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In this second paper in a series of four, we continue with the program of incorporating backreaction among
the homogeneous and between the homogeneous and inhomogeneous degrees of freedom in quantum
cosmological perturbation theory. The purpose of the present paper is to illustrate the formalism of space
adiabatic perturbation theory for two simple quantum mechanical models, and to prove that backreaction
indeed leads to additional correction terms in effective Hamiltonians that one would otherwise neglect in a
crude Born-Oppenheimer approximation. The first model consists of a harmonic oscillator coupled to an
anharmonic oscillator. The second model describes the coupling between a scalar matter field and gravity
restricted to the purely homogeneous and isotropic sector. These results have potential phenomenological
consequences for quantum cosmological models.
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I. INTRODUCTION

In recent years, significant progress has been made in the
field of cosmology thanks to major improvements in
experimental precision [1] and theoretical modeling [2].
Because of the spatially nearly homogeneous and isotropic
distribution of matter on large scales and of the cosmic
microwave background radiation [3,4], it is possible to
describe many phenomena with symmetry-reduced models
of gravity and matter. The cosmological principle builds the
basis of our current inflationary concordance ΛCDM model
of the Universe [3,5–9]. Despite the many explanations that
this standard model provides for understanding the early
universe, important questions within the scheme remain
unanswered, for example the present H0 tension [10] (see
also Refs. [11,12] pointing to a possible alleviation of the
tension) and the dark sector [13,14].
From a theoretical perspective, the concordance model is

built on the very well-tested foundations of classical Einstein
general relativity, and on the quantum field theoretical
Standard Model of particle physics. The incompatibility
of their mathematical frameworks suggests to model the very
early universe by a fundamental theory of quantum gravity
[15,16]. While the construction of such a theory is a
nontrivial endeavor, there are several possible candidates

for a theory of quantum gravity (see Ref. [17] for an
extensive overview).
Now, there is hope that the above-mentioned advent of

cosmological measurements could serve to falsify such
quantum gravity theories. One advantage is that the
cosmological principle suggests to split cosmological fields
into a symmetry-reduced background and perturbations
thereof. In the series of papers, of which this is the second
one, we therefore build on the idea that a split into
homogeneous and inhomogeneous modes at the classical
level is meaningful.
In order to incorporate the ideas of quantum gravity, both

the symmetry-reduced sector as well as the inhomogeneities
should be subject to quantization. This procedure is inspired
by the hybrid approach [18,19] to quantum cosmology in
which the inhomogeneous degrees of freedom can be
quantized by using the powerful machinery of quantum
field theory on curved spacetimes (QFT on CST) [20].
Now, there are several problems regarding the formulation

of such quantum cosmological perturbation theories. First, in
order to use the machinery of QFT on CST, we need as an
input a classical metric on which the quantum fields
propagate. That metric is, however, fundamentally quantum.
The framework which we employ in order to overcome these
problems is similar to the one used in quantum fields in
noncommutative spacetimes [21,22] and is denoted as space
adiabatic perturbation theory (SAPT) [23]. If at least two
different energy scales can be identified, such a quantization
scheme comes automatically accompanied by a correspond-
ing perturbation expansion with respect to the ratio of the
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gravitational coupling constant κ ≔ 8πG where G is
Newton’s constant, and the standard model matter coupling
constant λ.
The second important problem of inhomogeneous quan-

tum cosmology concerns the faithful consideration of
interactions between the homogeneous and the perturbative
sector. The difficulties are due to the nonlinear character of
Einstein’s equations, as well as the general difficulty of
modeling coupled quantum systems. While there has been
seminal progress in studying the evolution of quantum fields
on effective classical backgrounds (see our references in
[24]), the question of backreaction from the perturbations
onto the homogeneous degrees of freedom has not been
studied in great detail and by using rigorous perturbation
schemes.
However, the quantum fluctuations of all degrees of

freedom including the homogeneous ones are expected to
be very strong during the Planck era. Thus, it is unclear
whether semiclassical approximations of the fluctuations
are sufficiently accurate [25–29].
SAPT provides just that—a rigorous formalism to

incorporate backreaction. More precisely, it provides a
perturbative scheme for deriving approximate quantum
equations of motion for coupled quantum systems [30].
In our case, and in particular in the third and the fourth
papers of this series [31,32], this allows us to analyze the
quantum backreaction of the inhomogeneous cosmological
fields on the homogeneous and dynamical quantum degrees
of freedom.
For this purpose, SAPT uses the quasiadiabatic behavior

of the system in the sense that one can separate a “fast”
subsystem which provides energetic subspaces that are
almost invariant under the dynamics of the full Hamilton
constraint or operator Ĥ. It provides an iterative scheme to
compute projection operators associated with these fast
energy bands which commute with Ĥ up to the desired
order in ε. Eventually, the theory suggests to project onto
one of these subspaces of the fast subsystem in order to
obtain an effective Hamiltonian for the slow system only.
Solving this Hamiltonian provides an approximate solution
of the full problem. The well-known Born-Oppenheimer
approximation for molecules corresponds precisely to the
zeroth order of this scheme: There, the small mass ratio of
electron and nuclei masses ε2 ≔ me=Mn suggests to project
the system onto one of the electron subspaces which are
almost invariant under the dynamics of the full Hamiltonian
(for a limited range of time). The scheme provides an
effective backreaction term for the nuclei problem.
The Born-Oppenheimer approximation has already been

applied to different models of quantum gravity [33–35].
Unfortunately, the formalism only applies to a certain class
of problems (in particular, it does not apply to gauge-
invariant quantum cosmological perturbation theory) and
restricts to first order perturbation theory. SAPT extends the
formalism accordingly. In [36–38], SAPTwas first applied to

quantum gravity. It was pointed out that SAPT, designed for
quantum systems with finitely many degrees of freedom,
needs to meet certain conditions in order to apply to QFT.
These conditions, specifically certain Hilbert-Schmidt
requirements, are not automatically met in inhomogeneous
quantum cosmology [36–38].
In our exposition of SAPT for quantum cosmology, we

aim at improving this situation. We apply SAPT to
(perturbative) cosmological models in order to keep track
of the backreactions between the homogeneous and inho-
mogeneous degrees of freedom. The first paper [24] of our
series of four papers lays out the corresponding general
theory. In particular, we include a self-contained introduc-
tion both to SAPT as well as to the relevant aspects of
gauge-invariant cosmological perturbation theory. Besides,
we discuss the challenges that occur when applying SAPT
to a QFT in great detail.
In the present second paper, we apply the formalism of

[24] to two quantummechanical models. The first model is a
fast harmonic oscillator coupled to a slow anharmonic one. It
prepares our application of SAPT to the second model which
is general relativity coupled to a Klein-Gordon field and then
truncated to the purely homogeneous and isotropic degrees
of freedom. In suitable variables and in the presence of a
positive (negative) cosmological constant, this model can be
considered as a fast harmonic oscillator coupled to a slow
inverse (negative energy) harmonic oscillator; that is, the
kinetic term has a sign opposite to that of a harmonic
oscillator.
The purpose of these two models is twofold: On the one

hand, it illustrates the space adiabatic formalism in a
relatively simple and familiar context. On the other hand,
we showcase how the formalism extracts very efficiently an
effective Hamiltonian for the slow sector while incorporating
the interaction with the fast one. In particular, it displays the
backreaction between the two kinds of degrees of freedom.
The second model should be considered as the purely
homogeneous truncation of the quantum field theoretic
models that we treat in the two subsequent papers [31,32].
The architecture of this paper is then as follows: In the

next section, we briefly present the SAPT scheme and the
conditions that have to be met for the theory to be applicable.
For further details, we refer to the companion paper [24].
In Sec. III, we apply SAPT to the system of two coupled
quantum oscillators. In addition to extracting the adiabatic
corrections, we perform a spectral analysis of the effective
Hamiltonian and combine the adiabatic expansion with the
framework of quantum mechanical stationary perturbation
theory [39,40]. In Sec. IV, we consider the second model
with the same methods. As the spectrum is not pure point
when the cosmological constant is positive, one cannot resort
to stationary perturbation theory [41] but must use indepen-
dent methods [42] for the spectral analysis of the effective
Hamiltonian constraint. The pure point nature of the
spectrum will lead to delicate matching conditions which
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critically influence the size and structure of the kernel.
Finally, in Sec. V, we summarize our findings and conclude.

II. SPACE ADIABATIC PERTURBATION THEORY

A. A brief overview of the basics

SAPT establishes approximate quantum equations of
motion for coupled quantum systems whose exact solutions
are not available. An important prerequisite for the theory is
the identification of a perturbative parameter which com-
pares two energy scales within the model. The two energy
scales are related to two (or more) subsystems, one of which
has a correspondingly high rate of change (the “fast”
subsystem) compared to the other subsystem (the “slow”
subsystem). The core of the approximation scheme relies on
the space adiabatic theorem [23]. Therefore, let Ĥ ∈ BðHÞ
be an (essentially) self-adjoint, bounded, Weyl-quantized
Hamilton operator on the Hilbert space H. The space
adiabatic theorem states that there exists (under certain
conditions to which we will come in Sec. II B) an orthogonal
projection operator Π̂ ∈ BðHÞ such that [30]

½Ĥ; Π̂� ¼ O0ðε∞Þ: ð1Þ

The estimate on the right-hand side means that for all
m ∈ N, there exists a constant Cm ≥ 0 such that
k½Ĥ; Π̂�kBðHÞ ≤ Cmε

m. As a result, it is possible to construct
a projection operator which commutes in norm up to infinite
order in ε with the full Hamilton operator and hence is
almost invariant under its dynamics.
The starting point and the basic idea of the space

adiabatic scheme consists in iteratively constructing such
a projection operator. As it turns out, the projection
operator is directly linked to one or several quantum
number(s) of the fast subsystem. In particular, it is possible
to extract quantum solutions of the fast system if we
formally “fix” the heavy subsystem in the first step. The
purpose of this analysis is twofold: On the one hand, these
states already represent one part of the solution. On the
other hand, they allow one to consider the effects of the fast
subspaces on the slow subsystem separately for each
subspace. In this sense, the scheme provides a perturbative
decoupling of subspaces of the fast state space. Then,
projecting onto one of these fast subspaces eventually
allows one to define an “effective” Hamilton constraint or
operator ĥeff which acts trivially on the fast subsystem.
Thus, ĥeff provides an equation of motion or constraint for
the slow subsystem only, which is relatively easy to solve.
Moreover, it can be shown that the dynamics that it
generates in case of a true Hamilton operator and regarding

a time parameter t is identical to the original dynamics up to
errors of order ε∞jtj in the estimate from above [23,24].
Since all parts of the system are considered to be

fundamentally quantum, let us start with a Hilbert space
that splits into the tensor productH ¼ Hs ⊗ Hf , where the
labels “s” and “f” stand for slow and fast. Quantization with
respect to the slow subsystem is indicated by hats, while
quantum operators of the fast subsystem are given by bold
letters. The canonical variables of the slow and the fast
subsystems will be denoted by ðq; PÞ and ðx; yÞ, respec-
tively. The concrete realization of the scheme requires us,
however, to represent the quantum theory of the adiabati-
cally slow subsystem as a deformation or phase space
quantization [43,44] (see Refs. [45,46] for recent reviews).
This consists in assigning a quantum “symbol” function on
the slow phase space Γs to its classical analog, instead of
associating an operator ĝ on some domain Dg ⊂ Hs with
each classical function (or distribution) on Γs. At the same
time, we stick to the standard representation of quantum
theory of the fast subsystem and display observables as
operators on the Hilbert space Hf . For the coupled system,
operators consequently have the form of functions on the
heavy phase space Γs with values in the bounded operators
on Hf , for example Bðq; pÞ ∈ C∞ðΓs;BðHfÞÞ.
These symbol functions play a crucial role in the

definition of the subsequent quantum theory and only a
certain class of symbol functions will eventually lead to a
well-defined theory, motivated by the pseudodifferential
calculus [47–51]. We note that the calculus automatically
provides a perturbative scheme if we rescale the momentum
variable P, subject to the phase space quantum theory, by a
factor ε, i.e., p ≔ εP [23]. In the following, this rescaling
will implicitly be assumed.
As a starting point, we remark that the connection of

phase space quantum mechanics with the conventional
representation of quantum operators as continuous linear
maps on a Hilbert space is given by the Schwartz kernel
theorem. Its generalization to the coupled systems states
that any (bounded operator)-valued phase space distribu-
tion Bðq; pÞ ∈ S0ðΓs;BðHfÞÞ, i.e., the operator in the
employed phase space representation, is uniquely associ-
ated with a linear operator B̂∶SðCs;HfÞ → S0ðCs;HfÞ
which corresponds to the operator in the standard tensor
product form. Here, Cs is the configuration space of the
slow subsystem. In particular, Bðq; pÞ defines the integral
kernel KB associated with the map B̂. For a Weyl ordering
of operators and for some ψ ∈ SðCs;HfÞ, the quantum
operator B̂ associated with its half-classical counterpart B is
then given by [30]

ðB̂ψÞðq; xÞ ¼ 1

2πε

Z Z
R2

B

�
1

2
ðqþ q̃Þ; p

�
ei

p
εðq−q̃Þψðq̃; xÞdpdq̃ ∈ S0ðCs;HfÞ: ð2Þ
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In order to work with operators for which the above integral
is uniformely convergent and such that Schwartz functions
are mapped on Schwartz functions, we need to restrict our
attention to a smaller class of observables than the tempered
distributions, S0ðΓs;BðHfÞÞ [30]. Specifically, we use the
class of operator–valued functions Smρ ðΓs;BðHfÞÞ≕ Smρ for
which m ∈ R and 0 ≤ ρ ≤ 1. A phase space function
Bðq; pÞ belongs to Smρ and is denoted as a “symbol” of
class ðm; ρÞ, if for every α; β ∈ N there exists a positive
constant Cα;β such that [30]

sup
q∈R

kð∂α
q∂β

pBÞðq; pÞkBðHf Þ ≤ Cα;βhpim−ρjβj; ð3Þ

for every p ∈ R, where hpi ¼ ð1þ p2Þ12. Note that these
symbols must be bounded functions with respect to q, but

may grow polynomially with respect to p. Working
with these symbol classes has the advantage that the
symbols can be composed with one another, and adjoints
as well as transposed operators can be well defined. In
particular, the operator product carries over to the space
of symbol functions and yields the continuous “star” or
“Moyal” product [46,52,53] on this space. It is the
pullback of the operator product on Hs to the Poisson
algebra of phase space functions with values in the space
of linear operators on Hf . The product is an asymptotic
expansion in ε and establishes the perturbative character
of the space adiabatic theory. Let therefore be B ∈ Sm1

ρ

and C ∈ Sm2
ρ . Then, the operator product B̂ Ĉ yields a

well-defined operator D̂ with symbol D ∈ Sm1þm2
ρ given

by [30]

Dðq; pÞ ¼
X∞
k¼0

ðiε
2
Þk
k!

ð∂q∂ξ − ∂ρ∂pÞkBðq; pÞ · Cðρ; ξÞjρ¼q;ξ¼p≕ ðB⋆εCÞðq; pÞ: ð4Þ

Here, we denote the operator product for operators acting
on states in Hf with a dot “·.” The construction scheme of
SAPT and the conditions on the system can be stated as
follows:

B. System requirements

The subsequent presentation of the scheme and the
conditions that the system has to meet is based on the
work by Panati et al. [23,30]. These conditions are quite
restrictive and narrowly defined, thus excluding a variety of
systems. For example, the unbounded Hamilton operator of
the oscillator subsystem [cf. Eq. (12)] would not satisfy the
conditions without some technical modifications. These
modifications will be presented in the sequel. The con-
ditions given in [23,30] split into four categories:

(C1) The state space of the system decomposes as

H ¼ L2ðRÞ ⊗ Hf ¼ L2ðR;HfÞ; ð5Þ
where L2ðRÞ is the state space of the slow subsystem
and Hf must be a separable Hilbert space associated
with the fast subsystem.

(C2) The Hamilton operator Ĥ is the Weyl quantization
of a symbol function Hðq; pÞ in the symbol class
Smρ ðΓs;BðHfÞÞ. The Weyl quantization refers to the
slow subsystem, and the function Hðq; pÞ has values
in the space of bounded self-adjoint operators onHf .

ðC3Þγ Gap condition. For any fixed ðq; pÞ ∈ R2, the
spectrum σðq; pÞ of the function Hðq; pÞ contains at
least one isolated subset, σνðq; pÞ, associated with
(a) fixed quantum number(s) ν ∈ N which is uniformly
separated from the remainder σremðq; pÞ ≔ σðq; pÞn
σνðq; pÞ. In particular, the minimal distance between

the elements of σνðq; pÞ and the remainder of the
spectrum σremðq; pÞ is nonzero for every single
ðq; pÞ ∈ R2. More precisely, we can define two
continuous “enclosing” functions, f�∶R2 → R with
f− ≤ fþ, such that
(G1) For every ðq; pÞ ∈ R2, the spectral component

σνðq; pÞ is entirely contained in the interval
Iðq; pÞ ≔ ½f−ðq; pÞ; fþðq; pÞ�.

(G2) The distance between the remainder σremðq; pÞ
and the interval Iðq; pÞ is uniformly bounded
away from zero, i.e., dist½σremðq; pÞ; Iðq; pÞ� ≥
Cghpiγ .

(G3) The width of IðzÞ is uniformly bounded:
supðq;pÞ∈R2 jfþðq;pÞ− f−ðq;pÞj ≤ Cw <∞.

ðC4Þ Convergence condition. If the system satisfies
the gap condition ðC3Þγ for some γ ∈ R, the
Hamilton symbolH must be in Sγρ. If ρ ¼ 0, also
γ must vanish. If ρ > 0, γ can be any real
number but Ĥ must be essentially self-adjoint
on SðR;HfÞ.

C. Manual of the adiabatic perturbation scheme

Given the prerequisites of the previous section, Sec. II B,
the scheme of SAPT divides into three steps and relies on
the existence of the three following symbol functions.
Given the Hamilton symbol H ∈ Smρ , SAPT assures
that [23]

(S1) there exists a unique formal symbol π ¼ P
i≥0 ε

iπi

with πi ∈ S−iρρ ðBðHfÞÞ such that π0 is the spectral
projection of Hðq; pÞ corresponding to σνðq; pÞ and
with the properties
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ðS1–1Þ π⋆επ ¼ π; ðS1–2Þ π� ¼ π;

ðS1–3Þ H⋆επ − π⋆εH ¼ 0:

It can be shown that the Weyl quantization of a
resummation of π which we denote by πε is
O0ðε∞Þ—close to an operator Π̂, i.e., Π̂ ¼
π̂ε þO0ðε∞Þ and ½Ĥ; Π̂� ¼ O0ðε∞Þ [ [30] p. 75].
Hence, the symbol function π gives indeed a raise
to an (almost) projector onto one of the dynamical
subspaces of Ĥ.

(S2) Let πp be the projection on some “reference”
subspace Kf ⊂ Hf . We assume that there exists a
symbol u0 ∈ S0ρðBðHfÞÞ such that u0 · π0 · u�0 ¼ πp.
Then, there is a formal symbol u ¼ P

i≥0 ε
iui with

ui ∈ S−iρρ ðBðHfÞÞ such that

ðS2–1Þ u�⋆εu ¼ 1f ; ðS2–2Þ u⋆εu� ¼ 1f ;

ðS2–3Þ u⋆επ⋆εu� ¼ πp:

TheWeyl quantization of a resummation of uwhich we
denote by uε gives rise to an operator Û ¼
ûε þO0ðε∞Þ for which it holds true that Û Π̂ Û ¼
π̂p [ [30], p. 85].

(S3) We construct a formal “effective” Hamilton symbol
heff ¼

P
i≥0 ε

iheff;i by means of

heff ≔ u⋆εH⋆εu�:

It is then true for systems with an external time
parameter t and the Weyl quantizations û and ĥeff
that [ [30], p. 90]

e−iĤt − û�e−iĥeff tû ¼ O0ðε∞jtjÞ: ð6Þ

Hence, after unitarily transforming back to the original
Hilbert space, the dynamics generated by ĥeff corre-
sponds to the dynamics of the true Hamiltonian Ĥ up
to errors of order ε∞jtj.

Eventually, the aim is to compute the series expansion of
heff up to the desired order I ∈ N in ε, such that the above
assertion about the dynamics is true up to errors of the order
εIþ1jtj. We emphasize that the perturbative development of
the star product provides the possibility to iteratively
determine πðIÞ ≔

P
i≤I ε

iπi, uðIÞ ≔
P

i≤I ε
iui. In this work,

we compute πð1Þ, uð1Þ, and heff;ð2Þ for the oscillator and the

cosmological models.

III. THE SHOWCASE EXAMPLE: COUPLED
OSCILLATORS

A. Presentation of the system and preparations

We apply the space adiabatic perturbation scheme to a
quantum system which comprises two coupled subsystems:
An anharmonic oscillator, which can be identified with a
heavy mass M ∈ Rþ, and a harmonic oscillator associated
with a lighter mass m ∈ Rþ. We require the mass ratio
ε2 ≔ m

M to be small in order to demonstrate the space
adiabatic formalism. Accordingly, the anharmonic oscil-
lator with mass M admits a much smaller rate of change
than the harmonic oscillator with mass m. The constant
number ε serves as the perturbation parameter for the
theory. In the following, we refer to the heavy anharmonic
subsystem with phase space variables ðq; PÞ ∈ Γs ¼ R2,
while for the light harmonic oscillator we introduce the
phase space variables ðx; yÞ ∈ Γf ¼ R2. The classical
Hamiltonian associated with the model is given as the
four-times differentiable function on the Cartesian product
of phase spaces Γs × Γf ,

Hðq;P;x;yÞ ¼ P2

2M
þ y2

2m
þ 1

2
mωðqÞ2 · x2 ∈C4ðΓs ×Γf ;RÞ;

ð7Þ

where we have introduced the function

ωðqÞ ≔ ω0

�
1þ q2

L2

�
∈ C2ðΓs;RþÞ: ð8Þ

The function ω mediates the coupling between the two
oscillators and can be understood as a q-dependent
frequency of the light, harmonic oscillator. The parameter
L ∈ Rþ has the dimension of a length and plays the role of
a coupling constant between the subsystems. The cou-
pling vanishes in the limit L → ∞.
We quantize the system and start by considering the light

harmonic oscillator. We specify the state space as a
standard L2-space and denote it as L2

f ðRÞ. The quantum
operators of the canonical variables x and y will be
indicated by bold letters and shall act on the vectors in
the Schwartz space S in the standard way. They satisfy the
formal commutation relation

½x; y�f ¼ i1f ; ð9Þ

where we set ℏ≡ 1. Since the classical Hamilton function
Hðq; P; x; yÞ does not contain any mixed products of the
canonical variables x and y, there is no ordering choice to be
made for the quantum theory. For the heavy, anharmonic
oscillator, we take another L2-space as the space of quantum
states, and we denote it as L2

s ðRÞ. The quantum operators of
the canonical variables q and P will be indicated by hats and
shall act in the known way, analogously to the light
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oscillator. In order to make SAPT work at the technical
level, we introduce a rescaled momentum operator p̂ ≔ εP̂.
Hence, the standard commutation relation of position and
momentum operator becomes

½q̂; p̂�s ¼ iε1̂s: ð10Þ

Since the ordering of position and momentum operators
plays a role for the heavy oscillator, we choose the Weyl
ordering prescription of quantum operators [54,55]. The
quantum theory of the coupled system has the tensor
product Hilbert space

H ¼ L2
s ðRÞ ⊗ L2

f ðRÞ ≅ L2ðR × RÞ ð11Þ

as its state space. Here, “⊗” denotes the topological tensor
product of Hilbert spaces.
Accordingly, we can define quantum operators by means

of the topological tensor product of bounded operators on
H. These have the form Â ⊗ B ∈ BðL2

s ðRÞÞ ⊗ BðL2
f ðRÞÞ

for Â ∈ BðL2
s ðRÞÞ and B ∈ BðL2

f ðRÞÞ. In a similar manner,
we define the Hamilton operator Ĥ associated with the
classical Hamilton function H as a sum of tensor product
operators,

Ĥ ¼ P̂2

2M
⊗ 1f þ 1̂s ⊗

y2

2m
þ 1

2
mωðq̂Þ2 ⊗ x2: ð12Þ

Note that Ĥ is not a bounded operator on the state space
H, but it is a well-defined, bounded operator on
C∞
c ðRÞ ⊗ C∞

c ðRÞ, i.e., on the topological tensor product
of the spaces of smooth functions with compact support on
R. Our first duty is then to check whether Ĥ is essentially
self-adjoint on a subspace ofH in order to establish a well-
defined quantum theory. For this purpose, a theorem which
goes back to Kato [56] is helpful. It states that if the
potential energy contribution Vðq; xÞ in Hðq; P; x; yÞ is a
measurable, locally bounded function, Vðq; xÞ ∈ L∞

locðR2Þ,
and if it is positive V ≥ 0, then Ĥ, defined as an operator on
C∞
c ðR2Þ ≅ C∞

c ðRÞ ⊗ C∞
c ðRÞ, is essentially self-adjoint.

For our model, the potential energy function V is given by

Vðq; xÞ ¼ 1

2
mω2

0

�
1þ q2

L2

�
2

· x2 ð13Þ

[cf. Eq. (7)]. V is measurable, locally bounded, and positive.
Consequently, Ĥ is essentially self-adjoint on C∞

c ðR2Þ and
hence generates the time evolution of the quantum states in
H. To further analyze the time evolution of the quantum
states, it is necessary to resort to a suitable approximation
method, for example SAPT, and we therefore alter the
representation of the heavy, anharmonic quantum theory. We
check the conditions that have to be met for SAPTand adapt
the representation accordingly.

B. Checking of the conditions and preparations

We start by checking the conditions (C1)–(C4) for
SAPT step by step (cf. Sec. II B). Regarding condition
(C1), we note that the tensor product Hilbert space H ¼
L2
s ðRÞ ⊗ L2

f ðRÞ of the oscillator model [Eq. (11)] trivially
satisfies (C1) because L2

f ðRÞ is a separable Hilbert space,
and hence H has the required form of a tensor product.
Note that as Hf is separable, it is possible to construct a
unique isomorphism between the spaces L2ðRÞ ⊗ Hf and
L2ðR;HfÞ [ [57], Theorem II.10 on p. 52]. We shortly
mention that the L2ðR;HfÞ representation of some state
Ψ ∈ H gives rise to a Hilbert bundle picture: Therefore,
consider M ¼ R as the base manifold of the Hilbert
bundle H → M for which every fiber is a Hilbert space
Hf . A state Ψ ∈ L2ðR;HfÞ has the form of a section
Ψ∶q ↦ ðq;ΨðqÞÞ ∈ H with ΨðqÞ ∈ Hf .
Regarding requirement (C2) which imposes condi-

tions on the Hamilton operator, we start by representing
the Hamilton operator as a symbol function Hðq; pÞ.
Considering a phase space quantization scheme for the
heavy oscillator results in the phase space function

Hðq; pÞ ¼ p2

2m
1f þ

y2

2m
þ 1

2
mωðqÞ2x2; ð14Þ

which yields an unbounded operator on L2
f ðRÞ for every

ðq; pÞ ∈ R2. Following the space adiabatic perturbation
scheme by Panati et al. [23],Hðq; pÞmust belong to one of
the symbol classes Smρ and therefore should have values in
the space of bounded operators BðL2

f ðRÞÞ. It is clear that H
cannot satisfy this condition as the energy spectrum of the
harmonic quantum oscillator is undoubtedly bounded from
below but certainly not from above. By using an unbounded
operator, we must therefore abstain from the results on the
convergence of the perturbative series as proven in [23].
Another possibility, advocated as well in [23] and out-
lined in Appendix A for our example is to define an
auxiliary Hamiltonian that eases these tensions. Since our
Hamilton operator is, however, unbounded, the resulting
auxiliary Hamiltonian is physically different from the
original Hamiltonian.

C. Application of space adiabatic perturbation theory

1. Construction of the projector symbol πð1Þ
We construct a function πð1ÞðqÞ with values in the

bounded operators on L2
f ðRÞ according to the conditions

(S1) in Sec. II C, and with the aim to construct a symbol
whose Weyl quantization commutes up to errors of order ε2

with Ĥ. The construction of the symbol πð1Þ proceeds
iteratively using the ansatz of a formal series representation,

πð1Þ ¼ π0 þ επ1: ð15Þ
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In the first step, the scheme requires one to provide a zeroth
order symbol π0ðqÞ as initial data. This must be a projection
symbol onto one of the q-dependent eigenspaces of Hðq; pÞ
(see Sec. II C). We recall that Hðq; pÞ has the harmonic
oscillator eigenfunctions ξnðqÞ as eigensolutions, with
q-dependent frequency ωðqÞ and constant mass m. The
corresponding eigenenergies consist of a generic kinetic
energy contribution and the n-dependent oscillator part, i.e.,
Enðq; pÞ ¼ p2=ð2mÞ þ ωðqÞðnþ 1=2Þ. The zeroth order
projection π0 is given by one of the eigenprojections
π0;nðqÞ ¼ ξnðqÞhξnðqÞ; ·if . In particular, we select one
quantum number n ¼ ν and define the zeroth order symbol
to be π0 ≔ π0;ν. Note that this projector exists for every
ðq; pÞ ∈ Γs due to the global energy gap. Because of the
continuity of the map ðq; pÞ ↦ Hðq; pÞ, the map
ðq; pÞ ↦ π0ðq; pÞ is also continuous. The construction
scheme makes use of the star product, here only up to its
first order in ε which is given for two symbol functions
f ðq; pÞ and gðq; pÞ by

ðf⋆εgÞðq; pÞ ¼ ðf · gÞðq; pÞ þ iε
2
ðð∂qf Þ · ð∂pgÞ

− ð∂pf Þ · ð∂qgÞÞðq; pÞ þOðε2Þ: ð16Þ

To shorten the equations, it is reasonable to use the Poisson
bracket notation ff ; ggs ≔ ð∂qf Þ · ð∂pgÞ − ð∂pf Þ · ð∂qgÞ.
We follow the steps in Sec. II C and begin by the projector
condition (S1–1).

Condition (S1–1) π⋆επ ¼ π.—The expansion of the first
condition (S1–1) in ε yields up to first order with the series
expansion of πð1Þ and the star product

π0 · π0 þ ε

�
i
2
fπ0; π0gs þ π0 · π1 þ π1 · π0

�
¼ π0 þ επ1 þO0ðε2Þ: ð17Þ

We compare the terms of the same order in ε on both sides of
the equation. Regarding the zeroth order, this yields
π0 · π0 ¼ π0, which holds true by construction. The terms
of first order in ε serve to determine π1. Since π0 does not
depend on p, the derivatives ∂pπ0 and hence the Poisson
bracket vanish. The remaining terms are then π0 · π1þ
π1 · π0 ¼ π1. This implies that the diagonal part of the first
order symbol π1 which is defined as πD

1 ≔ π0 · π1 · π0 þ
ð1f − π0Þ · π1 · ð1f − π0Þ vanishes. For determining the
remaining off-diagonal part πOD

1 ≔ π1 − πD
1 , it is necessary

to consider the condition (S1–3). Regarding the possible
construction of the higher order term π2, we note that only π1

is helpful for computing the effective Hamiltonian heff;ð2Þ.

Condition (S1–3) H⋆επ − π⋆εH ¼ 0.—The expansion of
(S1–3) up to first order in ε yields

½H; π0�f þ ε

�
i
2
fH; π0gs −

i
2
fπ0;Hgs þH · π1 − π1 ·H

�
¼ O0ðε2Þ: ð18Þ

Again, the zeroth order contribution is trivially satisfied,
½H; π0�f ¼ 0, as the symbol π0 is an orthogonal projection
operator on the eigensolutions of H. The strategy to
extract the off-diagonal part of π1 is the following: In
Eq. (18), we take the first order contributions, and we
multiply them by π0 from the left and by its orthogonal
complement π⊥

0 ≔ ð1f − π0Þ from the right. Since π0 is the
projection on one single eigenspace with eigenenergy Eν,
this factor can be drawn from the left to the right, i.e.,
π0 ·H · π1 · π⊥

0 ¼ π0 · π1 · π⊥
0 Eν. Furthermore, by defin-

ing the lower off-diagonal part as πOD;1
1 ≔ π0 · π1 · π⊥

0 , we
can write for the last two terms πOD;1

1 ðEν −H⊥Þ, where
H⊥ denotes the projection of H on ð1f − π0Þ. We repeat
the procedure for determining πOD;2

1 ≔ π⊥
0 · π1 · π0. In

both cases, multiplying ðEν −H⊥Þ−1 from the right and
from the left, respectively, and knowing that the diagonal
part of π1 vanishes, yields for π1 ¼ πOD;1

1 þ πOD;2
1

π1 ¼ −
i
2
ðπ0 · fπ0;H þ Eν1fgs · ðH⊥ − Eν1fÞ−1 · π⊥

0

þ ðH⊥ − Eν1fÞ−1 · π⊥
0 · fH þ Eν1f ; π0gs · π0Þ: ð19Þ

For a concrete evaluation of π1, it is necessary to know the
derivatives of the eigenfunctions ξnðqÞ with respect to q.
We use that all excited states ξnðqÞ relate to the vacuum
state ξ0ðqÞ by n-times application of the creation operator
aðqÞ�, namely

ξnðqÞ ¼
ðaðqÞ�Þnffiffiffiffiffi

n!
p ξ0ðqÞ;

with aðqÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mωðqÞ

2

r �
x −

i
mωðqÞ y

�
; ð20Þ

and where aðqÞ� and its adjoint aðqÞ satisfy the standard
commutation relation ½aðqÞ; aðqÞ��f ¼ 1f . It is straight-
forward to compute the q-derivative of ξ0ðqÞ by
employing its position representation and keeping track
of the q-dependence of the frequency, ω. The explicit
q-dependence of aðqÞ� is given in (20). The introduction
of the function fðqÞ ≔ −ð∂qωÞ=ð4ωÞ simplifies the result,

∂qξ0ðqÞ¼
ffiffiffi
2

p
fðqÞξ2ðqÞ; ∂qaðqÞ� ¼−2fðqÞaðqÞ: ð21Þ

The derivative of an excited state ξnðqÞ results from
Eqs. (20) and (21), namely

∂qξnðqÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
fðqÞξn−2ðqÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
fðqÞξnþ2ðqÞ: ð22Þ
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We recall that the states ξnðq; xÞ are vectors in
L2ðR; L2

f ðRÞÞ, and hence can be seen as sections ξn∶q →
ðq; ξnðq; xÞÞ of a global Hilbert bundle with ξnðq; xÞ ∈ Hf .
The partial derivative corresponds therefore to a covariant
derivative on the space of Hilbert bundle sections ΓðHfÞ,
namely AðqÞ∶ΓðHfÞ → ΓðHfÞ. In order to simplify
the equations, we use an index notation with the ξn’s as
basis vectors in Hf . Equation (22) provides the entries
of AðqÞ,

AðqÞkn ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
fðqÞδkþ2

n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
fðqÞδk−2n : ð23Þ

The derivative of the projector π0ðqÞwith respect to q results
from the derivation of the states [Eq. (22)] and by using the
functional representation of the projector due to Riesz.
Besides, we employ the respective elements A of A,

∂qπ0 ¼ AðqÞν−2ν ðξνhξν−2; ·if þ ξν−2hξν; ·ifÞ
þAðqÞνþ2

ν ðξνhξνþ2; ·if þ ξνþ2hξν; ·ifÞ: ð24Þ

It is then straightforward to evaluate the symbol π1 by
using that π0 does not depend on p, but H and Eν do. In
particular, the operator ∂pðH þ Eν1fÞ is simply ð2p=mÞ · 1f.
Furthermore, the inverse of ðH⊥ − Eν1fÞ reduces to a factor
ðEν�2 − EνÞ−1 ¼ �ð2ωÞ−1 when projected on ξν�2, and
we get

π1 ¼
ip

2mω
ðAðqÞν−2ν ðξνhξν−2; ·if − ξν−2hξν; ·ifÞ

þAðqÞνþ2
ν ðξνþ2hξν; ·if − ξνhξνþ2; ·ifÞÞ: ð25Þ

Condition (S1–2) π� ¼ π.—It is easy to check that πð1Þ
satisfies the condition (S1–2) by transposing and complex
conjugating π0 and π1. For closing this section, we
emphasize that πð1Þðq; pÞ depends on the heavy phase
space variables. After quantization this would yield a
nontrivial operator with respect to the heavy subsystem
and hence does not simplify the task to find (approximate)
solutions for the whole problem. The next step of the
scheme therefore consists in constructing a unitary symbol
u which maps the dynamical subspace related to π, or
more precisely here to πð1Þ, to a suitable reference sub-
space Kf ⊂ Hf .

2. Construction of the unitary symbol uð1Þ
We choose an arbitrary, but suitable, reference subspace

Kf ⊂ Hf by selecting one fixed ðq0; p0Þ ∈ Γs. We denote
the eigenbasis of Hf at ðq0; p0Þ by fξnðq0Þgn∈N ≕ fζngn∈N
and define the reference projection as

πp ≔ ξνðq0Þhξνðq0Þ; ·if ≕ ζνhζν; ·if : ð26Þ

In order to mediate betweenKf and the subspace associated
with π, the scheme suggests to compute a unitary symbol u
given as a formal power series in ε. We restrict the
computation to the first order uð1Þ ¼ u0 þ εu1. It makes
sense to choose

u0ðqÞ ≔
X
n≥0

ζnhξnðqÞ; ·if ; ð27Þ

as initial data of the iteration. This will become clearer
when we evaluate the conditions (S2–1) to (S2–3). For the
following construction, it is useful to split u1 into a
Hermitian and an anti-Hermitian part a1 ¼ a�1 and b1 ¼
−b�1 such that uð1Þ ≔ u0 þ εða1 þ b1Þ · u0.

Conditions (S2–1) and (S2–2) u⋆εu� ¼ 1f ¼ u�⋆εu.—The
given condition of unitarity (S2–1) for u1 evaluates in terms
of a1 to the equation

u0 · u�0 − 1f þ ε

�
i
2
fu0; u�0gs þ 2a1

�
¼ O0ðε2Þ; ð28Þ

and likewise for the second condition (S2–2). At zeroth
order, the resulting conditions u0 · u�0 − 1f ¼ 0 and u�0 ·
u0 − 1f ¼ 0 are trivially satisfied for the choice of u0 in
(27). Regarding the condition at first order in ε that arises
from (28), it is clear that the Poisson bracket fu0; u�0gs
vanishes since u0 does not depend on p. It therefore follows
directly that a1 ¼ 0. The anti-Hermitian part b1 is deter-
mined by condition (S2–3).

Condition (S2–3) u⋆επ⋆εu� ¼ πp.—We keep in mind that
any Poisson bracket applied on only the symbols π0, u0,
and u�0 vanishes, because the symbols do not depend on p.
Then, the condition (S2–3) evaluates to

u0 ·π0 ·u�0 −πpþ εð½b1;πp�f þu0 ·π1 ·u�0Þ ¼O0ðε2Þ: ð29Þ

It is straightforward to check that our choices of u0, π0,
and πp satisfy the condition at zeroth order, namely
u0 · π0 · u�0 − πp ¼ 0. At first order in ε, we use that the
equation b1 ¼ −½πp; ½b1; πp�f �f gives a solution for b1 which
provides the following result for u1:

u1 ¼ ½πp; u0 · πOD
1 · u�0�f · u0 ð30Þ

¼ i
2
u0 · ðH⊥ −Eν1fÞ−1 · π⊥

0 · fHþEν1f ;π0gs · π0

−
i
2
πp · u0 · fπ0;HþEν1fgs · ðH⊥ −Eν1fÞ−1 · π⊥

0 :

ð31Þ
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The concrete evaluation of u1 in terms of the connections
and the eigensolutions ξn is given by

u1 ¼
ip
2mω

ðAðqÞν−2ν ðζνhξν−2; ·if þ ζν−2hξν; ·ifÞ
−AðqÞνþ2

ν ðζνþ2hξν; ·if þ ζνhξνþ2; ·ifÞÞ: ð32Þ

3. Construction of the effective Hamilton symbol heff;ð2Þ
The last step of the perturbation scheme consists in

pulling the dynamics of the chosen subspace associated
with π to the ε-independent subspace Π̂pH. This essentially
means that by applying the unitary operator Û ¼
ûþO0ðε∞Þ on the Hamiltonian Ĥ, the action of the latter
on elements in Π̂H is rotated to Π̂pH. The effective

Hamiltonian ĥeff which acts on this subspace is the
Weyl quantization of the symbol heff which is determined
by the condition (S3) in Sec. II C, namely heff ¼
u⋆εH⋆εu�. Again, we assume an ansatz of a formal power
series in ε for the effective Hamiltonian, i.e., heff;ð2Þ ¼
heff;0 þ εheff;1 þ ε2heff;2 here up to second order in ε. In the
following, we restrict our attention directly to the subspace
associated with πp and will project on it. At zeroth order,
the condition (S3) gives

heff;0;p ≔ πp · u0 ·H · u�0 · πp ¼
�
p2

2m
þ ωðqÞ

�
νþ 1

2

��
πp:

ð33Þ

For the first and second order contributions in (S3), it is
useful to star multiply the condition by u from the right.
Thus, the double star product does not have to be carried
out. For determining the first order contribution of heff;1,
this yields

u⋆εH−heff;0⋆εu¼ εheff;1⋆εu¼ εheff;1 ·u0þOðε2Þ; ð34Þ

and by reorganizing the equation

heff;1¼
�
u1 ·H−heff;0 ·u1þ

i
2
fu0;Hgs−

i
2
fheff;0;u0gs

�
·u�0:

ð35Þ

Knowing that u1 has no diagonal contributions and that u0
does not depend on p, this condition implies that heff;1 has
no diagonal contributions. Hence, the restriction to the
chosen subspace with quantum number ν vanishes,

heff;1;p ¼
i
2
πp · fu0;H þ Eν1fgs · u�0 · πp ¼ 0: ð36Þ

The same strategy applies for deriving heff;2;p. As in
Eq. (34), we circumvent the twofold star product by writing

u⋆εH − ðheff;0 þ εheff;1Þ⋆εu¼ ε2heff;2⋆εu

¼ ε2heff;2 · u0 þOðε3Þ: ð37Þ

The evaluation of the star products on the right-hand side of
this equation and multiplication by u�0 from the right yields

heff;2 ¼ ððu0⋆εHÞ2 þ ðu1⋆εHÞ1 þ u2 ·H − ðheff;0⋆εu0Þ2
− ðheff;1⋆εu0Þ1 − ðheff;0⋆εu1Þ1
− heff;1 · u1 − heff;0 · u2Þ · u�0: ð38Þ

Several of these contributions vanish when restricting to
one single energy band ν by multiplying with πp from the
left and the right. First, we have thatH · u�0 · πp ¼ Eνu�0 · πp

as well as πp · heff;0 ¼ Eν · πp such that the third and the last
terms containing u2 cancel. As a consequence, the second
order contributions to u and π do not enter the formula for
heff;2;p. Moreover, the first and the fourth terms in (38)
cancel which is due to the fact that the eigenstates ξnðqÞ do
not depend on the momentum p. For a detailed proof of
this, we refer to Appendix A.3 of the fourth paper of this
series [32], more precisely to Eqs. (159) ff.
By evaluating the remaining star products in Eq. (38),

we eventually obtain

heff;2;p ¼
i
2
πp · fu1;H þ Eν1fgs · u�0 · πp

− πp · heff;1 · u1 · u�0 · πp

−
i
2
πp · fheff;1; u0gs · u�0 · πp: ð39Þ

The second order contribution heff;2;p displays the effects of
nonadiabaticity. The evaluation of the symbol in (39) yields

heff;2;p ¼
L2

2mω0

�
−

p2q2

mðL2 þ q2Þ3
�
νþ 1

2

�

þ q2

ðL2 þ q2Þ2
ω0

2L2
ðν2 þ νþ 1Þ

�
πp: ð40Þ

We see that this second order contribution not only gives an
additional potential term which only depends on q as a
backreaction from the light, harmonic oscillator onto the
heavy oscillator. It also yields a kinetic term which depends
on the momentum p.

D. Approximate solutions to the effective Hamiltonian

We start with the evaluation of the zeroth order symbol
of Eq. (33). It is easy to evaluate the action of its
quantization on some generic tensor product wave func-
tion in H ¼ Hs ⊗ Hf : The operator associated with the
fast subsystem πp has the eigenfunction ζν, which is the
same for every ðq; pÞ ∈ Γs. Thus, one can simply examine
the action of the ðq; pÞ-dependent energy function on
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elements of Hs. The Schrödinger equation for some
generic wave function Ψ ∈ Hs, derived from the
Hamilton symbol, Eq. (33), is given by

�
−

∂2
q

2M
þ 1

2
MΩ2

νq2
�
ψ0
d;νðqÞ ¼ Ẽd;νψ

0
d;νðqÞ; ð41Þ

where we defined

Ων¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0

ML2

�
νþ1

2

�s
; Ẽd;ν¼Ed;ν−ω0

�
νþ1

2

�
; ð42Þ

and Ed;ν is the energy of the whole system. This is the
Schrödinger equation of a harmonic oscillator with mass
parameter M and frequency Ων. The eigenfunctions
ψ0
d;νðqÞ are associated with discrete eigenenergies which

are labeled not only by the former quantum number ν of
the light subsystem but also by the heavy quantum number
d. The superscript “0” indicates that these are the solutions
of the zeroth order effective Hamiltonian. The respective
eigenenergies are given by

Ed;ν ¼ ω0

�
νþ 1

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0

ML2

�
νþ 1

2

�s
·

�
dþ 1

2

�
: ð43Þ

We emphasize that this result corresponds to the Born-
Oppenheimer approximation, i.e., the adiabatic limit of
the perturbation theory. In this simplified scheme, the
heavy degrees of freedom encounter an external potential
given by a single energy level of the light degrees of
freedom. This limit is also denoted as the “adiabatic
decoupling” because the light degrees of freedom are
constrained to stay within one energy band.
The contribution to the effective Hamilton operator of

second order, ĥeff;2;p is the Weyl quantization of the
symbol function in Eq. (40). As this operator represents
a perturbation of the zeroth order Hamiltonian ĥeff;0;p,
standard quantum mechanical perturbation theory applies
and provides corrections to the spectrum fEd;νgd∈N.
Namely, the shift of the energy due to ĥeff;2;p is given
as the expectation value in the zeroth order states, i.e.,
ΔEd;ν ≔ hψ0

d;ν; ĥeff;2;pψ
0
d;νis. Knowing both ingredients,

the zeroth order states and the form of the perturbation
effective Hamiltonian, it is straightforward to compute
ΔEd;ν for any d and ν in N. We present the derivations and
the explicit formulas in Appendix B and content ourselves
with providing the expression for ΔE0;ν for illustration
here. Therefore, we define a dimensionless parameter
lν ≔

ffiffiffiffiffiffiffiffiffiffi
MΩν

p
L, and we obtain

ΔE0;ν ¼−
Ων

4
ðν2þ νþ 1Þþ Ω2

ν

16ω0

�
νþ 1

2

�
ð2þ 7l2

ν þ 2l4
νÞ

þErfðlνÞ
ffiffiffi
π

p
el

2
ν

8lν

�
Ω2

νðνþ 1
2
Þ

4ω0

ð11l2
ν − 2

þ 20l4
ν þ 4l6

νÞ−Ωνðν2þ νþ 1Þð1þ 2l2
νÞ
�
; ð44Þ

where ErfðlνÞ ¼ erfðlνÞ − 1, with “erf” being the standard
error function.

IV. COSMOLOGICAL MODEL

A. Presentation of the system and preparations

This second showcase example for applying SAPT
analyzes a simple cosmological scenario: We consider
Einstein general relativity on a globally hyperbolic space-
time manifold M, reduced to spatial homogeneity and
isotropy, including a cosmological constant Λ ∈ Rþ and
coupled to a spatially homogeneous, isotropic, and real-
valued Klein-Gordon field ϕ with mass m ∈ Rþ. The
background space manifold is the compact three-torus T 3

with coordinate side length l in all three directions and flat
spatial slices, i.e., k ¼ 0 in the standard notation. The
spacetime manifold is thus modeled by M ¼ R × T 3.
We choose coordinates such that the time parameter t labels
the homogeneous and isotropic spatial slices. The metric
tensor g of general relativity has the scale factor a ∈ Rþ as
its only remaining dynamical degree of freedom. The scalar
field reduces to a homogeneous and isotropic variable,
ϕ ∈ R. Both a and ϕ depend on the time parameter t. The
Einstein-Hilbert and the matter field “cosmological” action
are given by

S½a;ϕ�¼ l3
Z
R
dt

�
−
1

2κ
ð6_a2aþ2Λa3Þþ 1

2λ
a3ð _ϕ2−m2ϕ2Þ

�
;

ð45Þ
where the integration over the torus volume produces a
factor l3. Here, κ and λ are, respectively, the coupling
constants of general relativity and the Klein-Gordon system,
where κ ¼ 8πG and G is Newton’s constant. If both ða;ϕÞ
are dimensionless, as we assume, then both coupling
constants have the same dimension. Our motivation for
this choice is that in this way we do not need to introduce
additional mass scales into more general than quadratic
inflaton potentials. Thus, it is reasonable to define the
adiabatic perturbation parameter as the dimensionless ratio,

ε2 ≔
κ

λ
: ð46Þ

Note that we can associate mass parameters to the coupling
constants, namely m2

λ ≔ λ−1 and M2
Pl ≔ κ−1 where MPl is

the reduced Planck mass. Note that we set ℏ ¼ 1 ¼ c
throughout this section. We assume thatmλ ≪ MPl and thus
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ε ≪ 1, which is certainly the case if mλ is in the mass range
of a typical Standard Model particle mass. We also point out
that λ and the mass of the scalar (inflaton) field m are
independent parameters.
Note that in the usual considerations of inflation, λ is

generically set to one. This is of course a choice and has no
consequences for the physical content of the theory. By
allowing different values for λ, we simply introduce a
(physically irrelevant) parametrization invariance for the
scalar field.
It transpires that in the adiabatic language, gravity is the

“slow” sector and the Klein-Gordon particle the “fast” one.
This may seem counterintuitive when one thinks of the
Klein-Gordon field as an inflaton candidate and the infla-
tionary phase when ϕ practically freezes (for small m) while
a expands exponentially. However, note that the distinction
of slow and fast degrees of freedom uses intrinsically a
statistical average over the phase space. For instance, when
the system under consideration has a true Hamiltonian
bounded from below, one uses the equipartition theorem
(see Ref. [24] and references therein). In our case, we do not
have a true Hamiltonian but rather a Hamiltonian constraint
so that the equipartition theorem does not apply. However,
we can use the constraint itself (basically the Friedmann
equation) to deduce that for the velocities, u ¼ _lnðaÞ and
v ¼ _ϕ, it holds that u2=κ ≈ v2=λ for smallΛ=κ in scalar field
kinetic energy dominated parts of the phase space. See the
companion paper [24] for more details.
The space adiabatic scheme requires a Hamiltonian

formulation of the problem. We define the conjugate
momenta of a and ϕ as pa ≔ ε ∂L

∂ _a and μ ≔ ∂L
∂ _ϕ where L

is the Lagrange function associated with the action S. The
Poisson brackets of the canonical variables evaluate to
fa; pag ¼ ε and fϕ; μg ¼ 1. This choice for the funda-
mental Poisson relations assures that we can identify the
masses associated with the homogeneous and isotropic
degrees of freedom with the mass of the total system of the
torus as pointed out in [24]. The Legendre transformation
generates the Hamilton constraint,

Cða;pa;ϕ;μÞ≔−
1

12

p2
a

a
þ Λ
λκ

a3þ μ2

2a3
þ 1

2λ2
m2a3ϕ2; ð47Þ

where for notational reasons, we divided the whole con-
straint by a constant factor λ. Besides, we set l3 ¼ 1without
loss of generality. For simplifying the analysis by means of
space adiabatic perturbation theory in the following, we
switch to “triadlike” canonical variables,

b ≔ �
ffiffiffiffiffi
a3

p
; ρ ≔

2

3

paffiffiffi
a

p ; ð48Þ

which is a double cover of the original phase space. Note
that the range of b consists of two branches, a positive and a
negative one. We do not restrict to any of them. In order to

keep the notation as simple as possible, we introduce the
following parameters and functions:

mG≔
8

3
; ω2

G≔
3Λ
4λκ

; m̃KG≔b2; ω2
KG≔

m2
KG

λ2
: ð49Þ

These definitions and the new canonical variables give for
the Hamilton constraint

Cðb; ρ;ϕ; μÞ ¼ −
ρ2

2mG
þ 1

2
mGω

2
Gb

2 þ μ2

2m̃KGðbÞ
þ 1

2
m̃KGðbÞω2

KGϕ
2: ð50Þ

We quantize the system and start by considering the scalar
field subsystem. The state space is the standard L2-Hilbert
space and will be denoted by Hf ¼ L2

f ðRÞ. The quantum
operators are indicated as bold, and the scalar field operator
and its conjugate momentum satisfy the canonical commu-
tation relation ½ϕ; μ�f ¼ i1f . Similarly, the state space of the
geometrical subsystem will be denoted byHs ¼ L2

s ðRÞ. The
quantum operators wear hats and the canonical commutation
relation for the geometrical variable and its conjugate
momentum are ½b̂; ρ̂�s ¼ iε1̂s. The quantum theory of the
coupled system has the tensor product Hilbert space
Hs ⊗ Hf . Note that this is not the representation chosen
in loop quantum cosmology (LQC) [58–60] for which one
motivation is that inverse powers of a or b can be madewell-
defined following the technique introduced for loop quantum
gravity (LQG) [61,62]. That technique does not work in the
presently chosen Schrödinger representation. However, one
can still find a dense and invariant domain [63] for the
Hamiltonian constraint operator of the full system which is
sufficient to perform the spectral analysis. The constraint
operator on the tensor product Hilbert space is given by

Ĉ ¼
�
−

ρ̂2

2mG
þ 1

2
mGω

2
Gb̂

2

�
⊗ 1f þ

1

2m̃KGðb̂Þ
⊗ μ20

þ 1

2
m̃KGðb̂Þω2

KG ⊗ ϕ2
0: ð51Þ

This operator is, due to the inverse kinetic energy operator of
the geometric sector, not bounded from below. In fact, it is a
constraint, and we are mostly interested in the domain of the
Hilbert space that is annihilated by the constraint. Exact
solutions are obviously not available. In what follows, we
perform a systematic step by step SAPT treatment.

B. Checking of the conditions and preparations

We check the conditions (C1)–(C4) from Sec. II B for the
cosmological model. Condition (C1) holds without further
ado since the cosmological Hilbert space Hs ⊗ Hf has the
required tensor product form. In addition,Hs is an L2-space
and Hf is a separable Hilbert space. Following condition
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(C2), we represent the quantum constraint (51) as a symbol
function Cðb; ρÞ with values in the linear operators on the
Klein-Gordon Hilbert space Hf . Formally, we simply
quantize the Klein-Gordon subsystem by means of a
standard Weyl quantization procedure and obtain

Cðb; ρÞ ¼
�
−

ρ2

2mG
þ 1

2
mGω

2
Gb

2

�
1f þ

ϕ2

2m̃KGðbÞ
þ 1

2
m̃KGðbÞω2

KGμ
2: ð52Þ

This symbol function is an unbounded operator on Hf for
every ðb; ρÞ ∈ R2. In particular, the operator corresponds to
the Hamiltonian of a quantum harmonic oscillator with
constant frequency ωKG, b-dependent mass m̃KGðbÞ, and an
offset energy. As such, the symbol has an energy spectrum
which is unbounded. According to SAPT, the constraint
symbol must belong to one of the symbol classes Smρ and
should therefore have values in the space of bounded
operators on Hf . Furthermore, it must be a bounded
function with respect to the geometric variable b and grow
maximally polynomially with respect to ρ. This is not the
case because the constraint contains terms proportional to
m̃KGðbÞ ¼ b2 and its inverse.
In fact, we could now apply the same strategy as

introduced in the previous section and define a suitable
auxiliary Hamilton symbol Haux to which one finally
applies SAPT. This nontrivial task will, however, not be
able to account for the properties and dynamics generated
by the original Hamilton constraint, as already men-
tioned. Therefore, we will again abandon the convergence
results for bounded operators as presented in [23] and
remain with the original Hamilton constraint for our
application of SAPT.

C. Application of space aAdiabatic perturbation theory

1. Construction of the projector symbol πð1Þ
According to the iterative scheme presented in Sec. II C,

we construct a function πð1ÞðbÞ with values in the bounded
operators on L2

f ðRÞ. We use the ansatz of a formal power
series πð1Þ ¼ π0 þ επ1 and the conditions subsumed in (S1).
In the first step, the scheme requires one to provide the zeroth
order symbol π0ðbÞ as initial data which must be the
projection symbol onto one of the b-dependent eigenspaces
ofCðb; ρÞ. AsCðb; ρÞ is theHamilton operator of a harmonic
oscillator with b-dependent mass m̃KGðbÞ, constant fre-
quency ωKG, and an offset energy, π0ðbÞ is simply the
eigenprojection onto one of the eigensolutions, ξnðbÞ, with

Cðb; ρÞξnðbÞ ¼ Enðb; ρÞξnðbÞ; ð53Þ

where we introduced the ðb; ρÞ-dependent, discrete energy
spectrum

Enðb; ρÞ ¼ −
ρ2

2mG
þ 1

2
mGω

2
Gb

2 þ ωKG

�
nþ 1

2

�
: ð54Þ

The eigensolutions ξnðbÞ are the harmonic oscillator eigen-
functions with b-dependent mass m̃KGðbÞ and constant
frequency ωKG. With these prerequisites, the scheme sug-
gests to select one quantum number n ¼ ν, and to define
π0ðbÞ ≔ ξνðbÞhξνðbÞ; ·if . Again, we note that π0ðbÞ is a
continuous function with respect to b (cf. Sec. III C 1). Then,
following the instructions from Sec. II C and the steps taken
in the example of the oscillator model (cf. Sec. III C 1), the
projector symbol has the form

π1 ¼ −
i
2
ðπ0 · fπ0;Cþ Eν1fgs · ðC⊥ − Eν1fÞ−1 · π⊥

0

þ ðC⊥ − Eν1fÞ−1 · π⊥
0 · fCþ Eν1f ; π0gs · π0Þ; ð55Þ

whereC⊥ ¼ C · ð1f − π0Þ. For the concrete evaluation ofπ1,
it is reasonable to resort to a representation in terms of
annihilation and creation operators aðbÞ and aðbÞ� of the
problem. These satisfy the canonical commutation relations
½aðbÞ; aðbÞ��f ¼ 1f , and the creation operator is given by

aðbÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃KGðbÞωKG

2

r �
ϕ −

i
m̃KGðbÞωKG

μ

�
: ð56Þ

Using theb-dependence of the oscillator eigenfunction ξ0ðbÞ
with mass m̃KGðbÞ and of aðbÞ�, their derivatives are simply

∂bξ0ðbÞ≔
ffiffiffi
2

p
fðbÞξ2ðbÞ; ∂baðbÞ� ¼−2fðbÞaðbÞ; ð57Þ

where we have introduced the function fðbÞ ≔ −ð∂bm̃KGÞ=
ð4m̃KGÞ ¼ −1=ð2bÞ. As a consequence, the b-derivative of
the excited states have the form

∂bξnðbÞ ¼ AðbÞn−2n ξn−2ðbÞ þAðbÞnþ2
n ξnþ2ðbÞ; ð58Þ

wherewe used that any excited state derives from thevacuum
state by multiple applications of the creation operator and
the same definition for the elements of the covariant
derivative A as for the oscillator model. In analogy, the
operator ∂bðC − Eν · 1fÞ is simply ð−2p=mGÞ · 1f, and the
inverse of ðC⊥ − EνÞ reduces to a factor of�ð2ωKGÞ−1. As a
result, the projector symbol π1 has the form

π1 ¼ −
iρ

2mGωKG
ðAðbÞν−2ν ðξνhξν−2; ·if − ξν−2hξν; ·ifÞ

þAðbÞνþ2
ν ðξνþ2hξν; ·if − ξνhξνþ2; ·ifÞÞ: ð59Þ

One can check that πð1Þ satisfies all three conditions sub-
sumed under (S1) up to first order in ε. Again, the next step
consists in unitarily mapping the dynamics within the sub-
space associated with π1 to a simpler reference subspace.
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2. Construction of the unitary symbol uð1Þ
Analogous to the proceeding in Sec. III C 2, we construct

a unitary symbol uð1Þ which maps the dynamical subspace
related to πð1Þ to a suitable reference subspace Kf ⊂ Hf .
We select one fixed ðb0; ρ0Þ ∈ Γs and define the reference
projection as

πp ≔ ξνðb0Þhξνðb0Þ; ·if ≕ ζνhζν; ·if : ð60Þ

The unitary operator in line with the conditions (S2) at
zeroth order is given by

u0ðbÞ ¼
X
n≥0

ζnhξnðbÞ; ·if : ð61Þ

The iterative construction gives in analogy to the results in
Sec. III C 2 for u1

u1 ¼ ½πp; u0 · πOD
1 · u�0�f · u0

¼ iρ
2mGωKG

ðAðbÞν−2ν ðζνhξν−2; ·if þ ζν−2hξν; ·ifÞ

−AðbÞνþ2
ν ðζνþ2hξν; ·if þ ζνhξνþ2; ·ifÞÞ: ð62Þ

3. Construction of the effective constraint symbol heff;ð2Þ
The last step of the perturbation scheme consists in

computing an effective Hamilton constraint as a formal
power series in ε up to second order. In particular, we
restrict ourselves to the computation of the effective
Hamiltonian within the selected reference space, i.e.,
Ceff;ð2Þ;pðb; ρÞ ≔ πp · Ceff;ð2Þðb; ρÞ · πp. The zeroth order
contribution of this symbol is given according to condition
(S3) restricted to zeroth order by

Ceff;0;pðb;ρÞ ¼
�
−

ρ2

2mG
þ 1

2
mGω

2
Gb

2þωKG

�
νþ 1

2

��
πp:

ð63Þ

Thus, the effective constraint symbol for the gravitational
degrees of freedom includes the bare gravitational con-
straint symbol plus an offset energy which stems from
Klein-Gordon’s particle chosen energy value. This result
corresponds to the Born-Oppenheimer approximation. As
in the oscillator model, the first order contribution of the
effective constraint symbol, Ceff;1ðb; ρÞ, contains only off-
diagonal terms, such that Ceff;1;pðb; ρÞ vanishes,

Ceff;1;pðb; ρÞ ¼
i
2
πp · fu0;Cþ Eν1fgs · u�0 · πp ¼ 0: ð64Þ

The same reasoning used for the computation of
Ceff;1;pðb; ρÞ gives for the second order contribution a similar

result as for the oscillator model [see Eq. (39)]. The explicit
symbol for the cosmological model is thus

Ceff;2;pðb; ρÞ ¼
1

2mGωKG

�
−

ρ2

ωGb2

�
νþ 1

2

�

−
1

b2
ωKG

2
ðν2 þ νþ 1Þ

�
πp: ð65Þ

This proves our statement that besides the trivial Born-
Oppenheimer approximation, further backreaction effects
arise for the gravitational subsystem. It is now easy to
evaluate the action of this symbol on some generic tensor
product wave function in H ¼ Hs ⊗ Hf , since the Klein-
Gordon tensor factor does not depend on the gravitational
degrees of freedom anymore.

4. Solutions of the effective constraint operator

The final step consists in the Weyl quantization of the
effective Hamiltonian symbols constructed above up to
second order in the adiabatic parameter which consists of
the two contributions (63) and (65) of zeroth and second
order, respectively. The zeroth order contribution has no
ordering ambiguities and represents essentially an inverted
harmonic oscillator with nonvanishing zero point energy.
The second order contribution becomes symmetrically Weyl
ordered in this step and involves negative powers of b, which
thus is more singular than the zeroth order contribution. The
spectral problem of the zeroth order contribution is the one
of an inverted oscillator, well studied in the literature (see,
e.g., Ref. [42] and references therein). The spectrum is of the
absolutely continuous type, and the operator is essentially
self-adjoint on the space of smooth functions vanishing at
infinity. The generalized (i.e., not normalizable) eigenvectors
are explicitly known in terms of parabolic cylinder functions.
It is possible to choose boundary conditions such that these
eigenfunctions vanish at zero where the classical singularity
resides. One would now like to proceed as for the oscillator
model and treat the second order contribution as a small
correction to the second order by means of stationary
perturbation theory. Unfortunately, this method is applicable
only when the zeroth order has a pure point spectrum. In fact,
it is well known that the perturbation theory for absolutely
continuous operators is very unstable in the sense that a
perturbation by an operator of an arbitrarily small Hilbert-
Schmidt norm exists such that their sum has a pure point
spectrum [41]. We are not aware of any rigorous work in that
direction, and it seems that the spectral problem of the
Hamiltonian constraint operator including zeroth and second
order contributions must be addressed by independent
methods such as using the dense and invariant domain
studied in [63]. We leave this problem for future research and
just point out once more how nontrivial the inclusion of
backreaction effects can become.
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V. CONCLUSION AND OUTLOOK

We applied SAPT to two closely related quantum
mechanical models: We first studied a quantum mechanical
system of a heavy and slow anharmonic oscillator which is
coupled to a lighter and fast harmonic oscillator. The
coupling has been established via the potential term in
the Hamilton operator. The motivation for this model has
been of a technical nature and served as a preparation for
the second, cosmological model. There, we considered the
purely homogeneous sector of quantum cosmology in order
to study the influence of backreaction between geometry
and matter contributions to the Hamiltonian constraint.
This influence can be encoded in terms of a purely
gravitational effective Hamiltonian which receives correc-
tions from the backreactions of the matter degrees of
freedom that one would not expect in a crude Born-
Oppenheimer approximation. These correction terms could
play an important role in the details of a possible singularity
resolution that was discovered in the LQC approach to
quantum cosmology [58–60].
While we have not done so in this paper, one could of

course also quantize the slow sector using such loop
methods. Therefore, the phase space quantization scheme
needs to be revisited as the standard procedure here relies
on the Weyl quantization ordering. In particular, the
standard phase space T�ðRÞ would have to be replaced
by T�ðS1Þ which was already done in [36–38]. We have not
done so, because [63] shows that there exists a dense and
invariant domain for the Hamiltonian constraint and all its
finite order backreaction terms; in particular all matrix
elements can be computed in closed form. We will come
back to the phenomenological consequences of backreac-
tions for the model discussed in this paper in future
publications.
In the two remaining papers of this series, we employ

quantum field theory by taking the inhomogeneous degrees
of freedom to linear order in cosmological perturbation
theory into account [31,32]. We meet additional challenges
as was already explained in [24]: In order to secure unitary
equivalence of the different Fock spaces for different
homogeneous configurations, one must perform additional
transformations for the whole canonical system in linear
cosmological perturbation theory. Such transformations
were constructed in [64,65] and can be applied for our
purposes. The implementation of such transformations can
lead to tachyonic quantum fields in some parts of the slow
(homogeneous) phase space. An example for a (gauge
invariant) quantum field with an indefinite mass squared
term is the Mukhanov-Sasaki scalar perturbation in cosmol-
ogy. Hence, the occurrence of such instabilities in our
considerations is not due to the SAPT scheme itself and
is already encountered in standard gauge-invariant cosmo-
logical perturbation theory [66]. In [24], we have made

several proposals for overcoming the corresponding prob-
lems including a phase space restriction induced by an
additional partial canonical transformation in the homo-
geneous sector, and we will apply them in [31,32].
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APPENDIX A: REGULATION OF THE
HAMILTON SYMBOL

It is possible to define an auxiliary Hamilton symbol
Hauxðq; pÞ which is not only a bounded operator onHf but
also a bounded function with respect to the slow phase
space variables q and p. Therefore it is helpful to rewrite
the Hamilton symbolHðq; pÞ in its spectral form using that
the problem corresponds to a harmonic oscillator with
q-dependent frequency ωðqÞ, mass m, energy offset

EoffðpÞ ≔ p2

2m, and eigensolutions ξnðqÞ ∈ Hf , n ∈ N with
energy eigenfunctions Enðq; pÞ,

Hðq; pÞξnðqÞ ¼ Enðq; pÞξnðqÞ;

Enðq; pÞ ≔ EoffðpÞ þ ωðqÞ
�
nþ 1

2

�
: ðA1Þ

The q-dependent projectors on Hf are simply given by

πnðqÞ ≔ ξnðqÞhξnðqÞ; ·if ; ðA2Þ

where h·; ·if denotes the standard scalar product inHf . As a
consequence, the Hamiltonian symbol in its spectral form is
given by

Hðq; pÞ ¼
X
n≥0

Enðq; pÞπnðqÞ: ðA3Þ

Following the strategy in [23], let us define a cutoff
Hamiltonian symbol HNðq; pÞ with values in the bounded
operators on Hf ,

HNðq; pÞ ≔
XN
n¼0

Enðq; pÞπnðqÞ; ðA4Þ

whose norm is ENðq; pÞ. In order to satisfy condition (C4)
for a constant gap, it is necessary to define another
“auxiliary” HamiltonianHauxðq; pÞ. The idea is to replace
the function HNðq; pÞ by some appropriately bounded
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function outside a certain compact region on the slow
phase space. Therefore, let us define the interval
Λ ≔ fðq; pÞ∶kHNðq; pÞkBðHfÞ < Ecg, or more precisely,

all points ðq; pÞ ∈ R2 for which it holds true that
ENðq; pÞ < Ec. Therefore, we need Ec > ω0ðN þ 1=2Þ.
The auxiliary Hamiltonian symbol must then satisfy
[[23], p. 176]

(i) Hauxðq;pÞ ¼HNðq;pÞ for all ðq;pÞ ∈ Λþ μ≔
fðq;pÞ∶kHNðq;pÞkBðHf Þ < Ec þ μg,

(ii) kHauxðq; pÞkBðHfÞ > kHNðq0; p0ÞkBðHfÞ for all
ðq; pÞ ∉ Λþ μ and ðq0; p0Þ ∈ Λþ μ,

(iii) Hauxðq; pÞ satisfies the global gap condition with
γ ¼ 0, i.e., a constant gap.

Haux can be obtained by smoothly extending the energy
bands Enðq; pÞ outside of the region Λþ μ by a set of
bounded, smooth functions with appropriate transition
conditions, for example,

Hauxðq; pÞ ¼
XN
n¼0

Ẽnðq; pÞπnðqÞ;

with ẼnðqÞ ¼
�
Enðq; pÞ if ðq; pÞ ∈ Λþ μ;

bnðq; pÞ if ðq; pÞ ∉ Λþ μ;
ðA5Þ

where bnðq; pÞ ∈ C∞
b ðR2;RÞ is an appropriately bounded

function for every 0 ≤ n ≤ N. Besides, they must be
pointwise distinct; i.e., they are not allowed to merge
into or to cross with one another. This is important for the
gap condition (C3). In fact, with these requirements,
Hauxðq; pÞ satisfies all conditions for SAPT.
Finally it is possible to show that the dynamics of ĤN

and Ĥaux coincide for states with eigenenergies up to the
cutoff energy Ec. In fact, using the tools proposed in [67]
and with the strategy of [23], the following identity can be
shown to hold true:

ðe−iĤauxt − e−iĤNtÞ1̂ð−∞;Ec�ðĤNÞ

¼ −ie−iĤauxt

Z
t

0

dseiĤauxsðĤaux − ĤNÞe−iĤNs1̂ð−∞;Ec�

¼ O0ðε∞jtjÞ; ðA6Þ

where 1̂ð−∞;Ec� is the spectral projection operator on
energies below Ec.
Unfortunately, it is not possible to compare the dynamics

generated by Ĥaux and the one generated by Ĥ in the same
manner, since the latter is an unbounded operator. We hence
need to make a choice: Either we use the auxiliary
Hamiltonian for the application of SAPT, which might,
however, be a difficult task and which does not properly

reflect the properties of the original Hamiltonian, or we
remain with the original Hamiltonian and must therefore
abandon any results on the convergence of the perturbation
series. In this paper, we choose the second option.

APPENDIX B: EVALUATION OF THE
OSCILLATOR HAMILTONIAN

The effective Hamilton operator of the oscillator model
splits into the zeroth order contribution ĥeff;0;p and a
perturbation of second order, ĥeff;2;p. It is possible to
compute the effect of the perturbative part of the
Hamiltonian on the unperturbed spectrum fEd;νgd∈N by
using standard quantum perturbation theory. The deviation
of the spectrum due to ĥeff;2;p results from computing the

expectation value of ĥeff;2;p in the unperturbed states

fΞ0
d;νgd∈N, namely ΔEd;ν ≔ hΞ0

d;ν; ĥeff;2;pΞ0
d;νis. For nota-

tional reasons, we split the perturbation operator into two
parts: A “kinetic” one hkineff;2;pðq; pÞ which depends not only
on q but also on the momentum p. And a “potential”
contribution hpoteff;2;pðqÞ which solely depends on q. Since
these operators act trivially on the light Hilbert space by
projecting on the state ζν via πp, we omit the action on the
light states and only consider the scalar functions
hkineff;2;pðq; pÞ and hpoteff;2;pðqÞ given by

hkineff;2;pðq; pÞ ≔ −
L2ðνþ 1

2
Þ

2M2Ω0

·
p2q2

ðL2 þ q2Þ3 ; ðB1Þ

hpoteff;2;pðqÞ ≔
ν2 þ νþ 1

4M
·

q2

ðL2 þ q2Þ2 : ðB2Þ

The concrete evaluation of the potential operator ĥpoteff;2;p as
an expectation value in one of the oscillator eigenfunctions
Ξd;νðqÞ is trivial as it only depends on q: In position
representation, we only have to integrate its symbol
hpoteff;2;pðqÞ over ðΞd;νΞ̄d;νÞðqÞ ¼ ðΞ̄d;νÞ2ðqÞ. The kinetic term
can be treated by means of the Weyl quantization integral in
analogy to the definition in Eq. (2), but for scalar-valued
symbols. Thereby, the p-variables turn into derivatives of
the remaining q-dependent part of hkineff;2;p and the eigen-
functions Ξd;νðqÞ. In order to simplify the analysis, we use
partial integration to shift all the derivatives on the
functions Ξd;νðqÞ. We introduce a new adapted coordinate
uν ≔

ffiffiffiffiffiffiffiffiffiffi
MΩν

p
q and the parameter lν ≔

ffiffiffiffiffiffiffiffiffiffi
MΩν

p
L.

Eventually, we express the quantum oscillator solutions
Ξd;νðqÞ in terms of Hermite polynomials fHdðuνÞgd∈N.
Eventually, this gives for the expectation values
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ΔEpot
d;ν ¼

Ωνðν2 þ νþ 1Þ
4

ffiffiffi
π

p
2dd!

Z
R
e−u

2
ν

u2ν
ðl2

ν þ u2νÞ2
H2

dðuνÞduν;

ΔEkin
d;ν ¼ −

l2
νΩ2

νðνþ 1
2
Þ

4
ffiffiffi
π

p
Ω02

dd!

Z
R
e−u

2
ν

u2ν
ðl2

ν þ u2νÞ3
½H2

dðuνÞðu2ν − 2d − 1Þ − d2H2
d−1ðuνÞ

−
1

4
H2

dþ1ðuνÞ þ d ·Hd−1ðuνÞHdþ1ðuνÞ�duν: ðB3Þ

In order to solve the uν–integrals, we take advantage of the
series representation of the Hermite polynomials,

HdðuνÞ ¼ d!
Xbd2c
m¼0

ð−1Þm
m!ðd − 2mÞ! ð2uνÞ

d−2m; ðB4Þ

to pull out the uν-dependence. The resulting integrals for
the potential and the kinetic part have the form

IðλÞ ≔
Z
R
e−u

2
ν

u2λν
ðl2

ν þ u2νÞ2
duν;

JðλÞ ≔
Z
R
e−u

2
ν

u2λν
ðl2

ν þ u2νÞ3
duν; ðB5Þ

where λ is a parameter which changes according to the
choice of d. It is possible to derive recursion relations for
solving IðλÞ and JðλÞ for generic λ. The required input are
the first few integrals, Ið0Þ, Ið1Þ, Jð0Þ, Jð1Þ, and Jð2Þ
which can be solved by hand. For deriving the recursion
relation, we add and subtract terms in the integral which
sum up to zero but which allow one to reduce the integral to
terms that depend on the preceding integrals. For example,
the integral IðλÞ unfolds to

IðλÞ ¼ Γ
�
λ −

3

2

�
− 2l2

νIðλ − 1Þ − l4
νIðλ − 2Þ; ðB6Þ

where Γ is the standard gamma function. A similar relation
for JðλÞ can be found by using the same trick. By
introducing an appropriate recursion ansatz, it is possible
to trace any IðλÞ back to ΓðiÞwith 2 ≤ i ≤ λ, Ið1Þ, and Ið0Þ,
and likewise for JðλÞ using ΓðiÞ with 3 ≤ i ≤ λ, Jð2Þ, Jð1Þ,
and Jð0Þ. For the IðλÞ’s, we employ

IðλÞ ≔ aðλÞIð0Þ þ bðλÞIð1Þ þ
Xλ
i¼2

ciðλÞΓ
�
i −

3

2

�
ðB7Þ

in Eq. (B6), and we determine the coefficients to

aðλÞ ¼ ð1 − λÞð−1Þλl2λ
ν ; ðB8Þ

bðλÞ ¼ λð−1Þλ−1l2ðλ−1Þ
ν ; ðB9Þ

ciðλÞ ¼ ð1þ λ − iÞð−1Þλ−il2ðλ−iÞ
ν : ðB10Þ

Again, the same method applies to JðλÞ. With these
prerequisites, it is possible to determine ΔEd;ν ¼ ΔEkin

d;ν þ
ΔEpot

d;ν for any d and ν in N. To illustrate, the energy shift
due to the potential term has the form

ΔEpot
d;ν ¼

Ων2
dd!ðν2þ νþ 1Þ

4ℏ
ffiffiffi
π

p
Xbd2c
m¼0

Xbd2c
k¼0

×
ð−1Þmþk2−2ðmþkÞ

m!k!ðd− 2mÞ!ðd− 2kÞ! Iðd−m− kþ 1Þ; ðB11Þ

and likewise for the kinetic term but lengthier. By evalu-
ating the sums and employing the specific IðλÞ’s for every
summand, we obtain the correct energy shift. Namely, the
energy shifts for d ¼ 0 and d ¼ 1 are given by

ΔE0;ν ¼
Ωνðν2 þ νþ 1Þ

4
ffiffiffi
π

p Ið1Þ þ l2
νΩ2

νðνþ 1
2
Þ

4
ffiffiffi
π

p
Ω0

ð2Jð1Þ− Jð2ÞÞ;

ΔE1;ν ¼ −
Ωνðν2 þ νþ 1Þ

2
ffiffiffi
π

p ð ffiffiffi
π

p þ 2l2
νIð1Þ þ l4

νIð0ÞÞ

þ l2
νΩ2

νðνþ 1
2
Þ

2
ffiffiffi
π

p
Ω0

ðJð1Þ þ Jð2ÞÞ; ðB12Þ

with the integrals given by

Ið0Þ ¼
ffiffiffi
π

p
l2
ν
þ π

2l3
ν
el

2
νð2l2

ν − 1ÞðerfðlνÞ − 1Þ; ðB13Þ

Ið1Þ ¼ −
ffiffiffi
π

p
−

π

2lν
el

2
νð1þ 2l2

νÞðerfðlνÞ − 1Þ; ðB14Þ

Jð1Þ¼
ffiffiffi
π

p
4l2

ν
ð1þ2l2

νÞþ
π

8l3
ν
el

2
νð1−4l2

ν−4l4
νÞð1−erfðlνÞÞ;

ðB15Þ

Jð2Þ ¼ −
ffiffiffi
π

p
4

ð5þ 2l2
νÞ

þ π

8lν
el

2
νð3þ 12l2

ν þ 4l4
νÞð1 − erfðlνÞÞ: ðB16Þ

Here, “erf” denotes the error function. Employing the
integrals in the above equations yields the expressions in
Eq. (44).

J. NEUSER, S. SCHANDER, and T. THIEMANN PHYS. REV. D 105, 106010 (2022)

106010-16



[1] R. Durrer, The cosmic microwave background: The history
of its experimental investigation and its significance for
cosmology, Classical Quantum Gravity 32, 124007 (2015).

[2] A. L. Maroto, Theoretical cosmology, in Lectures on Par-
ticle Physics, Astrophysics and Cosmology, edited by Carlos
Merino (Springer, Cham, 2015), Chap. 9, pp. 359–409.

[3] Y. Akrami et al., Planck 2018 results. I. Overview and the
cosmological legacy of Planck, Astron. Astrophys. 641, A1
(2018).

[4] V. Springel, C. Frenk, and S. White, The large-scale structure
of the universe, Nature (London) 440, 1137 (2006).

[5] A. Albrecht and P. Steinhardt, Cosmology for Grand
Unified Theories with Radiatively Induced Symmetry
Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[6] A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary
Universe, Phys. Rev. Lett. 49, 1110 (1982).

[7] S. W. Hawking, The development of irregularities in a single
bubble inflationary universe, Phys. Lett. 115B, 295 (1982).

[8] A. A. Starobinsky, Dynamics of phase transition in the new
inflationary universe scenario and generation of perturbations,
Phys. Lett. 117B, 175 (1982).

[9] A. D. Linde, A new inflationary universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982).

[10] E. Di Valentino et al., Snowmass2021—Letter of interest
cosmology intertwined II: The hubble constant tension,
Astropart. Phys. 131, 102605 (2021).

[11] G. Efstathiou, A lockdown perspective on the hubble
tension (with comments from the SH0ES team), arXiv:
2007.10716.

[12] W. L. Freedman, Measurements of the hubble constant:
Tensions in perspective, Astrophys. J. 919, 16 (2021).

[13] G. Bertone and D. Hooper, History of dark matter, Rev.
Mod. Phys. 90, 045002 (2018).

[14] N. Aghanim et al., Planck 2018 results. VI. Cosmological
parameters, Astron. Astrophys. 641, A6 (2020).

[15] J. Pullin and R. Gambini, A First Course in Loop Quantum
Gravity (Oxford University Press, New York, 2009).

[16] B. Zwiebach, A First Course in String Theory, 2nd ed.
(Cambridge University Press, Cambridge, England, 2009).

[17] D. Oriti, Approaches to Quantum Gravity: Toward a New
Understanding of Space, Time and Matter (Cambridge
University Press, Cambridge, England, 2009).

[18] B. Elizaga Navascués and G. A. Mena Marugán, Hybrid
loop quantum cosmology: An overview, Front. Astron.
Space Sci. 8, 81 (2021).

[19] B. Elizaga Navascués, M. Martín-Benito, and G. A. Mena
Marugán, Hybrid models in loop quantum cosmology, Int. J.
Mod. Phys. D 25, 1642007 (2016).

[20] S. Fulling, Aspects of Quantum Field Theory in Curved
Space-Time, London Mathematical Society Student Texts
Vol. 7 (Cambridge University Press, Cambridge, England,
1989).

[21] S. Doplicher, K. Fredenhagen, and J. Roberts, The quantum
structure of spacetime at the Planck scale and quantum
fields, Commun. Math. Phys. 172, 187 (1995).

[22] S. Doplicher, K. Fredenhagen, and J. Roberts, Spacetime
quantization induced by classical gravity, Phys. Lett. B 331,
39 (1994).

[23] G. Panati, H. Spohn, and S. Teufel, Space-adiabatic pertur-
bation theory, Adv. Theor. Math. Phys. 7, 145 (2003).

[24] S. Schander and T. Thiemann, preceding paper, Quantum
cosmological backreactions I: Cosmological space adiabatic
perturbation theory, Phys. Rev. D 105, 106009 (2022).

[25] A. Ashtekar, W. Kaminski, and J. Lewandowski, Quantum
field theory on a cosmological, quantum space-time, Phys.
Rev. D 79, 064030 (2009).

[26] M. Assanioussi, A. Dapor, and J. Lewandowski, Rainbow
metric from quantum gravity, Phys. Lett. B 751, 302 (2015).

[27] A. Barrau, M. Bojowald, G. Calcagni, J. Grain, and M.
Kagan, Anomaly–free cosmological perturbations in effec-
tive canonical quantum gravity, J. Cosmol. Astropart. Phys.
05 (2015) 051.

[28] H. Sahlmann and T. Thiemann, Towards the QFT on curved
space-time limit of QGR. I. A general scheme, Classical
Quantum Gravity 23, 867 (2006).

[29] H. Sahlmann and T. Thiemann, Towards the QFT on curved
space-time limit of QGR. II. A concrete implementation,
Classical Quantum Gravity 23, 909 (2006).

[30] S. Teufel, Adiabatic Perturbation Theory in Quantum
Dynamics, Lecture Notes in Mathematics Vol. 1821
(Springer–Verlag, Berlin, 2003).

[31] S. Schander and T. Thiemann, following paper, Quantum
cosmological backreactions III: Deparametrized quantum
cosmological perturbation theory, Phys. Rev. D 105, 106011
(2022).

[32] S. Schander and T. Thiemann, this issue, Quantum cosmo-
logical backreactions IV: Constrained quantum cosmological
perturbation theory, Phys. Rev. D 105, 106012 (2022).

[33] K. Giesel, J. Tambornino, and T. Thiemann, Born–
Oppenheimer decomposition for quantum fields on
quantum spacetimes, arXiv:0911.5331.

[34] C. Kiefer, Quantum Gravity, International Series of
Monographs in Physics Vol. 124 (Oxford University Press,
New York, 2004).

[35] C. Rovelli and F. Vidotto, Stepping out of homogeneity in
loop quantum cosmology, Classical Quantum Gravity 25,
225024 (2008).

[36] A. Stottmeister and T. Thiemann, Coherent states, quantum
gravity and the Born–Oppenheimer approximation. I: Gen-
eral considerations, J. Math. Phys. (N.Y.) 57, 063509
(2016).

[37] A. Stottmeister and T. Thiemann, Coherent states, quantum
gravity and the Born–Oppenheimer approximation. II:
Compact lie groups, J. Math. Phys. (N.Y.) 57, 073501
(2016).

[38] A. Stottmeister and T. Thiemann, Coherent states, quantum
gravity and the Born–Oppenheimer approximation. III:
Applications to loop quantum gravity, J. Math. Phys.
(N.Y.) 57, 083509 (2016).

[39] A. Messiah, Quantum Mechanics, Vol. I (North Holland
Publishing Company, Amsterdam, 1961).

[40] A. Messiah, Quantum Mechanics, Vol. II (North Holland
Publishing Company, Amsterdam, 1962).

[41] T. Kato, Perturbation Theory for Linear Operators, Classics
in Mathematics (Springer, New York, 1980).

[42] F. Finster and J. Isidro, Lp–Spectrum of the Schrödinger
operator with inverted harmonic oscillator potential,
J. Math. Phys. (N.Y.) 58, 092104 (2017).

QUANTUM …. II. PURELY HOMOGENEOUS … PHYS. REV. D 105, 106010 (2022)

106010-17

https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1038/nature04805
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevLett.49.1110
https://doi.org/10.1016/0370-2693(82)90373-2
https://doi.org/10.1016/0370-2693(82)90541-X
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/j.astropartphys.2021.102605
https://arXiv.org/abs/2007.10716
https://arXiv.org/abs/2007.10716
https://doi.org/10.3847/1538-4357/ac0e95
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1103/RevModPhys.90.045002
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.3389/fspas.2021.624824
https://doi.org/10.3389/fspas.2021.624824
https://doi.org/10.1142/S0218271816420074
https://doi.org/10.1142/S0218271816420074
https://doi.org/10.1007/BF02104515
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.1016/0370-2693(94)90940-7
https://doi.org/10.4310/ATMP.2003.v7.n1.a6
https://doi.org/10.1103/PhysRevD.105.106009
https://doi.org/10.1103/PhysRevD.79.064030
https://doi.org/10.1103/PhysRevD.79.064030
https://doi.org/10.1016/j.physletb.2015.10.043
https://doi.org/10.1088/1475-7516/2015/05/051
https://doi.org/10.1088/1475-7516/2015/05/051
https://doi.org/10.1088/0264-9381/23/3/019
https://doi.org/10.1088/0264-9381/23/3/019
https://doi.org/10.1088/0264-9381/23/3/020
https://doi.org/10.1103/PhysRevD.105.106011
https://doi.org/10.1103/PhysRevD.105.106011
https://doi.org/10.1103/PhysRevD.105.106012
https://arXiv.org/abs/0911.5331
https://doi.org/10.1088/0264-9381/25/22/225024
https://doi.org/10.1088/0264-9381/25/22/225024
https://doi.org/10.1063/1.4954228
https://doi.org/10.1063/1.4954228
https://doi.org/10.1063/1.4954803
https://doi.org/10.1063/1.4954803
https://doi.org/10.1063/1.4960823
https://doi.org/10.1063/1.4960823
https://doi.org/10.1063/1.4997418


[43] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and
D. Sternheimer, Deformation theory and quantization.
I. Deformations of symplectic structures, Ann. Phys.
(N.Y.) 111, 61 (1978).

[44] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and
D. Sternheimer, Deformation theory and quanti-
zation. II. Physical applications, Ann. Phys. (N.Y.) 111,
111 (1978).

[45] S. Waldmann, Deformation quantization: Observable alge-
bras, states and representation theory, in Proceedings of the
2nd Summer School in Modern Mathematical Physics
(2003), arXiv:hep-th/0303080.

[46] M. Blaszak and Z. Domanski, Phase space quantum
mechanics, Ann. Phys. (Amsterdam) 327, 167 (2012).

[47] J. J. Kohn and L. Nirenberg, An algebra of pseudo–
differential operators, Commun. Pure Appl. Math. 18, 269
(1965).

[48] L. Hörmander, The Analysis of Linear Partial Differential
Operators I -Distribution Theory and Fourier Analysis
(Springer-Verlag, Berlin–Heidelberg, 1983).

[49] L. Hörmander, The Analysis of Linear Partial Differential
Operators II—Differential Operators with Constant
Coefficients (Springer-Verlag, Berlin–Heidelberg, 1983).

[50] L. Hörmander, The Analysis of Linear Partial Differential
Operators III—Pseudo-Differential Operators (Springer-
Verlag, Berlin–Heidelberg, 1994).

[51] G. B. Folland, Harmonic Analysis in Phase Space.
(AM–122) (Princeton University Press, Princeton, NJ,
1989).

[52] H. J. Groenewold, On the principles of elementary quantum
mechanics, Physica (Amsterdam) 12, 405 (1946).

[53] J. E. Moyal, Quantum mechanics as a statistical theory,
Math. Proc. Cambridge Philos. Soc. 45, 99 (1949).

[54] H. Weyl, Quantenmechanik und Gruppentheorie, Z. Phys.
46, 1 (1927).

[55] B. Hall, Quantum Theory for Mathematicians, Graduate
Texts in Mathematics Vol. 267 (Springer-Verlag, New York,
2013).

[56] T. Kato, Schrödinger operators with singular potentials,
Isr. J. Math. 13, 135 (1972).

[57] M. Reed and B. Simon, Methods of Modern Mathematical
Physics I: Functional Analysis (Academic Press, Inc.,
New York, 1980).

[58] A. Ashtekar, M. Bojowald, and J. Lewandowski, Mathemati-
cal structure of loop quantum cosmology, Adv. Theor. Math.
Phys. 7, 233 (2003).

[59] A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of
the big bang: Improved dynamics, Phys. Rev. D 74, 084003
(2006).

[60] M. Bojowald, Loop quantum cosmology, Living Rev.
Relativity 8, 11 (2005).

[61] T. Thiemann, Anomaly–free formulation of nonperturbative,
four-dimensional Lorentzian quantum gravity, Phys. Lett. B
380, 257 (1996).

[62] T. Thiemann, Quantum spin dynamics (QSD), Classical
Quantum Gravity 15, 839 (1998).

[63] T. Thiemann, Properties of a smooth, dense, invariant
domain for singular potential Schrödinger operators (to
be published).

[64] L. Castelló Gomar, M. Martín-Benito, and G. Mena
Marugán, Gauge-invariant perturbations in hybrid quantum
cosmology, J. Cosmol. Astropart. Phys. 06 (2015) 045.

[65] L. Castelló Gomar, M. Martín-Benito, and G. Mena
Marugán, Quantum corrections to the Mukhanov-Sasaki
equations, Phys. Rev. D 93, 104025 (2016).

[66] V. F. Mukhanov, Quantum theory of gauge invariant cos-
mological perturbations, Sov. Phys. JETP 67, 1297 (1988).

[67] M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the
Semi–Classical Limit, London Mathematical Society
Lecture Note Series Vol. 268 (Cambridge University Press,
Cambridge, England, 1999).

J. NEUSER, S. SCHANDER, and T. THIEMANN PHYS. REV. D 105, 106010 (2022)

106010-18

https://doi.org/10.1016/0003-4916(78)90224-5
https://doi.org/10.1016/0003-4916(78)90224-5
https://doi.org/10.1016/0003-4916(78)90225-7
https://doi.org/10.1016/0003-4916(78)90225-7
https://arXiv.org/abs/hep-th/0303080
https://doi.org/10.1016/j.aop.2011.09.006
https://doi.org/10.1002/cpa.3160180121
https://doi.org/10.1002/cpa.3160180121
https://doi.org/10.1016/S0031-8914(46)80059-4
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1007/BF02055756
https://doi.org/10.1007/BF02055756
https://doi.org/10.1007/BF02760233
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.4310/ATMP.2003.v7.n2.a2
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.12942/lrr-2005-11
https://doi.org/10.12942/lrr-2005-11
https://doi.org/10.1016/0370-2693(96)00532-1
https://doi.org/10.1016/0370-2693(96)00532-1
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/0264-9381/15/4/011
https://doi.org/10.1088/1475-7516/2015/06/045
https://doi.org/10.1103/PhysRevD.93.104025

