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Quantum cosmology, including quantum cosmological inhomogeneities, is a promising framework for
describing the very early universe in which all degrees of freedom are being considered as dynamical and
quantum. However, many previous discussions on this subject consider the quantum cosmological
perturbations as test fields on a curved spacetime with effective quantum modifications and thus neglect
certain interactions of the subsystems, namely the backreaction of the inhomogeneous quantum fields on
the cosmological background. In a series of four papers, of which this is the first, we aim at improving on
the treatment of quantum effects that arise due to backreactions between matter and geometry as well as
between the cosmological perturbations and the homogeneous degrees of freedom. We employ the
technique of space adiabatic perturbation theory in the form developed by Panati, Spohn, and Teufel which
relies on the familiar Born-Oppenheimer approximation. We extend the scheme to quantum field theory in
the cosmological perturbative setting and show that this leads to presently neglected correction terms in the
quantum Friedmann equations. In this first article, we provide a detailed introduction to the iterative
scheme and examine the generic challenges encountered in its application to perturbative quantum
cosmology. Our results will allow for a direct comparison to cosmological observations.
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I. INTRODUCTION

Both empirical and theoretical cosmology have experi-
enced a substantial upswing during the past decades. On the
theoretical side, the interaction of Einstein’s general rela-
tivity [1,2] with the Standard Model of particle physics [3]
has led to a prolific modeling of the Universe. They form the
basis of the cosmological standard model which character-
izes the Universe according to cosmological data as being
almost spatially homogeneous and isotropic, as well as
constantly expanding on its largest scales and throughout its
entire history. On the empirical side, today’s measurement
technology permits one to register electromagnetic and
gravitational radiation from astronomical objects that are
up to 32 billion light-years away from us [4], and hence
provide information about the Universe from about 13.4 bil-
lion years ago. The Cosmic Microwave Background (CMB)
radiation offers an even more ancient relict of cosmic history
from the time of decoupling [5,6]. These measurement data
give an astonishingly simple account of the Universe and its
history: The ΛCDM model can be described by only six
parameters [7,8].

The corresponding data and numerous numerical simu-
lations [9–13] provide evidence that the structures in our
present Universe result from small inhomogeneities in the
formerly very dense and hot universe [14,15] (potentially
due to an inhomogeneous quantum “inflaton” scalar field
that has initially filled the universe and eventually decayed
into other matter species [16–20] according to the con-
cordance ΛCDM model). For the theoretical description of
these fluctuations, one employs quantum field theory on
curved spacetimes (QFT on CST) [21] which is based here
on the following idea: The classical degrees of freedom of
general relativity plus matter split into a homogeneous
background and linear perturbations thereof. After having
solved the homogeneous background dynamics independ-
ently of the perturbations, one employs their classical
“fixed” background solution in the equations of motion
for the quantum perturbations. Most importantly, the
dynamical evolution of the background has already been
fixed in the first stage such that the effects of the
perturbations on the background are not taken into account.
This paradigm serves as the basis for the current standard

model of cosmology and has proven to be an extremely well-
adapted and promising model of the Universe in many
respects. Nevertheless, many unsolved questions remain,
both on the theoretical level and with respect to cosmological
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data. Regarding the latter aspect, we point to the open
questions concerning dark matter [22], and dark energy
[23,24], and the lack of a satisfying theoretical framework
for these phenomena. Moreover, a tension of different
measurement methods for the Hubble constant has been
detected recently, which might indicate the failure of the
assumptions of the ΛCDMmodel for the very early universe
[7,25] (see for example Refs. [26,27] for a different assess-
ment of the measured data). With a view to the inherent
problems of the existing theory, we stress that classical
relativity and the Standard quantum Model are mathemati-
cally incompatible [2].
It seems hence very timely to scrutinize the cosmological

standard model and the assumptions on which it relies. One
of the most foundational approaches for this endeavor,
which would directly address the issue of incompatibility,
is to develop a theory of quantum gravity, uniting the
underlying ideas of classical general relativity and QFT. As
it is well known, we already have a number of different
approaches to quantum gravity at our disposal among
which are asymptotic safety [28–31], string theory (in
particular in its AdS=CFT incarnation) [32,33], causal
dynamical triangulations [34,35], as well as spin foam
and loop quantum gravity (LQG) [36–39] (see also
Ref. [40] for an extensive overview). We emphasize that
remarkable progress has been made in the theoretical and
phenomenological elaboration of these theories during the
past years. However, none of them has so far been able to
provide a uniform model for describing the cosmological
data situation, which is partly due to quantization ambi-
guities of the dynamics, and the tremendous nonlinearity of
Einstein’s field equations. Another problem which hinders
progress in identifying a viable candidate for quantum
gravity is the lack of relevant measurement data owing to
the fact that the large Planck mass suppresses any quantum
gravity effects in Earth based investigations. However,
there is hope that the increasing abundance of cosmological
data can improve the situation.
In order to make contact between empirical data and a

fully fledged theory of quantum gravity, one would, in the
first place, seek the cosmological sector of such a theory,
which goes hand in hand with examining the semiclassical
QFT on CST limit of the theory. Therefore, one has to
identify suitable semiclassical, maybe coherent, states of
the theory which have only small fluctuations off a classical
(cosmological) solution, preserved under the evolution
generated by the Hamiltonian, which follow the classical
trajectory for reasonably long time intervals. This enter-
prise is of course very difficult. For example, in LQG
promising coherent states have been defined [41–44], but
they fail to obey all conditions of a semiclassical state, in
particular for gravity coupled to matter [45,46].
Different strategies could help in this situation. First, one

could implement a perturbation theory with respect to an
inherent perturbation parameter. For gravity coupled to

matter, a natural candidate for such a parameter
would be the ratio of the gravitational Planck mass
MPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ð8πGÞp

≈ 2.43 × 1018 GeV=c2 where G is
Newton’s constant and a typical Standard Model particle
mass, the heaviest being the Higgs with a mass MH≈
125.09 GeV=c2 ≪ MPl. Indeed, several proposals for such
a perturbative formalism have been pursued, for example
within the paradigm of quantum geometrodynamics;
see [47] and references therein as well as in LQG [48].
The latter, and likewise many of the other discussions
of this subject, relies on a quantum gravitational Born-
Oppenheimer approximation. This makes perfect sense as
the latter approach also relies on the occurrence of two
different mass scales in a quantum system.
Indeed, the original Born-Oppenheimer scheme [49,50]

was introduced to simplify the computation of molecular
spectra. At its core, it relies on exploiting different time-
scales within a quantum system, which are due to two very
different mass scales: The nuclear degrees of freedom serve
as the slow subsystem while the electrons act as the fast
degrees of freedom. The very small ratio of electron and
nuclei masses of about 1=2000 together with the equi-
partition theorem justify the separation of the system.
Intuitively, the electrons “adiabatically” adapt their fast
motion to the slow motion of the nuclear degrees of
freedom without much disturbance. Following the reason-
ing of the Born-Oppenheimer procedure, this means that a
quantum state of the system dynamically remains in its
initial electronic subspace up to small errors. In the leading
order of that mass ratio approximation, one neglects the
transition of electronic eigenstates generated by the nuclear
part of the Hamiltonian.
To be very precise, this allows for an approximate

solution of the full spectral problem in two steps: First,
by considering the nuclear phase space variables as mere
parameters, it is possible to define an “effective” electronic
quantum problem. Solving this problem enables one to
select one of the electronic quantum numbers and to project
the Hamiltonian onto the corresponding quantum state. In a
second step, this yields an effective Hamilton operator for
the nuclei alone which usually allows for simpler solutions.
In fact, one considers the electronic and the nucleonic
quantum problem at two different steps of the procedure,
and thereby simplifies the quest for approximate solutions
to the whole problem. Such a formalism, which formally
treats the problems of the gravity and the matter sector
separately, could be very profitable for the problem of
quantum gravity and the examination of its semiclassical
limit. This is precisely the idea of the above-mentioned
considerations in quantum gravity that employ the Born-
Oppenheimer scheme, and for which the gravity sector
appears as the adiabatic (“slow”) sector while the matter
part corresponds to the “fast” electronic subsystem.
Unfortunately, the Born-Oppenheimer scheme also comes

with severe limitations. First, the original Born-Oppenheimer
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approximation is quite restrictive in the sense that it offers
only a first order scheme and cannot be extended to provide
better higher order estimates with respect to the perturbation
parameter. As mentioned above, in the case of quantum
gravity this perturbative parameter would arise as the ratio of
some Standard Model matter mass valueMSM of the system
and the Planck massMPl, which should be reasonably small
(ε2 ≔ MSM=MPl ≲ 10−32). Besides, the Born-Oppenheimer
formalism applies only to a very narrow class of quantum
mechanical problems, in particular to those that admit
commuting coupling operators with respect to the slow
subsystem. This restriction prevents, however, the application
of the scheme to certain models of quantum gravity, e.g., to
LQG and as we will see to quantum cosmological perturba-
tion theory.
Fortunately, there exists a solution provided by the scheme

of space adiabatic perturbation theory (SAPT) as introduced
by Panati, Spohn, and Teufel [51,52] and inspired by former
work in [53–55]. The physical reasoning of this scheme is
the same as of the Born-Oppenheimer approach, and, indeed,
one recovers the latter at the zeroth order of the perturbation
theory. Speaking in terms of the molecular example, the
basic concept of SAPT consists in iteratively constructing an
electronic subspace which is better adapted to the dynamics
of the full Hamilton operator than the initial assumption in
the Born-Oppenheimer approximation. Namely, these
adapted subspaces remain invariant under the full dynamics
up to perturbatively decreasing errors. In a second step, the
scheme proposes to construct a unitary operator which
“rotates” this subspace to a simpler reference subspace such
that an effective resulting Hamiltonian acts exclusively on
the nuclei. The final step of the scheme consists in the
construction of this effective Hamilton operator for the
nuclei which includes the backreaction from one or several
of the electron energy bands. The dynamics generated by
this effective Hamiltonian agrees with the dynamics of the
full Hamiltonian up to the desired level of precision with
respect to the perturbation parameter.
In order to avoid confusion, let us briefly interpose that

the adiabatic perturbative expansion of SAPT has nothing
to do with the so-called adiabatic vacua of given order
encountered in QFT on CST [56,57]. The latter defines
(approximate) Hadamard two-point functions in the sense
of QFT on cosmological spacetimes with a fixed time
dependence, while in our case the time dependence is
a priori unspecified as we allow for backreaction between
the homogeneous quantum scale factor of the cosmological
background and the first order inhomogeneities in both the
metric and the inflaton fields. To extract the time depend-
ence of the interacting quantum system is precisely the
objective of the SAPT scheme.
We also note that the “space” adiabatic scheme is more

general than the “time” adiabatic one for explicitly time-
dependent Hamilton operators in that it includes the latter
(see, e.g., Refs. [52,58]). This becomes obvious by simply

regarding the time variable as another degree of freedom in
the system’s phase space and treating it as a dynamical
“spatial” degree of freedom. One imposes then the constraint
that the sum of the Hamilton operator and the momentum
conjugate to time vanishes, which basically corresponds to
the time-dependent Schrödinger equation. Consequently, the
theory applies to fully constrained (gravitational) systems
without further ado.
Furthermore, the SAPT scheme applies more generally

to a much larger class of quantum systems, in particular to
those that have noncommuting coupling operators within
the slow subsystem. This makes SAPT an ideal candidate
for implementing the very idea of the Born-Oppenheimer
formalism to quantum gravity, and hence to make progress
in a formulation of a QFTon CST limit of quantum gravity.
Indeed, Stottmeister and Thiemann [59–61] could exploit

all the above-mentioned advantages of the SAPT formalism
in their analysis within the framework of LQG. Since in
LQG, the coupling operators of gravity are mutually non-
commuting as was already realized by [48], the Born-
Oppenheimer scheme could not be rigorously implemented
before. The idea of Stottmeister and Thiemann is to employ
SAPT for deriving QFT on CST from full LQG, motivated
by the idea that the SAPT scheme naturally implements a
split between the gravitational and the matter degrees of
freedom. Thereby, they identify the matter degrees of free-
dom with the fast subsystem and develop methods to
implement the geometric degrees of freedom of LQG as
the slow variables. The concrete implementation, however,
turns out to be difficult due to the particular structure of LQG
(more precisely of its underlying phase space), and ambi-
guities related to its quantum representation.
Despite these difficulties arising for the implementation of

the SAPT method to fully fledged quantum gravity, we can
hope to make progress by first considering simpler models
that might eventually lighten our way to the full theory. As in
many other situations, it could be helpful to analyze
symmetry-reduced models as a first step. In gravity, and
in particular in its application to the very early universe, the
cosmological principle represents a guiding assumption in
such situations. Indeed, the spatially homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW)
models have been studied extensively, and its solutions
are well known, at least at the classical level. To be more
realistic, spatial inhomogeneities should be included right
from the beginning of such an endeavor. Since, however, the
inhomogeneities can be modeled as linear perturbations for a
large period of the cosmic history [7], it seems reasonable to
employ linear cosmological perturbation theory.
Such theories have been studied extensively at the

classical level (see for example Ref. [62], going back to
earlier works such as [63]) and led to a sound formulation of
linear cosmological perturbation theory. The conventional
approach of these cosmological perturbation theories con-
sists in developing the field action of the model up to and
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including the second order in the linear cosmological
perturbations. Such a second order cosmological perturba-
tion theory is meaningful for models with compact spatial
sections (as used in this work) since the zero modes can be
isolated in this case. A Legendre transformation then
generates the constraints of the system. The zeroth order
constraints of this formalism provide the well-known
Friedmann equations. As mentioned earlier, the standard
method in perturbative cosmology then suggests to first
solve these homogeneous constraints independently, and
then to insert these solutions into the linear equations of
motion for the perturbations. If in addition quantum effects
are to be taken into account, it is common to use a QFT on
CST formalism.
Unfortunately, these approaches neglect backreaction

effects from the perturbations on the homogeneous back-
ground. In situations in which the effects of the perturba-
tions on the background are negligible and if the
background behaves almost classically, these theories
might provide realistic models for the early and medium
stages of the Universe, but it is not clear whether, and to
which extent, they adequately model the earliest stages of
our Universe. Our application of SAPT to such models
aims exactly at improving this status quo by treating both
the homogeneous and the inhomogeneous degrees of
freedom as dynamical and quantum, and by incorporating
the resulting interactions. For this enterprise, however, the
constraint analysis must be properly adapted.
To the best of our knowledge, this classical program has

been carried out for the first time (to second order in the
perturbations) in [64–67], and we will adopt it for our
purposes. The problem and the proposed solution look as
follows: In the first place, the scheme of (canonical)
cosmological perturbation theory introduces canonical
variables in the homogeneous and in the inhomogeneous
sector which are not gauge invariant in general. In order to
restore the covariance for the perturbations, the standard
scheme applies transformations for the perturbative sector
to gauge-invariant variables, for example the Mukhanov-
Sasaki variables [68]. These transformations, however,
depend also on the homogeneous variables, and hence,
the new system of variables breaks the canonical structure.
Therefore, the idea is to impose further transformations on
the full phase space, including the homogeneous degrees of
freedom, with the main intent to restore canonicity and such
that the constraints still form a first class system. This
provides us with a new set of phase space transformations
which is canonical up to second order in the cosmological
perturbations [64,67,69].
With these prerequisites, we have a suitable (almost)

canonical formulation of cosmological perturbation theory
in which all homogeneous and inhomogeneous degrees of
freedom are equally treated as canonical and dynamical
variables, and with gauge-invariant perturbation variables.
This is in fact necessary for our purpose of implementing

the SAPT scheme in quantum cosmology since the latter
envisions a canonical quantization of the entire phase
space. We are thus left with choosing a suitable quantiza-
tion scheme for our models.
In this respect, as in standard quantum cosmological

perturbation theory, it is advisable to choose a Fock
quantization with respect to the inhomogeneities since
these are treated at a linear level. For the homogeneous
degrees of freedom, however, the field equations are
nonlinear, and a different quantization scheme is required.
This idea of using different quantization methods within
quantum cosmology goes back to the hybrid quantization
approach in loop quantum cosmology (LQC) [64–66].
There, the homogeneous degrees of freedom are subject
to a quantization in the lines of LQC [70–72]. This scheme
is a minisuperspace quantization of just the homogeneous
degrees of freedom using techniques from LQG. In this
series of papers, we adopt the basic idea of the hybrid
quantization scheme but will not employ the LQC quan-
tization procedure.
More precisely, we implement a standard Weyl quanti-

zation which turns out to be the most natural choice when
considering SAPT methods. In fact, the formalism relies on
a phase space or deformation quantization [73–76] with
respect to the slow, or in our case the homogeneous,
degrees of freedom. This phase space quantization scheme
allows one to establish a rigorous perturbation theory with
respect to the so-called adiabatic perturbation parameter
due to its use of the Moyal or star product [74]. Note that
this is merely a different formulation of quantum theory but
leads to the very same results as the standard operator
formalism. We will provide further details on phase space
quantization, the star product, and its implementation into
the SAPT formalism in the next section.
With such a rigorous (almost) canonical formulation of

gauge-invariant cosmological perturbation theory, and a
specific choice of (in fact, the most conservative) quanti-
zation scheme for such a model, we are now ready to
implement the methods of SAPT into quantum cosmology.
Before we come to the actual realization of the SAPT
methods, let us quickly review its advantages and get to the
heart of our goals and achievements. Why is SAPT such an
ideal tool in order to gain insights into quantum gravity–
matter systems and its inherent interactions? The idea is
very simple.
In fact, SAPT and our extensions thereof provide an

unambiguous iterative scheme with respect to the inverse
Planck mass that provides us with a series of effective
quantum Hamilton operators, respectively constraints, for
full quantum cosmological perturbation theory but whose
structure is considerably simpler than the original problem.
While these effective Hamiltonians manifestly take the
interactions between the two subsystems into account (in
our case, between the homogeneous and the inhomo-
geneous sectors), the solutions of this operator should be
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much easier to determine, and most importantly approxi-
mate the solutions of the original problem up to an
iteratively small error. Thereby, it proceeds similarly to
the Born-Oppenheimer scheme as it provides us in a first
step with an effective Hamiltonian for the homogeneous
degrees of freedom that includes the corresponding back-
reaction of the cosmological quantum perturbations. Such
backreaction has, however, been neglected in many of the
studies pursued so far in quantum cosmological perturba-
tion theory.
In fact, we point to several seminal works within quantum

cosmological perturbation theory that aim at describing the
interactions in the very early universe. The idea of those
approaches is to capture the quantum fluctuations of the
homogeneous subsystem in effective background metric and
matter fields, and to pursue then the standard analysis of
(quantum) field theory on curved spacetimes for the cos-
mological perturbations. We thereby refer to the dressed
metric approach [77], the rainbow metric approach [78], the
deformed algebra approach [79], and the hybrid approach
[66] in LQC. While these approaches represent an important
step toward understanding the primordial universe, they do
not take the backreactions as defined above into account.
Besides, they rely on introducing certain (semiclassical)
ansatz states in order to reduce the homogeneous quantum
sector to an effectively classical theory (e.g., by computing
expectation values of the Hamilton constraint). Most impor-
tant, the perturbations then propagate as test fields on the
previously determined homogeneous background without
affecting the latter. Let us also point out that it is possible to
choose a background different from the solution of the
homogeneous cosmology, which then contains backreaction
in a certain sense.
To the best of our understanding, the aforementioned

methods, however, do not incorporate backreaction effects
from the perturbations onto the homogeneous degrees of
freedom in the sense of a Born-Oppenheimer approxima-
tion. Also, to the best of our understanding, the various
assumptions that went into these approximations are not
easy to control; see Refs. [64,80] for a detailed discussion
of these assumptions in the hybrid and the dressed metric
approach. In this series of papers, we would like to
convince the reader that SAPT provides powerful tools
for achieving just that. The basic idea is that the homo-
geneous modes can be associated with the slow degrees of
freedom while the inhomogeneous ones play the role of the
fast degrees of freedom. Roughly, this happens because the
homogeneous mode, being the integral (or sum) over the
inhomogeneous modes, corresponds to a center of mass
mode. It therefore comes with the large total mass of the
system rather than the small individual ones as will be
explained in Sec. III B of this paper.
As outlined before, this paper starts in Sec. II by providing

the reader with a detailed introduction into the underlying
mathematical structure of SAPT, the necessary tools for its

application, and a presentation of the scheme itself. We will
also explicitly perform the iterative construction and thereby
show that the computations are consistent order by order. In
the companion papers, we apply SAPT to a toy model
consisting of two oscillators and to a first cosmological
purely homogeneous model [81]. In [82], we consider an
inhomogeneous cosmological model in which the geometry
is purely homogeneous, supplemented by deparametrizing
dust and scalar field perturbations. Finally in [69], we are
ready to apply SAPT to the standard paradigm of gauge-
invariant quantum cosmological perturbation theory. The
series of papers hence shows that the methods of SAPT,
initially established for unconstrained quantum systems, can
be extended to constrained Hamiltonian systems, and most
importantly to problems in quantum cosmology. Our results
provide the possibility to unambiguously include the effects
of backreaction into quantum cosmology and, eventually, to
take all interactions between the different subsystems into
account. As the theory naturally includes a split between the
homogeneous and the inhomogeneous variables, it is ideally
suited to investigate the semiclassical limit of quantum
cosmology in a second step. Let us also point to a concise
summary of our findings complemented by short overviews
of the status of backreaction in classical and semiclassical
cosmology in [83].
On our way to a rigorous implementation of SAPT into

(inhomogeneous) quantum cosmology, we have encoun-
tered several challenges. These will be addressed in great
detail in Sec. III of this paper. In summary, these are as
follows:
(1) Cosmological perturbation theory is a field theory

and hence encounters an infinite number of degrees
of freedom while SAPT has a priori been developed
for quantum systems with a finite number of degrees
of freedom. Rather innocent looking assumptions
such as that the Hilbert space has the form of a tensor
product are no longer granted to make any sense for
the quantum field case. This was already remarked
in [59–61]. A solution can be provided by employ-
ing the almost canonical transformations introduced
in [64,67] or modifications thereof.

(2) Many of the theorems proven in [51,52] rely on the
assumption that the Hamiltonian satisfies certain
conditions regarding its boundedness and its form
with respect to the variables of the slow sector. The
Hamiltonians in cosmology do not meet these
conditions without further ado. We introduce a
specific cutoff technique inspired by [51] that
alleviates the problem, however, by introducing a
physically different model.

(3) After applying the transformations of variables in
order to obtain gauge-invariant variables at the
perturbative level as well as a canonical system
up to second order in the perturbations, we obtain
new effective mass terms for the perturbation fields.
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These mass squared terms can generically depend
on negative powers of the configuration degrees of
freedom and of their canonical momenta, and may
not be positive definite. Interestingly, one already
encounters such issues in standard perturbative
cosmology when using gauge-invariant inhomoge-
neities. This raises domain issues both in the
inhomogeneous as well as in the homogeneous
sectors. We will propose several strategies for how
to circumvent these problems. In this respect, we
emphasize once more that the occurrence of indefi-
nite mass squared functions is not due to the
SAPT scheme itself, but already appears in stan-
dard gauge-invariant perturbation theory [62], in
particular when one employs Mukhanov-Sasaki
variables.

(4) While in (unconstrained) quantum mechanics, the
adiabatic perturbation parameter gives directly a rise
to two very different timescales for the two sub-
systems, respectively, and such a conclusion cannot
be drawn in a constrained situation. There is no
a priori notion of time. In contrast to the familiar
former case, we cannot rely on (i) the equipartition
theorem [84], (ii) the ergodicity assumption, and
finally (iii) on the assumption that the Hamiltonian is
of second order in the momenta. If this were the
case, the time average would equal the phase space
average due to ergodicity in say the canonical
ensemble. Hence, the time averages of all the kinetic
terms in the Hamiltonian have the same magnitude
such that the light degrees of freedom are much
faster than the heavy ones in average. However, as
we will argue in Sec. III, the constraint itself dictates
a corresponding behavior in certain regions of
phase space.

With these introductory remarks, let us summarize the
subsequent architecture of this paper: In Sec. II, we present
the space adiabatic perturbation program in a self-contained
fashion for the case of a finite dimensional phase space.
This also serves to introduce a simple notation aiming at the
highest possible transparency. In Sec. III, we address the
conceptual and mathematical complications when applying
SAPT to quantum cosmological perturbation theory. We
comment on the possible solutions, thus preparing the
ground for the remaining papers of this series. In Sec. IV,
we summarize and give an outlook to the applications
discussed in the other papers of this series.

II. BASICS OF SPACE ADIABATIC
PERTURBATION THEORY

In Sec. II A, we introduce our notation and motivate the
use of operator-valued symbol functions for the SAPT
scheme. We closely follow the original work by Panati,
Spohn, and Teufel [51] and the more detailed book by
Teufel [52]. In Sec. II B, we reproduce the conditions for its

application. In Sec. II C, we derive the essential inductive
formulas underlying the adiabatic expansion.

A. Notation and symbol functions

In a nutshell, SAPT provides perturbative equations of
motion for coupled quantum systems in order to compute
the approximate energy spectra and the eigensolutions of
these systems. The physical basis of the scheme is inspired
by the conventional Born-Oppenheimer approximation,
and likewise, the scheme splits the system into a “fast”
and a “slow” subsystem. In this work, we denote the set of
phase space variables associated with the fast subsystem by
ðx; yÞ while the slow phase space variables are labeled by
ðq; PÞ. It will be sufficient to consider a simple four-
dimensional phase space, Γ ¼ Γs × Γf ¼ R4 where Γs and
Γf denote the slow and the fast subspaces, respectively. The
generalization to higher dimensional phase spaces proves to
be straightforward. We briefly mention that to a certain
extent, it is also possible to generalize the scheme to finite
dimensional phase spaces which are not vector spaces
[59–61]. For the presented model, the phase space structure
is simply provided by the only nonvanishing Poisson
brackets fq; Pg ¼ fx; yg ¼ 1.
As a first step, the perturbative scheme requires us to

define a dimensionless, perturbative parameter which we
refer to as the “adiabatic” parameter ε. In the standard Born-
Oppenheimer theory for molecules, this parameter is given
by the mass ratio of the light electron massme, and the heavy
nuclei mass Mn, namely by ε2 ≔ me

Mn
. This parameter can,

however, be defined as any dimensionless composition of
coupling constants or mass values of the respective sub-
systems. The classical Hamilton function providing the
dynamics of the theory will be denoted by Hðq; x; P; yÞ
and is supposed to be a smooth function of the phase space
variables.
We then proceed by formulating a quantum theory of the

system, labeling the operators associated with the slow
subsystem by hats, i.e., by ðq̂; P̂Þ while bold letters stand
for the operators of the fast subsystem ðx; yÞ. The slow
quantum subsystem supports a Schrödinger representa-
tion on the Hilbert space Hs ≔ L2ðR; dqÞ. Similarly, we
describe the fast quantum system with a Schrödinger
representation on the Hilbert space Hf ≔ L2ðR; dxÞ. For
both subsystems, position and momentum operators shall
act on the space of Schwartz functions in the well-known
way and satisfy the formal commutation relations ½x; y� ¼
i1f , ½q̂; P̂� ¼ i1̂s where we set ℏ≡ 1. The tensor product of
the Hilbert spaces H ≔ Hs ⊗ Hf models the total Hilbert
space where “⊗” denotes the tensor product of Hilbert
spaces. The simplest form of a bounded operator on this
Hilbert space is given as Â ⊗ B, for Â ∈ BðHsÞ and
B ∈ BðHfÞ. The Weyl elements of the canonical position
and momentum operators become lifted to operators on the
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full Hilbert space by tensor multiplying with the respective
other unity operator.
In order to make SAPT work at the technical level, the

scheme resorts to a phase space or deformation quantization
procedure with respect to the slow subsystem [76,85–87].
We emphasize that this representation is physically equiva-
lent to the well-known Hilbert space representation of qua-
ntum mechanics. It assigns a phase space function, denoted
as a “symbol” function, to a classical observable instead of
associating with an operator on some dense domain of the
Hilbert space. Indeed, the whole calculus for the quantum
theory remains on the classical phase space, for which one
replaces the usual operator product by a noncommuting
Moyal or star product [73,74] on the space of phase space
functions. This replaces then the commutative point-
wise multiplication of classical phase space functions. As
in standard quantum theory, it is necessary to choose an
ordering prescription for the quantum operators, and we
will stick here to the symmetric Weyl ordering procedure
[75,88].
To make this more precise, let us quickly recapitulate the

relation between phase space and Hilbert space quantiza-
tions using the Weyl elements of the slow quantum theory
and Fourier transforms. Before we move on to this, we wish
to clarify that in the present case, we are dealing with a
coupled system and that we retain the Hilbert space
representation for the fast system as introduced above.
As a consequence, the theory deals with phase space
functions on Γs with values in the bounded operators on
Hf , for example Bðq; PÞ ∈ C∞ðΓs;BðHfÞÞ. Intuitively, a
symbol ðq; PÞ ↦ Aðq; PÞ can be considered as arising
from a function Aðq; P; x; yÞ on the total phase space by
just quantizing the fast sector and choosing an operator
ordering to obtain Aðq; PÞ ≔ Aðq; P; x; yÞ.
If we now want to clarify the relation between these

semiclassical symbol functions that are subject to a phase
space quantum formalism with respect to the slow sub-
system and a pure operator representation of the theory, we
consider a complete Hilbert space representation of a
quantum operator associated with a classical phase space
function f ∈ C∞ðΓÞ. It can be obtained by additionally
Weyl quantizing the corresponding symbol function
f ðq; pÞ with respect to the slow system; i.e., we write
Ŵðf ðq; PÞÞ≕ f̂ . These are then operators on the total
product Hilbert space. Now, it is essential to note that
there is a peculiarity regarding the Weyl quantization for
SAPT. As we know, the momentum operator translates into
a derivation with an additional factor of ℏ (which we set
directly to unity) in the conventional Schrödinger repre-
sentation. However, the structure of the system, in particu-
lar the concrete form of the Hamilton operator, suggests to
define a rescaled momentum operator, namely p ≔ εP.
Thereby, the canonical commutation relation picks up an
additional factor of ε such that ½q̂; p̂� ¼ iε1̂s. Also the Weyl
elements and in particular the star product are affected by

this, as we will see in the following [52]. For this, let us
define theWeyl elements of the slow quantum theory which
are the representations of the Weyl group in Schrödinger
representation labeled by two reals ðk; lÞ ∈ R2 and given
with the correct ε rescaling here by [75],

Ŵðk; lÞ ≔ exp

�
i
kq̂þ lp̂

ε

�
; ð1Þ

where ðk; lÞ have the dual dimension of ðq; pÞ so that
the respective products are dimensionless. Using these
Weyl elements, it is possible to write the totally symme-
tric quantization of the symbol function Aðq; pÞ ∈
C∞ðR2;BðHfÞÞ in the form [52]

ŴðAÞ ¼ Â ¼ 1

ð2πεÞ2
Z
R4

dkdldqdpAðq; pÞ

× exp

�
i
kðq̂ − qÞ þ lðp̂ − pÞ

ε

�
: ð2Þ

The relation to the standard Hilbert space representation of
quantum operators arises by using the Baker-Campbell-
Hausdorff formula and by employing that the trans-
lation of a wave function can be written as ψðq − lÞ ¼
expð−i lp̂ε ÞψðqÞ. Indeed, it holds true that [52]

ðÂψÞðqÞ ¼ 1

ð2πεÞ
Z
R2

dkdq̃A

�
1

2
ðqþ q̃Þ; k

�

× exp

�
i
kðq − q̃Þ

ε

�
ψðq̃Þ; ð3Þ

for a Schwartz functionψ ∈ SðRÞ. Obviously, this equation
provides a direct link between quantum observables con-
sidered as operators on the total Hilbert space of the theory
(the left-hand side) and the symbol function subject to the
slow phase space quantization scheme (on the right-hand
side). Since this association is unique, the quantization
schemes are indeed equivalent.
As it can be shown [89], the representation of operators

as phase space symbols gives rise to an operator product
analog on phase space. As indicated above, this pullback of
the operator product to phase space is denoted as a star or
Moyal product, and we will label it by “⋆ε.” The product is
a bilinear operator and has the form of an asymptotic
expansion in the adiabatic parameter ε [52]. As should be
clear from definition (3), the identification of phase space
symbols and operators, and hence the star product, only
applies to a certain class of symbol functions [89]. In
particular, one has to guarantee the convergence of the
above integral.
Besides, the (star) multiplication, transposition, and

adjoints of the symbol functions should evaluate to well-
defined and closed operations. Indeed, the theory of
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pseudodifferential calculus [90–92] (and references therein)
addresses the definition of such classes of symbol functions
[89]. The most commonly used symbol classes go back to
Hörmander [91,92]. These originally scalar-valued function
classes extend directly to the operator-valued case [52].
Here, we use the class Smρ ðΓs;BðHfÞÞ≕ Smρ withm ∈ R and
0 ≤ ρ ≤ 1. Then, a phase space symbol function Aðq; PÞ
belongs to Smρ if for every α; β ∈ N, there exists a positive
constant Cα;β such that for every P ∈ R [52],

sup
q∈R

kð∂α
q∂β

pAÞðq; PÞkBðHf Þ ≤ Cα;βhPim−ρjβj; ð4Þ

where hPi ≔ ð1þ P2Þ12. Besides, we assume that the
symbols have a common, invariant, and dense domain
for all ðq; PÞ ∈ Γs and are smooth in ðq; PÞ.
This being said, we can give a precise definition for the

symmetric Moyal product applied to the symbol functions
B ∈ Sm1

ρ and C ∈ Sm2
ρ by [52]

ðB⋆εCÞðq; pÞ ¼
X∞
k¼0

ðiε
2
Þk
k!

ð∂q∂ξ − ∂ρ∂pÞkBðq; pÞ · Cðρ; ξÞ
���
ρ¼q;ξ¼p

≕Dðq; pÞ: ð5Þ

Then, the symbol functionD is in Sm1þm2
ρ , and it corresponds

to a well-defined operator D̂ in Hilbert space representation.
Note that the star product is associative but not commutative.
Besides, the corresponding commutator

½B;C�⋆ε
¼ B⋆εC − C⋆εB ¼ ½B;C� þO0ðεÞ ð6Þ

is just the usual commutator of the symbol functions plus
corrections in ε, and the former is of zeroth order in ε if the
symbols are so. We emphasize that this commutator is not
vanishing in general, in contrast to the classical (standard)
case of scalar deformation quantization.
Eventually, Weyl quantization thus serves several pur-

poses at the same time: First, it allows us to write any
operator on the full Hilbert spaceHs ⊗ Hf in the form of a
slow phase space integral over operators of the form
Asðq; pÞBfðq; pÞ ∈ Smρ ðΓs;BðHfÞÞ where m is in the reals
and 0 ≤ ρ ≤ 1. This allows one to simplify the full spectral
problem as soon as the spectral problem of the operator
Bfðq; pÞ is known in closed form. Second, the Moyal
product admits a systematic power expansion in terms of
the adiabatic parameter ε, and consequently enables us to
set up a perturbative diagonalization scheme.
In this respect, let us stress once more that the adiabatic

perturbative expansion of SAPT has nothing to do with the
so-called adiabatic vacua of a given order encountered in
QFT on CST [56,57]. The latter defines (approximate)
Hadamard two-point functions in the sense of QFT on
cosmological spacetimes with a fixed time dependence.

B. System requirements

In what follows, we describe the system requirements
proposed in [51] in order to ensure convergence of the
adiabatic perturbation series with respect to an appropriate
topology. One of the requirements, in particular the
boundedness of the operators relevant for the fast sector,
is not met in the physical situation that we envisage. Yet we
discuss these system requirements here for the following
reasons: First, for completeness, and second, because by

using an energy cutoff, one can easily meet the system
requirements which, thus, together with the adiabatic
theorem serves to motivate the SAPT program. In the
actual unbounded case, we can still use the SAPT scheme
to provide a formal power expansion. However, the con-
vergence of the adiabatic series (say in the weak operator
topology) then must be analyzed in an additional step. As
we consider only first and second order adiabatic correc-
tions in this series of papers, we will not be concerned with
convergence issues and rather leave them for future inves-
tigations. With these cautionary remarks out of the way, we
reproduce the conditions accounted for in [51], which split
into four categories:
(C1) The state space of the system can be decomposed as

H ¼ L2ðRÞ ⊗ Hf ¼ L2ðR;HfÞ; ð7Þ

where one identifies the slow Hilbert space Hs with
L2ðRÞ and Hf must be separable; i.e., it contains a
dense countable subset.

(C2) The Hamilton operator Ĥ of the system is the Weyl
quantization of a symbol function Hðq; pÞ ∈
Smρ ðΓs;BðHfÞÞ where the Weyl quantization refers
to the slow subsystem. The function Hðq; pÞ has
values in the space of bounded self-adjoint operators
on Hf and constitutes an asymptotic expansion in ε,

Hðq; pÞ ≍
X∞
i¼0

εiHiðq; pÞ: ð8Þ

(C3)γ Gap condition. For any fixed ðq; pÞ ∈ R2, the
spectrum σðq; pÞ of the zeroth order symbol
H0ðq; pÞ of the total Hamiltonian Hðq; pÞ contains
at least one isolated subset σνðq; pÞ labeled by
one fixed quantum number ν ∈ N, which is uni-
formly separated from the remainder σremðq; pÞ ≔
σðq; pÞnσνðq; pÞ. In particular, the minimal distance
between the elements of σν and the remainder is
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nonzero for every single ðq; pÞ ∈ R2. More precisely,
we can define two continuous “enclosing” functions
f�∶R2 → R with f− ≤ fþ such that
(G1) For every z ∈ R2, the spectral component

σνðq; pÞ is entirely contained in the interval
Iðq; pÞ ≔ ½f−ðq; pÞ; fþðq; pÞ�.

(G2) The distance between the remainder σremðq; pÞ
and the interval Iðq; pÞ is uniformly bounded
away from zero, i.e., dist½σremðq; pÞ; Iðq; pÞ� ≥
Cghpiγ.

(G3) The width of Iðq; pÞ is uniformly bounded:
supðq;pÞ∈R2 jfþðq; pÞ − f−ðq; pÞj ≤ Cw < ∞.

(C4) Convergence condition. If the system satisfies the
gap condition ðC3Þγ for some γ ∈ R, the Hamilton
symbol H must be in Sγρ. If ρ ¼ 0, also γ must
vanish. If ρ > 0, γ can be any real number but Ĥ
must be essentially self-adjoint on SðR;HfÞ.

For the systems considered here, condition (C1) is trivially
satisfied by definition. Regarding condition (C2), we note
that the requirement of boundedness is violated for many
interesting systems. However, it is often possible to adapt
the Hamiltonian by cutoff strategies [51,81]. Condition
(C3) requires the principal symbol H0ðq; pÞ to be diago-
nalizable on the Hilbert space Hf and to have ðq; pÞ-
pointwise discrete eigenvalues.
This assumption is indeed essential for the scheme

as it yields an orthonormal basis of eigensolutions in
Hf for the Hamiltonians H0ðq; pÞ for every point
ðq; pÞ ∈ Γs. We henceforth denote this eigenbasis by
fξn;aðq; pÞgn∈N;a¼1;…;dn , where a is a degeneracy label
and dn the associated degree of degeneracy. We assume
that dn is a constant with respect to ðq; pÞ. The eigenvalue
equation for H0 is accordingly given by

H0ðq; pÞξn;aðx; q; pÞ ¼ Enðq; pÞξn;aðx; q; pÞ; ð9Þ

where fEnðq; pÞgn∈N constitutes the spectrum ofH0ðq; pÞ
for any of the points ðq; pÞ ∈ R2. We emphasize that
in Schrödinger representation, the functions ξn;a are
vectors in L2ðR; dxÞ and have hence a representation as
x-dependent functions. The ðq; pÞ-dependence here should
be seen as a mere parametric dependence. For every fixed
ðq; pÞ ∈ R2, there is an independent eigenvalue problem,
and we assume that the correspondent eigenvalues
fEnðq; pÞgn∈N constitute a pure point spectrum.
In order to approach a solution of the full quantum

mechanical problem, it is crucial to know how these fast
eigenvalue problems are related for slow dynamical
variables, i.e., for variable q, p because up to now these
were considered as being fixed. The space adiabatic
scheme will give a perturbative answer to this question,
namely, its first step consists in constructing an operator
πε ∈ BðHfÞ on Hf which takes the dynamics of the
ðq; pÞ variables into account. In particular, this “Moyal

projection” symbol gives rise to a projection operator
Π̂ ∈ BðHÞ on the total Hilbert space H which is almost
invariant under the dynamics of the total Hamiltonian.
Indeed, the existence of such a projection operator is
guaranteed by the space adiabatic theorem [51] which
builds the basis for the SAPT scheme. It states that if
conditions (C1)–(C4) are fulfilled, there exists an
orthogonal projection operator Π̂ ∈ BðHÞ on the total
Hilbert space such that

½Ĥ; Π̂� ¼ O0ðε∞Þ: ð10Þ

Thereby, the estimateO0ðε∞Þmeans that for allm ∈ N, there
exists a constant Cm ≥ 0 such that k½Ĥ; Π̂�kBðHfÞ ≤ Cmε

m.
Furthermore, and very importantly for the scheme, the
theorem assures that there exists a symbol function πε ∈
S0ρðεÞ whose Weyl quantization gives rise to the construction
of the above projection operator such that Π̂ ¼ ŴðπεÞþ
O0ðε∞Þ. Thereby, S0ρðεÞ refers to the class of the so-called
semiclassical symbols which asymptotically approach a
certain series expansion, in particular πε ≍

P
i ε

iπi with πi ∈
S−iρρ in the given case. The relation between Π̂ and π̂ε can be
established by means of resolvent methods [52,55], and it
assures one that these operators are indeed very close
in norm.
The first goal of SAPT is consequently to establish an

approximation to the projection operator Π̂ by construct-
ing the underlying symbol function. In particular, the first
stage provides the means to inductively compute a
sequence of symbol functions fπiðq; pÞgi∈N such that πi ∈
S−iρρ ðBðHfÞÞ for any i ∈ N. This sequence eventually
determines a well-defined adiabatic perturbation series
π ≔

P
i≥0 ε

iπi ∈ S0ρðBðHfÞÞ. Then, the semiclassical sym-
bol πε can be constructed as the [up to O0ðε∞Þ] unique
resummation of π. Then, we can relate the Weyl quan-
tization of the symbol function πε to the projection
operator Π̂. In order to determine the sequence fπigi∈N
of operator-valued symbol functions, SAPT starts by
considering the projections associated with the ðq; pÞ-
dependent eigenvalue problem of H0ðq; pÞ given above.
Any of the eigenfunctions ξn;aðq; pÞ ∈ Hf gives rise to an
orthogonal projection operator,

π0;nðq; pÞ ≔
Xdn
a¼1

ξn;aðq; pÞhξn;aðq; pÞ; ·iHf
: ð11Þ

The π0;nðq; pÞ are bounded operators on the fast Hilbert
space Hf for every point ðq; pÞ ∈ R2. SAPT then neces-
sitates to choose one of the fast subspaces whose quantum
number will be denoted by ν ∈ N. The corresponding
projection operator carries the symbol π0 ≔ π0;νðq; pÞ.
This selection is arbitrary and one could also choose a set
of several quantum numbers whose spectrum is distinct
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from the remaining spectrum. Indeed, the crucial ingredient
is that we can separate a part of the spectrum according to the
gap condition (C3). Nevertheless, the restriction to one
single isolated eigenvalue simplifies the computations
significantly while it does not narrow the results. As the
results are valid for any ν, the totality of the backreactions
results from performing the computations for all the ν’s
separately.
We first notice that the symbol π0 does not lead to a true

projection operator after Weyl quantization, i.e., π̂2
0 ≠ π̂0.

To approach a true projection operator, we correct π0 order
by order in ε. To make computations accessible, we switch
to the phase space quantization scheme by using the Moyal
product. This is indeed reasonable, as the above inequality
can be estimated with respect to the Moyal product by
π0⋆επ0 − π0 ∼ ε. SAPT guarantees the existence of a
unique series expansion π ¼ P

i≥0 ε
iπi such that the zeroth

order contribution can be identified with π0 and such that
the following natural properties hold [52]:

ðS1 − 1Þ π⋆επ ¼ π; ðS1 − 2Þ π� ¼ π;

ðS1 − 3Þ H⋆επ − π⋆εH ¼ 0:

As we will explicitly work out in the next subsection, these
equations together with the power series expansion of the
star product in ε give rise to an inductive sequence of
equations to determine the πi for i ≥ 1. The next subsection
will deal with solving these algebraic equations up to some
order I ∈ N in ε. For the time being, we assume that we are
able to establish

P
i≥0 ε

iπi. The Weyl quantization of its
resummation π̂ε is then a bounded operator onH due to the
theorem by Calderon-Vaillancourt [52]. The latter proves to
be an almost projector and to be almost commuting with Ĥ,
i.e., [52]

ðS1 − 1Þ0 π̂2
ε ¼ π̂ε þO−∞ðε∞Þ;

ðS1 − 2Þ0 π̂�
ε ¼ π̂ε;

ðS1 − 3Þ0 Ĥπ̂ε − π̂εĤ ¼ O−∞ðε∞Þ;

where the O−∞ðε∞Þ means that the equations hold up to
corrections that are asymptotically close to zero in the
respective symbol class Smρ ðεÞ. Note that the last estimate
only holds for an unbounded Ĥ with H ∈ Smρ , m > 0 if ρ is
strictly bigger than zero. Otherwise, the corresponding
commutator will not be small in the norm of bounded
operators. For a convergent series π, of course, the resum-
mation πε simply equals the series itself, and (S1)’ holds
without the additional error terms in (S1–1)’ and (S1–3)’. In
the divergent case, the true projection operator Π̂ emerges
from π̂ε using the resolvent methods already mentioned [52].
Equipped with the Moyal projector, the scheme aims at

restricting the Hamilton operator to the corresponding
subspace and thus to investigate the simplified dynamics

on this subspace Π̂H. Unfortunately, this will not be
possible without further ado. On the one hand, Π̂H might
not even be close to an ε-independent subspace. Besides,
for the applications that we have in mind, we push the
perturbation theory to the second order but not further.
Hence, we compute

πðIÞ ≔
XI

i¼0

εiπi; ð12Þ

for some finite I ∈ N. The Weyl quantization of πðIÞ is by
construction not an exact projector on the total Hilbert
space H. In particular, the restricted operator Ĥjπ̂ðIÞ ≔
π̂ðIÞĤπ̂ðIÞ does not preserve the subspace π̂ðIÞH. Hence,
it would remain unclear how to perform a spectral analysis
for this operator on π̂ðIÞH. Even worse, the operator Ĥjπ̂ðIÞ
maps its domain within π̂ðIÞH outside of π̂ðIÞH.
As a solution to this dilemma, the space adiabatic

scheme suggests to resort to a suitable “reference” space
by means of a unitary symbol u. The theory will construct
the symbol as a perturbation series similar to the procedure
for the Moyal projector.
To begin with, it considers a symbol u0ðq; pÞ which maps

the subspace π0ðq; pÞHf to a subspace of Hf that does not
depend on ðq; pÞ. A simple proposal for this would be the
following: Fix a specific pair of slow phase space variables
ðq0; p0Þ ∈ R2 [52]. The choice can be physically motivated
and depends on the problem under consideration. Then,
consider the eigenbasis fξn;aðq; pÞgn∈N of the ðq; pÞ-
dependent eigenvalue problem associated with the zeroth
order Hamilton symbol H0ðq; pÞ, and denote the basis at
the point ðq0; p0Þ by fζn;agn∈N ≔ fξn;aðq0; p0Þgn∈N.
Eventually, this gives rise to the unitary symbol,

u0ðq; pÞ ¼
X∞
n¼0

Xdn
a¼1

ζn;ahξn;aðq; pÞ; ·iHf
: ð13Þ

Of course, the fζn;agn∈N could be any orthonormal basis of
Hf . The important point is that the reference vectors ζn;a do
not depend on ðq; pÞ. With their help, the scheme defines
the reference projection associated with the quantum
number ν as above [52],

πp ≔
Xdν
a¼1

ζν;ahζν;a; ·iHf
: ð14Þ

The technical relevance of this reference structure is that
πp in contrast to π0 does not receive adiabatic corrections
throughout the application of the space adiabatic pertur-
bation scheme, and thus always defines an exact projector
on the total Hilbert space,
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π̂p ¼ ŴðπpÞ ¼ πp ⊗ 1̂s; ð15Þ

which will be crucial for the adiabatic expansion and its
spectral analysis. Note also that u0 is in fact independent of
the choice of the fast quantum number ν while its higher
order adiabatic corrections will depend on ν. Analogous to
the perturbative construction of π as a power series in ε, we
build u according to

uðq; pÞ ¼
X∞
n¼0

εiuiðq; pÞ: ð16Þ

The scheme identifies the zeroth order of this expansion
with the symbol in (13), and it follows directly from (11)
with the choice n≡ ν and with Eqs. (13) and (14) that u0
indeed intertwines the symbols π0 and πp according to
u0π0u�0 ¼ πp. To extend this equation to theMoyal projector
π and to make the symbol u a Moyal unitary, the scheme
requires the following properties [52]:

ðS2 − 1Þ u�⋆εu ¼ 1f ; ðS2 − 2Þ u⋆εu� ¼ 1f ;

ðS2 − 3Þ u⋆επ⋆εu� ¼ πp:

Indeed, SAPT assures, given the conditions (C1)–(C4) and
the symbols π0, u0 as initial values, that there exists a formal
series expansion u as in Eq. (16) which satisfies the
properties (S2). Furthermore, one can deduce that the
coefficients of the series are ui ∈ S−iρρ ðBðHfÞÞ for any
i ∈ N. Equations (S2) give rise to a series of algebraic
equations that determine ui order by order in ε by using the
series expansion of the star product.
Let us assume that it is possible to establish the whole

series
P

i≥0 ε
iui with this method. Then, there exists a

[n up to O0ðε∞Þ] unique resummation uε of u whose
Weyl quantization ûε is a bounded operator on H which
satisfies [52]

ðS2 − 1Þ0 û†ε ûε ¼ 1̂þO−∞ðε∞Þ;
ðS2 − 2Þ0 ûεû

†
ε ¼ 1̂þO−∞ðε∞Þ;

ðS2 − 3Þ0 ûεπ̂εû
†
ε ¼ π̂p þO−∞ðε∞Þ:

Obviously, the resummation operator ûε is only almost
unitary and intertwines π̂ε and π̂p only up to some
ε-dependent error. One can proceed to modify ûε by an
O0ðε∞Þ term which makes it a true unitary operator Û.
This operator is then also a true intertwining operator in
the sense that Û Π̂ Û† ¼ π̂p holds [52]. As for the Moyal
projector, we will be concerned with determining the
Moyal unitary up to some finite order I ∈ N, i.e.,

uðIÞðq; pÞ ¼
XI

i¼0

εiuiðq; pÞ: ð17Þ

Finally, with these ingredients, it is possible to set up
the “effective” Hamilton operator, which captures the
backreactions from the νth quantum state of the fast
subsystem onto the slow subsystem. Again, its explicit
construction works using the symbolic calculus as we will
show in the following subsection. Therefore, we assume
the effective Hamiltonian to have the form of a perturba-
tive power series in ε,

heffðq; pÞ ¼
X∞
i¼0

εiheff;iðq; pÞ: ð18Þ

This series expansion is then defined as the unitary
mapping of H on the reference space by means of u,
namely by [52]

ðS3Þ heff ≔ u⋆εH⋆εu�:

Finally, we denote the Weyl quantization of its resumma-
tion ĥeff;ε as the effective Hamiltonian on the reference
space. Besides, heff;ε is a semiclassical symbol in Smρ ðεÞ
which is guaranteed by using the product rule for semi-
classical symbols with u ∈ S0ρðεÞ and H ∈ Smρ ðεÞ. We also

note that ĥeff;ε is in fact essentially self-adjoint on the
Schwartz space SðR;HfÞ [52]. Furthermore, the dynamics
generated by ĥeff;ε almost corresponds to the dynamics of
the original Hamilton operator Ĥ in the sense that

e−iĤs − û†εe−iĥeff;εsûε ¼ O0ðε∞jsjÞ: ð19Þ

This theorem ensures that it is reasonable to consider the
significantly simpler effective Hamiltonian to extract the
dynamics and the solutions of the theory. In our appli-
cations of SAPT in the subsequent papers of this series, we
will primarily consider effective Hamiltonian restricted to
the reference space, which means that we will work with
the symbol function πpheffπp. This is reasonable since the

construction scheme for û guarantees that ĥeff preserves
the subspace π̂pH. In the applications where we push the
perturbation theory up to some order I, this statement can
be translated into the assertion that the reduced operator
ĥeff;ðIÞ ≔ ûðIÞĤû†ðIÞ preserves the subspace π̂pH up to

corrections of order εIþ1. It thus coincides there up to
corrections of order εIþ1 with the operator ĥeff;ðIÞ;p ≔
π̂pûðIÞĤû†ðIÞπ̂p on the Hilbert subspace π̂pH ≅ Hs ⊗ Cdn .

On the other hand, we emphasize that the seemingly more
natural operator π̂ðIÞĤπ̂ðIÞ does not preserve the subspace
π̂ðIÞH because π̂ðIÞ is not an exact projector.
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As a result, ĥeff;ðIÞ;p provides the perturbative adiabatic
decoupling that we wanted to achieve and will conse-
quently be the object of interest in the sequel. The spectrum
of ĥeff;ðIÞ;p, denoted by Eeff;ðIÞ, is referred to as the νth
energy band (recall that we restricted the backreactions to
the fast quantum number ν right from the beginning). If
ΨðIÞ;ν;λ is a generalized eigenvector of ĥeff;ðIÞ;p with eigen-
value λ then up to corrections of order εIþ1, the vector
Ψ̃ðIÞ;ν;λ ¼ û†ðIÞΨðIÞ;ν;λ is a generalized eigenvector of the

original Hamiltonian Ĥ with the same eigenvalue λ. This
can be easily reproduced with the following computation in
which we dropped any term of order OðεIþ1Þ:

ĤΨ̃ðIÞ;ν;λ¼ Ĥû†ðIÞπ̂pûðIÞû
†
ðIÞΨðIÞ;ν;λ¼ Ĥπ̂ðIÞû

†
ðIÞΨðIÞ;ν;λ

¼ π̂ðIÞĤû†ðIÞΨðIÞ;ν;λ¼ û†ðIÞðπ̂pûðIÞĤû†ðIÞπ̂ðIÞÞΨðIÞ;ν;λ

¼ û†ðIÞĥeff;ðIÞ;pΨðIÞ;ν;λ¼ λΨ̃ðIÞ;ν;λ: ð20Þ

The approximate eigenvector Ψ̃ðIÞ;ν;λ is an element of the
approximately invariant subspace π̂ðIÞH up to corrections
of order OðεIþ1Þ because it holds that by dropping again
the corresponding corrections

Ψ̃ðIÞ;ν;λ ¼ û†ðIÞπ̂pûðIÞû
†
ðIÞΨðIÞ;ν;λ ¼ π̂ðIÞΨ̃ðIÞ;ν;λ: ð21Þ

In this way, the ûðIÞ are displayed as an auxiliary structure
introduced in order to solve the spectral problem including
backreactions. But they have no further fundamental
relevance as is also clear from the fact that they are not
uniquely determined by the perturbative scheme.
Besides, we note that the ûðIÞ is not to be confused with

the unitary map V̂ that mapsH to L2ðσðĤÞ; dμÞ, granted to
exist by the spectral theorem, where σðĤÞ is the spectrum
of Ĥ and μ its spectral measure. This is already clear from
the fact that ûðIÞ generically depends on ν while V̂ does not.

The fact that the π̂ðIÞ approximately commute with Ĥ and
are approximate projections displays them as approximants
of spectral projections of Ĥ on the part Eeff;ðIÞ of the
spectrum. The spectral projections are of course not
necessarily mutually orthogonal even if the gap condition
holds unless the energy bands are mutually disjoint. For
instance, Hðq; pÞ could have a pure point spectrum but Ĥ
could have an absolutely continuous spectrum. With these
ideas in mind about the general concept of SAPT, we move
on to the explicit construction scheme.

C. Perturbative construction

The objective of the space adiabatic construction is to
iteratively compute the Moyal projector πðq; pÞ, the Moyal
unitary uðq; pÞ, and finally the effective Hamilton symbol
heffðq; pÞ as alluded to in the previous subsection. The

construction is based on the assumption that these three
symbols appear as power series with respect to the adiabatic
perturbation parameter ε, and we are going to concentrate
on the determination of the power series coefficients up
to some finite order I ∈ N. That is, we establish the sym-
bols πðIÞ ¼

P
i≤I ε

iπi, uðIÞ ¼
P

i≤I ε
iui, and heff;p;ðIÞ ¼P

i≤I ε
iheff;i. Based on the construction rules (S1), (S2),

and (S3), we can spell out the algebraic equations for
determining any of the coefficients up to order I ∈ N, in
particular for the Moyal projector π,

ðS1 − 1Þ” πðIÞ⋆επðIÞ − πðIÞ ¼ O0ðεIþ1Þ;
ðS1 − 2Þ” π�

ðIÞ − πðIÞ ¼ O0ðεIþ1Þ;
ðS1 − 3Þ” H⋆επðIÞ − πðIÞ⋆εH ¼ O0ðεIþ1Þ;

for the Moyal unitary u,

ðS2 − 1Þ” u�ðIÞ⋆εuðIÞ − 1f ¼ O0ðεIþ1Þ;
ðS2 − 2Þ” uðIÞ⋆εu�ðIÞ − 1f ¼ O0ðεIþ1Þ;
ðS2 − 3Þ” uðIÞ⋆επðIÞ⋆εu�ðIÞ − πp ¼ O0ðεIþ1Þ;

and for the effective Hamiltonian heff ,

ðS3Þ” heff;ðIÞ − uðIÞ⋆εH⋆εu�ðIÞ ¼ O0ðεIþ1Þ:

Regarding theO0ðεIþ1Þ estimate, we note that SAPTassures
that the symbol coefficients πI , uI , and heff;I can be built in
such a way that the coefficients of order εI and smaller
vanish on the right-hand sides of these equations. Besides,
the product rule for semiclassical symbols assures that by
plugging in the correspondent series expansions up to order I
on the left-hand side, the right-hand sides will be symbols in
the class S0ρðBðHfÞÞ at most and so evaluate to bounded
operators on the total Hilbert space. In Eq. (S3), this
necessarily requires H to be in Smρ with ρ strictly bigger
than zero. In the following subsections, we provide the
inductive construction rules for πðIÞ, uðIÞ, and heff;ðIÞ, based
on the original scheme in [51,52], and therefore recall that
the Moyal product for two symbols B ∈ Sm1

ρ and C ∈ Sm2
ρ is

given at leading order by

ðB⋆εCÞðq; pÞ ¼ Bðq; pÞCðq; pÞ þO0ðεÞ: ð22Þ

1. Construction of the Moyal projector

Based on the construction rules (S1)”, the Moyal
projection symbol is to be determined iteratively up to
order I. Therefore, the symbol function π0ðq; pÞ serves as
the starting point for the induction scheme. The expansion
of the Moyal product in (S1)” simply gives the standard
operator product on BðHfÞ at zeroth order such that its
restriction to zeroth order yields
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ðS1 − 1Þ π2
0 − π0 ¼ 0; ðS1 − 2Þ π�

0 − π0 ¼ 0;

ðS1 − 3Þ ½H0; π0� ¼ 0: ð23Þ

These equations are fulfilled by construction of π0 such
that the basis case is granted. Let us then assume that it is
possible to construct πðI−1Þ and turn to the solution of the
coefficient πI . The construction rule (S1–1)” provides
the diagonal parts of πI . The induction scheme suggests to
split πðIÞ into its highest order contribution εIπI, and
the remainder πðI−1Þ. The induction scheme allows one
to assume that we already found πðI−1Þ such that
πðI−1Þ⋆επðI−1Þ − πðI−1Þ ¼ O0ðεIÞ is satisfied. We then
denote the terms of (S1–1)” at order εI which only include
the already known symbols πðI−1Þ by aI−1. We then have
πðI−1Þ⋆επðI−1Þ − πðI−1Þ ≕ εIaI−1 þO0ðεIþ1Þ. Importantly,
aI−1 is already explicitly determined because of the
induction assumption. For the induction step, we then
consider the rule (S1–1)” including the symbol πI. By
carrying all the terms with ε’s of order I þ 1 and higher to
O0ðεIþ1Þ, (S1–1)” takes the form

O0ðεIþ1Þ¼πðI−1Þ⋆επðI−1Þ−πðI−1Þ þεIπIπ0þεIπ0πI−εIπI

¼ εIðaI−1þπIπ0þπ0πI−πIÞ: ð24Þ

To extract πI , we first define the orthogonal complement of
π0 in Hf as π⊥

0 ≔ 1f − π0. Then, by projecting (24) to the
block diagonal pieces, this yields indeed the determining
equations for the diagonal parts of πI,

πD;0
I ≔ π0πIπ0 ¼ −π0aI−1π0;

πD;⊥
I ≔ π⊥

0 πIπ⊥
0 ¼ π⊥

0 aI−1π
⊥
0 : ð25Þ

For the projection on the off-diagonal parts of πI , the
following consistency conditions arise:

π0aI−1π⊥
0 ¼ 0 ¼ π⊥

0 aI−1π0: ð26Þ

This identity follows from the defining equation (S1–1)” by
projecting to the off-diagonal pieces and pushing all terms of
order εIþ1 and higher into the error term. Furthermore, the
associativity of the star product is exploited to obtain

εIπ0aI−1π⊥
0 ¼ π0ðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞπ⊥

0 þO0ðεIþ1Þ
¼ πðI−1ÞðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞπ⊥

ðI−1Þ þO0ðεIþ1Þ
¼ πðI−1Þ⋆εðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞ⋆επ⊥

ðI−1Þ þO0ðεIþ1Þ
¼ ðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞ⋆επðI−1Þ⋆επ⊥

ðI−1Þ þO0ðεIþ1Þ
¼ −ðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞ⋆εðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞ þO0ðεIþ1Þ
¼ O0ðεIþ1Þ; ð27Þ

where we used in the last step that ε2IaI−1⋆εaI−1 is
evidently of higher order than εIþ1 and so fits into the
error term. As a result, the diagonal terms are determined
by (25) while the off-diagonal contributions to πI still need
to be fixed. (S1–3)” provides the algebraic equations to
establish them. First, the third equation in (23) ensures that
the base clause of the induction is settled. We then assume
that (S1–3)” also holds for H and πðI−1Þ with the corre-
sponding error term O0ðεIÞ. For the iteration step, we
perform the split πðIÞ ¼ πðI−1Þ þ εIπI and insert this into
(S1–3)”, and we define a new symbol bI−1 such that
½πðI−1Þ;H�⋆ε

≕ εIbI−1 þO0ðεIþ1Þ, where we shifted any
contribution of order εIþ1 and higher in the Moyal
commutator into the error term. This results in

O0ðεIþ1Þ ¼ H⋆επðIÞ − πðIÞ⋆εH

¼ H⋆επðI−1Þ − πðI−1Þ⋆εH þ εIðH⋆επI − πI⋆εHÞ
¼ εIð−bI−1 þH⋆επI − πI⋆εHÞ
¼ εIð−bI−1 þ ½H0; πI�Þ: ð28Þ

Hence, the term in the brackets should vanish. To extract
the off-diagonal contributions of πI with this relation, it is
advisable to multiply it by π0 from the left as well as by its
orthogonal complement π⊥0 from the right, and to repeat the
procedure with these operators exchanged. For this, we
define the two off-diagonal contributions of πI as π

OD;1
I ≔

π0πIπ⊥
0 and πOD;2

I ≔ π⊥
0 πIπ0. Besides, let us denote the

restriction of the zeroth order Hamilton symbol H0 which
excludes the preselected energy band Eν by H⊥

0 ≔ H0π⊥
0 .

Using that π0 and π⊥
0 , respectively, commute with H0 as

operators on Hf , this yields for the first off-diagonal part

εIπ0bI−1π⊥
0 þO0ðεIþ1Þ ¼ εIðπ0H0πIπ⊥

0 − π0πIH0π⊥
0 Þ

¼ εIπOD;1
I ðEν1f −H⊥

0 Þ: ð29Þ
By restricting to the terms of order εI in (29), this gives
finally for πOD;1

I and similarly for πOD;2
I

πOD;1
I ¼ π0bI−1ðEν1f −H⊥

0 Þ−1π⊥
0 ;

πOD;2
I ¼ −ðEν1f −H⊥

0 Þ−1π⊥
0 bI−1π0: ð30Þ
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Again, consistency with the former derivation of aI−1 for the diagonal part of the Moyal projector requires one to show that
the diagonal part of Eq. (28) is indeed vanishing. We split this task into two steps and first derive an expression for π0bI−1π0

and in a second step for π0½H0; πI�π0, namely

εIπ0bI−1π0 ¼ π0ðπðI−1Þ⋆εH −H⋆επðI−1ÞÞπ0 þO0ðεIþ1Þ
¼ πðI−1Þ⋆εðπðI−1Þ⋆εH −H⋆επðI−1ÞÞ⋆επðI−1Þ þO0ðεIþ1Þ
¼ ðεIaI−1 þ πðI−1ÞÞ⋆εH⋆επðI−1Þ − πðI−1Þ⋆εH⋆εðεIaI−1 þ πðI−1ÞÞ þO0ðεIþ1Þ
¼ εIðaI−1⋆εH⋆επðI−1Þ − πðI−1Þ⋆εH⋆εaI−1Þ þO0ðεIþ1Þ
¼ εIðaI−1H0π0 − π0H0aI−1Þ þO0ðεIþ1Þ
¼ O0ðεIþ1Þ: ð31Þ

Indeed, the bracket term in the last line vanishes since
H0π0 ¼ Eν1f is proportional to the one in Hf and hence
commutes with aI−1. On the other hand, we have for
π0½H0; πI�π0

εIπ0½H0; πI�π0 ¼ εIðπ0H0πIπ0 − π0πIH0π0Þ
¼ εIEνðπD;1

I − πD;1
I Þ ¼ 0; ð32Þ

with the same reasoning. Employing the same relations, it
is straightforward to derive that also

εIπ⊥
0 bI−1π

⊥
0 ¼ O0ðεIþ1Þ ð33Þ

holds true, and we will consequently not write it down
explicitly. This proves the consistency of the relations for
the off-diagonal contributions for πI. Collecting all terms,
the final result for the coefficient of the Moyal projector at
order I reads

πI ¼ πD;0
I þ πD;⊥

I þ πOD;1
I þ πOD;2

I

¼ −π0aI−1π0 þ π⊥
0 aI−1π

⊥
0 þ π0bI−1

× ðEν1f −H⊥
0 Þ−1π⊥

0 − ðEν1f −H⊥
0 Þ−1π⊥

0 bI−1π0; ð34Þ

where εIaI−1 ¼ ðπI−1⋆επI−1 − πðI−1ÞÞjI and εIbI−1 ¼
½πðI−1Þ;H�⋆ε

jI . This closes the construction of the Moyal
projector, and we move on to the inductive construction of
the Moyal unitary.

2. Construction of the Moyal unitary

The construction of the Moyal unitary relies on the rules
(S2)” in Sec. II C, and as before, we proceed iteratively to
build uðIÞ. We assume a formal power series for the Moyal
unitary up to order I, namely uðIÞ ¼

P
i≤I ε

Iui. The symbol
function u0 from (13) serves as the starting point for the
construction scheme. Then, at zeroth order the rules (S2)”
evaluate to

ðS2 − 1Þ u�0 · u0 − 1f ¼ 0;

ðS2 − 2Þ u0 · u�0 − 1f ¼ 0;

ðS2 − 3Þ u0 · π0 · u�0 − πp ¼ 0: ð35Þ

These equations are satisfied by construction of u0
and πp. By induction, we assume that the rules (S2)” are
satisfied for the symbol uðI−1Þ. Let us start with the first
and second construction rules. The induction assumption
yields that u�ðI−1Þ⋆εuðI−1Þ − 1f ¼ O0ðεIÞ, and likewise

uðI−1Þ⋆εu�ðI−1Þ − 1f ¼ O0ðεIÞ. To determine uI , we define

the operators cI−1 and dI−1 as the contributions of order I to
these equations, in particular u�ðI−1Þ⋆εuðI−1Þ − 1f ≕ εIcI−1 þ
O0ðεIþ1Þ and uðI−1Þ⋆εu�ðI−1Þ−1f≕εIdI−1þO0ðεIþ1Þ. Then
consider the corresponding equations for uðIÞ and its adjoint
u�ðIÞ. They give

u�ðIÞ⋆εuðIÞ−1f ¼ εIðcI−1þu�Iu0þu�0uIÞþO0ðεIþ1Þ; ð36Þ

uðIÞ⋆εu�ðIÞ − 1f ¼ εIðdI−1þuIu�0þu0u�I ÞþO0ðεIþ1Þ; ð37Þ

and we require that the terms in the brackets vanish
separately. Assuming that this holds true, it is possible to
extract u�I in both equations according to

u�I ¼ −ðcI−1u�0 þ u�0uIu
�
0Þ ¼ −ðu�0dI−1 þ u�0uIu

�
0Þ: ð38Þ

By comparing the two defining terms, one can relate the
operators cI−1 and dI−1 by

cI−1 ¼ u�0dI−1u0; ð39Þ

which is identically satisfied by the induction assumption,
namely, we can show that
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εIðcI−1u�0 − u�0dI−1Þ ¼ ðu�ðI−1Þ⋆εuðI−1Þ − 1fÞu�0 − u�0ðuðI−1Þ⋆εu�ðI−1Þ − 1fÞ þO0ðεIþ1Þ
¼ ðu�ðI−1Þ⋆εuðI−1Þ − 1fÞ⋆εu�ðI−1Þ − u�ðI−1Þ⋆εðuðI−1Þ⋆εu�ðI−1Þ − 1fÞ þO0ðεIþ1Þ
¼ O0ðεIþ1Þ;

where we used the associativity of the star product for the
last manipulation.
In a next step, we consider the rule (S2–3)”. Since

the zeroth order part of this equation is satisfied
[cf. Eq. (35)], we assume by induction that we found
uðI−1Þ such that uðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ − πp ¼ O0ðεIÞ is
satisfied. We define a new operator eI−1 to extract the
contributions of order εI of this equation, namely
uðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ−πp≕εIeI−1þO0ðεIþ1Þ. Then the
induction step consists in considering equation (iii) for
uðIÞ, which yields

uðIÞ⋆επðIÞ⋆εu�ðIÞ − πp ¼ εIðeI−1 þ uIπ0u�0 þ u0πIu�0

þ u0π0u�I Þ þO0ðεIþ1Þ: ð40Þ

Consequently, we require the terms in the brackets to
vanish. In this case and by means of (38), it holds true that

eI−1 ¼ −u0πIu�0 − uIπ0u�0 þ u0π0ðcI−1u�0 þ u�0uIu
�
0Þ ð41Þ

¼ −u0πIu�0 − uIu�0πp þ u0π0cI−1u�0 þ πpuIu�0; ð42Þ

which transforms into an equation determining uI, namely

½πp; uIu�0� ¼ eI−1 þ u0πIu�0 − u0π0cI−1u�0: ð43Þ

We then consider projecting this equation onto the
diagonal or off-diagonal parts with respect to πp and its
orthogonal complement π⊥

p ≔ 1f − πp. As the commutator
on the left-hand side is antisymmetric, this gives

0 ¼ πpðeI−1 þ u0πIu�0 − dI−1Þπp ≕Red; ð44Þ

0 ¼ π⊥
p ðeI−1 þ u0πIu�0 − dI−1Þπ⊥

p ≕R⊥
ed; ð45Þ

where we introduced the symbols Red and R⊥
ed for later

convenience. Both equations are identically satisfied by
the induction assumption. To show this, recall the result
for the Moyal projector in Eq. (34), which presents the
projector already as a decomposition into diagonal and
off-diagonal parts. Multiplication by u0 from the left and
by u�0 from the right provides the splitting in diagonal
and off-diagonal parts with respect to πp and π⊥

p ,

u0πIu�0 ¼ −πpu0aI−1u�0πp þ π⊥
p u0aI−1u�0π

⊥
p

þ πpu0bI−1ðEν1f −H⊥
0 Þ−1u�0π⊥

p

− π⊥
p u0ðEν1f −H⊥

0 Þ−1bI−1u�0πp: ð46Þ

It is now obvious to restrict in Eqs. (44) and (45) to the
relevant contributions for πI, namely

εIRed ¼ εIπpðeI−1 − u0aI−1u�0 − dI−1Þπp

¼ πpððuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ − πpÞ − u0ðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞu�0Þπp − πpðuðI−1Þ⋆εu�ðI−1Þ − 1fÞπp þO0ðεIþ1Þ
¼ πpððuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ − uðI−1Þ⋆εðπðI−1Þ⋆επðI−1Þ − πðI−1ÞÞ⋆εu�ðI−1ÞÞπp − πpðuðI−1Þ⋆εu�ðI−1ÞÞπp þO0ðεIþ1Þ
¼ πpuðI−1Þ⋆εð−πðI−1Þ⋆επðI−1Þ þ 2πðI−1Þ − 1fÞ⋆εu�ðI−1Þπp þO0ðεIþ1Þ
¼ −πpuðI−1Þ⋆εðπðI−1Þ − 1fÞ⋆εðπðI−1Þ − 1fÞ⋆εu�ðI−1Þπp þO0ðεIþ1Þ: ð47Þ

To show that the contributions of Red at order εI are indeed
vanishing, we abbreviate the following O0ðεIÞ objects:

AI−1 ≔ πðI−1Þ⋆επðI−1Þ − πðI−1Þ; ð48Þ

CI−1 ≔ uðI−1Þ⋆εu�ðI−1Þ − 1f ; ð49Þ

DI−1 ≔ u�ðI−1Þ⋆εuðI−1Þ − 1f ; ð50Þ

EI−1 ≔ uðI−1Þ⋆επðI−1Þu�ðI−1Þ − πp: ð51Þ

With this, we continue to elaborate on εIRed starting from
Eq. (47). In the first step, we use that πp does not depend on
the slow phase space variables, and hence the operator
product of any other quantity with πp equals their Moyal
product. Consequently,
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εIRed ¼ −πp⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ⋆εðπðI−1Þ − 1fÞ⋆εu�ðI−1Þ⋆επp þO0ðεIþ1Þ
¼ −ðuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ − EI−1Þ⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ⋆εðπðI−1Þ − 1fÞ
⋆εu�ðI−1Þ⋆εðuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ − EI−1Þ þO0ðεIþ1Þ

¼ −uðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εu�ðI−1Þ⋆εuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ

þ EI−1⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εu�ðI−1Þ⋆εuðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ

þ uðI−1Þ⋆επðI−1Þ⋆εu�ðI−1Þ⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εu�ðI−1Þ⋆εEI−1 þO0ðεIþ1Þ; ð52Þ

where we pushed the terms that are quadratic in EI−1 in the remainder O0ðεIþ1Þ. This strategy applies for any quadratic
occurrence of the symbols in (48)–(51), such that the continuation of (52) becomes

εIRed ¼ −uðI−1Þ⋆επðI−1Þ⋆εðDI−1 þ 1fÞ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εðDI−1 þ 1fÞ⋆επðI−1Þ⋆εu�ðI−1Þ

þ EI−1⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εðDI−1 þ 1fÞ⋆επðI−1Þ⋆εu�ðI−1Þ

þ uðI−1Þ⋆επðI−1Þ⋆εðDI−1 þ 1fÞ⋆εðπðI−1Þ − 1fÞ2⋆ε
⋆εu�ðI−1Þ⋆εEI−1 þO0ðεIþ1Þ:

In any of the lines, we can directly eliminate those terms that are quadratic in the operatorsDI−1 and EI−1. All the remaining
terms admit at least one factor of the form πðI−1Þ⋆εðπðI−1Þ − 1fÞ or the same with factors interchanged. These factors simply
evaluate to AI−1, and so all the contributions are at least quadratic in AI−1, DI−1, and EI−1, such that we obtain

εIRed ¼ −uðI−1Þ⋆επðI−1Þ⋆εDI−1⋆εðπðI−1Þ − 1fÞ⋆εAI−1⋆εu�ðI−1Þ
− uðI−1Þ⋆εAI−1⋆εðπðI−1Þ − 1fÞ⋆εDI−1⋆επðI−1Þ⋆εu�ðI−1Þ

− uðI−1Þ⋆εAI−1⋆εAI−1⋆εu�ðI−1Þ

þ EI−1⋆εuðI−1Þ⋆εðπðI−1Þ − 1fÞ⋆εAI−1⋆εu�ðI−1Þ
þ uðI−1Þ⋆εAI−1⋆εðπðI−1Þ − 1fÞ⋆εu�ðI−1Þ⋆εEI−1 þO0ðεIþ1Þ

¼ O0ðεIþ1Þ: ð53Þ

The very same argumentation leads to the vanishing of the
orthogonal part R⊥

ed, namely

εIR⊥
ed ¼ εIπ⊥

p ðeI−1þu0πIu�0 − dI−1Þπ⊥
p ¼O0ðεIþ1Þ: ð54Þ

Equations (53) and (54) consequently show that the block
diagonal parts of uI with respect to πp remain undeter-
mined. Without loss of generality, we can choose them to
vanish, also because u is only an auxiliary structure here.
Finally, we project on the off-diagonal contributions to uI
and obtain with (43) and (46)

πpuIu�0π
⊥
p ¼πpðeI−1þu0πIu�0−dI−1Þπ⊥

p

¼πpðeI−1þu0bI−1ðEν1f−H⊥
0 Þ−1u�0−dI−1Þπ⊥

p ;

ð55Þ
π⊥
p uIu�0πp¼−π⊥

p ðeI−1þu0πIu�0−dI−1Þπp

¼−π⊥
p ðeI−1−u0ðEν1f−H⊥

0 Þ−1bI−1u�0−dI−1Þπp:

ð56Þ

Eventually, the inductive equation for uI evaluates to

uI ¼ πpðeI−1þu0bI−1ðEν1f −H⊥
0 Þ−1u�0−dI−1Þπ⊥

p u0

−π⊥
p ðeI−1−u0ðEν1f −H⊥

0 Þ−1bI−1u�0−dI−1Þπpu0: ð57Þ

3. Construction of the effective Hamiltonian

The last step of the scheme consists in computing the
effective Hamilton symbol heff and, in particular, the
effective Hamiltonian restricted to the fast subspace asso-
ciated with the projector πp which will be denoted by heff;p.
As before, the scheme proceeds iteratively, and we have
[just repeating the construction rule (S3)”]

heff;ðIÞ ¼ uðIÞ⋆εH⋆εu�ðIÞ þO0ðεIþ1Þ; ð58Þ
where we can insert uðIÞ from the previous section. As we
are mainly interested in the dynamics within the fast
subspace associated with the quantum number ν ∈ N, we
consider the restriction
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heff;p;ðIÞ ¼ πpuðIÞ⋆εH⋆εu�ðIÞπp þO0ðεIþ1Þ: ð59Þ

We emphasize that the Weyl quantization ĥeff;p;ðIÞ pre-
serves the subspace π̂pH. This subspace carries the
orthonormal basis fζn;a ⊗ ψαgn;a;α where n ∈ N is the
discrete quantum number of the fast eigenstates ζn;aðxÞ ∈
Hf with a possible degeneracy label a ¼ 1;…; dn, and
ψαðqÞ denotes a (possibly generalized) orthogonal basis of
Hs. As already shown before, the spectrum of ĥeff;ðIÞ gives
an approximation of order ϵIþ1 of the corresponding
energy band of the original Hamiltonian Ĥ. The advantage
of ĥeff;ðIÞ is that it is effectively an operator on the rather
small Hilbert space Cdn ⊗ Hs while backreaction effects
between the slow and fast sectors are taken care of to the
given order of approximation.

III. CHALLENGES OF COSMOLOGICAL
ADIABATIC PERTURBATION THEORY

A. Introduction

As already pointed out, SAPT in its original form applies
to quantum systems with a finite number of degrees of
freedom. Consequently, the generalization of the scheme to
second order quantum cosmological perturbation theory
meets several challenges as the primary assumptions do not
automatically transfer to the quantum field theory case. One
important reason for this is the infinite number of inho-
mogeneous modes present in quantum field theory on
cosmological spacetimes. The resulting problems need to
be fixed before applying SAPT.
Actually, the problems we encounter here are not new. We

use the Hilbert-Schmidt condition to illustrate this: In
particular, the Fock spaces for a QFT on a possibly curved,
cosmological spacetime fail to be unitary equivalent for
different “background” configurations of the homogeneous
sector. The unitary equivalence of these Fock spaces is,
however, a necessary prerequisite if we wish to apply SAPT.
There, the fast subspaces are assumed to represent the fiber
spaces over the common slow phase space, and the fast
subspaces are all unitarily equivalent, which is a priori not
satisfied for QFTon CSTmodels. As wewill see, these kinds
of problems originating from the infinite number of degrees
of freedom can be circumvented using a transformation of
the total system involving both the homogeneous and
inhomogeneous modes. This transformation is an exact
canonical transformation up to second order in the cosmo-
logical perturbations. The idea for these transformations
originally comes from the hybrid approach to LQC [64–66].
These transformations lead us to the next obstacle

encountered here, which concerns the occurrence of
indefinite mass squared functions of the quantum fields.
In fact, the same problems already occur for standard
gauge-invariant cosmological perturbation theory, and are
hence not due to the SAPT scheme itself. In fact, already

the transformations giving rise to the gauge-invariant
Mukhanov-Sasaki scalar variables lead to effective mass
terms that depend very nontrivially on the homogeneous
phase space variables. The above-mentioned transforma-
tions to meet the Hilbert-Schmidt condition have the same
effect: The mass squared functions of both the Mukhanov-
Sasaki field and the tensor perturbations are generically
neither positive definite nor are they polynomials in the
homogeneous degrees of freedom.
In the following, we will present a number of possible

solutions. First, there is some amount of freedom in the
choice of the almost canonical transformation alluded to
before that might help to avoid the indefiniteness of the
mass squared term. As another proposal, one can consider a
canonical transformation just of the slow sector after which
the masses are manifestly non-negative. Then, one declares
the phase space as defined in terms of the old variables to be
restricted by the positivity of the masses. Another idea is to
switch off modes by hand for which the frequency becomes
negative, as suggested first in [93]. We also point to
Ref. [94] in which the authors were able to in principle
solve the tachyonic problem by using transformations that
lead to positive definite mass terms. Nonetheless, these
transformations and hence also the mass functions are only
known up to solving a system of semilinear partial differ-
ential equations. For SAPT, we need, however, the explicit
expression of the mass functions.
Regarding the nonpolynomiality of the mass terms, we

point at the solution strategy for a certain class of operators
adopted in LQC. There, it is possible to deal with operators
that are nonpolynomial in the momenta of the theory but
polynomial with respect to the configuration variables. The
basic idea consists in using a representation of the homo-
geneous sector which is not unitarily equivalent to the
Schrödinger representation because one substitutes the
unbounded configuration variable by a bounded polyno-
mial of Weyl operators [70–72]. These techniques are
inspired by the full theory of LQG [95,96]. Here, however,
a simple inspection of the Mukhanov-Sasaki mass squared
term reveals that the techniques of LQC for the purely
homogeneous contribution to the Hamiltonian constraint
and for the hybrid approach to it [64–66] will no longer be
sufficient when backreactions are switched on.
This is due to the fact that the adiabatic corrections

introduce nonpolynomial functions of both momentum and
configuration variables. We handle this second problem by
taking an unbiased point of view toward quantization of the
homogeneous sector and try to stay within the standard
Schrödinger representation as suggested by the Weyl quan-
tization method that enters the space adiabatic formalism. In
the best case, one should find a dense and invariant domain
for the various nonpolynomial operators that appear. This is
indeed possible for the model that also involves Gaussian
dust [82] by exploiting the existence of a remarkable basis
of functions in L2ðR; dqÞ which is smooth and of rapid
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decrease both at infinity and at the origin [97]. For the case of
the Mukhanov-Sasaki field, we have to content ourselves by
providing a dense but not invariant domain.
This section covers all the above-mentioned questions in

detail. In Sec. III B, we show that the gravity-matter systems
considered in the subsequent papers of this series allow for
the definition of a suitable perturbation parameter ε which
makes the SAPT schemework at the technical level. We also
show that the inhomogeneous modes can be associated with
a small mass while the homogeneous degrees of freedom
have a much larger effective mass. In Sec. III C, we display
the aforementioned obstacle to apply SAPT in the quantum
field context. Therefore, we first prove that the Hilbert-
Schmidt condition fails for a simple QFT model. Then, we
present a solution up to second order in the perturbation
theory of the inhomogeneous, cosmological degrees of
freedom. In Sec. III D, we discuss the induced occurrence
of nonpositive and nonpolynomial mass squared functions.
We apply two solution techniques, based on modifying
either the classical slow phase space or the number of
physical modes in the Fock space. Finally, in Sec. III E, we
sketch a proposal for how to deal with the resulting highly
nonpolynomial operators that occur as a result of the
canonical transformations and the adiabatic corrections
due to the Moyal product.

B. Applicability of space adiabatic perturbation theory

SAPT relies on the identification of two distinct
subsystems within the model. This distinction becomes
manifest by means of an adiabatic perturbation parameter
which we denote by ε. For example, in the standard Born-
Oppenheimer approach to molecular physics, the adia-
batic perturbation parameter arises as the mass ratio of the
light electron mass me and the heavy nuclei massMn such
that ε2 ≔ me

Mn
≪ 1. For simplicity, let us consider a simple

hydrogen model with only one electron and one nucleus
with respective phase space variables ðx; yÞ and ðq; PÞ.
With the equipartition theorem and assuming that the
system is ergodic, it follows that the kinetic energy
contributions of the electron and the nucleus must have
the same time average, i.e.,

�
P2

2Mn

�
≈
�

y2

2me

�
; andconsequently h _q2i≈ε2h_x2i: ð60Þ

Evidently, the nucleus then moves much slower on average
than the electron. This also implies that the momentum of the
nucleus is much larger than the momentum of the electron,
i.e., ε2hP2i ≈ hy2i. This suggests to define a rescaled
momentum for the nucleus p ≔ εP such that hp2i ≈ hy2i.
The Poisson bracket of q and p consequently receives an
additional factor ε which also carries over to the quantum
mechanical commutator. As the space adiabatic scheme
employs a phase space quantization for the slow subsystem,

this rescaling indeed gives rise to a perturbative treatment of
the theory. In particular, the Moyal product on phase space
appears then as a formal power series expansion in the
perturbation parameter ε. The theory additionally requires
that the Hamiltonian with the rescaled momenta p does not
carry any inverse powers of ε.
This works out for the molecular systems but the

situation in cosmology is different. In general, the argu-
ments for deriving the smallness of the nucleus’ velocity
do not apply anymore because the systems are con-
strained. The equipartition theorem fails. Nevertheless,
it remains possible to rescale one or several of the theory’s
momenta to make the perturbation scheme work at the
technical level.

1. Implementation of a perturbation parameter

In order to clarify this, we recall the different systems of
interest in [69,81,82]. In total, we consider four different
models which we will label with latin numbers. First, a set
of two coupled oscillators (I) serves as a toy model for the
subsequent cosmological applications. We then examine a
model of homogeneous and isotropic general relativity
coupled to the homogeneous mode of a scalar matter field
(II). We extend this to an inhomogeneous theory by
considering a homogeneous, isotropic geometry coupled
to all modes of the scalar matter field and in the presence of
a deparametrizing dust field (III). Finally, we study a model
of homogeneous and inhomogeneous general relativity
with scalar matter in gauge-invariant variables but without
the deparametrizing matter fields (IV).
Model (I) consists of a set of two coupled harmonic and

anharmonic oscillators [81]. Their respective masses m and
M give rise to the perturbation parameter ε2 ≔ m

M ≪ 1. The
system is unconstrained, and the physical intuition that the
heavy anharmonic oscillator moves slowly in comparison
to the light harmonic oscillator follows from the equiparti-
tion theorem. That is, one can show that the average
velocity of the heavy oscillator _q is much smaller than
the average velocity _x of the light oscillator. Note that this is
independent of the frequencies of the two oscillators. Even
if the frequency Ω of the heavy anharmonic oscillator was
much larger than the frequency ω of the light oscillator, it
would still hold true that the velocity of the heavy
subsystem is much smaller than the velocity of the light
oscillator (at least their time averages). This is possible
because the amplitude Ax of the light oscillator can be much
larger than the amplitude Aq of the heavy subsystem.
Therefore, consider the relation between the velocity and
the frequency of the two subsystems, namely _q ¼ AqΩ and
_x ¼ Axω. Then, with _q ≈ ε_x in time average coming from
the equipartition theorem, it can still hold true that for
example ω ¼ εΩ (i.e., the heavy oscillator frequency is
much larger than the one of the light subsystem) by
claiming that Aq ≈ ε2Ax.
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The purely homogeneous and isotropic cosmological
model with scalar matter content (II) does not feature two
mass parameters in the strict sense. However, the gravita-
tional coupling constant κ ≔ 8πG and the matter coupling
constant λ of the scalar field provide a dimensionless fraction
which gives rise to a perturbation parameter ε2 ≔ κ

λ. Note that
λ generically appears as a global factor for the matter
(inflaton) action and is set to unity in most applications
to inflationary cosmology. Here, we do not restrict its value
to one and thereby simply introduce a reparametrization
invariance for the scalar field itself. This is of course
compliant with the conventional considerations in inflation
and does not alter any of the physical results by itself. We
also emphasize that the parameter λ is to be distinguished
from the mass parameter m of the Klein-Gordon or inflaton
scalar field in this model which is an independent parameter.
In the space adiabatic treatment, we assume that ε2 ≪ 1.
This is admissible since λ is a free parameter. Inserting this
parameter into the Hamiltonian, one must, however, guar-
antee that ε does not occur in inverse powers as this would
impede the perturbation theory. Interestingly, when the
Hamiltonian is a constraint, we can simply multiply the
constraint by sufficiently large powers of ε. This applies
partly to model (II) as it can be seen as the homogeneous
truncation of either model (III) or model (IV). In the latter
case, the system is constrained and the strategy applies. Note
that we can always multiply the constraint by ε before taking
the limit ε → 0 in the result.
In the former case, however, we have to inspect the

Hamiltonian more closely. As it turns out (see Ref. [81]),
there is one contribution proportional to ε−2, and this is
exactly the term due to the cosmological constant Λ.
According to cosmological observations, we can hence
argue that Λε−2 is still so small that the inverse order in ε
does not affect the theory severely. In any case, it seems
admissible to neglect the cosmological constant at earliest
times as it scales as a0 with a being the scale factor.
Nonetheless, it would be interesting to see whether the

theory allows for the usual distinction of a slow and a fast
sector. Therefore, we first note that the equipartition theorem
does not work here. To see this, we introduce the phase space
Γ ¼ Rþ × R3 which is parametrized by the scale factor a, its
conjugate momentum Pa, the homogeneous scalar field ϕ,
and its conjugate momentum μ. Then, consider the statistical
average of some phase space function f ∈ C∞ðΓÞ on the full
phase space Γ,

hfi ≔ 1

Z

Z
Γ
dadPadϕdμe−βHfða; Pa;ϕ; μÞ;

Z ≔
Z
Γ
dadPadϕdμe−βH;

where Z is the partition function and β ≔ ðkBTÞ−1 is the
reciprocal of the thermodynamic temperature of the system.
In order that the statistical average of f makes sense, we

must assume that H is bounded from below such that the
integrals converge. This also assures that in the integration
by parts that one performs to show that hpa

∂H
∂pa

i ¼ β−1 no
boundary terms appear. Both conditions are violated in
model (II) because the gravitational kinetic energy is
negative. Nevertheless, we can make the following argument
for which we assume that the underlying space manifold is a
compact three-torus T3 with volume L3. By shifting the
kinetic energy of the geometric subsystem and multiplying
by the global factor L3λ, we obtain

1

12

ε2P2
a

a
¼ Λ

λ2ε2
a3 þ μ2

2a3
þ 1

2λ
m2a3ϕ2: ð61Þ

Note that in our models, we choose ϕ to be dimension-free.
Our motivation for this choice is that we do not want to
introduce additional mass scales into more general than
quadratic inflaton potentials. As a typical measure of the
expansion velocity of the Universe, we introduce the Hubble
parameter H ≔ _a

a which we accordingly denote as vH. It

relates to the variables ða; PaÞ according to vH ¼ −ε2 λ
6L3

Pa

a2 .
Likewise, the velocity of the scalar field is given by
vϕ ≔ _ϕ ¼ λ μ

a3. Inserting this in the constraint (61) gives

v2H ¼ 1

6
ε2v2ϕ þ

1

3
Λþ 1

6
ε2m2ϕ2: ð62Þ

A comparison of the respective terms allows for the
conclusion that for small cosmological constant and small
potentials of the scalar field, we have indeed that the
geometric velocity is much smaller than the velocity of
the scalar field, namely vH ∼ εvϕ. Accordingly, the homo-
geneous mode of the scalar field can be identified as the fast
sector while geometry appears as the slow subsystem owing
to our assumption on κ and λ. It transpires, however, that this
only holds for small cosmological constant and scalar field
potentials. As a consequence, this intuition does not apply
for an inflationary phase of the scalar field because there the
scalar field potential is assumed to be large.
In model (III), we consider general relativity with a

cosmological constant Λ ∈ R and a real-valued scalar field
Φ of Klein-Gordon type. The theory is built on a globally
hyperbolic spacetime manifold M ≅ R × B with compact
spatial hypersurface B. We reduce the gravitational field to
its purely homogeneous and isotropic part with respect to
the spatial hypersurfaces such that the scale factor a and its
conjugate momentum Pa represent the relevant canonical
pair of the gravitational field in the Hamiltonian framework.
Indeed, for model (III) it is not useful to divide the scalar
field into a homogeneous and an inhomogeneous part with
respect to the spatial hypersurfaces. This is because we
include additional Gaussian dust to deparametrize the
theory and such that the scalar field becomes a gauge-
invariant degree of freedom. The constraints have already
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been solved using reduced phase space methods. As a
consequence, there is no motivation from the gauge per-
spective to split the scalar field into a homogeneous part and
the rest as it is the case for the hybrid treatment of
model (IV).
However, this model also exhibits new challenges due to

the inhomogeneous modes of the scalar field, and we
already pointed out that the Fock space representations of
the inhomogeneous scalar field are not unitarily equivalent
for different values of the homogeneous sector. In order to
overcome this problem, we recall that we perform a
canonical transformation up to second order in the pertur-
bations [82]. Thereby, the mass value m of the Klein-
Gordon field that appears in the frequency of the field
transforms into a new “effective” mass value or rather mass
function Mða; PaÞ. It displays a phase space dependence
with respect to the homogeneous gravitational degrees of
freedom. As it turns out, this dependence on a and Pa is
such that the momentum Pa only appears in the combina-
tion κ2P2

a ¼ ε4λ2P2
a ¼ ε2λ2p2

a if we define pa ≔ εPa as
before. Hence, only positive powers of ε appear in the
effective mass squared M2 when expressed in terms of pa.
Since the Hamiltonian is still not bounded from below, the
equipartition theorem can again not be used to argue that the
homogeneous geometry represents the slow sector of
the theory compared to all scalar field modes. However,
the physical Hamiltonian H (not to be confused with the
Hubble parameter) results from a constraint of the form C ¼
ρþH ¼ 0 where ρ is the energy density of the dust. As the
dust behaves closely to a field of test observers with zero
energy density, ρ is assumed to be very small, and thus H is
close to zero, at least classically. Thus, we qualitatively
argue thatH ≈ 0 such that we can effectively apply the same
strategy as above and identify the corresponding regions in
phase space. More precisely, the system including dust has
the property that the energy-momentum density of the
nondust degrees of freedom are constants of motion with
regard to the physical time evolution (see the in-depth
discussion in [98,99]). As the sum of dust and nondust
energy momentum density is constrained to vanish, small
dust energy momentum density is equivalent to small
nondust energy momentum density. Thus in any given
classical solution the nonvanishing of the nondust contri-
bution to the constraints is given by a constant of motion
which acts as an additional (not necessarily spatially
homogeneous) cosmological “constant.” If it is small, the
classical argument of the previous model applies. In the
quantum theory, since energy density commutes with the
physical Hamiltonian, we can use the spectral theorem to
split the Hilbert space into sectors of finite energy density
range, and these sectors are preserved by the quantum
evolution. We also point out that there is an argument
leading to the general statement that any kind of inhomo-
geneous mode behaves as a fast system compared to the
homogeneous sector.
Before we come to this, let us discuss model (IV)

which is gravity plus a real-valued scalar field Φ, just as

for model (III). Here, however, we allow for perturbations
of the gravitational field, and we do not include dust fields
to deparametrize the theory. Therefore, it is advisable to
split the Klein-Gordon scalar field into its homogeneous
and inhomogeneous components with respect to the spatial
hypersurface B. We denote these new variables by ðϕ; μÞ
and ðφ; πÞ, respectively. Following the idea of Mukhanov
and Sasaki [68,100,101], we perform a canonical trans-
formation with respect to the scalar sector of the linear
perturbations in order to obtain gauge-invariant variables.
These transformations depend also on the homogeneous,
zeroth order variables ða; Pa;ϕ; μÞ. These new scalar
variables are the well-known Mukhanov-Sasaki variables
ðϑ; πϑÞ. The corresponding transformations give rise to a
new effective mass squared term MMSða; pa;ϕ; μÞ2 for the
Mukhanov-Sasaki field. Besides, we include the tensorial
part of the linear perturbations ðtab; πtabÞ which is already
gauge invariant. Then, we perform further transforma-
tions with respect to all degrees of freedom following
the hybrid approach mentioned above [64,67,69], which
also gives rise to a new mass term for the tensor sector
MTða; pa;ϕ; μÞ2.
In order to check whether the application of SAPT is

admissible, we take a look at the occurrence of a suitable
perturbative parameter [69], and consider particularly the
inhomogeneous contributions to the Hamiltonian con-
straint. We define the ratio of κ and the matter coupling
constant λ as ε2 ≔ κ

λ. Then, the second order contributions
of the scalar constraint are given in terms of the scalar
Mukhanov-Sasaki canonical pair ðϑ; πϑÞ and the tensorial
canonical variables ðtab; πtabÞ by

Hs
2 ¼

1

2a

�
λπ2ϑ þ ϑ

�
−
Δ
λ
þM2

MS

�
ϑ

�
;

Ht
2 ¼

1

2a

�
κðπabt πtabÞ þ tabðxÞ

�
−
Δ
κ
þM2

T

�
tab

�
; ð63Þ

where πt and πt denote the same tensorial field. We perform
the canonical transformation, π̃abt ≔ επabt and t̃ab ¼ ε−1tab,
such that Ht

2 becomes

H̃t
2 ¼

1

2a

�
λðπ̃abt π̃tabÞðxÞþ t̃abðxÞ

�
−
Δ
λ
þðεMTÞ2

�
t̃abðxÞ

�
:

ð64Þ

Fortunately, an explicit check reveals that both the
Mukhanov-Sasaki mass squared M2

MS as well as the tensor
mass squared ðεMTÞ2 receive only non-negative powers of
ε when expressed in terms of a new set of rescaled
homogeneous momenta,

p̃a ≔ ε2Pa ¼ εpa; μ̃ ≔ εμ: ð65Þ
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In particular, we rescale the geometric momentum by an
additional factor of ε and also consider a rescaling of the
homogeneous matter momentum by a factor ε. This is in
contrast to the choices in model (II) where we simply used
pa and μ. Nonetheless, their respective ratios are still the
same, namely p̃a

μ̃ ¼ pa
μ . Indeed, the theories are equivalent as

we could have simply multiplied the whole constraint (II)
by a factor ε2 and then worked with p̃a and μ̃. Now, the
only remaining problem is that the homogeneous piece of
the Hamiltonian constraint of model (IV) cannot be written
in terms of p̃a and μ̃ without picking up negative powers of
ε. But this can be repaired by multiplying the entire
constraint by a factor of ε2. As a consequence, we perform
another canonical transformation for the inhomogeneous
fields

π̆ϑ ≔ επϑ; ϑ̆ ≔
ϑ

ε
; π̆abt ≔ επ̃abt ¼ ε2πabt ;

t̆ab ≔
t̃ab
ε

¼ tab
ε2

: ð66Þ

After multiplying the whole constraint by a factor of ε2, the
inhomogeneous contributions to the Hamilton constraint
become

H̆s
2 ¼

1

2a

�
λπ̆2ϑðxÞ þ ϑ̆ðxÞε4

�
−
Δ
λ
þM2

MS

�
ϑ̆ðxÞ

�
; ð67Þ

H̆t
2¼

1

2a

�
λðπ̆abt π̆tabÞðxÞþ t̆abðxÞε4

�
−
Δ
λ
þðεMTÞ2

�
t̆abðxÞ

�
:

ð68Þ

Note that this rescaling does not affect the physical problem
at hand. In particular, the kinetic and the potential contri-
butions to the given Hamilton functions still have the same
relative size of magnitude. As far as the quantization of the
theory is concerned, the inhomogeneous modes encounter a
standard Fock quantization for both the Mukhanov-Sasaki
and the tensor fields. The one-particle Hilbert space asso-
ciated with these Fock spaces are simply the respective L2-
spaces over the compact three-torus. On this space of square-
integrable functions, we define the frequency operator for the
Mukhanov-Sasaki field according to ω2

MS ≔ ð− Δ
λ þM2

MSÞ,
and likewise for the graviton part. By means of these, the
annihilation and creation operators (acting on the Fock space
and therefore labeled by bold letters) formally read,

ă ≔
1ffiffiffi
2

p ðε ffiffiffiffiffiffiffiffiffi
ωMS

p
ϑ̆ − iðε ffiffiffiffiffiffiffiffiffi

ωMS
p Þ−1π̆ϑÞ;

ă� ≔
1ffiffiffi
2

p ðε ffiffiffiffiffiffiffiffiffi
ωMS

p
ϑ̆ þ iðε ffiffiffiffiffiffiffiffiffi

ωMS
p Þ−1π̆ϑÞ;

andwe emphasize thatωMS aswell as ă and ă� depend on the
homogeneous degrees of freedom. Remarkably, ă is exactly

the same annihilation operator as one would have defined
before that last canonical transformation (i.e., introducing
again ϑ; πϑ). Thus, the Fock representations are indeed
identical. When normal ordered, one finds that the
Mukhanov-Sasaki Hamiltonian in terms of the transformed
variables becomes

C̆s
2 ¼ ε2

Z
T3

dxă�ωMSă: ð69Þ

Consequently, the spectrum of the inhomogeneous part of
the constraint becomes simply rescaled by ε2 and one can use
all the results of the original Fock representation. This is in
fact neat as one would expect that the homogeneous modes
alone as corresponding to model (II) and multiplied by ε2

remains almost undisturbed by the inhomogeneous modes.
In summary, all that remains to be done is a simple rescaling
as proposed in Eq. (66) in order to use SAPT for model (IV),
and this is in fact consistent with the treatment of model (II).
Actually, we can also treat model (III) consistently this way
by simply multiplying (and, to get the correct spectrum,
afterwards dividing) by ε2. Ergo, it is possible to work
consistently in all models (II), (III), and (IV) by using the
breved variables from the definition (66).
Finally, let us emphasize that the Hamiltonian in

Eq. (69) does not admit an instantaneous diagonalization
as the creation and annihilation operators depend mani-
festly on the homogeneous degrees of freedom. In con-
trast, in simplified terms, what the adiabatic machinery
achieves is to write the total Hilbert space as a Hilbert
bundle over the homogeneous phase space where each
fiber corresponds to a Fock space over the corresponding
point in this phase space, with all dependence of that Fock
fiber space (vacuum, annihilators, etc.) on that point fully
taken into account. The aforementioned Hilbert-Schmidt
condition ensures that the fibered Fock representations
define the same equivalence class.

2. Identification of effective masses

As already indicated, it would be helpful to have a
rationale why it is physically reasonable to interpret the
inhomogeneous field modes in model (IV) as fast variables
while the homogeneous degrees of freedom can be consid-
ered as slow variables. The same reasoning could be applied
to model (III) although there it would be sufficient that all
Klein-Gordon field modes are equally fast. It turns out that
the answer to the question lies in the definition of the modes.
Therefore, let us consider the scalar field Φ defined on M.
By the homogeneous mode of the field, we loosely speaking
mean a component of the field which does not depend on
position. This becomes unambiguous only when relating it
to the full field. We choose again a compact spatial manifold
B and assume that its topology is flat. We can consider the
flat three-torus T 3 without any loss of generality. Indeed, this
case comprises any flat topology of B since all compact flat
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manifolds are covered by tori according to a theorem by
Bieberbach [102,103]. The torus has respective side lengths l
such that its volume is l3, and we denote its coordinates by x.
To describe a field on the torus, we consider the discrete
mode system ffkðxÞ ≔ l−

3
2 expðik · xÞgwhere the modes are

labeled by vectors k ∈ Σ ≔ 2πZ3=l. They represent an
orthonormal basis of L2ð½0; l�3; dxÞ. With the standard scalar
product hf; gi ≔ R

dxfðxÞgðxÞ for L2-functions f and g on
the torus, we hence see that

hfk; fk0i ¼ δk;k0;
X
k∈Σ

fkhfk; ·i ¼ 1; ð70Þ

where periodic boundary conditions are understood.
Besides, the mode functions are eigenfunctions of the
negative Laplace operator ð−ΔÞ with eigenvalues μ2k ≔
ð2π2Þk2=l2. We then define the homogeneous modes of
the scalar field Φðt; xÞ and its conjugate momentum
Πðt; xÞ by

ϕ ≔ f0hf0;ΦiL2ðT3Þ ¼
1

l3

Z
½0;l�3

dxΦðxÞ;

μ ≔ f0hf0;Πi ¼
1

l3

Z
½0;l�3

dxΠðxÞ:

The canonical brackets of the fields ðΦ;ΠÞ are given
for two test functions f and g, on the torus by
fΦðfÞ;ΠðgÞg ¼ hf; gi. In an informal distributional nota-
tion, this is equivalent to fΦðxÞ;ΠðyÞg ¼ δðx − yÞ. As a
result, the homogeneous modes are easily checked to have
canonical brackets, fϕ; μg ¼ 1

l3. Intuitively, we can say that
the local point modes ΦðxÞ and ΠðxÞ are “infinitely faster”
than the homogenous modes because formally speaking
“δðx − xÞ ¼ ∞.” To understand this in more detail, we note
that SAPTwas developed for quantum mechanical systems
with a finite number of degrees of freedom. Therefore, let
us use a finite resolution cutoff δN ≔ l

N by dividing the
torus intoN3 disjoint cubes of volume δ3N each. Any cube is
labeled by a vector j ∈ N3

N ≔ ½0; N − 1�3. We can define

characteristic functions χN;jðxÞ for the cubes which evalu-
ate to one in and on the cube with label j but vanish
everywhere else. Accordingly, let us define the finite
number of position localized degrees of freedom,

φN;j ≔
1

δ3N

Z
½0;l�3

dxχN;jðxÞΦðxÞ;

πN;j ≔
1

δ3N

Z
½0;l�3

dxχN;jðxÞΠðxÞ: ð71Þ

We check that fφN;j; πN;j0g ¼ 1
δ3N
δj;j0 and recall that δN ≤ l.

Hence, the norm of the Poisson bracket is larger than for the
homogeneous modes and tends to infinity for an infi-
nitely fine resolution of the cubes. Thus, it meets the δ-
distribution of the continuous field. Moreover, we can
represent the homogeneous scalar field variables ϕ and μ
using the regulated field degrees of freedom as

ϕ ¼ 1

N3

X
j∈N3

N

φN;j; μ ¼ 1

N3

X
j∈N3

N

πN;j: ð72Þ

These relations suggest to interpret ϕ and μ as the center of
mass coordinates of a system of N3 coordinates φN;j and
πN;j of equal mass. Thus, at finite resolution, we have an
abstract gas of interacting particles with “position” coor-
dinates φN;j and πN;j, and it is well known from classical
mechanics that the center of mass coordinate acquires the
total mass of all particles as its effective mass, thus making
it much heavier than the individual particles. To see this in
more detail, we note that not all of the φN;j are independent
which is due to the above identity. For illustrative purposes,
we assume that the Klein-Gordon field mass is small, and
we consequently approximate the potential term in the
Hamiltonian with the discretized Laplacian. Therefore, we
use the unit standard basis vectors ofR3 and denote them as
feigi∈f1;2;3g. The discretized Laplacian then acts by shifting
the cube fields by ei according to

Z
½0;l�3

dxΦðxÞð−ΔÞΦðxÞ → −δ3N
X
j∈N3

N

X3
i¼1

φN;j
φN;jþei þ φN;j−ei − 2φN;j

δ2N

¼ δN
X
j∈N3

N

X3
i¼1

ðφN;jþei − φN;jÞ2; ð73Þ

where the arrow stands for the discretization step. In the
second line, the discretized Laplacian only depends on the
relative coordinates. This motivates us to choose new
variables, φ̃N;j ≔ φN;j − φN;0, with j ∈ N3

Nnf0g, i.e., the

discretized fields which are reset by the field φN;0 of the
cube at the origin. To complete the set of new variables, we
also have that the homogeneous mean field of these new
variables is given by the homogeneous field in the former
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variables, namely ϕ̃ ≔ ϕ. To make the relation with the
center of mass variables clearer, we defineM ≔ N3, and we
note that φN;0 ¼ ϕ̃ −

P
j≠0

φ̃N;j

M .
Let us then define the symplectic potential of the

discretized theory. The phase space of the theory consists

of the finite number of points Γ ≔ fðφN;j; πN;jÞgj∈N3
N
. The

symplectic potential is then a map from the tangent
space Tðφ;μÞΓ at some point ðφ; μÞ ∈ Γ into R. More pre-
cisely, let dφN;j denote the standard one-form on Tðφ;πÞΓ for
the variable φN;j. The symplectic potential is then given by

1

δ3N
Θ ¼

X
j∈N3

N

πN;jdφN;j ¼
X
j∈N3

N

ðπN;j − μÞdφN;j þ
X
j∈N3

N

μdφN;j

¼
X

j∈N3
Nnf0g

ðπN;j − μÞdφN;j þ ðπN;0 − μÞdφN;0 þ
X
j∈N3

N

μdφN;j

¼
X

j∈N3
Nnf0g

ðπN;j − μÞdðφN;j − φN;0Þ þ
X

j∈N3
Nnf0g

ðπN;j − μÞdφN;0 þ ðπN;0 − μÞdφN;0 þ
X
j∈N3

N

μdφN;j

¼
X

j∈N3
Nnf0g

ðπN;j − μÞdφ̃N;j þ N3μdϕ̃≕
X

j∈N3
Nnf0g

π̃N;jdφ̃N;j þ ðMμÞdϕ̃; ð74Þ

where we used in an intermediate step the following relations:X
j∈N3

N

μdφN;j ¼ N3μdϕ;
X

j∈N3
Nnf0g

μdφN;j ¼ ðN3 − 1Þμdϕ: ð75Þ

Thus, Eq. (74) suggests to define the conjugate momenta of the variables φ̃N;j according to π̃N;j ≔ πN;j − μ for every
j ∈ N3

Nnf0g and correspondingly the momentum conjugate to ϕ̃ as μ̃ ≔ Mμ. Let us then consider the kinetic energy
contribution to the Hamilton function of the scalar field. We start with twice the original field kinetic energy and perform a
discretization to get

Z
½0;l�3

dxΠðxÞ2 → δ3N
X
j∈N3

N

π2N;j ¼ δ3N

0
@X

j∈N3
N

ðπN;j − μ2Þ þ 2μ
X
j∈N3

N

πN;j − N3μ2

1
A

¼ δ3N

0
@ X

j∈N3
Nn0

ðπN;j − μÞ2 þ ðπN;0 − μÞ2 þ N3μ2

1
A

¼ δ3N

0
@ X

j∈N3
Nn0

π̃2N;j þ
0
@ X

j∈N3
Nn0

π̃N;j

1
A2

þ μ̃

M

1
A: ð76Þ

A further analysis reveals that the quadratic form of the π̃N;j
can be diagonalized by an orthogonal transformation,
which can also be extended to a canonical one. With this
and the reduction in (76), we directly see that the system
consists of N3 − 2 modes of unit mass and one mode of the
reduced mass M. It is thus reasonable to think of the
homogeneous mode as a heavy center of mass degree of
freedom, especially in the limit M ¼ N3 → ∞, which is
what we wanted to show.
However, one may object that the cubic field degrees of

freedom φN;j have nothing to do with the Fourier momen-
tum modes Φ̂k ≔ ffk;Φg, except for the zero mode Mϕ̃.
But, in fact, the discretized fields φN;j are approximants of
Φðx ¼ l

N jÞ, which represents the field discretized on a

lattice of T 3 at the lattice point l
N j. Hence, we pass to a

discretized lattice for the three-torus such that points on the

lattice are given by x ∈ Ω ≔ ½0; l
N ;…; ðN−1Þl

N �3. Indeed, we
then write for the φN;j

φN;j ¼
1

δ3N

Z
½0;l�3

dxχN;jðxÞΦðxÞ → 1

δ3N

X
x∈Ω

δ3Nδ l
Nj;x

ΦðxÞ

¼ Φ
�
l
N
j

�
: ð77Þ

In this situation, the Fourier transformation can also be
restricted to the modes 2π

l j with j ∈ N3
N . To see that this is
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true, we first write the Fourier coefficient Φ̂k ∈ C for
ΦðxÞ ∈ R3N with the Fourier transformation formula and
without specifying k ∈ Σ,

Φ̂k ¼
1

N3

X
x∈Ω

expð−ik · xÞΦðxÞ: ð78Þ

Then, we employ as an ansatz for the inverse discrete
Fourier transformationΦðxÞ ¼ P

k expðikxÞ · Φ̂k where we
set the range of the sum to k ∈ Σ0 ≔ 2π

l ½0;…; N − 1�3.
Then, we require that the application of the transform and
its inverse give the unity operator, namely

ΦðxÞ ¼ 1

N3

X
x∈Ω

Φðx0Þ
X
k∈Σ0

exp ðik · ðx − x0ÞÞ

¼ 1

N3

X
x∈Ω

Φðx0ÞN3δx;x0 : ð79Þ

Indeed, in order to obtain the correct normalizing factor, the
range of k must be restricted to Σ0. One can also argue
qualitatively: We need to relate the finite-dimensional vector
ΦðxÞ ∈ R3N to the vector Φ̂k by some unitary matrix. As the
matrix needs to be invertible, Φ̂k must have the same
dimension as ΦðxÞ ∈ R3N . Consequently, we have shown
that the zero mode can be considered as a center of mass
mode with respect to certain linear combinations of dis-
cretized position modes which in turn are linear combina-
tions of discretized momentum modes. Accordingly, treating
the homogeneous mode as the by far most massive one is
physically justifiable from this point of view. That instead of
an arbitrarily large relative scale 1=N3 → 0 we just used the
finite one ε2 ¼ κ

λ is motivated by the specific combinations of
the homogeneous momenta that appear in the Hamiltonian.

C. Transformations for well-defined quantum fields

In this section, we discuss the anomalies that occur in
QFT on CST due to the infinite number of degrees of
freedom. In particular, it is important to understand how the
quantum fields for different configurations of the under-
lying curved spacetime relate one to another. As it turns out,
the corresponding natural Fock representations fail to be
unitarily equivalent for different configurations of the
homogeneous variables. Before we explain the details of
our solution, we illustrate the dilemma with the simplest
possible QFT.
Therefore, consider a classical real scalar field Φ of

Klein-Gordon type defined on a globally hyperbolic
spacetime M ≅ R × B for which the spatial hypersurface
B is a flat and compact manifold. Spacetime then foliates
into spatial hypersurfaces, each of which has the topology
B. Then, there exists a diffeomorphism which maps any
point X to its coordinate representative ðt; xÞ. The variable x
denotes the local coordinates on B. We split the field into its

purely homogeneous and isotropic part with respect to this
hypersurface foliation ϕðt; xÞ ¼ ϕðtÞ, and define the differ-
ence φðt; xÞ ≔ Φðt; xÞ − ϕðtÞ as a linear perturbation of ϕ.
Furthermore, the model comprises the homogeneous and
isotropic parts of the metric field gμν of general relativity, as
well as a timelike, homogeneous, and isotropic, real scalar
dust field u with energy density ρ. The homogeneous and
isotropic metric reduces to the time-dependent scale factor
a and the lapse function N. Physical dynamics is encoded
in the velocity of the scale factor _a. The action splits into a
homogeneous and an inhomogeneous, perturbative part
S ¼ Shom þ Spert with,

Shom½a;N;u;ϕ� ¼
Z
R
dtN

�
−
a _a2

κN2
þa3ρ

2
ð _u2 − 1Þ

þ a3

2λ

��
_ϕ

N

�2

−m2ϕ2

��
;

Spert½a;N;φ� ¼ 1

2λ

Z
R×B

dtdxNa3
�
_φ2−

ð∇φÞ2
a2

−m2φ2

�
;

ð80Þ

where κ ¼ 8πG is the gravitational coupling constant, λ is
the coupling constant of the matter field, m is its mass, and
we have introduced the measure dx of the spatial hyper-
surfaces. The dust field only serves to deparametrize the
model, i.e., to obtain a true Hamilton operator instead of a
Hamilton constraint. Namely, after fixing the gauge freedom
associated with the spacetime diffeomorphisms, the gravi-
tational and scalar contributions to the Hamilton constraint
combine to build a physical Hamiltonian when integrated
over the spatial hypersurface [104,105]. The gravitational
and the scalar field degrees of freedom become observable
fields.
Note that this model almost coincides with the model in

the third paper [82]. There, we employ the same dust field
and reduce the geometry to its homogeneous and isotropic
part. However, we do not account separately for the
homogeneous and isotropic scalar field mode ϕ but we
include it in the inhomogeneous part of the field Φ. This is
possible as all the gravitational and matter degrees of
freedom are already Dirac observables thanks to the dust
field. It is therefore not necessary to treat the ϕ-variable
separately which would serve to define gauge transforma-
tions in the purely constrained case as for the fourth model
[69]. Here, however, we keep this separation of the homo-
geneous scalar field mode in order to show that the following
transformations are valid for systems with more than one pair
of homogeneous variables. With this in mind, a standard
Legendre transformation fromwhich the conjugate momenta
ðpa; μ; πÞ arise yields the Hamilton function H ¼ Hhom þ
Hpert with
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Hpertða;φ;πÞ¼
1

2λ

Z
B
dx

�
λ2π2

a3
−aφðΔφÞþa3m2φ2

�
: ð81Þ

Note that we set N ≡ 1 as the constraint analysis of general
relativity establishes that the lapse function is a mere
Lagrange multiplier without any relevance for the dynamics
of the theory. The homogeneous contribution of the
Hamiltonian Hhomða; pa;ϕ; μÞ has the form of the well-
known homogeneous and isotropic cosmological Hamilton
constraints but its explicit form is not of importance for this
section.
Given these prerequisites, SAPT requires one to work

on the Hilbert space H ¼ Hhom ⊗ Hpert, where the first
factor refers to the homogeneous sector and the second
one to the perturbative sector in our case. As far as the
homogeneous sector is concerned, we adopt a usual
Schrödinger representation in accordance with the space
adiabatic formalism. Regarding the inhomogeneous part,
a standard Fock representation suggests itself since
Hpertða;φ; πÞ is quadratic in the fields φ and π.
But which one? After all, the “background” variable “a”

is not a fixed function of time but a dynamical quantum
variable, and hence displays quantum fluctuations. SAPT
allows one to technically consider the scale factor a as a real
parameter at the first stage, namely when quantizing
Hpertða;φ; πÞ with respect to the inhomogeneous variables
ðφ; πÞ. In this case, the system will correspond to a standard
quantum Klein-Gordon field with an a-dependent frequency,
and we establish the necessary aspects of the theory in the
following. Therefore, consider the one-particle Hilbert space
L2ðB; dxÞ on the compact manifold B. It appears natural to
consider the corresponding symmetric Fock space Hpert ¼
F sðL2ðBÞÞ as the state space of the inhomogeneous quan-
tum field theory for some fixed a ∈ Rþ. We denote the
corresponding vacuum state as ΩðaÞ. Since B is a compact
manifold, the spectrum of the negative Laplace operator −Δ
has a discrete spectrum on the space of two-times contin-
uously differentiable functions C2ðB;CÞ. Consequently,
there exists an orthonormal eigenbasis ffkðxÞg for −Δ with
eigenvalues fμ2kg. We denote the discrete set for the labels k
by Σ. The discrete eigenbasis provides an orthonormal basis
of L2ðB; dxÞ. For illustrative purposes, consider the com-
pact, flat three-torus T 3 with respective side lengths l and
coordinates x. The set of l-periodic functions ffkðxÞ ≔
l−

3
2 expðik · xÞg with k ∈ Σ ≔ 2πZ3=l represents an ortho-

normal basis of the Hilbert space L2ð½0; l�3; dxÞ. In the
generic notation, the Fock space on B consists of sequences
fψ ðnÞgn≥0 of totally symmetric functions with n variables
xi ∈ B [106] [p. 10].
The algebra of operators is defined by means of the

particle annihilation and creation operators bðaÞ and
b�ðaÞ, and we choose to denote the operators acting on
states in F s by bold letters as the inhomogeneous
subsector identifies with the fast system. The operators

bða; fÞ and b�ða; fÞ “annihilate” and “create” any smooth
one-particle state fðxÞ ∈ C∞ðBÞ in the standard way.
The maps f ↦ bða; fÞ and f ↦ b�ða; fÞ are antilinear
and linear, respectively, with respect to f. Therefore,
it is possible to define the operators more explicitly by
means of operator-valued distributions bða; xÞ and
b�ða; xÞ such that bða;fÞ¼ R

dxfðxÞbða;xÞ and b�ða; fÞ ¼R
dxfðxÞb�ða; xÞ. The annihilation and creation operators

stand in direct relation to the canonical field operators φ
and π. In this respect, Eq. (81) suggests to define the one-
particle operator

ffiffiffiffiffiffiffiffiffiffi
ωðaÞp

∶C2ðBÞ → CðBÞ according to
ωðaÞ2 ≔ −a2Δþm2a6. By duality, this one-particle oper-
ator acts on the operator-valued C∞ðBÞ distributions.
Namely, for some operator-valued distribution ρðxÞ ∈
C∞ðB;LðF sÞÞ� where LðF sÞ denotes the space of
linear operators on the bosonic Fock space and the “�”
stands for the dual space

ffiffiffiffiffiffiffiffiffiffi
ωðaÞp

operates according to
ð ffiffiffiffiffiffiffiffiffiffi

ωðaÞp ðρÞÞðfÞ ≔ ρð ffiffiffiffiffiffiffiffiffiffi
ωðaÞp ðfÞÞ. For the given case, the

operator-valued distribution of the annihilation operator
then has the explicit form

bða; fÞ ≔ 1ffiffiffi
2

p ½ð
ffiffiffiffiffiffiffiffiffiffi
ωðaÞ

p
ðφÞÞ − ið

ffiffiffiffiffiffiffiffiffiffi
ωðaÞ

p −1ðπÞÞ�ðfÞ; ð82Þ

and accordingly for the creation operator with the minus
replaced by a plus. In view of the already mentioned
orthonormal basis ffkg of L2ðBÞ which diagonalizes the
Laplace operator, it is convenient to introduce the anni-
hilation and creation operators for the modes fk, namely
bða; fkÞ and b�ða; fkÞ. They satisfy the standard commu-
tation relations of annihilation and creation operators,

½bða; fkÞ; b�ða; fk0 Þ� ¼ δk;k01F s
; ð83Þ

where δ is the Kronecker delta with respect to the discrete
modes k and k0. In order to represent the Hamilton
operator Hpert in terms of the mode annihilation and
creation operators, we first return to the classical fields
φðxÞ, πðxÞ and expand them with respect to the mode basis
ffkg. With the corresponding Fourier coefficients as
position and momentum variables φk and πk, we obtain
the Hamiltonian of a discrete but infinite set of indepen-
dent harmonic oscillators with respective frequency

ωða; μ2kÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4μ2k þma6

q
. The quantization of the mode

coefficients yields the quantum version of the classical
Hamiltonian in (81). Eventually, we perform a trans-
formation to annihilation and creation operators according
to Eq. (82) with f ¼ fk and the analogous relation for
b�ða; fkÞ. Then, the a-dependent normal ordering of the
Fock–quantized perturbation Hamiltonian Hpertða;ϕ; πÞ
reads
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HpertðaÞ ¼
1

a3
X
k∈Σ

b�ða; fkÞðωðaÞbðaÞÞðfkÞ: ð84Þ

Two immediate questions arise:
(1) Are the corresponding Fock representations

ðπa;F sÞ, where πa denotes the group homo-
morphism between the field Weyl algebra of
ðφ; πÞ and the space of bounded linear operators
on F s, all unitarily equivalent to a single represen-
tation ðπf ;F sÞ? This is one of the innocent looking
assumptions of SAPT which is automatically satis-
fied in the quantum mechanical context.

(2) Assuming that this unitary equivalence between the
different representations is granted, let f be a smooth
function in the one-particle Hilbert space associ-
ated with the Fock space F s. Then, let b̂ða; fÞ ¼
Ŵðbða; fÞÞ and b̂�ða; fÞ ¼ Ŵðb�ða; fÞÞ be the
Weyl quantizations with respect to the homogeneous
variables of the annihilation and creation operator
symbols bða; fÞ and b�ða; fÞ. Then the second
question is whether the complete algebra of the
operators â, p̂a, ϕ̂, μ̂, b̂ða; fÞ, b̂�ða; fÞ is well defined
on the full Hilbert space Hhom ⊗ F s.

It turns out that both questions are tightly related and the
answer to both is negative. The underlying effect has been
first observed in [64–66] in a related context.
To see the origin of the problem, we note that a necessary

condition for an affirmative answer to the first question is
that the Fock vacuum Ωða2Þ can be written as an excited
state in F s with respect to the representation πa1 for all a1,
a2 in Rþ. In fact, this condition is also sufficient because
polynomials of the creation operators b�ða1; fÞ can be
written as polynomials of the operators bða2; fÞ and
b�ða2; fÞ for some smooth f ∈ C∞ðBÞ. To elaborate on
this, let (n) denote the collection of occupation numbers
fnkgk∈Σ of some excited state ψ ðnÞ. For the point a1, we
define this excited state as,

ψ ðnÞða1Þ ¼
Y
k∈Σ

½b�ða1; fkÞ�nkffiffiffiffiffiffiffi
nk!

p Ωða1Þ: ð85Þ

We then assume that it is possible to write the vacuum state
at a2 as a linear combination of such excited states, namely

Ωða2Þ ¼
X
ðnÞ

zðnÞ · ψ ðnÞða1Þ; ð86Þ

where the sum is over all (n) with only finitely many
nk different from zero. Then, for the two vacuums to stand
in a well-defined relation, it must hold true that
bða2; fkÞΩða2Þ ¼ 0 for any fk. To analyze this equation
with respect to the πa1 representation, consider the differ-
ential operators u�ða1; a2Þ∶C∞ðBÞ → C∞ðBÞ defined by

u�ða1; a2Þ ≔
1

2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffi
ωða1Þ
ωða2Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffi
ωða2Þ
ωða1Þ

s 1
A; ð87Þ

and we recall that ωðaÞ2 ¼ −a4Δþm2a6. By extending
u�ða1; a2Þ to the space of operator-valued distributions as
before, we define the Bogoliubov transformation by

bða2; fkÞ ≔ ðuþða1; a2Þbða1ÞÞðfkÞ
þ ðu−ða1; a2Þb�ða1ÞÞðfkÞ; ð88Þ

for any fk and linear combinations thereof. The one-
particle operator u�ða1; a2Þ is diagonal with respect to the
basis states ffkgk∈Σ. Therefore, let u�ða1; a2; kÞ ∈ R be
the eigenvalues of u�ða1; a2Þ defined by u�ða1; a2Þfk ¼
u�ða1; a2; μ2kÞfk. It follows by extending this relation to
the operator-valued distributions that

ðuþða1; a2Þbða1ÞÞðfkÞ ¼ uþða1; a2; μ2kÞbða1; fkÞ; ð89Þ

and correspondingly for u− and b�ðfkÞ. Eventually, we
denote the collection of occupation numbers for which
only the excitation number associated with fk equals one
and the remaining ones vanish by 1k. Then, the expression
ðnÞ � 1k stands for a new set of occupation numbers in
which the excitation number of fk in the set (n) is raised or
lowered, respectively, by one. Then, we require that the
defining equation of the vacuum state holds, namely that
the application of the annihilation operator bða2; fkÞ on
the vacuum state Ωða2Þ vanishes,

bða2; fkÞΩða2Þ ¼
X
ðnÞ

zðnÞ½ ffiffiffiffiffi
nk

p
uþða1;a2;μ2kÞψ ðnÞ−1kða1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkþ 1

p
u−ða1;a2;μ2kÞψ ðnÞþ1k

ða1Þ�
¼
X
ðnÞ

½zðnÞþ1k
uþða1;a2;μ2kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nkþ 1

p
þ zðnÞ−1ku−ða1;a2;μ2kÞ

ffiffiffiffiffi
nk

p �ψ ðnÞða1Þ ¼ 0:

ð90Þ

Since the relation (90) should hold for all k ∈ Σ inde-
pendently, the coefficients must be of infinite product type

zðnÞ ¼
Y
k

ζknk : ð91Þ

Then, we define the quotient σða1; a2; μ2kÞ ≔ u−ða1; a2; μ2kÞ=
uþða1; a2; μ2kÞ. The product ansatz together with this defi-
nition transforms equation (90) into the recursion relation

ζknkþ1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk

nk þ 1

r
σða1; a2; μ2kÞζknk−1: ð92Þ
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The right-hand side of the recursion relation vanishes for
nk ¼ 0. It follows that ζnkðnÞ ¼ 0 for any odd nk. For even nk,
the solution of Eq. (92) is given by

ζk2nk ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nk − 1

2nk

s
σða1; a2; μ2kÞζk2ðnk−1Þ

¼ ð−σða1; a2; μ2kÞÞnk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nkÞ!

4nkðnk!Þ2
s

ζk0; ð93Þ

where the ζk0 remain undetermined for the moment and their
values are of no consequence for the subsequent argumenta-
tion. In order to prove that the vacuumΩða1Þ transforms into
the vacuum Ωða2Þ in a well-defined fashion, it is necessary
that the F sða1Þ norm of Ωða2Þ has a finite, nonvanishing
value. As a working hypothesis, we assume that this is true.
Then, it stems from the previous results that

kΩða2Þk2F s
¼
X
ðnÞ

jzðnÞj2¼
X
ðnÞ

����Y
k∈Σ

ζknk

����2¼X
ðnÞ

Y
k∈Σ

jζknk j2

¼
Y
k∈Σ

�X∞
n¼0

jζk0j2σða1;a2;μ2kÞ2n
ð2nÞ!
4nðn!Þ2

�

¼
�Y

k∈Σ
jζk0j2

�
·

�Y
k∈Σ

X∞
n¼0

σða1;a2;μ2kÞ2n
ð2nÞ!
4nðn!Þ2

�
:

ð94Þ

Regarding the n-dependent factors in the last expression, it
will prove to hold that

1

2n
≤

ð2nÞ!
4nðn!Þ2 ≤ 1; ð95Þ

for example by using mathematical induction. Inserting the
estimate (95) into (94) allows one to rewrite the sum as a
geometric series. We obtain an infinite series over n with
coefficients ðσða1; a2; μ2kÞ2nÞ=2n and σða1; a2; μ2kÞ2n, respec-
tively. Since σða1; a2; μ2kÞ2 < 1 independently of μk, this
gives rise to the following estimate:

Y
k∈Σ

jζk0j2 ·
Y
k∈Σ

�
1 −

σðμ2kÞ2
2

�−1
≤ kΩða2Þk2F s

≤
Y
k∈Σ

jζk0j2 ·
Y
k∈Σ

ð1 − σðμ2kÞ2Þ−1: ð96Þ

Thus, a necessary condition for the convergence of (94) is
that the infinite product on the left converges to a finite value.
Note thereby that

Q
k∈Σ jζk0j2 is a common prefactor in all

jzðnÞj2, and thus it must be convergent to some finite value by
itself as otherwise all zðnÞ would be meaningless. By taking
the logarithm, the convergence of the lower estimate is
equivalent to the convergence of the series

X
k∈Σ

ln

�
1 −

σða1; a2; μ2kÞ2
2

�
; ð97Þ

which is also known as the Hilbert-Schmidt condition. In
order to resolve the estimates, we recall that σða1; a2; μ2kÞ
is determined by the frequency function ωða; μ2kÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4μ2k þ a6m2

q
, namely

σða1; a2; μ2kÞ2 ¼
u−ða1; a2; μ2kÞ2
uþða1; a2; μ2kÞ2

¼ ðða41 − a42Þμ2k þ ða61 − a62Þm2Þ2
ðωða1; μ2kÞ þ ωða2; μ2kÞÞ4

: ð98Þ

In order that the series (97) converges, a necessary condition
is that the coefficients of the latter tend to zero for μk → ∞.
Keeping track of the logarithm, this is true if σða1; a2; μ2kÞ2
tends to zero. To check this, note that ωða; μ2kÞ → a2μk for
large μk. Consequently, the expression (97) evaluates to

lim
μk→∞

σða1; a2; μ2kÞ2 ¼
ða21 − a22Þ2
ða21 þ a22Þ2

; ð99Þ

which is a nonvanishing constant for a1 ≠ a2. The Hilbert-
Schmidt condition fails for any two distinct a1, a2. Note,
however, that according to (98), the problem would disappear
if the wave mode term was relieved from its scale factor
dependence. In particular, then σða1; a2; μ2kÞ2 would decay as
1=μ4k, and thus the series

P
k lnð1 − σða1; a2; μ2kÞ2=2Þ would

converge to a nonzero value.
This answers the first question posed above, namely that

the Fock representations ðπa;F sÞ are not unitarily equiv-
alent for different values of a. The second question, i.e.,
whether the complete operator algebra of the canonical
pairs is well defined on the full Hilbert space, is indeed
equivalent to the first one. To see this, we assume that the
scale factor a is represented as a self-adjoint operator â on
the full Hilbert spaceH. Then, by the spectral theorem, it is
approved to display the Hilbert space as a direct integral or
a Hilbert bundle subordinate to a, namely

H ≅
Z

⊕

σðâÞ
dμðaÞHpertðaÞ; ð100Þ

where μ is the spectral probability measure on the spectrum
σðâÞ of â which is just Rþ

0 . The previous discussion
suggests to identify the fiber spaces HpertðaÞ with the
Fock spaces F sðaÞ. As a consequence of the spectral
theorem, the Hilbert spaces F sðaÞ (of equal dimension)
should be chosen identical [107,108]. As we already know,
this is, however, not the case. Nevertheless, it is instructive
to pretend the opposite for the moment. Vectors in the
Hilbert bundle are given by measurable fiber Hilbert space
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valued functions, ψ∶σðâÞ ↦ H, a ↦ ψðaÞ over the base
manifold σðâÞ. They are equipped with the inner product

hψ ;ψ 0iH ¼
Z
σðâÞ

dμðaÞhψðaÞ;ψ 0ðaÞiF s
: ð101Þ

By the spectral theorem, â acts by multiplication by a in the
fiber F sðaÞ. Accordingly, the operator Ĥpert acts fiberwise as
well by the symbol HpertðaÞ in (84). The question is now
how the operator p̂a representing the momentum of the scale
factor acts on the direct integral Hilbert space. As the
spectrum of â is of absolutely continuous type, the momen-
tum acts as ðp̂aψÞðaÞ ¼ ði∂a þ fðaÞÞψðaÞ where we intro-
duce the function fðaÞ related to the divergence of the
measure μðaÞ. The function has the purpose to turn p̂a into a
symmetric operator. In fact, in order to obtain a self-adjoint
operator, it is advisable to pass to the real-valued triad
variable e and work with its conjugate momentum.
Nevertheless, the conclusion derived below is not affected
by these subtleties. In contrast to the momentum operator,
the operators b̂ða; fÞ and b̂�ða; fÞ act fiberwise by the
corresponding symbols as they only depend on the scale
factor a.
In order to check whether the geometric momentum

operator p̂a is well defined on (some dense subset of) H, it
is beneficial to compute the norm of the state ðp̂aΩÞðaÞ.
Therefore, we compute the geometric commutator of p̂a
and b̂ða; fÞ. The integral representation of these Weyl
operators with respect to the geometric system provides the
means to easily deduce the result. As the operator bða; fÞ
only depends on the configuration variable a, a partial
integration allows one to shift the derivative due to p̂a on
bða; fÞ. Using Eq. (82), we see that the derivative directly
acts on powers of the one-particle operator ωðaÞ within
bða; fÞ. Finally, this yields an additional a-dependent
prefactor KðaÞ which is a one-particle operator itself.
This operator is then also subject to the geometric quan-
tization procedure

½p̂a; b̂ða; fÞ� ¼ −iðK̂ðaÞb̂�ðaÞÞðfÞ

where KðaÞ ¼ 1

2

∂aωðaÞ
ωðaÞ : ð102Þ

As a result and with the identity b̂ða; fÞΩ ¼ 0 for any f, it
holds true that

b̂ða;fÞðp̂aΩÞ¼ ½b̂ða;fÞ; p̂a�Ω¼ iðK̂ðaÞb̂�ðaÞÞðfÞΩ: ð103Þ

Using that any one-particle state f has a unique decom-
position with respect to some basis ffkgk∈Σ and that the
above equality must hold for any f, the vector p̂aΩ has
respective to this basis the solution

p̂aΩ ¼ −
i
2

X
k∈Σ

b̂�ða; fkÞðK̂ðaÞb̂�ðaÞÞðfkÞΩ: ð104Þ

By that, it is possible to compute the norm of p̂aΩ.
Therefore, we denote the twofold excitation of the vacuum
state ΩðaÞwith respect to the mode fk by

ffiffiffi
2

p
ψ2k

ðaÞ. Then,
using the inner product with respect to the geometric
quantization, we obtain for the norm square

kp̂aΩk2 ¼
Z
σðâÞ

dμðaÞ
X
k∈Σ

hψ2k
ðaÞKða;μkÞ;Kða;μkÞψ2k

ðaÞi

¼ 1

16

Z
σðâÞ

dμðaÞ
X
k∈Σ

�∂aωða;μkÞ2
ωða;μkÞ2

�
2

: ð105Þ

The norm only admits a finite value if the series over k is
almost everywhere finite as a function of a. However, for
large k and consequently for large μk, any coefficient of the
series evaluates to ð4=aÞ2, which is a constant for some
fixed value of the scale factor a. Hence, the sum does not
converge, and we are left with an infinite norm of p̂aΩ.
Note that (105) is the infinitesimal version of (97), if we
divide it by ða1 − a2Þ2 and take the limit a2 → a1.
Consequently, SAPT does not immediately apply to the

case of QFT on CST. One hope might be that by a different
choice of Fock representations, the Hilbert-Schmidt con-
dition can be met. However, if the correspondingly normal-
ordered Hamiltonian should remain at least densely defined
on the Fock states, this again leads to an obstruction. To
understand the origin of this impediment, note that we can
satisfy the Hilbert-Schmidt condition by rescaling the
classical fields φðxÞ and πðxÞ according to

φ̃ðxÞ ≔ aφðxÞ; π̃ðxÞ ¼ πðxÞ
a

; ð106Þ

see also Ref. [109] where this strategy has been used
previously. These new fields still satisfy the canonical
Poisson brackets with respect to the inhomogeneous
degrees of freedom and with a being fixed. The perturba-
tion Hamilton function reads with these rescaled fields

Hpert ¼
1

2a

Z
B
dxðπ̃2 þ φ̃ ω̃ðaÞφ̃Þ;

where ω̃ðaÞ ¼ −Δþm2a2; ð107Þ

such that the coefficient of the Laplace operator in ω̃ðaÞ2 is
independent of a. However, the transformation (106) is not
a canonical transformation on the full phase space. In fact, it
is no longer the case that pa; φ̃, and π̃ have vanishing
Poisson brackets as the above transformation depends on a.
Consequently, the fundamental canonical structure for the
canonical quantization procedure of SAPT has disap-
peared. Nevertheless, as first pointed out in the context
of hybrid quantum cosmology (see, e.g., Refs. [64–66] and
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[110] and references therein), the transformation (106)
allows for an exact completion by adding a corresponding
contact term in the symplectic potential. For completeness,
we review this procedure below using our terminology.
To define the symplectic potential for the system, we

recall that our system is modeled on an infinite dimensional
Banach manifold Q which is given by the Cartesian product
of the finite dimensional, the homogeneous configuration
space Qhom ¼ Rþ × R, and the infinite dimensional, per-
turbative configuration space of fields Qpert. The latter space
could for example be the Sobolev space H1ðBÞ of fields
whose first derivative has a finite L2 norm such that the
Hamilton function is well defined. With the cotangent
bundle T�Q (i.e., the phase space) and the projection map
pr∶T�Q → Q∶α ≔ ðp; qÞ → q, which maps any α ∈ T�Q
to its configuration q, we define the symplectic potential Θ
on the manifold T�Q as a map from the tangent space
TαðT�QÞ into R, where α ∈ T�

qQ with q ¼ prðαÞ. In
particular, for some v ∈ TαðT�QÞ, we have that ΘðαÞðvÞ ≔
αðpr�ðvÞÞ where pr�∶TðT�QÞ → TQ is the pushforward of
the projection pr [111].
In a coordinate representation, this has the standard

intuitive form: We denote the coordinates of a point
ðq; pÞ ∈ T�

ΦQ in phase space by ðΦ;ΠÞ, where Φ stands
for the generalized fields ða;ϕ;φÞ. Then, Θ has the
coordinate representation,

R
B dxΠðxÞdΦðxÞ, where d is

the exterior derivative such that dΦðxÞ denotes a standard
one-form on TðΦ;ΠÞðT�QÞ [112]. To shorten the notation,
we simply denote the integral by hΠ; dΦi, where h·; ·i
stands for the L2 norm on B. By splitting the fields into the
homogeneous and inhomogeneous components and by
executing the integrals over the homogeneous degrees of
freedom, the symplectic one-form supports the form

Θ ¼ pdaþ μdϕþ hπ; dφi; ð108Þ

where we used the product rule for the exterior derivative.
Then, the transformation to the dashed fields of this
one-form produces an additional term proportional to da,
namely

Θ ¼
�
p −

1

a
hπ;φi

�
daþ μdϕþ hπ̃; dφ̃i: ð109Þ

This suggests to define new dashed pairs of variables in the
homogeneous sector,

p̃ ≔ p −
1

a
hπ;φi ¼ p −

1

a
hπ̃; φ̃i;

ã ≔ a; ϕ̃ ≔ ϕ; μ̃ ≔ μ; ð110Þ

as the completion of that transformation. Unfortunately, now
we have towriteHhom in terms of p̃ and this causes problems
when passing to the quantum realm. In particular, when
quantizing with respect to the perturbative Fock fields, as

suggested by SAPT, the supplementary term due to the
completion introduces first and second powers of an ill-
defined (normal ordered) operator. By taking an arbitrary
basis ffkgk∈Σ of L2ðBÞ, this operator is given by

X
k∈Σ

π̃ðfkÞφ̃ðfkÞ ¼
i
2

X
k∈Σ

ðb̃ða; fkÞ2 − b̃�ða; fkÞ2

− 2b̃�ða; fkÞb̃ða; fkÞÞ; ð111Þ

where b̃ is the annihilation operator obtained from (82) by
substituting all ingredients by those with a tilde, and likewise
for the creation operator b̃�. The operator in Eq. (111) is
obviously ill-defined on the corresponding Fock space.
However, the discussion suggests to consider more general
transformations in order to avoid the disastrous terms such
as (111). We thereby follow the logic of [64–66].
We confine ourselves to perturbation theory up to second

order with respect to φ and π which themselves are
considered to be of first order. This suggests to restrict
to transformations to be linear in φ and π such as (106).
This keeps the second order nature of Hpert while higher
order transformations would be hidden anyway. The
corresponding contact terms for the homogeneous degrees
of freedom will then be already of second order at leading
order as in Eq. (110), and we can restrain the precision of
the canonical transformation to second order. Let us
emphasize that these linear transformations in the pertur-
bative fields will be supplemented by transformations of the
homogeneous variables which are of second perturbative
order. Such a transformation of the full phase space allows
one to obtain a diagonal perturbative Hamiltonian (meaning
that there are no terms quadratic in only annihilation or only
creation operators), and hence, a normalizable vacuum state
(see Ref. [64]).
To shorten the notation, we use the letters ðqj; pjÞ with

j ¼ 1, 2 for denoting the homogeneous variables ða; pÞ and
ðϕ; μÞ, and we suppress indices whenever possible. We
consider the classical fields ðφ; πÞ ∈ H3ðBÞ ×H2ðBÞ and
apply a set of transformations, ðr; s; t; uÞ, which relate the
original fields ðφ; πÞ and the transformed fields ðφ̃; π̃Þ.
Note that these transformations are operators on the space
of (a certain class of) functions, or rather fields, on B. We
write them as

φðxÞ ≔ ðrðq; pÞφ̃ðq; pÞÞðxÞ þ ðsðq; pÞπ̃ðq; pÞÞðxÞ; ð112Þ

πðxÞ ≔ ðtðq; pÞφ̃ðq; pÞÞðxÞ þ ðuðq; pÞπ̃ðq; pÞÞðxÞ: ð113Þ

We keep the transformations ðr; s; t; uÞ as generic as
possible and let them depend on all ðq; pÞ. Furthermore,
they can involve the Laplace operator which leads to trans-
lation invariant operators on the field space. Regarding the
Hilbert-Schmidt condition, it suffices to restrict the trans-
formations to depend on the Laplacian so that they mutually
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commute and are symmetric on L2ðBÞ. r; s; t, and u are
restricted to be real valued since all the variables are.
The transformations should meet certain conditions. First,

the new system of fields should satisfy the standard Poisson
bracket relations with respect to the inhomogeneous fields
such that the transformations (112) and (113) be canonical.
Therefore, we smear the fields with functions f; g ∈ L2ðBÞ
and require that the new and the original fields satisfy the
Poisson relations, fφðfÞ; πðgÞg ¼ hf; gi ¼ fφ̃ðfÞ; π̃ðgÞg.
This leads to the condition ur − st ¼ 1.
Further conditions for the operators ðr; s; t; uÞ arise from

plugging the transformations (112) and (113) into the
symplectic potential (108). This generates terms in the
symplectic potential which give rise to transformations of
the homogeneous variables at second order in the pertur-
bations. Let us denote these second order transformations
by qj → qj þ χjq ≕ q̃j and pj → pj þ χp;j≕ p̃j such that
the symplectic potential reads

ðpj þ χp;jÞdðqj þ χjqÞ ¼ pjdqj þ χp;jdqj þpjdχ
j
q þOðχ2Þ

¼ pjdqj þ χp;jdqj − dpjχ
j
q þOðχ2Þ:

ð114Þ

To confine the possible transformations, we plug these
results into the Hamilton function and develop the latter up
to second order in the perturbations. As the perturbative
Hamilton function, Hpert, is already of second order, it is
allowed to simply replace the original homogeneous
variables by the dashed ones. Regarding the homogeneous
Hamiltonian Hhom, the cropping of higher order terms
suggests to Taylor expand with respect to the homogeneous
degrees of freedom, namely

Hhomðq; pÞ ¼ Hhomðq̃; p̃Þ −
∂Hhom

∂qj ðq̃; p̃Þχjqðq̃; p̃Þ

−
∂Hhom

∂pj
ðq̃; p̃Þχp;jðq̃; p̃Þ: ð115Þ

Using the notation of the above transformations, this gives
the second order contributions,

Hhom ¼ H̃hom −
1

2
ðhφ̃; ðt_r − r_tÞφ̃i þ hπ̃; ðu_s − s _uÞπ̃i

þ hπ̃; ðu_r − r _uþ t_s − s_tÞφ̃iÞ:

To shorten notation, we introduce the functions and oper-
ators b ≔ a−3, c ≔ a, ω2 ¼ cð−ΔÞ þ k, and k ≔ m2a3. In
all these expressions, it is allowed to replace a by ã in
agreement with the truncation after second order in the
perturbations. In total, the second order contributions of the
transformed Hamilton function are then given by

ðHhom − H̃homÞ þHpert

¼ 1

2
hφ̃; ðt2bþ r2ω2 − ðt_r− r_tÞÞφ̃i

þ 1

2
hπ̃; ðu2bþ s2ω2 − ðu_s− s _uÞÞπ̃i

þ hπ̃; ðubtþ sω2r−
1

2
ðu_r− r _uþ t_s− s_tÞÞφ̃i: ð116Þ

The last term is ill-defined on any Fock space; hence its
round bracket must vanish. The round bracket in the second
line is supposed to be a positive operator in order to have a
positive kinetic energy contribution. We therefore denote it
as “d2” and it is allowed to be a function of all the
homogeneous variables ðq; pÞ as well as of the Laplace
operator. Then, we require the round bracket operator in the
first line to be of the form, d2ð−ΔþM2Þ, where M2 is a
function of the homogeneous variables to be determined.
This guarantees that we can factor out d2 from the expression
of the Hamiltonian, leaving us with a Hamiltonian density of
standard form with constant coefficients for the Laplacian
such that the Hilbert-Schmidt condition is satisfied.
The simplest choice for the operators ðr; s; t; uÞ is that,

first, none of them depends on −Δ and, second, also d does
not depend on −Δ. This selection is in fact unique and
provides the following solutions. First, the fact that d2

should not depend on the Laplace operator implies that
s≡ 0 so that the term s2ω2 vanishes. Consequently, it holds
true that ru ¼ 1, and hence the whole round bracket of the
kinetic term reduces to d2 ¼ u2b. Since b and evidently u2

are manifestly positive, it follows that the entire term is
positive. The corresponding algebraic solution for the
operator t is then

t ¼ −b−1u−2 _u: ð117Þ

Note that we freely interchange the order of the operators as
they are commuting. Eventually, we consider the first line
and recall that the operator in the round brackets must equal
d2ð−ΔþM2Þ, where M denotes an effective mass term
which depends on the dashed variables but not on the
Laplace operator. With the previous results, this condition
evaluates to

d2ð−ΔþM2Þ ¼ u−2ðb−1u−2 _u2 þ cð−Δþ k̃Þ
þ fHhom; tughomÞ: ð118Þ

In order to fulfill the Hilbert-Schmidt condition, it is
essential that the coefficients of the Laplace operators on
both sides of the equations match such that finally they only
hold a constant coefficient up to a global prefactor. Using
that d2 ¼ u2b, this yields

u4 ¼ b−1c ¼ ã4; ð119Þ
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where we employed the expressions for b and c and directly
replaced the original variables by the dashed ones. Ergo, we
have that d2 ¼ ã−1. The transformed mass term becomes in
general form and for the concrete case here

M2 ¼ d−2u−2ðb−1u−2 _u2 þ ck̃þ fHhom; tughomÞ ð120Þ

¼ _̃a2 þm2ã2 −
1

ã
fHhom; ã2 _̃aghom: ð121Þ

Thus, it is finally achievable to make the Hamilton symbol
Hpertðq̃; p̃Þ well-defined on all the Fock spaces F sðãÞ for
any ã ∈ Rþ. Note that the case s ¼ 0, d2 ¼ ã−1 reflects the
unitarity of the Fock quantization (see, e.g., Ref. [109]).
Due to the dependence of the mass term m̃2 on all the

homogeneous degrees of freedom ðq̃j; p̃jÞ, the Born-
Oppenheimer method is no longer available. We are forced
into its generalization, the space adiabatic scheme.
However, we notice that the square of the mass term M
is not manifestly positive and the question arises how to
deal with that fact. With the specific choices made here,
there is no freedom left to change this without making the
coefficients ðr; s; t; uÞ also depend on −Δ. Whether this can
be improved by exploiting the complete freedom for those
operators will be left for future research.
In this respect, we draw attention to Ref. [94]. There, the

starting point is a Hamiltonian of second order in the
inhomogeneous degrees of freedom with standard form up
to a prefactor depending on the homogeneous degrees of
freedom. Furthermore, themass squared is a generic function
of the homogeneous degrees of freedom. Hence, we are
precisely in the situation arrived at above after the (almost)
canonical transformations. The analysis of [94] investigates
the most general Fock representation labeled by the homo-
geneous variables that supports such aHamiltonian and at the
same time provides a canonical transformation of the
homogeneous sector to variables which directly commute
with the associated annihilation and creation variables.
This procedure has the advantage that the Hilbert-Schmidt

condition is trivially solved because the annihilation and
creation operators do not depend on the transformed
homogeneous degrees of freedom in the sense that together
they build the basic canonical building blocks. As such, the
strategy is similar in spirit to the present one although the
details are different. Their strategy does not allow for an
algebraic solution, rather it is necessary to solve a system
consisting of two nonlinear (but semilinear) first order partial
differential equations for complex coefficient operators
coming from the Hamiltonian vector field of Hhom. These
equations then guarantee that all conditions are met includ-
ing the positivity of the mass term. One of the conditions is
equivalent to the fixed point equation of the adiabatic vacua
construction [21], and the other determines an otherwise free
phase. While those partial differential equations are well-
posed and can be solved in principle by the method of

characteristics, it is generically very hard to solve the system
explicitly given the detailed form of Hhom. This, however, is
a prerequisite to quantize the homogeneous sector as well.
Thus for the purpose of the papers in this series, we stick to
the method sketched above, although the possibility to
ensure the positivity of the mass squared is very attractive.
We deal with the complications that arise for negative mass
squared terms more explicitly in the next subsection.
There is also another, independent reason why the

approach of [94] is especially attractive: Since annihilation
and creation operators commute with the operators of the
homogeneous sector, the latter operators preserve the
domain of the inhomogeneous part of the Hamiltonian.
This is not necessarily the case when we simply assure the
Hilbert-Schmidt condition. To see this, suppose that the
symbol KðaÞ that we derived in Eq. (102) is of the Hilbert-
Schmidt type and only depends on a. Then, the vector
Ĥpertðp̂aΩÞ can be computed recalling that Ĥpert ¼ ŴðHpertÞ
is the Weyl quantization of the operator-valued symbol Hpert

which was explicitly given in Eq. (84) and by means of
the explicit representation of p̂aΩ in (104). After shifting
the annihilation operator due to the Hamilton operator to the
right side of the resulting operator, we obtain

Ĥpertðp̂aΩÞ¼−iŴða−3Þ
×
X
k∈Σ

b̂�ða;fkÞðω̂ðaÞK̂ðaÞb̂�ðaÞÞðfkÞΩ: ð122Þ

The operator symbol ωðaÞKðaÞ is given with (102) by
∂aωðaÞ which grows as jkj for large jkj if the coefficient in
front of the Laplace operator depends on the scale factor.
Even if the Laplace operator does not carry an a-dependent
prefactor, the resulting expression decays at most as 1=jkj.
Hence, the infinite sum over all the k’s and this falloff
property of the above operator prevents ðĤpertp̂aÞ from
being a well-defined operator on Fock space. By itself this
is not a problem because we want to consider the spectrum
of Ĥ ¼ ŴðHÞ rather than ŴðHpertÞ which does not require
one o have the commutator ½p̂a; Ĥpert� defined on the Fock
space. Nevertheless, it would be a convenient property to
have. Thereby, we recall that once Ĥ can be constructed as a
self-adjoint operator, the existence of a dense and invariant
domain is granted [107,108]. Again, to have a domain left
invariant by the operators of the homogeneous sector could
possibly be achieved within the context of this paper
if we considered more generic transformations ðr; s; t; uÞ
and in particular made the derivative of the function
dð−ΔþM2Þd, with respect to the homogeneous variables
to decay faster than 1=jkj.
Let us finally note that the above-proposed transforma-

tions apply to rather generic second order Hamiltonians.
More generally, one may have several matter or geometry
species, e.g., scalar, vector, tensor, and spinor modes [110].
A straightforward proposition for this consists in applying
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an individual canonical transformation for any of the
species labeled by “s” which is then parametrized by
ðrs; ss; ts; usÞ. The transformation of the symplectic poten-
tial for each of the species simultaneously has the simple
effect that the ðχjs; χs;jÞ corrections for all the species add

up. Since we perturb Hhom only linearly in ðχjs; χs;jÞ and
because it is allowed to drop the ðχs;j; χs;jÞ corrections for
the homogeneous variables in the perturbed Hamiltonian
Hpert in second order perturbation theory, the species
contributions never mix. Accordingly, we can consider
the Hamiltonian symbols to be well-defined on the corre-
sponding Fock spaces, and the Hilbert-Schmidt conditions
are all solved.

D. Indefinite mass squared operators

As alluded to above, the effective mass squared termsM2

that result from the transformations discussed in the
previous section fail to be positive in general on the entire
phase space. In what follows, we present several strategies
for how to deal with this problem, none of which is entirely
satisfactory as they either lead to instabilities or contain
ad hoc elements. Since this is a new situation, the
discussion will be mostly exploratory. We pursue five
different lines of thought.
The first suggestion is to exploit the full freedom in the

transformations ðr; s; t; uÞ beyond the restricted ansatz of the
previous subsection and to make positivity manifest thereby.
We emphasize that there should be substantial freedom in the
choice of these transformations, and the domain of the phase
space where the mass squared functions become negative
depends on this freedom. Thereupon, this region should not
be of any physical significance and the generalization of the
transformations is hence a physically motivated criterion.
A second approach consists in restricting the classical

phase space of the homogeneous degrees of freedom to the
set of points ðq; pÞ where M2

s ðq; pÞ ≥ 0 for all perturbation
species s. This restriction can be achieved by defining new
variables vs for the associated homogeneous variables and to
set v2s ¼ M2

s . An especially nice situation occurs when the
mass terms M2

s have mutually vanishing Poisson brackets
between them. Namely, in this case, it is reasonable to
consider them as action variables and determine the corre-
sponding angle variables as their conjugate variables. This is
in particular possible for a single field species as for the
Klein-Gordon Hamiltonian in (81). Unfortunately, the pro-
cedure already fails for a set of tensorial and scalar field
modes present at the same time. More generally, we may be
able to write M2

s in the form

M2
s ðq; pÞ ¼ ðFsÞ2ðq; pÞv2s ðq; pÞ; ð123Þ

where ðFsÞ2ðq; pÞ is a positive function and v2s ðq; pÞ may
still be indefinite for certain species but the v2s are mutually
commuting for all s for which v2s is indefinite. Then, apply

the action angle prescription to the new variables v2s and
assume that the number of homogeneous variable pairs is at
least as large as the number of indefinite mass squared
terms. In the most general case, we solve the equations
v2s ¼ v2s ðq; pÞ for some homogeneous momenta ps ¼
Fsðvs; qs; ðq; pÞÞ where the ðq; pÞ stands for the remaining
phase space variables which are not associated with a
perturbative species. The variables ðvs; qs; ðq; pÞÞ coordi-
natize a new phase space with induced symplectic structure.
While these variables fail to be canonical coordinates for the
system, they are supposed to have full range in some R2m in
contrast to the ps. Finally, we must pass to suitable Darboux
coordinates and hope that they are global in order that we
may apply Weyl quantization. To illustrate this, let us
compute the mass squared operator for the model (81) with
a set of homogeneous variables ða; pa;ϕ; μÞ and for which
the homogeneous part of the Hamilton function reads

Hhomða; pa;ϕ; μÞ ¼ −σ
p2
a

a
þ Λa3 þ μ2

a3
þm2a3ϕ2; ð124Þ

where we set σ as some constant factor. It follows for the
purely homogeneous Hamilton equations of the geometric
subsystem

_a ¼ fHhom; aghom ¼ −2σ
pa

a
; ð125Þ

_pa ¼ fHhom;paghom ¼−σ
p2
a

a2
−3Λa2þ 3

2

�
μ2

a4
−m2a2ϕ2

�
:

ð126Þ

Thus, from (120) we obtain the new effective mass value
after having performed the transformations of the homo-
geneous and the inhomogeneous fields up to second order as
in the last section,

M2 ¼ a2ðm2 − 6σΛ − 3σm2ϕ2Þ þ 3σ
μ2

a4
− 2σ2

p2
a

a2
: ð127Þ

Evidently, this mass function is indefinite. To illustrate the
new procedure more clearly, suppose for the moment that we
would have treated the homogeneous mode of the scalar
field on equal footing with the inhomogeneous ones so that
the ðϕ; μÞ-dependent terms are missing from the Hamilton
function (124) and the mass squared (127). Nonetheless, the
mass squared function remains indefinite. For this setting,
we define a new set of canonical variables ðv; bÞ, and we
therefore introduce the constants δ2 ≔ 2σ2=F2

Λ with
F2
Λ ≔ m2 − 6σΛ. Let us assume that the cosmological

constant Λ is so small that F2
Λ is indeed positive definite.

We construe the new variables ðv; bÞ according to

a2 ≔ v2 þ δ2
b2

v2
; pa ≔

a
v
b: ð128Þ
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Note that the scale factor a is positive definite, and hence the
square root of a2 in (128) has only one branch. Thus, the new
variables in (128) are uniquely defined away from v ¼ 0. We
compute the Poisson bracket of b and v to illustrate that the
transformation is indeed canonical, namely

fb; vghom ¼ 1

2

�
b
v
; v2

	
hom

¼ 1

2

�
b
v
; v2 þ δ2

�
b
v

�
2
	

hom

¼ 1

2

�
pa

a
; a2

	
hom

¼ fpa; aghom ¼ 1:

With this new set of canonical variables, it is possible to
represent the mass term by

M2 ¼ F2
Λv

2; ð129Þ

which is manifestly positive. However, the transformation
(128) restricts the range of the original variables, i.e.,
ða; paÞ ∈ Rþ ×R, to the set of pairs ða; paÞ with a4 ≥
δ2p2

a, p ∈ R. Hence, as a result of this procedure, the
admissible domain of the phase space variables becomes
restricted. To conclude, this procedure has the advantage that
it stays within the standard quantum field framework with a
positive mass squared, however, at the price of making
the Hamiltonian even less polynomial and by a possibly
nonphysical restriction of the phase space.
The third possibility is to take the indefinite mass terms

M2 seriously as they stand. Accordingly, for certain ranges
of the homogeneous variables ðq; pÞ the inhomogeneous
symbol operator Hpert defines a quantum field theory of
tachyons. A possibility to deal with the tachyonic instability
was suggested in Ref. [93]: The idea is to construct a
Fock space Hðq; pÞ as before and to allow only those
modes corresponding to eigenfunctions fk of −Δ such
that their eigenvalue of the frequency squared operator
ω̃ðãÞ2 ¼ −Δ2 þM2ðq; pÞ is bigger or equal to zero, i.e.,
k2 þM2ðq; pÞ ≥ 0.
Accordingly, the more negative M2ðq; pÞ becomes, the

larger the required infrared cutoff on the admissible
modes. Specifically, for the example mass squared from
above, Eq. (127) with vanishing ðϕ; μÞ, we find that m̃2

gets very negative for ðp2
a=a2Þ → ∞. Note that this term is

proportional to _a2. Hence, for a baryon or radiation
dominated universe, this term certainly diverges at the
classical big bang. For SAPT, this has the following
consequence. Recall that for a torus of respective side
lengths l in all directions, the mode numbers evaluate to
k2 ¼ ð2π=lÞ2z2 with z ∈ Z3n0. Let S� be the subsets of
the slow phase space defined by M2ðq; pÞ ≥ 0 and
M2ðq; pÞ < 0, respectively. Let us consider the spectrum
of the Hamilton symbol Hpertðq; pÞ and thereby use its
representation with respect to annihilation and creation

operators as in Eq. (84), but subject to the transformations
above. The energy eigenvalue of some Fock state with
finitely many excitations and at a fixed ðq; pÞ is deter-
mined by a handful of numbers. In particular, we need the
wave vectors k ¼ ð2π=lÞ · z, and the number of excita-
tions for one particular mode, denoted by nz. Let us
designate the torus factor ð2π=lÞ by τ. We collect the
excitation numbers for all nonvanishing modes in a set
called N. The spectral value is then given by

ENðq; pÞ ¼
X
z∈Z3

nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2z2 þM2ðq; pÞ

q
: ð130Þ

Themode number configurations which give rise to the same
ENðq; pÞ determine the degeneracy of ENðq; pÞ. First, we
see that varying the wave vectors z and the excitation
numbers nz does not leave the energy (130) invariant [almost
everywhere with respect to ðq; pÞ]. Otherwise, the numbersffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2z2 þM2ðq; pÞ

p
would be linearly dependent over the

positive rationals which is not the case almost everywhere. It
follows that the only degeneracy lies in choosing the entries
of z with the same z2. Since there are at least eight
possibilities, the degeneracy of ENðq; pÞ is at least 8jNj
independent of ðq; pÞ when ðq; pÞ ∈ Sþ. However, for
ðq; pÞ ∈ S− we compute rðq; pÞ2 ≔ −Mðq; pÞ2 and can
only allow the energy bands characterized by awave vector z⃗
with τ2z2 ≥ rðq; pÞ2. We then impose to disregard the
eigenenergies Ezðq; pÞ associated with the wave vectors z
for which it holds that τ2z2 < rðq; pÞ2.
Consequently, also the mode eigenstates ψ zðq; pÞ and

their related Moyal projectors and unitaries πz;0ðq; pÞ and
uzðq; pÞ will be neglected. The Fock space F sðq; pÞrðq;pÞ
restricts to the subspace ofF sðq; pÞ spanned by the ψ zðq; pÞ
with τ2z2 ≥ rðq; pÞ2. This implies that for some given wave
vector z, the eigenenergy function ðq; pÞ ↦ Ezðq; pÞ has a
discontinuity at the surface τ2z2 ¼ rðq; pÞ2 in the phase
space. This can be problematic when computing the Moyal
products which ask to take derivatives with respect to the
homogeneous variables ðq; pÞ. Nevertheless, this procedure
has the advantage of not worsening the amount of non-
polynomiality and of not modifying the phase space of the
slow sector; however, the physical interpretation of the mode
off-switching remains obscure: Typically this happens at the
classical big bang singularity, and in the limit of the
vanishing scale factor, all modes would need to be removed.
One could speculate whether this presents a self-regulating
effect of a new kind in the sense that the matter density and
thus curvature automatically vanish as we approach the
singularity, and thus eventually avoid the big bang.
The fourth proposal presented here suggests to modify

the Weyl quantization procedure for the homogeneous
variables which is part of the space adiabatic perturbation
scheme. In particular, the idea is to restrict the phase space
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integral over the homogeneous degrees of freedom that
enters the Weyl quantization to Sþ in an ad hoc manner.
This can be achieved by multiplying all symbol functions
such as the Hamiltonian Hðq; pÞ with the characteristic
function χSþðq; pÞ of Sþ. This is again not differentiable,
and it would be more appropriate to substitute χSþ by a
smoothed version of it, i.e., a smooth function that is zero in
S− and smoothly reaches unity within Sþ in an arbitrarily
small neighborhood of the boundary ∂Sþ. Of course, the
quantum theory then will depend on that smoothing
procedure which introduces ambiguities and technical
challenges because the smoothed version of χSþ is a highly
nonpolynomial function of ðq; pÞ.
Finally, the fifth suggestion for how to deal with the

indefinite mass squared function is to consider a mode
decomposition of the inhomogeneous Hamiltonian con-
tribution Hpertðq; pÞ and to write for ðq; pÞ ∈ S−,
Hpertðq; pÞ ¼ Hþ

pertðq; pÞ þH−
pertðq; pÞ where Hþ

pertðq; pÞ
is the contribution from all modes k with k2 ≥ rðq; pÞ2.
Then, Hþ

pertðq; pÞ may be quantized as before, while the
quantization of H−

pertðq; pÞ represents a finite sum of
flipped quantum harmonic oscillators. The difference of
this strategy compared to the third method, where we
performed a mode cutting, is exactly that we do not
discard H−

pert. We notice that the spectrum of a flipped
harmonic oscillator is purely of the absolutely continuous
type [113]. Thus, the spectrum ofH−

pert changes drastically
when we transit from Sþ to S− with corresponding
consequences for the space adiabatic perturbation scheme.
Besides, such a theory would be unstable.
For the model (81) with only a Klein-Gordon field as the

matter content and a purely homogeneous geometry, the
second strategy of performing a canonical transformation in
the homogeneous sector seems to be most promising as we
will see in the third paper of this series [82].

E. Nonpolynomial operators

The purely homogeneous piece Hhomða; pa;ϕ; μÞ of the
Hamiltonian in the previous section, Eq. (124), is non-
polynomial in the scale factor a and contains inverse
powers of it. The mass squared corrections coming from
the canonical transformation in Sec. III C contain deriv-
atives of Hhomða; pa;ϕ; μÞ which increase that negative
power. Furthermore, the adiabatic corrections contain
additional derivatives of Hhomða; pa;ϕ; μÞ of arbitrary
order coming from the Moyal product which introduces
further arbitrarily negative powers of a. Even worse, after
the mass squared corrections, we potentially also find
inverse powers of arbitrarily high order in the momentum
p conjugate to a, the Mukahnov-Sasaki mass term being a
prominent example. It transpires that it would be desirable
to dispose of a dense set of vectors which is invariant
under any of the operators corresponding to ai and pj,
i; j ∈ Z. In LQC, one deals with negative powers of a by

using a nonstandard representation inspired by the rep-
resentation used in the full LQG theory such that the
spectrum of a is pure point rather than absolutely
continuous. Hence, the commutator between fractional
powers of a and Weyl elements for p both is densely
defined and introduces the desired negative powers of a.
This comes at the price that the operator corresponding to
pa does not exist and one consequently needs to approxi-
mate it by polynomials in Weyl elements. However,
negative powers of pa would then also need to be
approximated by inverse polynomials of Weyl elements,
and these are not in the domain of a so that for our pur-
pose the representation chosen in LQC is of no direct
advantage.
We thus advocate to take an unbiased point of view and

ask whether it is possible to choose the above desired
domain directly in the Schrödinger representation. The
advantage would be that the operators corresponding to a,
p exist. We found the following answers:
Theorem 1. Consider the canonical pair of position

and momentum operators ðq̂; p̂Þ and use a Schrödinger
representation on the Hilbert space H ¼ L2ðR; dxÞ, i.e.,
ðq̂ψÞðxÞ ¼ xψðxÞ, ðp̂ψÞðxÞ ¼ −idψðxÞ=dx for ψ ∈ H.
Then, the following holds true:
(1) There exists a dense and invariant domain D ⊂ H

for the operators q̂i and p̂j where i ∈ Z and j ∈ N0.
This domainD consists of smooth functions of rapid
decrease, both at x ¼ 0 and at x ¼ �∞.

(2) The domain D is spanned by functions fξnðxÞg with
n ∈ Z whose inner products can be computed
analytically in closed form. Correspondingly, an
orthonormal basis can be constructed by means of
the Gram-Schmidt procedure.

(3) Let fðxÞ be a function such that both fðxÞ and
f−1ðxÞ are polynomially bounded and smooth ex-
cept possibly at x ¼ 0 or x�∞. Furthermore, let
f1ðxÞ;…; fNðxÞ be polynomials in x. Then there
exists a common domain DLðfÞ ⊂ D for the oper-
ators of item 1. and of the operators correspond-
ing to the symbols fkðq; pÞ ≔ jfðqÞj2fkðqÞp−k with
k ¼ 1;…; N, in suitable symmetric orderings, where
L depends on both N and the degree of the
polynomials fk.

The proof of this theorem can be found in Ref. [97].
Thereby, note that p̂−1 is a symmetric operator with
distribution kernel

ðp̂−1ψÞðxÞ ¼ −
i
2

Z
R
dy sgnðx − yÞψðyÞ; ð131Þ

which can easily be seen by applying p̂ ¼ −id=dx from the
left and using that dsgnðx − yÞ=dx ¼ −2δðx − yÞ in a
distributional sense. The domain of p̂−1 must be chosen
carefully. Even if ψ is a Schwartz function, while p̂−1ψ is
smooth, it may not be of rapid decrease any more at infinity.
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Likewise, it is a simple corollary that a dense and invariant
domain for p̂iq̂j with i ∈ Z, j ∈ N0 is given by the Fourier
transform of the functions of item (1) but that Fourier
transform is not necessarily of rapid decrease in x any more.
This is why the statement of item (3) is significantly
weaker, in particular DLðfÞ is not an invariant domain
for the list of operators stated, and it is presently not clear
whether it is dense. It is, however, certain that there exists
no function in D orthogonal to DLðfÞ.
The idea for defining the rather singular symbols that we

encounter in the homogeneous sector of quantum cosmo-
logy is thus as follows (provided that we can factor out a
suitable jfj2 as described above): At any order of the
adiabatic expansion the terms that involve negative powers
of p are of the form described in item (3) and are finite in
number. Thus we use the ordering alluded to in item (3) and
the domain described there. The other terms not involving
negative powers of p are also defined on that domain
since DLðfÞ ⊂ D.

IV. CONCLUSION AND OUTLOOK

In the present first paper of this series, we provided the
tools with which we intend to improve on the treatment of
backreactions in quantum cosmology, in particular with
respect to backreactions from the inhomogeneous cosmo-
logical quantum fields on the homogeneous quantum
degrees of freedom. In the Introduction, Sec. I, we have
provided the reader with an overview of the current state of
research regarding the questions of a rigorous account for
interactions in quantum gravity–matter and quantum cos-
mological systems, its relation to the semiclassical limit and
possible approximation schemes that attempt to make
progress in this direction. We have explained how and
why the implementation of SAPT methods in quantum
gravity and quantum cosmology can help to find, at least
partial, answers to these questions, and how it naturally
leads to an implementation of backreaction in quantum
cosmology as a first step.
In Sec. II, we gave a detailed introduction to the original

SAPT scheme as proposed by Panati, Spohn, and Teufel
[52], and executed the iterative construction step by step in
order to show that the scheme is consistent. Then, in
Sec. III, we pointed to the challenges that occur when
implementing SAPT methods within (inhomogeneous)
quantum cosmology and suggested several solutions.
These considerations show that an application of SAPT

methods within quantum cosmological perturbation theory
may indeed be possible, and offer hence the possibility to
unambiguously account for backreaction effects in such
situations. Thus, we have prepared the ground to approach
the various models that are being treated in the subsequent
papers of the series. The plan of these subsequent papers is
as follows:

In the second paper [81], we treat the two quantum
mechanical models labeled as models (I) and (II) in
Sec. III C. Model (I) is a standard quantum mechanical
problem consisting of a polynomially coupled slow
anharmonic and fast harmonic oscillator. They permit
one to mimic the situation of model (II) and serve to
illustrate the formalism. Model (II) considers the purely
homogeneous cosmological sector, i.e., a homogeneous
geometry coupled to the homogeneous part of a real-
valued scalar matter field. In suitable variables, this model
can be displayed as an inverted slow harmonic oscillator
which is nonpolynomially coupled to a fast standard
harmonic oscillator. The adiabatic perturbation parameter
is related to the ratio of the coupling constants for gravity
and the scalar field, and this ratio can be assumed to be
very small. The adiabatic parameter can also be written as
the ratio of the corresponding scalar field and Planck mass
scales and is consequently very tiny if we consider the
latter to be of the order of the mass scales that appear in
the current Standard Model of elementary particle phys-
ics. This parameter will also organize the adiabatic
perturbation expansion of the third and fourth papers.
In the third paper of the series [82], we consider as matter

content a scalar Klein-Gordon field as well as Gaussian
dust. The usual Hamiltonian constraint is now a physical
Hamiltonian as shown in [105]. The full constraints, not
only their perturbations, are already solved—all metric and
inflaton degrees of freedom are physical observables. We
expand the physical Hamiltonian to second order in the
inhomogeneous modes leading to three scalar, one vector,
and two tensor modes. For simplicity we consider only the
quantization of the inflaton field; i.e., we drop all metric
perturbations and keep only the homogeneous metric
degrees of freedom.
Finally in the fourth paper [69], we consider as matter

content just the real matter scalar field and follow closely the
approach taken in [64–66] in order to extract the gauge-
invariant observables. These are the well-known Mukhanov-
Sasaki field in the scalar sector and the tensor mode
perturbations (i.e., gravitations). This model is generically
used in order to describe the physics of the early universe and
provides hence the possibility to compare our future results
with observations, for example, by computing primordial
power spectra.
In all papers, we compute the backreaction effects to

second order in the adiabatic perturbation parameter, thus
displaying their existence and potential phenomenological
importance. Note that the model of the second paper can be
considered as the purely homogeneous truncation of both,
the model of the third and the fourth paper, respectively, just
that in the first case it is to be considered as a dynamical
system with a true Hamiltonian, and in the second case that
Hamiltonian is constrained to vanish. Accordingly, for the
second paper, we are interested in the full spectrum of the
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Hamiltonian which in appropriate variables can be under-
stood as a harmonic oscillator nonpolynomially coupled to
an inverted harmonic oscillator [113].
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