The dust field deparametrizes
the model and transforms the Hamilton constraint into a
physical Hamilton function for the gravitational and the
additional matter degrees of freedom. For the matter sector
of the system, we choose a real-valued scalar field Φ of
Klein-Gordon type with mass m ∈ Rþ and coupling con-
stant λ ∈ Rþ.
Following the idea of Halliwell and Hawking [37], we

develop the Klein-Gordon field action SKG in the perturba-
tive fields up to second order. This, together with the
homogeneous contributions from gravity and the dust field,
yields the total action S ¼ Shom þ Spert with

Shom½a;N; u� ¼ l3
Z
R
dt N

�
−
3a
κ

�
_a
N

�
2

−
Λ
κ
a3

þ a3
ρ

2

��
_u
N

�
2

− 1

��
; ð1Þ

Spert½a;N;Φ� ¼ 1

2λ

Z
R×B

dt dx
ffiffiffiffiffi
h0

p
Na3

��
_Φ
N

�2

−
1

a2
Φð−Δþ a2m2ÞΦ

�
: ð2Þ

κ ¼ 8πG denotes the gravitational coupling constant and
Λ ∈ Rþ is an additional cosmological constant.

ffiffiffiffiffi
h0

p
is the

volume element of the spatial manifold B which in the case
of a flat torus is simply 1 since the spatial metric reduces to
the standard Euclidean metric restricted to a corresponding
domain. Δ is the Laplace-Beltrami operator on T3 and t is
cosmic time.
To conduct the necessary Hamiltonian analysis for the

space adiabatic scheme, we perform a Legendre trans-
formation with the Lagrange function and density defined
by S ¼ R

dtL ¼ R
dt dxL, and introduce the conjugate

momenta

Pa ≔
∂L
∂ _a ¼ −6

l3

κN
a _a; Π ≔

∂L
∂ _Φ

¼ a3

λN
_Φ: ð3Þ

The constraint analysis reveals that the lapse function is a
mere Lagrange multiplier such that we can set N ≡ 1
without loss of generality. Due to the dust field, the linear
constraints can be solved immediately by using a reduced
phase space scheme. As a consequence, the system has a
physical Hamilton function H ¼ Hhom þHpert with

H ¼ −
κ

12l3
P2
a

a
þ l3

κ
Λa3 þ λ

2a3

×
Z
T3

dx

�
Π2 þ a4

λ2
Φð−Δþ a2m2ÞΦ

�
: ð4Þ

The canonical structure of the system is encoded in the
Poisson bracket relations

fa; Pag ¼ 1;

fΦðf1Þ;Πðf2Þg ¼
Z
T3

dx f1ðxÞf2ðxÞ≕ hf1; f2i; ð5Þ

where f1, f2 ∈ C∞
0 ðT3Þ are test functions on the torus and

all other Poisson brackets vanish. In order to make the
space adiabatic scheme work at the technical level, it is
necessary to rescale the momentum of the slow subsystem
by a small parameter ε. In the given case, the gravitational
coupling constant κ or more precisely the dimensionless
combination κ=λ ≔ ε2 is a suitable choice.
As explained in the companion paper [10], it is reasonable

to identify the homogeneous and isotropic degrees of free-
dom with a heavy center of mass mode such that the
homogeneous geometry plays the role of the slow subsystem
here. Let us define a rescaled momentum associated with the
scale factor by pa ≔ εPa. To simplify notation, we also
define a rescaled cosmological constant which we assume
still to be very small, namely Λ̃ ≔ Λ=ε2, and we set λ to
unity without loss of generality. The homogeneous contri-
bution to the Hamilton operator has consequently the form

Hhom ¼ −
1

12l3
p2
a

a
þ l3Λ̃a3: ð6Þ

The Poisson bracket of the gravitational subsystem trans-
forms into fa; pag ¼ ε. It turns out that this rescaling makes
the perturbative space adiabatic scheme work out properly.
Before applying the scheme, we need to assure that the QFT
associated with the fields ðΦ;ΠÞ allow for unitarily equiv-
alent Hilbert space representations for different background
configurations ða; paÞ. As it turns out, this requires an
additional “almost” canonical transformation for the whole
system.

B. Almost canonical transformation

The inhomogeneous part of the Hamilton function in
Eq. (4) depends on the scale factor and contains, in
particular, an a-dependent effective frequency operator
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ωðaÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a4Δþm2a6

p
: ð7Þ

It turns out that the a-dependence of the Laplace term in
ωðaÞ prevents the QFT of ðΦ;ΠÞ from having unitarily
equivalent representations for different values of the scale
factor [10]. To address this problem, we perform a trans-
formation of variables for the totality of the system which is
canonical up to second order in the perturbative fields. Such
transformations have been widely used in the hybrid LQC
community for the same purpose, and we refer exemplarily
to [25] where a very similar model was treated (leading to
the same transformations up to the choice of variables). In
order to ensure that the transformation is almost canonical,
we first consider the symplectic one-form Θ which is a
function on the tangent space of the total phase space
having values in R.
In coordinate representation, in which da and dΦ

represent the standard one-forms for the homogeneous
and the inhomogeneous phase spaces, respectively, we have
that Θ is given by

Θ ¼ Padaþ
Z
T3

dxΠðxÞdΦðxÞ

¼ 1

ε
padaþ

Z
T3

dxΠðxÞdΦðxÞ: ð8Þ

In order to eliminate the a-dependence of the Laplace term
in the Hamiltonian (4), it seems reasonable to rescale the
field variable Φ such that a factors out; see [38] and
references therein where this idea has also been used.
Anticipating that this transformation alone is not (almost)
canonical, we define a more general transformation for the
field variables by

Φ̃ ≔ a ·Φ; Π̃ ≔
Π
a
þ aηða; paÞ ·Φ ⇒ Φ ¼ Φ̃

a
;

Π ¼ a · ðΠ̃ − ηða; paÞ · Φ̃Þ; ð9Þ

where we introduced a real-valued function ηða; paÞ on the
slow phase space which we are going to determine by the
requirement of obtaining a well-defined QFT at the end.
Besides, the following abbreviations will prove to be
useful:

A ≔
Z
T3

dxΦðxÞ2 ¼ 1

a2

Z
T3

dx Φ̃ðxÞ2≕ Ã
a2

; ð10Þ

B ≔
Z
T3

dxΠðxÞΦðxÞ

¼
Z
T3

dx Π̃ðxÞΦ̃ðxÞ − ηða; paÞÃ≕ B̃ − η · Ã: ð11Þ

We insert the transformations (9) into the symplectic
potential Θ and use the definitions, Eqs. (10) and (11).

The product rule for the differential one-form which we
apply on Φ̃=a and omitting total differentials then yields

Θ ¼
�
1

ε
pa −

1

a
B̃þ η

a
Ã

�
daþ

Z
T3

dx Π̃dΦ̃þ Ã
2
dη: ð12Þ

Since η depends solely on a and pa, we can write
dη ¼ η;a daþ η;pa

dpa, where the comma corresponds to
the derivative with respect to the given variable. The term
proportional to da fits nicely into the first bracket in
Eq. (12). For the second term, we use that total differentials
vanish and by cutting the theory after second order in the
scalar field variables, the symplectic potential has the form

Θ ¼
�
1

ε
pa −

1

a
B̃þ η

a
Ãþ 1

2
η;a Ã

�
d

�
a −

1

2
εη;pa

Ã

�

þ
Z
B
dx Π̃dΦ̃: ð13Þ

This structure gives rise to the definition of new variables in
the homogeneous sector,

p̃a ≔ pa þ ε

�
−
1

a
B̃þ η

a
Ãþ 1

2
η;a Ã

�
;

ã ≔ a −
1

2
εη;pa

Ã: ð14Þ

Expressed with these new dashed variables for both the
homogeneous and the inhomogeneous sectors, the sym-
plectic potential regains its original standard form. It
remains to determine the function ηða; paÞ and to verify
whether the Hamilton function transforms into a well-
defined function with respect to the new variables. In order
to express the Hamilton function in terms of them, the
conversion rules (14) need to be inverted. It proves to be
beneficial to directly employ an explicit choice for the
function η. An educated guess is

ηða; paÞ ¼ −
ε

6l3
pa

a
: ð15Þ

Its derivatives with respect topa serve for determining a as a
function of the dashed variables [cf. (14)]. Multiplying the
equation for ã in (14) by a, using an algebraic solution
formula for quadratic equations, and cutting again after
second order in the perturbative fields give as a solution for
a the second relation in (16). To determine pa as a function
of ã and p̃a we insert the solution for aðã; p̃aÞ into the first
relation in (14) and Taylor expand the function up to second
order in the perturbation fields. This yields

pa ¼ p̃a þ ε
1

ã
B̃þ ε2

12l3
p̃a

ã
Ã; a ¼ ã−

ε2

12l3ã
Ã: ð16Þ

In the first step, we compute the homogeneous part of the
Hamilton function (6) in terms of the dashed variables and
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eventually compare it with the perturbative part. We use the
assignment rules (16) and Taylor expand again up to second
order in the perturbation fields. For the homogeneous part,
now including also second order contributions, we get the
following result:

H̃hom ¼ −
1

12l3
p̃2
a

ã
þ l3Λ̃ ã3−

ε

6l3
p̃a

ã2
B̃−

ε2

48l6
p̃2
a

ã3
Ã−

Λ
4
ã Ã :

ð17Þ

The first two terms agree with the original homogeneous
Hamilton function but with dashed variables. The additional
terms are second order in the fields and arise because of the
transformations. In particular, the B̃-term introduces diffi-
culties because its quantization is not a well-defined
operator on Fock space. Fortunately, the definition of the
function ηða; paÞ was aimed exactly at canceling the term
with the transformed, inhomogeneous Hamilton function.
Indeed, the latter reads in terms of the dashed variables by
omitting any contributions of third order and higher in the
fields,

H̃pert ¼
1

2ã

Z
T3

dx ðΠ̃2 þ Φ̃ð−Δþ ã2m2ÞΦ̃Þ

þ ε

6l3
p̃a

ã2
B̃þ ε2

72l6
p̃2
a

ã3
Ã: ð18Þ

We observe that the a-dependence of the Laplace term
has indeed vanished and a global factor ã−1 has appeared for
the classical Klein-Gordon Hamilton function. Besides, the
transformation yields new terms which indeed cancel
the anomalous contribution of the dashed homogeneous
Hamilton function (17). In total, the Hamiltonian H̃ ¼
H̃hom þ H̃pert gives rise to two supplementary, independent
contributions that depend on Ã. Recalling the definition of
Ã ¼ R

dxΦ2 in (10), they yield additional contributions to
an effective mass functionMðã; p̃aÞ. In particular, this gives

H̃ ¼ −
1

12l3
p̃2
a

ã
þ l3Λ̃ ã3

þ 1

2ã

Z
T3

dx ðΠ̃2 þ Φ̃ð−Δþ ã2Mðã; p̃aÞ2ÞΦ̃Þ; ð19Þ

with Mðã; p̃aÞ2 ¼
�
m2 −

Λ
2

�
ã2 −

ε2

72l6
p̃2
a

ã2
: ð20Þ

The Laplace term in the perturbative part of this Hamilton
function no longer depends on the scale factor. After a
quantization of the fields, the Fock representations are
consequently unitarily equivalent for different background
configurations. This allows one to finally apply the space
adiabatic perturbation scheme. However, we face the prob-
lem that the effective mass square function (20) of the
correspondent field theory is indefinite, thus leading to

tachyonic instabilities for certain regions in the slow phase
space Γhom. We refer to the companion paper [10], where we
present several strategies for how to deal with this issue.
Here, we perform an additional canonical transformation
(in its restricted domain of definition) with respect to the
homogeneous variables only such that the effective mass
squared becomes positive definite in terms of these variables.
Therefore, let us define a set of constant parameters which
help to define such new variables,

μ2 ≔ m2 −
Λ
2
; τ2 ≔

ε2

72l6
; σ2 ≔

τ2

μ2
: ð21Þ

We assume the constantm2 − ðΛ=2Þ to be positive such that
σ is in the reals. In terms of these parameters, the effec-
tive mass value becomes M2≕ μ2ã2 − τ2ðp̃2

a=ã2Þ. We then
choose a new canonical pair ðb; pbÞ according to the
transformation rules

ã≕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ σ2

p2
b

b2

s
≕ βðb; pbÞ; p̃a≕ ã

pb

b
: ð22Þ

The effective mass square function is then simply given by
M2 ¼ μ2b2 which is positive for any b ∈ R. By this choice,
we implicitly limit the original phase space in terms of
ðã; p̃aÞ to a restricted domain. Note that this transformation
is similar to the procedure in quantum cosmology where one
trades ða; paÞ for ðe; peÞ with a2 ¼ e2 and a ≥ 0 but e ∈ R
is the homogeneous triad. This choice corresponds to a
working proposal in order to circumvent the tachyonic
instabilities.
After all, the starting point for SAPT is then the Hamilton

function in terms of the new variables,

H¼−
1

12l3
β
p2
b

b2
þ l3Λ̃β3þ 1

2β

×
Z
T3

dxðΠ̃2þΦ̃ð−Δþμ2b2ÞΦ̃Þ: ð23Þ

Now, SAPT necessitates a Hamilton operator Ĥ whose
classical counterpart is H and which is an operator on
(a dense domain of) the total Hilbert space H of the system.
Here, we consider the quantization ofH with respect to both,
the homogeneous and the inhomogeneous subsector to obtain
the operator Ĥ.
We start by considering the quantization of the homo-

geneous degrees of freedom ðb; pbÞ, and we employ the
standard Schrödinger representation. We label quantum
operators by hats; for example we write b̂ and p̂b for the
canonical quantum operators. We recall that b and pb arose
from the rescaled variables ã and p̃a such that the canoni-
cal commutation relation is given by ½b̂; p̂b� ¼ iε1̂hom.
Regarding the ordering of noncommuting operators, we
employ the symmetric Weyl quantization procedure for the
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homogeneous sector. In general, we denote the Weyl
quantization of a function f ∈ C∞ðΓhom;RÞ by ŴðfÞ.
The Hilbert space of the homogeneous sector is supposed
to be the space of square integrable functions L2ðR; dbÞ
with the standard measure on R.
For the inhomogeneous sector, we choose a standard

Fock representation on T 3. Therefore, consider the one-
particle Hilbert space HT3 ¼ L2ðT3; dx Þ on T 3. Since
the effective frequency operator ωðbÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δþ μ2b2

p
depends on the homogeneous variable b, any Fock repre-
sentation for a different effective mass value μ2b2 could fail
to be unitarily equivalent. However, the almost canonical
transformations from above guarantee that all these Fock
representations are mutually unitarily equivalent, at least up
to second order in the field perturbations. Therefore, one
can choose any of the symmetric Fock representations
πb∶AQ → LðF sÞ for some fixed b ∈ R that map the field
Weyl algebra AQ into the space of linear operators on the
Fock space F s. We label operators acting on F sðHT3Þ with
bold letters such that the basic field operators areΦðf1Þ and
Πðf2Þ for some smooth test functions f1 and f2 on T3. The
Fock space F s consists of sequences fψ ðnÞgn≥0 of totally
symmetric functions with n variables xi. The canonical
commutation relations are given by

½Φðf1Þ;Πðf2Þ� ¼ ihf2; f2i1pert: ð24Þ
It is also admissible to identify the field operators with
operator-valued distributions ΦðxÞ and ΠðxÞ such that
ΦðfÞ ¼ R

dxΦðxÞfðxÞ and similarly for its conjugate
momentum Π. Finally, we aim at connecting the quantum
theories of the homogeneous and the inhomogeneous
subsectors. We therefore define the total Hilbert space to
be the topological tensor product H ≔ Hhom ⊗ Hpert ¼
L2ðR; dbÞ ⊗ F s. With these prerequisites, the Hamilton
operator Ĥ acting on a dense subset D ⊂ H of the total
Hilbert space has the form

Ĥ ¼ Ŵ
�
−

1

12l3
β
p2
b

b2
þ l3Λ̃β3

�
⊗ 1hom

þ 1

2
Ŵðβ−1Þ ⊗

Z
T3

dxΠðxÞ2

þ 1

2
Ŵðβ−1Þ ⊗

Z
T3

dxΦðxÞð−ΔΦÞðxÞ

þ μ2

2
Ŵðβ−1b2Þ ⊗

Z
T3

dxΦðxÞ2: ð25Þ

III. APPLICATION OF SPACE ADIABATIC
PERTURBATION THEORY

A. Conditions for space adiabatic perturbation theory

SAPT according to Panati, Spohn, and Teufel [14,15]
applies to a variety of systems but it must be ensured that

the conditions listed below are met. We present and directly
discuss these requirements for our model.

(C1) The state space of the system decomposes as

H ¼ L2ðRÞ ⊗ Hf ¼ L2ðR;HfÞ; ð26Þ

where L2ðRÞ is the state space of the slow subsystem
and Hf must be a separable Hilbert space associated
with the fast subsystem.

Our cosmological system satisfies this first condition thanks
to the almost canonical transformation up to second order in
the perturbations. The transformations guarantee that the
fast Hilbert spaces, i.e., the Fock spaces F sðb;HT3Þ are all
unitarily equivalent for different b ∈ R for the truncated
system such that we can simply write F sðHT3Þ. The total
Hilbert space is thus given by H ¼ L2ðR; dbÞ ⊗ F sðHT3Þ.
Besides, F sðHT3Þ is separable because the one-particle
Hilbert space is given by HT3 ¼ L2ðT 3; dx Þ. The next
condition is the following:

(C2) The Hamilton operator Ĥ is the Weyl quantization
of a function on the slow phase space Hðb; pbÞ which
belongs to a so-called “symbol class” of functions
Smρ ðΓs;BðHfÞÞ with values in the bounded operators
BðHfÞ on the fast Hilbert space. The Weyl quantiza-
tion refers to the slow subsystem and the function
Hðb; pbÞ has values in the space of bounded self-
adjoint operators on Hf .

For condition (C2), let us consider the formal quantization of
the Hamilton function in (23) with respect to the inhomo-
geneous field perturbations only or, in other terms, the
Wigner-Weyl transform of the Hamilton operator, Eq. (25),
with respect to the slow subsector. This gives rise to an
operator-valued function on the slow phase space, namely

Hðb; pbÞ ¼
�
−

1

12l3
β
p2
b

b2
þ l3Λ̃β3

�
1pert

þ 1

2β

Z
T3

dx ðΠ̃2 þ Φ̃ð−Δþ μ2b2ÞΦ̃Þ: ð27Þ

The Weyl quantization with respect to the homogeneous
sector of this symbol function coincides with Ĥ in (25) such
that Hðb; pbÞ corresponds indeed to the symbol function
alluded to in (C2).
It is useful to perform a transformation to annihilation

and creation operators which we denote by aðb; fÞ and
a�ðb; fÞ for some one-particle state f ∈ L2ðT3; dx Þ and for
some fixed b ∈ R. They shall act in the standard way.
aðb; fÞ has the standard form with respect to the field
operators and the one-particle frequency operator
ωðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δþ μ2b2

p
,

aðb;fÞ≔ 1ffiffiffi
2

p πb½ð
ffiffiffiffiffiffiffiffiffiffi
ωðbÞ

p
Φ̃ÞðfÞ− ið

ffiffiffiffiffiffiffiffiffiffi
ωðbÞ

p −1Π̃ÞðfÞ�: ð28Þ
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Together with a�ðb; fÞ, they satisfy the canonical commu-
tation relation, ½aðb; f1Þ; a�ðb; f2Þ� ¼ 1perthf1; f2i. As we
clarify in the course of discussing the next condition ðC3Þγ ,
SAPT requires one to select a subspace of the perturbative
Fock space F s. It is thus reasonable to select an ortho-
normal basis of the Hilbert space HT3 to characterize the
Fock states by means of their mode number.
An orthonormal eigenbasis of T 3 is provided by the set of

exponentials, ffkðxÞ ≔ l−
3
2 expðikxÞg with k ∈ Σ ¼ 2π

l Z
3.

We denote the annihilation and creation operators with
respect to the fk’s by akðbÞ and a�kðbÞ. The correspondent
commutation relation is given by ½akðbÞ; a�k0 ðbÞ� ¼ δk;k01pert,
where δ is the Kronecker delta. The basis functions
fk diagonalize the Laplace operator, and the respective
eigenvalues are given by −Δfk ≕ k2fk. The eigenvalues of
the frequency operator ωðbÞ are given by ωkðbÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2b2

p
. The resulting normal-ordered Hamiltonian

reads

Hðb; pbÞ ¼
�
−

1

12l3
β
p2
b

b2
þ l3Λ̃β3

�
1pert

þ 1

β

X
k∈Σ

ωkðbÞa�kðbÞakðbÞ: ð29Þ

Coming back to condition (C2), we recall that it requires
Hðb; pbÞ to have a certain form. First, Hðb; pbÞ must be a
bounded operator on the Fock space F s. Besides, it should
belong to one of the so-called symbol classes Smρ . More
precisely, the function itself and each of its derivatives must
be bounded with respect to b and polynomially bounded
with respect to pb. In particular, there must be a positive
constant Cα;δ for every α; δ ∈ N such that for every pb it
holds true that

sup
b∈R

kð∂α
b∂β

pbHÞðb; pbÞkBðF sÞ ≤ Cα;δð1þ p2
bÞ

1
2
ðm−ρjδjÞ: ð30Þ

Hðb; pbÞ fails to satisfy this condition a priori as it is not a
bounded function with respect to b. A possible resort is to
replace the Hamilton symbol by a bounded function above
or below a certain energy value Et and to truncate the sum
over k in Eq. (29) to a fixed N ∈ N . We performed such an
analysis explicitly for a simple oscillator model in [11] and
referred to this truncated version of the Hamilton symbol as
the auxiliary Hamiltonian Haux. We can apply the same
strategy here and thereby guarantee that the auxiliary
Hamiltonian is in S00ðΓhom;BðF sÞÞ. Unfortunately, the
original Hamilton symbol is an unbounded operator on
the fast Hilbert space, and it is hence not possible to
reasonably compare the dynamics generated by this oper-
ator and the auxiliary structure mentioned before. We will
hence remain with the original Hamiltonian when apply-
ing SAPT.
More generically, the symbol classes are Fréchet spaces

with respective norms for the different values of m and ρ,

and this allows one to neatly define a multiplication
between the symbols and adjoints of them. The operator
product on the space of Weyl operators transforms into a
correspondent noncommutative “Moyal” or “star” product
on the Fréchet spaces of symbol functions. With the
rescaled momentum pb ¼ εPb, the Moyal product has
here the form of a power series expansion in ε, and we
consequently denote it by “⋆ε.” This makes the space
adiabatic perturbation scheme work at the technical level,
and we are going to introduce its explicit form in Sec. III B.
The third condition concerns the energy eigenvalues of the
symbol Hamilton function H.

ðC3Þγ Gap condition. For any fixed ðb; pbÞ ∈ R, the
spectrum σðb; pbÞ of the Hamilton symbol Hðb; pbÞ
contains at least one isolated subset σνðb; pbÞ for some
fixed quantum number(s) ν ∈ N which is uniformly
separated from the remainder σrem ≔ σðb; pbÞn
σνðb; pbÞ. In particular, the minimal distance between
the elements of σν and the remainder is nonzero for
every single ðb; pbÞ ∈ R2. More precisely, there exists
an enclosing interval Iðb; pbÞ for the relevant part of the
spectrum σνðb; pbÞ such that for every value ðb; pbÞ the
distance dist½σremðb; pbÞ; Iðb; pbÞ� is larger than or
equal to Cgð1þ p2

bÞ
γ
2, where Cg ≥ 0 is the “gap”

constant and γ ∈ R.
Hðb; pbÞ as given in (29) admits discrete energy bands as
required by ðC3Þγ. Indeed, the mode vectors k define a
discrete set on the compact torus; when fixing ðb; pbÞ to
certain values, there are discrete energy bands, and each of
them has at least 23 degenerate eigenstates.
In order to analyze the corresponding Fock states, we

start by defining the vacuum state ΩðbÞ and require that
akðbÞΩðbÞ ¼ 0 for every k ∈ Σ. Any excited eigenstate
ξðnÞðbÞ ∈ F s where (n) is a short form for the collection of
its excitation numbers fnk;dkgk∈Σ with degeneracy numbers
dk ∈ N results from the (n)-times application of creation
operators,

ξðnÞðbÞ ¼
Y
k∈Σ

ða�kðbÞÞnkffiffiffiffiffiffiffi
nk!

p ΩðbÞ: ð31Þ

The energy bands EðnÞðb; pbÞ are the ðb; pbÞ-dependent
energy eigenvalues of the symbol function Hðb; pbÞ with
respect to the excited eigenstates ξðnÞðbÞ, such that

Hðb; pbÞξðnÞðbÞ ¼ EðnÞðb; pbÞξðnÞðbÞ; ð32Þ

with EðnÞðb;pbÞ ¼ −
1

12l3
β
p2
b

b2
þ l3Λ̃β3 þ 1

β

X
nk∈ðnÞ

nkωkðbÞ:

ð33Þ

The spectrum of Hðb; pbÞ thus consists of the set of all
energy bands, fEðnÞðb; pbÞgðnÞ for all possible combinations
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of excitation numbers (n). SAPT demands one to choose an
isolated subset σνðb; pbÞ ⊂ σðb; pbÞ which is uniformly
separated from the remainder of the spectrum.
It appears that the energy function depends on (i) the

norm jkj of the wave vectors and (ii) their excitation
numbers nk for any of the excited one-particle states that
contribute to the total Fock state. Obviously, these energy
functions EðnÞðb; pbÞ are subject to eigenvalue crossings for
varying ðb; pbÞ. Such overlaps are prohibited for the
application of SAPT. It is of course possible to identify
domains within the homogeneous phase space in which we
do not encounter such eigenvalue crossings. One can
formally restrict the domain of the theory to such regions,
but must adapt the whole quantization procedure for the
homogeneous phase space. This will represent a very
nontrivial task, but it is important since the whole scheme
relies on the correct implementation of a phase space
quantization within the homogeneous sector. This question
must be explored elsewhere, and we focus here on the
question of generic operability of the SAPT scheme.
The fourth and final condition for SAPT is the following:
(C4) Convergence condition. If the system satisfies the
gap condition ðC3Þγ for some γ ∈ R, the Hamilton
symbol Hðb; pbÞ must be in Sγρ. If ρ ¼ 0, γ must also
vanish. If ρ > 0, γ can be any real number but the Weyl
quantization Ĥ must be essentially self-adjoint on the
Hilbert vector-valued Schwartz space, SðR;HfÞ.

According to our discussion of the previous conditions, it
will not be possible to strictly adhere to this condition for
the given model such that we must abandon any of the
convergence results of standard SAPT.

B. Perturbative construction scheme

The space adiabatic perturbation scheme divides into three
steps and relies on the existence of the three following
symbol functions. Given the Hamilton symbol Hðb; pbÞ ∈
S00, SAPT assures that [14]

(S1) there exists a formal symbol π ¼ P
i≥0 ε

iπi with
πi ∈ S00 and such that π0 is the spectral projection of
Hðb; pbÞ corresponding to σνðb; pbÞ. We can con-
struct πðIÞ ≔

P
i≤I ε

iπi up to order I ∈ N and with the
properties

ðS1–1Þ πðIÞ⋆επðIÞ − πðIÞ ¼ O0ðεIþ1Þ; ð34Þ

ðS1–2Þ π�
ðIÞ − πðIÞ ¼ O0ðεIþ1Þ; ð35Þ

ðS1–3Þ H⋆επðIÞ − πðIÞ⋆εH ¼ O0ðεIþ1Þ: ð36Þ

It can be shown that the Weyl quantization of a formal
resummation of π (see [10] for more details) is
O0ðε∞Þ, close to a true projection operator Π̂ ∈
BðHÞ that almost commutes with the Hamilton
operator, i.e., ½Ĥ; Π̂� ¼ O0ðε∞Þ. The estimate means

that for allm ∈ N, there exists a constant Cm ≥ 0 such
that k½Ĥ; Π̂�kBðHÞ ≤ Cmε

m.
(S2) Let πp ∈ S00ðΓhom;BðHpertÞÞ be the projection on
some reference subspace Kpert ⊂ Hpert. We assume
that there exists a symbol u0 ∈ S00ðBðHpertÞÞ such that
u0 · π0 · u�0 ¼ πp where “·” denotes the operator prod-
uct within BðHpertÞ. Then, there is a formal symbol
u ¼ P

i≥0 ε
iui such that its restriction to the Ith order

uðIÞ satisfies

ðS2–1Þ u�ðIÞ⋆εuðIÞ − 1pert ¼ O0ðεIþ1Þ; ð37Þ

ðS2–2Þ uðIÞ⋆εu�ðIÞ − 1pert ¼ O0ðεIþ1Þ; ð38Þ

ðS2–3Þ uðIÞ⋆επðIÞ⋆εu�ðIÞ − πp ¼ O0ðεIþ1Þ: ð39Þ

The construction of this almost unitary symbol has the
purpose to map the dynamics of the Hamilton operator
to a simpler subspace such that we can actually solve
the dynamics on this simpler subspace. Therefore, we
note that the Weyl quantized resummation of the
symbol function u gives rise to a true unitary operator
Û ∈ BðHÞ which intertwines the projection operator Π̂
and π̂p in the sense that Û Π̂ Û† ¼ π̂p holds true.

(S3) The last step consists in constructing an “effective”
Hamilton symbol heff ¼

P
i≥0 ε

iheff;i or more pre-
cisely its restriction to the Ith order according to

heff;ðIÞ ¼ uðIÞ⋆εH⋆εu�ðIÞ: ð40Þ

For systems with an external time parameter t and the
Weyl quantizations ûðIÞ and ĥeff;ðIÞ it holds true that

e−iĤt − û†ðIÞe
−iĥeff;ðIÞtûðIÞ ¼ O0ðεIþ1jtjÞ: ð41Þ

Hence, after unitarily transforming back to the original
Hilbert space, the dynamics generated by ĥeff corre-
sponds “almost” to the dynamics of the original
Hamilton operator Ĥ.

For further details about the construction scheme, we refer to
the companion papers [10,11]. In the following, we are first
going to construct πð1Þ as well as uð1Þ in order to finally
determine heff;ð2Þ. Therefore, we recall that the perturbation
parameter of the scheme is here provided by the dimension-
less ratio of the coupling constants, namely ε2 ¼ κ=λ. As we
already rescaled the momentum Pb with a factor ε, the first
perturbative orders of the Moyal product are given for two
symbol functions f ðb; pbÞ ∈ Sm1

ρ , gðb; pbÞ ∈ Sm2
ρ ,

ðf⋆εgÞðb; pbÞ ¼ ðf · gÞðb; pbÞ þ
iε
2
ðð∂bf Þ · ð∂pb

gÞ
− ð∂pb

f Þ · ð∂bgÞÞðb; pbÞ þOðε2Þ: ð42Þ
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To shorten the computations, it is reasonable to use the
Poisson bracket notation ff ; gghom ≔ ð∂bf Þ · ð∂pb

gÞ−
ð∂pb

f Þ · ð∂bgÞ. Let us then start to iteratively compute the
Moyal projector.

1. Construction of the projector symbol πð1Þ
To construct the symbol function πð1Þ ¼ π0 þ επ1, we

start by defining the zeroth order symbol π0. According to
the construction step (S1), π0ðbÞ corresponds to the spectral
projection of Hðb; pbÞ onto one of its energy bands
σνðb; pbÞ. In particular, we choose π0 to be defined as

π0ðbÞ ¼
XDν

d¼1

ξðνÞdðbÞhξðνÞdðbÞ; ·iF s
; ð43Þ

where ðνÞd ¼ fνk;dgk∈Σ is the set of excitation numbers of
the chosen Fock state and d ¼ 1;…; Dν is the associated
degeneracy label. Note that it solely depends on the
configuration variable b and not on the momentum pb.
The projector symbol π0ðbÞ exists for every point ðb; pbÞ ∈
Γhom for which the energy gap between EðνÞðb; pbÞ and the
remainder of the spectrum persists. Because of the continuity
of the map ðb; pbÞ ↦ Hðb; pbÞ, also ðb; pbÞ ↦ π0ðbÞ is
continuous. By construction, π0 satisfies the construction
rules (S1) restricted to the zeroth order in ε. In particular, it
satisfies the conditions (S1–1) π0 · π0 − π0 ¼ 0, (S1–2)
π�
0 ¼ π0, and (S1–3) ½H; π0� ¼ 0. Consequently, the symbol

(43) satisfies the base clause for the inductive construction
scheme.
The next perturbative order of the rules (S1) serves to

determine the first order symbol π1. By means of the Moyal
product expansion (42), the rule (S1–1) restricted to its first
order components provides an equation for determining the
diagonal parts of π1, namely

i
2
fπ0; π0ghom þ π0 · π1 þ π1 · π0 ¼ π1: ð44Þ

The Poisson bracket vanishes as π0 solely depends
on b. This implies that the diagonal contributions πD;0

1 ≔
π0 · π1 · π0 and πD;⊥ ¼ π⊥

0 · π1 · π⊥
0 vanish, too. Here, we

introduced the orthogonal complement of π0, namely
π⊥
0 ≔ 1pert − π0. As discussed in the companion paper

[10], the construction rule (S1–3) provides the off-diagonal
part of π1. Its restriction to the first order in ε is given by

1

2
fH; π0ghom −

1

2
fπ0;Hghom þH · π1 − π1 ·H ¼ 0: ð45Þ

We extract the off-diagonal contributions πOD;1
1 ≔

π0 · π1 · π⊥
0 and πOD;2

1 ≔ π⊥
0 · π1 · π0 by multiplying

Eq. (45) with π0 and π⊥
0 from the left and the right,

respectively, and vice versa. We define the orthogonal part
of H by H⊥ ≔ H · π⊥

0 , and we use that H · π0 ¼ EðνÞ1pert.
This yields for the total symbol π1 ¼ πOD;1

1 þ πOD;2
1

π1 ¼−
i
2
ðπ0 · fπ0;HþEðνÞ1pertghom · ðH⊥ −EðνÞ1pertÞ−1 ·π⊥

0

þðH⊥ −EðνÞ1pertÞ−1 ·π⊥
0 · fπ0;HþEðνÞ1pertghom ·π0Þ:

ð46Þ

For a concrete evaluation of π1, it is necessary to evaluate the
derivatives of the eigenfunctions ξnðbÞ with respect to b.
Therefore, we use the explicit b-dependence of the creation
operators a�kðbÞ in line with Eq. (28) and relation (31) for the
excited Fock states. Let us first define the function

fkðbÞ ≔ −
1

4

∂bωkðbÞ
ωkðbÞ

: ð47Þ

Then, the identity ∂bakðbÞ ¼ −2fkðbÞa�kðbÞ follows from
Eq. (28), and together with akðbÞΩðbÞ ¼ 0; ∀ k ∈ Σ, it
implies that the derivative of the vacuum state ΩðbÞ is
given by

∂ΩðbÞ
∂b ¼

X
k∈Σ

fkðbÞa�kðbÞa�kðbÞΩðbÞ: ð48Þ

Given the derivatives of the creation operators and the
vacuum state, it is straightforward to infer from Eq. (31)
the derivative of the excited state ξðνÞdðbÞ. Therefore, we
denote the state whose quantum number νk;d for the wave
vector k is shifted by �2 compared to the state ξðνÞdðbÞ by
ξf…;νk;d�2;…g. Then, the derivative of ξðνÞdðbÞ is given by

∂ξðνÞdðbÞ
∂b ¼ −

X
k∈Σ

fkðbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνk;d − 1Þνk;d

q ða�kÞνk;d−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðνk;d − 2Þ!p Y
m∈Σnfkg

ða�mÞνm;dffiffiffiffiffiffiffiffiffiffi
νm;d!

p ΩðbÞ

þ
X
k∈Σ

fkðbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνk;a þ 1Þðνk;d þ 2Þ

q ða�kÞνk;dþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðνk;d þ 2Þ!p Y
m∈Σnfkg

ða�mÞνm;dffiffiffiffiffiffiffiffiffiffi
νm;d!

p ΩðbÞ

¼
X
k∈Σ

fkðbÞ½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνk;d − 1Þνk;d

q
ξf…;νk;d−2;…g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðνk;d þ 1Þðνk;d þ 2Þ

q
ξf…;νk;dþ2;…g�: ð49Þ
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The b-derivative of any Hilbert space vector in Hpert

actually corresponds to a covariant derivative in the
following sense. Consider the slow, homogeneous phase
space Γhom as the base manifold of some infinite dimen-
sional Hilbert bundle and let F sðb; pbÞ be the fiber space
associated with a point ðb; pbÞ ∈ Γhom. Correspondingly,
the derivative with respect to b is a standard covariant
derivative AðbÞ∶ΓðHpertÞ → ΓðHpertÞ on the space of
Hilbert bundle sections ΓðHpertÞ of the total Hilbert bundle.
With the choice of the basis states fξðnÞg, we write for
AðbÞ with respect to this basis,

AðmÞc
ðnÞd ¼

X
k∈Σ

fk

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk;dðnk;d − 1Þ

q
δ
f…;mk;cþ2;…g
ðnÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnk;d þ 2Þðnk;d þ 1Þ

q
δ
f…;mk;c−2;…g
ðnÞ

�
;

where d and c are the degeneracy labels for the excitation
numbers (n) and (m). In summary, the derivative of the state
ξðνÞdðbÞ can be written using the entries A of the covariant
derivative

∂ξðνÞdðbÞ
∂b ¼

X
k∈Σ

ðAf…;nk;d−2;…g
ðnÞd ξf…;nk;d−2;…g

þAf…;nk;dþ2;…g
ðnÞd ξf…;nk;dþ2;…gÞ: ð50Þ

As a consequence, the b-derivative of the projector symbol
π0ðbÞ results from the functional representation of the
projector due to Riesz (43),

∂π0ðbÞ
∂b ¼

XDν

d¼1

X
k∈Σ

ðAf…;νk;d−2;…g
ðνÞd ðξðνÞdhξf…;νk;d−2;…g; ·iF s

þ ξf…;νk;d−2;…ghξðνÞd ; ·iF s
Þ

þAf…;νk;dþ2;…g
ðνÞd ðξðνÞdhξf…;νk;dþ2;…g; ·iF s

þ ξf…;νk;dþ2;…ghξðνÞd ; ·iF s
ÞÞ: ð51Þ

With this, we can evaluate the symbol π1 according to
Eq. (46). The Poisson bracket in this equation also requires
one to determine the pb-derivative of the symbol function
H þ EðνÞ1pert. On the one hand, the homogeneous, gravi-
tational part of the Hamilton symbol H depends on pb, and
so does EðνÞ. The respective part is proportional to the unity
operator with proportionality factor

Ehomðb; pbÞ ¼ −
1

12l3
βðb; pbÞ

p2
b

b2
þ l3Λ̃βðb; pbÞ3: ð52Þ

Besides, the perturbative field contribution of the Hamilton
symbol depends on pb via the global prefactor βðb; pbÞ−1;
cf. Eq. (29) such that diagonal contributions from this part
enter as well in the evaluation of the Poisson bracket. We

denote the perturbative part of EðνÞ as Epert;ðνÞ. To determine
these contributions let us consider the first line in the equation
for π1, Eq. (46), and thereby start from the left. The
multiplication of π0 from the left to ∂bπ0 selects the two
suitable contributions in (51). Consequently, there are only
two relevant contributions in ∂pb

ðH þ EðνÞ1pertÞ for every k ∈
Σ that enter the game. Moving on to the right side of the first
line, these two terms preselect two of the entries of ðH⊥ −
EðνÞ1pertÞ−1 for every k: ðEf…;νk;d−2;…g − EðνÞÞξf…;νk;d−2;…g
hξf…;νk;d−2;…g; ·iF s

and ðEf…;νk;dþ2;…g − EðνÞÞξf…;νk;dþ2;…g
hξf…;νk;dþ2;…g; ·iF s

. The two scalars evaluate to ∓ Δk ≔
∓ 2

β ωkðbÞ. The second line unfolds in the same way such
that π1 in explicit form is given by

π1 ¼
i
2

XDν

d¼1

X
k∈Σ

ðAf…;νk;d−2;…g
ðνÞd C1;ðνÞ;kðξðνÞdhξf…;νk;d−2;…g; ·iF s

− ξf…;νk;d−2;…ghξðνÞd ; ·iF s
Þ

þAf::;νk;dþ2;::g
ðνÞd C2;ðνÞ;kðξðνÞahξf::;νk;dþ2;::g; ·iF s

− ξf::;νk;dþ2;::ghξðνÞd ; ·iF s
ÞÞ; ð53Þ

where we defined the functions C1;ðνÞ;kðb; pbÞ and
C2;ðνÞ;kðb; pbÞ according to

C1;ðνÞ;kðb; pbÞ ≔
1

Δk

�∂Ehom

∂pb
−
1

β

∂β
∂pb

Epert;ðνÞ

�
þ 1

β

∂β
∂pb

;

ð54Þ

C2;ðνÞ;kðb; pbÞ ≔ −
1

Δk

�∂Ehom

∂pb
−
1

β

∂β
∂pb

Epert;ðνÞ

�
þ 1

β

∂β
∂pb

:

ð55Þ

For the final construction rule, (S1–2), it is easy to check that
πð1Þ indeed equals π�

ð1Þ by simply transposing and complex
conjugating our results for π0 and π1. For closing this
subsection, we emphasize that the Weyl quantization of the
Moyal projector πð1Þ is a very nontrivial operator on the total
Hilbert spaceH due to the dependence of πð1Þ on ðb; pbÞ and
ε. SAPT therefore suggests to construct a Moyal unitary
symbol u which maps the dynamical subspace related to π or
more precisely here to πð1Þ to a suitable reference subspace
Kpert ⊂ Hpert.

2. Construction of the Moyal unitary uð1Þ
We choose an arbitrary but suitable reference subspace

Kpert ⊂ Hpert to which we map the relevant dynamics of
the problem. The idea is to select one fixed point
ðb0; pb;0Þ ∈ Γhom. We denote the eigenbasis of Hðb0; pb;0Þ
by fζðnÞg ≔ fξðnÞðb0Þg, and we define the reference pro-
jection as
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πp ≔
XDν

d¼1

ζðνÞdhζðνÞd ; ·iF s
: ð56Þ

We denote the subspace associated with the projection
symbol πp by Kpert as outlined before. In order to mediate
between πHpert and Kpert, and vice versa, a unitary symbol
function uðb; pbÞ is necessary. The space adiabatic scheme
assumes the symbol to have the form of a formal power
series in ε. We restrict its computation to the first order
uð1Þ ¼ u0 þ εu1, and we define its zeroth order component
to be

u0ðbÞ ≔
X
ðnÞ

XDðnÞ

d¼1

ζðnÞdhξðnÞdðbÞ; ·iF s
; ð57Þ

where the sum over (n) is a sum over all possible
combinations of excitation numbers in the field Fock
space. It is straightforward to show that u0 and πp together
with π0 satisfy the base clause of the construction rules
(S2), namely (S2–1) u�0 · u0 ¼ 1pert, (S2–2) u0 · u�0 ¼ 1pert,
and (S2–3) u0 · π0 · u�0 ¼ πp. For the construction of u1, it
is useful to split u1 into a Hermitian and an anti-Hermitian
part, a1 ¼ a�1 and b1 ¼ −b�1 such that u1≕ ða1 þ b1Þ · u0.
The construction rule (S2–1) serves to determine a1 for our
choice of πp and u0. In particular, its restriction to first order
is given by

i
2
fu0; u�0ghom þ 2a1 ¼ 0: ð58Þ

As a consequence, we have that a1 ¼ 0; i.e., there are no
Hermitian contributions to u1. To determine the remaining
anti-Hermitian piece, let us consider the construction rule
(S2–3), again restricted to first order in ε,

½b1; πp�pert þ u0 · π1 · u�0 ¼ 0: ð59Þ

We then use that b1 ¼ −½πp; ½b1; πp�pert�pert provides a
solution for b1 which simply evaluates to

u1 ¼ ½πp; u0 · π1 · u�0�pert · u0: ð60Þ

With the solution of π1 in Eq. (53), this gives the following
result for u1:

u1 ¼
i
2

XDν

d¼1

X
k∈Σ

ðAf…;νk;d−2;…g
ðνÞd C1;ðνÞ;kðζðνÞdhξf…;νk;d−2;…g; ·iF s

þ ζf…;νk;a−2;…ghξðνÞd ; ·iF s
Þ

þAf…;νk;dþ2;…g
ðνÞd C2;ðνÞ;kðζðνÞdhξf…;νk;dþ2;…g; ·iF s

þ ζf…;νk;dþ2;…ghξðνÞd ; ·iF s
ÞÞ: ð61Þ

3. Construction of the effective Hamiltonian heff;ð2Þ
The last step of the perturbation scheme consists in

pulling the dynamics of the chosen subspace associated
with the Weyl quantization of π to the ε-independent
subspace π̂pHpert. The effective Hamilton operator ĥeff
acting on this subspace is the Weyl quantization of the
symbol function heff which obeys the construction rule
(S3), namely heff ¼ u⋆εH⋆εu�. Again, we assume a power
series ansatz with respect to ε for the symbol heff that
we are going to determine up to second order, i.e.,
heff;ð1Þ ¼ heff;0 þ εheff;1 þ ε2heff;2. In the following, we
restrict our attention to the dynamics within the relevant
subspace and thus project heff;ð2Þ on πp. The restriction to
the zeroth order of (S3) yields

heff;0;pðb;pbÞ≔ πp ·u0 ·H ·u�0 ·πp

¼
�
−

1

12l3
β
p2
b

b2
þ l3Λ̃β3þ 1

β

X
k∈Σ

ωkðbÞνk
�
πp:

ð62Þ

This corresponds to the Born-Oppenheimer adiabatic limit of
the perturbation theory in which the effective Hamiltonian
for the gravitational degrees of freedom not only contains the
first “bare” gravitational, homogeneous part Ehomðb; pbÞ,
but also the backreaction contribution from the Klein-
Gordon energy band (ν) that has been chosen.
For the first and second order contributions of heff , it is

useful to star multiply the condition (S3) by u from the right
such that the double star product does not have to be carried
out. The restriction of the resulting equation to the first
order in ε yields (cf. [11,15])

heff;1 ¼
�
u1 ·H − heff;0 · u1 þ

i
2
fu0;Hghom

−
i
2
fheff;0; u0ghom

�
· u�0: ð63Þ

To evaluate heff;1, recall that u1 has no diagonal contributions
according to (61), and that u0 is independent of pb.
Therefore, heff;1 has no diagonal contributions at all such
that heff;1;p ≔ πp · heff;1 · πp vanishes identically. The same
strategy for determining heff;1;p applies for deriving heff;2;p.
Together with the fact that u0 only depends on b and not on
pb, it yields

heff;2;p ¼ πp ·

�
i
2
ðfu1;H þ EðνÞ1pertghom

− fheff;1; u0ghomÞ − heff;1 · u1

�
· u�0 · πp: ð64Þ

Note that heff;1 is nonvanishing, in contrast to heff;1;p, and its
nonvanishing contributions need a priori to be taken into
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account in the evaluation of heff;2;p. Nevertheless, it can be
shown that the second and the third terms involving heff;1
vanish identically [10]. In particular, it holds true that πp ·
heff;1 ¼ 0 due to symmetry reasons. By pulling the symbol
πp into the Poisson bracket of the second term, which is

allowed since πp is independent of b and pb, also the second
term vanishes. Thus, the evaluation of heff;2;p is confined to
the first contribution. Using the result for u1 in Eq. (61)
yields a priori for the second order contribution of the
effective Hamilton symbol

heff;2;p ¼
XDν

d¼1

�X
k∈Σ

�
C3;ðνÞ
ω3
k

�
νk;d þ

1

2

�
þ C4;ðνÞ

ω4
k

ðν2k;d þ νk;d þ 1Þ þ C5;ðνÞ
ω5
k

�
νk;d þ

1

2

���
· ζðνÞdhζðνÞd ; ·iF s

; ð65Þ

where we employed the phase space functions C3;ðνÞðb; pbÞ; C4;ðνÞðb; pbÞ, and C5;ðνÞðb; pbÞ,

C3;ðνÞðb; pbÞ ≔
μ4b2

8

�
1

β3

� ∂β
∂pb

�
2

−
1

β2

�∂2β

∂p2
b

��
¼ −

σ2μ4b2

8β5
; ð66Þ

C4;ðνÞðb; pbÞ ≔
μ4b2

16

�
2

β

∂β
∂pb

∂Ehom

∂pb
þ ∂2Ehom

∂p2
b

−
1

β

∂2β

∂p2
b

Epert;ðνÞ

�
; ð67Þ

C5;ðνÞ ≔
μ4b2

8

�
2
∂β
∂pb

∂Ehom

∂pb
Epert;ðνÞ − β

�∂Ehom

∂pb

�
2

−
1

β

� ∂β
∂pb

�
2

E2
pert;ðνÞ

�
: ð68Þ

Note that these functions do not depend on the wave vector k which has been employed as a summation index in (65). They
act as multiplicative functions which could be pulled out of the sums. The explicit evaluation of the energy functions shows
that several terms include higher orders in the perturbation parameter ε. In particular, it is clear from the definitions (21) that

σ is proportional to ε, and hence the terms including derivatives of β ¼ ðb2 þ σ2
p2
b

b2Þ1=2 with respect to pb contribute
additional factors of ε. The remaining terms at second order are

heff;2;pjε2 ¼ −
3μ4l3

32

XDν

d¼1

ζðνÞdhζðνÞd ; ·iF s
·
X
k∈Σ

�
b4

β3
1

ω4
k

ðν2k;d þ νk;d þ 1Þ þ 3l3p2
bb

2

β

1

ω5
k

�
νk;d þ

1

2

��
:

We emphasize that the sums over all modes k in this
expression converge. First, the integers νk;d are only non-
vanishing for a finite number of modes k which solves the
convergence problem for terms which enter with poly-
nomials of νk;d. The remaining constant contributions,

however, benefit from the high inverse order of ωk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2b2

p
that enters. It is thus possible to explicitly

compute the effective Hamilton symbol up to second order
in ε for the cosmological field model, and we obtain a
convergent result albeit the sum over all the modes. In the
next step, and we leave this for a further publication, the
aim is to find solutions with respect to the nontrivial slow
scalar part of heff;ð2Þ;p. The application of the operator û
then yields wave functions in H which are exact solutions
up to errors of order ε3 as shown in [10].

IV. CONCLUSION AND OUTLOOK

In this paper, we computed an effective Hamiltonian that
incorporates the influence of the inhomogeneous degrees of
freedom on the quantum dynamics of the homogeneous

variables. This was realized for every energy band associated
with an excited state of the inhomogeneous cosmological
Fock state separately. It is possible to compute the spectrum
of these effective Hamiltonians. By rotating the correspond-
ing (possibly generalized) eigenvectors by the approximate
inverse unitary operator that was used to achieve the
adiabatic decoupling of the energy bands, one obtains
approximate eigenvectors of the original Hamiltonian. The
latter includes the interaction and mutual backreaction
between the homogeneous and inhomogeneous degrees of
freedom. One can then consider semiclassical states and
decompose them with respect to this (approximate) gener-
alized energy basis in order to study their quantum evolution
and in particular the possible fate of the classical big bang
singularity. We reserve this for future work.
In the final paper [12] of this series, we consider general

relativity without dust coupled to a real-valued Klein-
Gordon scalar field. We start from the formulation of the
dynamics in terms of the canonical variables used for the
hybrid quantization scheme [25,26]. These are already
ideally suited for an application of the space adiabatic
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perturbation scheme. The challenge is twofold: First, the
dependence of the inhomogeneous contribution to the
Hamiltonian constraint on the homogeneous degrees of
freedom is more complicated than for the model treated
in this paper which makes the computation of the adiabatic
corrections much more difficult. Second, the avoidance of
the complications originating from the subset of the slow
phase space where the Mukhanov-Sasaki and tensor mode

mass squared functions become negative requires a more
detailed discussion.
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