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We introduce the notion of genus-one data for theories in (1þ 1) dimensions with an anomalous finite
group global symmetry. We outline the groups for which genus-one data are effective in detecting the
anomaly and also show that genus-one data are insufficient to detect the anomaly for dicyclic groups.
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I. INTRODUCTION

Theories in d spacetime dimensions with a global
symmetry group G can have obstructions to promoting
the global symmetry to a gauge symmetry. In field theory,
one way to work with a global symmetry is to couple it to a
background gauge field. Promoting the symmetry to a
gauge symmetry is the same as asking whether it is possible
to integrate over these background fields in the path
integral, a process known as gauging or in other contexts
orbifolding [1]. When gauging is not possible for a certain
symmetry, then we say that the theory has an ’t Hooft
anomaly, that is, an obstruction classified by a class in
Hdþ1ðG;Uð1ÞÞ when the dimension is low. This means that
anomalies are inherently topological in nature and are
moreover robust to deformations by local operators. These
deformations may flow the theory to be in a strongly
coupled regime, which makes the dynamics hard to discern.
Information about the anomalies puts constraints on the
dynamics, enough so that we are able to make conjectures
about the strongly coupled phases. The anomaly is always
present along the renormalization group flow, so whatever
value the anomaly takes in, say, a weakly coupled regime,
must be matched in the strongly coupled regime.
If the symmetry has an anomaly, then detecting the

anomaly, i.e., determining what value the anomaly takes is
often not a very systematic process and depends on the
symmetry at hand. One such way of detecting the anomaly
is to study the Hilbert space of the theory on some
manifold, such as the torus [2]. However, there is no
guarantee that one can detect all such anomalies for any
symmetry simply by applying one particular method. It was
shown in [3] how to detect anomalies of ZN global

symmetry in ð1þ 1ÞD unitary conformal field theory,
but not much attention has been given to anomalies of
non-Abelian global symmetry. We will be interested in a
method of detecting anomalies in ð1þ 1ÞD theories by
constructing a stack MG. This stack will contain informa-
tion of the theory when placed on a torus with a G bundle,
forG a finite group. In the full construction ofMG, we will
have to quotient by automorphisms of the torus and
trivializations of the G bundle. We refer to this stack
and automorphism information as genus-one data. Over
each point of this stack is a torus bundle, and by integrating
the anomaly α ∈ H3ðBG;Uð1ÞÞ over the torus bundle, we
see that MG furnishes a line bundle. The kernel of this
integration map is precisely the failure to detect α.
We remark in passing an application of this line bundle.

In problems involving moonshine, there is a connection
between “analytic” data involving modularity and growth
rates of certain functions, with representations of finite
groups. The modularity is particularly important because
this combines with the finite groups into holomorphic
sections of a line bundle onMG [4]. This line bundle is the
integral of α (in all computed examples); i.e., it is the image
of an anomaly. If one is interested in the physical reason
which unites the two separated pieces of data given in the
moonshine, it is useful to search for this anomaly itself for
this information.
The goal of this paper is to show that
Proposition 1.1. The genus-one data applied to detect

anomalies for the symmetry given by the dicyclic group of
order 4N, DicN , have an undetectable Z2 kernel.
The structure of the paper is as follows: in Sec. II, we spell

out the conditions that are specific to genus-one data, along
with the construction of the stackMG. We also explain how
to break down the question from a general finite group to
studying p groups. In Sec. III, we recast the method of
detecting anomalies associated to a line bundle overMG, to
finding phases of 2D partition functions which are eigen-
values of acting with modular transformations. We inves-
tigate how genus-one constraints affect our ability to detect
anomalies of dicyclic groups and show Proposition 1.1.
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Section IV contains an example where we apply the
techniques of manipulating partition functions to see if
we can fully detect the anomaly for cSUð2Þk Wess-Zumino-
Witten (WZW) model with quaternion symmetry.

II. GENUS-ONE DATA

Consider a theory in ð1þ 1ÞD, which enjoys a global
symmetry G. We start with a stack MG ¼ ðE;PÞ where
E is oriented, and there exists an isomorphism E ≃ T 2.
Furthermore, we equip E with a G bundle, where
P∶ E → BG. This stack has a standard presentation as
follows: for any choice of isomorphism f∶ T2 → E, the
map P ∘ f is a G bundle on the standard torus that has
holonomies along the two cycles. We also choose a
trivialization, φ, of P ∘ f at some base point that we
will take to be the origin of T2. The stackMG is a quotient
under the automorphisms of these two choices extra choices.
We can thereforewrite a stackM̃G that is a covering stack of
MG, more specifically, M̃G ¼ fE;P; f;φg. Once we have
chosen f thenE is nomore data, sowe are now talking about
the space of bundles of the standard torus trivialized at the
origin. This is the same as the set of maps,

homðπ1T2jorigin; GÞ ¼ fðx; yÞ ∈ G ×Gj½x; y� ¼ 1g; ð1Þ

i.e., M̃G is the set of commuting pairs in G. The map from
M̃G → MG presentsMG as a quotient groupoid of M̃G by
forgetting the data of f and φ. We note that G bundles at a
point are always trivializable, and there are jGj many
trivializations, so in order to forget φ, we quotient
homðZ2; GÞ by “changes of trivialization.” This gives
homðZ2; GÞ==G, where the G action is by conjugation on
the holonomies. In other words, the action on g on ðx; yÞ is
given by

ðx; yÞ⊲ g ≔ ðg−1xg; g−1ygÞ: ð2Þ
To forget the data of f, we use the fact that any two
isomorphism differ by an automorphism of the standard
two-dimensional torus. We therefore also left-quotient
homðZ2; GÞ by the group SLð2;ZÞ. An element γ ∈
SLð2;ZÞ acts on ðx; yÞT, where T denotes the transpose
of the row vector, by�

a b

c d

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

γ

⊳ ðx; yÞT ¼ ðxayb; xcydÞT: ð3Þ

Remark. We are using the fact that x and y commute so
that the above formula gives an action. The two actions by γ
and g also commute with each other. We see that as a
groupoid,

MG ¼ SLð2;ZÞnn homðZ2; GÞ==G: ð4Þ

Over each point in MG lives a torus bundle
EG ¼ fE;P; z ∈ Eg, where z is a point in the torus E,
and the fibers of the map to MG are oriented 2-tori, which
are the “points” E themselves inMG. The map P now takes
EG → BG by mapping ðE;P; zÞ ↦ PðzÞ. If the theory has
an anomaly α ∈ H3ðG;Uð1ÞÞ, which maps BG → Uð1Þ½3�,
then we can use the composed maps P�α as a map from
EG → Uð1Þ½3�. Here, the brackets denote the degree of
suspension for the regular group U(1). Therefore, MG

carries a line bundle which are the maps ðE; PÞ ↦R
E P

�α; a line bundle over a groupoid is the same data as
associating to every automorphism in the groupoid a U(1)
number. In particular, a typical object of MG given by
ðx; yÞT and a typical automorphism of this object is given by
ðγ; gÞ, so that

γ⊳ ðx; yÞT ¼ ðx; yÞT⊲ g: ð5Þ

Thus, in order to give the information about the line bundle,
we need to assign for each point ðx; yÞ a group homomor-
phism, which is

R
E P

�α ¼ R
α∶ðγ; gÞ → Uð1Þ. We do this in

the following way. We start with a standard two-torus and
wrap along the a and b cycle the elements x and y, which
attaches aG bundle to this torus.Wenow take the cylinder on
theG bundle but apply a twist γ to the two cycles. Then, we
take g to change the trivialization of theG bundle to return to
a configuration that matches what we started with and lastly,
identify the starting and ending tori. This procedure is
depicted in Fig. 1. This gives a closed three-manifold with
a G bundle that we can integrate α over. A form of this
construction was given by [5].1

The overall question can now be phrased in terms of the
line bundle as follows: given

R
α ∈ H1ðMG;Uð1ÞÞ, with α

FIG. 1. Each two-torus has, wrapped along its cycles, a
commuting pair of elements x; y ∈ G. In the third direction,
we draw the mapping cylinder first acting by γ and then by g
between two-tori, with the ends identified.

1While this reference constructs the analogue of MG with a
line bundle, an action by any automorphism of the G bundle on
the line bundle is given by multiplication with the Chern-Simons
invariant of the glued mapping cylinder.

MATTHEW YU PHYS. REV. D 105, 106007 (2022)

106007-2



an anomaly in H3ðBG;Uð1ÞÞ, then is it possible to
determine the value of α? The kernel of the map

H3ðBG;Uð1ÞÞ!
R
H1ðMG;Uð1ÞÞ is exactly our failure

to be able to detect the anomaly. For any G, we
can choose to restrict to a p-Sylow subgroup, i.e., a
maximal p-group where every element is a power
of p, denoted by S; we can do this prime by prime.
It is therefore possible to restrict the cohomology
H3ðBG;Uð1ÞÞ along the S subgroup,

where the subscript p denotes p-local cohomology. The
map from H3ðBG;Uð1ÞÞðpÞ to H3ðBS;Uð1ÞÞðpÞ is a p-local
injection [6, § XII.8], but not an injection on the full
cohomology, unless one takes a product over all p. If there
exists G so that integration is not an injection, then there
must be an S such that integration is not an injection. To
study this question on all groups, we therefore focus on
the p groups.
Given that S is a p group, we can use a fundamental fact

of p groups, which states that for any p group, there exists a
central order p element; thus, we have S ¼ Zp · S0. To
break down the problem even further, we can temporarily
restrict α to the Zp subgroup, then by naturality, we haveR
αjZp

¼ ðR αÞjMZp . We see that the central element does
not contribute to the kernel by using the fact that:
Lemma 2.1. [7, §3.3] The map

R
αjZp

∶
H3ðBZp;Uð1ÞÞ → H1ðMZp ;Uð1ÞÞ is injective, i.e., ifR
αjZp

¼ 1 then αjZp
¼ 1.

Remark. The question can also be phrased in another
form that is in terms of extensions rather than anomalies.
For concreteness, suppose that a theory has as its
symmetry group, G ¼ Zp ×G0, where G0 is a finite p
group. The only anomaly is mixed, living in
H2ðG0;H1ðZp;Uð1ÞÞÞ ¼ H2ðG0; ẐpÞ. If we gauge the Zp

symmetry as in [8], we get a central extension Zp · G0

symmetry action for the gauged theory, where the exten-
sion data are the mixed anomaly [9]. The question is
therefore equivalent to asking: can one work out which
extension using only genus-one data?
From a categorical point of view “modular data” of a

modular tensor category means looking at its correspond-
ing SLð2;ZÞ representation. The modular tensor category
ZðVecα½G�Þ has modular data, and it was shown in [10]
that is is insufficient to determine α. However, it
was shown by Kirillov Jr. [11] that ZðVecα½G�Þ along
with the full data of the subcategory RepðGÞ was
sufficient to determine α. Our current problem is an
intermediate of these two situations. On the one hand,

we have more than modular data because we also
incorporate data of the group that the modular tensor
category came from, hence the fact that we can con-
jugation elements ofMG by group elements. On the other
hand, we do not have the full category RepðGÞ to apply
the Kirillov Jr. construction.

III. PARTITION FUNCTIONS

Performing the integral over the mapping cylinder is in
general hard to do and involves knowledge of how to
triangulate the manifold; however, there are instances when
this can be done. We can consider the case in which the
mapping cylinder in Fig. 1 is G-equivariantly cobordant to
the lens space LðN; 1Þ, or when the twists applied in the
third direction is trivial, yielding a three-torus T3. This is
the case when we are only concerned with Zk

N groups and
the anomaly α ∈ H3ðZk

N ;Uð1ÞÞ. The third cohomology

evaluates to Z
½ðk
1
Þþðk

2
Þþðk

3
Þ�

N and the cocyles are of the follow-
ing three forms:

αIða; b; cÞ ¼ exp

�
2πiqI

N2
aIðbI þ cI − ½bI þ cI�Þ

�
; ð6aÞ

αIJða;b;cÞ¼ exp
�
2πiqIJ

N2
aIðbJþcJ− ½bJþcJ�Þ

�
; ð6bÞ

αIJKða; b; cÞ ¼ exp

�
2πiqIJK

N
aIbJcK

�
; ð6cÞ

where the superscript indices take values in f1;…; kg, and
a; b; c ∈ Zk

N [12]. We denote ½bI þ cI� ≔ bI þ cI mod N,
and qI; qIJ; qIJK takes values mod N, meant as a repre-
sentative of the cocycle. To argue why there are (k

2
) many

cocycles of the form in (6b), we note that the three-cocycles
αIJ and αJI are equivalent, since they differ by a coboun-
dary. A similar argument holds for cocycles of the third
type in (6c), and therefore, there are only (k

3
) many, as

permutations of the labels I, J, K give equivalent cocycles
up to coboundary. These three types of cocycles correspond
to the generators of H3ðZk

N ;Uð1ÞÞ, which at the level of
gauge fields corresponds to self coupling of the gauge
fields, pairwise couplings of the gauge fields, or coupling
each of the three distinct fluxes together. Each of these
cocycles corresponds to a theory in ð2þ 1ÞD and is the
action of a G-SPT. By the anomaly inflow mechanism, we
can think of our ð1þ 1ÞD theory with anomaly α as the
boundary of this bulk G-SPT. While the boundary theory is
anomalous, the entire bulk boundary set up is nonanom-
alous; thus, the SPTexactly captures the anomaly data in its
action. The partition function for the G-SPT when placed
on LðN; 1Þ is sufficient to detect the first two types of
cocycles, while the last is detectable when placed on T 3

[13]. In particular, the partition function for each of the
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SPTs is a U(1) valued topological invariant used to
distinguish the phase. The partition functions are
built out of a response function, which treats the symmetry
G as a flat background connection; these functions can
be shown to match the expression for the group cocycles in
(6). Evaluating the partition function, i.e., integrating
over LðN; 1Þ, amounts to integrating the response
function over a homology one-cycle that generates
H1ðLðN; 1Þ;ZÞ. The set of invariants for the three cycles
in (6) is given by

�
exp

�
2πiqI
N

a2I

�
; exp

�
2πiqIJ
N

aIaJ

�
;

exp

�
2πiqIJK

N
ϵijkaI;ibJ;jcK;k

��
; ð7Þ

where the indices i, j, k on the last factor indicate the cycles
on T 3. We can also consider general discrete Abelian
groups which are always isomorphic to

Q
k
I¼1ZNI ; the SPTs

can be detected on LðNI; 1Þ; LðgcdðNI; NJÞ; 1Þ and T 3.
We can convert the problem involving integrating over

the mapping cylinder into the language of partition func-
tions. In ð1þ 1ÞD, these are objects which transform as a
modular form with respect to τ on the moduli space of flat
two-tori. If our theory enjoys a symmetry G, then the torus
base manifold of our theory is equipped with a G bundle
and the map P∶ T 2 → BG is a pair of commuting elements
(up to conjugation) g; k ∈ G each wrapping one of the
cycles of the torus. We define the partition function, with
q ¼ exp 2πiτ and q̄ ¼ exp−2πiτ̄, as

ð8Þ

which is a configuration that is twisted by g in the spatial
direction, and twined by k in the time direction. The trace is
over the defect Hilbert space, this is from the k-defect
intersecting the spatial circle and implements a twisted
periodic boundary condition [14]. These partition functions
are precisely the sections of the line bundle defined by

R
α

over the stack MG. An anomaly then has to do with an
obstruction to this line bundle being trivializable. For a
special case where G ¼ ZN , we can consider the compo-
nent ðg; eÞ, where e is the identity, of MG. A modular S
transformation on the partition function exchanges the two
cycles of the torus so the g defect now acts at a fixed time
and the partition function is

Ze;gðτ; τ̄Þ ¼ TrHg

�
qh−

c
24q̄h̄−

c̄
24

�
¼ Zg;e

�
−
1

τ
;−

1

τ̄

�
: ð9Þ

Under the T transformation, which maps τ → τ þ 1, we see
that this partition function is modular up to a multiplier of a
phase that records the line bundle. To compute the phase,
we note that the spins h − h̄ of the states in the defect
Hilbert space takes value in l

N2 þ Z
N, where l is an integer

moduloN [3], where it is referred to as a spin selection rule.
This implies the following, which was also mentioned
in [7]:
Proposition 3.1. If an anomaly of the G action is given

by l ∈ H3ðZN ;Uð1ÞÞ, TN ¼ ð1
0
N
1
Þ acts on Ze;g with multi-

plier expð2πilN Þ.
An immediate corollary is that knowledge of the parti-

tion function is sufficient to determine the anomaly for ZN
groups. Going back to our picture using genus-one data and
the mapping cylinder, this example forZN groups would be
what happens if we wrap e, g along the cycles labeled by x,
y in Fig. 1 and apply γ ¼ TN along the third direction
giving the entire mapping cylinder the structure of a Lens
space LðN; 1Þ. Since the manifold used to detect the three-
cocycles for the case of a general discrete Abelian group is
also a lens space, or a three-torus, then genus-one data are
sufficient to detect anomalies of Abelian groups.
Furthermore, it is sufficient to detect the anomaly for S
a p-group as in Sec. II, which has a restriction to an
Abelian S0.
Definition 3.2. A subgroup S ⊆ G is a categorical Schur

detector (CSD) at p if the restriction map H3ðG;Uð1ÞÞ →
H3ðS;Uð1ÞÞ on the p parts is injective. More generally, a
set of subgroups S ⊆ G is a joint categorical Schur detector
at p if the total restriction map H3ðG;Uð1ÞÞ →Q

S H
3ðS;Uð1ÞÞ on the p parts is injective.

If the group G has an Abelian joint CSD, i.e., one where
all S in the set are Abelian, then we would be able to detect
the anomaly by our ability to integrate over lens spaces for
any Abelian group.
Example. The notion of CSD was also used in [15] for

cohomology in degree four, where it was shown that for
G ¼ Co0, the linear isometry group of the Leech lattice, the
restriction map H4ðCo0;ZÞ → H4ðS;ZÞ is injective, where
S is isomorphic to the product of the cyclic group of order 3
and the binary dihedral or group of order 16. We see that a
p-Sylow group of G is also an example of a CSD at p but
the case in which G is the extraspecial group p1þ2

þ does not
have an individual CSD. The lack of a CSD comes simply
from the fact that H3ðG;Uð1ÞÞ has dimension 4 in p while
H3ðS;Uð1ÞÞ only has dimension 3, so there is no injection.
Take the case of p ¼ 3, it was shown in [16] that for G an
extraspecial p group of order 27 with exponent 3 has no
essential cohomology in any degree. Essential cohomology
is the Zp cohomology that gives the common kernel
of the restrictions to all proper subgroups of G as in
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Definition 3.2; i.e., the cohomology fits in the exact
sequence,

H•
EssðG;ZpÞ → H•ðG;ZpÞ →

Y
S⊂G

H•ðS;ZpÞ: ð10Þ

When we restrict to degree three, specifically with U(1)
coefficients by the standard long exact sequence, this

measures the failure for there to be a joint CSD, so
vanishing essential cohomology indicates there is a joint
CSD in this case.
An important and natural question is how to classify p

groups with nonzero essential cohomology. Let G be an
elementary Abelian p group with rank i > 0, the cohomo-
logy ring of G is standard and given by

H•ðG;ZpÞ ¼
(
Zp½x1; x2…; xi� p ¼ 2; degðxiÞ ¼ 1

Zp½x1; x2…; xi� ⊗ ⋀ ðy1; y2;…; yiÞ p > 2; 2 degðyiÞ ¼ degðxiÞ ¼ 2:
ð11Þ

For p ¼ 2, H•ðG;ZpÞ ≠ 0, and for p > 0 the essential
cohomology is the Steenrod closure of the product of
y1 � � � yi [17]. It was conjectured in [18] that the
essential cohomology of an arbitrary p group is free and
finitely generated over a certain polynomial subalgebra
in H•ðG;ZpÞ; this conjecture holds for elementary p
groups.
Let us move to the case in which the global symmetry is

a group that has even order by considering the dicyclic, or
binary dihedral, group DicN . A special case is Q8

which is also an extraspecial group of order 8. We will
show that
Proposition 3.3. Let G be a subgroup of SU(2), then G

has no joint CSD.
Recall that the dihedral group DihN , a group of order 2N

is the group of symmetries of a N-gon and lives as a
subgroup of SO(3), where the reflection is implemented as
a 180 degree rotation in 3D. An 180 degree rotation lifts
with order four to the double cover Spinð3Þ ¼ SUð2Þ. The
restriction of Spin(3) along the map from Oð2Þ → SOð3Þ
leads to the group Pin−ð2Þ, where reflections square to −1.
The further restriction of Pin−ð2Þ along the map from
DihN → Oð2Þ leads to DicN ; the bindary dihedral groups
are the “discrete” versions of Pin−ð2Þ. This is summarized
in the diagram below

ð12Þ

Proof of Proposition 3.3. The bindary dihedral group G
acts faithfully on Spin(3), which has the topology of a three
sphere. There is a fibration,

ð13Þ

where S3=G is an oriented three-manifold, so has coho-
mology in degree three and below. From the fibration, one
can compute the group cohomology of BG. It is known that
for any finite subgroup G of the three sphere that (see, for
example, [19]),

HiðBG;Uð1ÞÞ ¼

8>>>>><>>>>>:
Uð1Þ i ¼ 0;

Gab i≡ 1 mod 4;

ZjGj i≡ 3 mod 4;

0 i > 0 and even;

ð14Þ

where Gab denotes the Abelianization of G and ZjGj
denotes the group of complex jGj-th roots of unity. If S
is a subgroup of G then the restriction H3ðG;Uð1ÞÞ →
H3ðS;Uð1ÞÞ is a surjection and loses information about
which subgroup of H3ðG;Uð1ÞÞ it is, as it only dependents
on the order of S.
We now see if genus-one data can still detect the

anomaly. Let G ¼ DicN and consider wrapping the com-
muting pair of an element g ∈ G and the identity e around
the cycles of the two-torus. As per Fig. 1, we will let the
group element that runs along the third direction of the
mapping cylinder be h. The elements g (and h) could be
rotations or reflections; i.e., gN ¼ c or g2 ¼ c, where c is
the central element. By (5), it must be that

γ

�
e

g

�
¼

�
e

hgh−1

�
; ð15Þ

and furthermore, this is the most complicated configuration
for the binary dihedral group that the constraints of genus
one will allow. Take g to be rotation, and h to be a
reflection, then hgh−1 is g−1. So what are the possible γ’s?
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The second component of the vector after acting by γ is
ecgd, which must equal g−1; thus, d ¼ 2N − 1, and c is free
to be anything. The first component is eagb ¼ 1. So a is
free but gb ¼ 1, so b ¼ b0ð2NÞ. In this case,

γ ¼
�
a b0ð2NÞ
c 2N − 1

�
: ð16Þ

We will take the matrix entries of γ modulo 2N since the
rotations is a cyclic group of order 2N and use the fact that
det γ ¼ 1. But because b is zero mod 2N, the two valid
matrices are�−1 0

−c −1

�
;

�−1 −2N
0 −1

�
; ð17Þ

note that since c was free to take any value mod 2N, we
write it as −c in the matrix. We now take h to be a rotation,
and g to be a reflection. Then, in order for hgh−1 ¼ gd, it
must be that hg ¼ gdh, which implies g−1hg ¼ gd−1h and
so h−1 ¼ gd−1h. But h−2 ¼ gd−1 has no solutions. in
general, if h is a generator of rotations. For example, in
the case of a 2-gon or 4-gon, it is possible to satisfy the
equality. If h and g are both reflections, then on the one
hand, hgh−1 is given by taking g and reflecting about the h
axis. The value of hgh−1 is g or −g if h and g are the same
reflection or off by 90 degrees, respectively. On the other
hand, when acting by γ, we have ecgd ¼ �g depending on
whether d is even or odd. The case where g ¼ h is
uninteresting as (15) would only be satisfied for γ equal
to the identity matrix and adds nothing new in the third
direction to help detect the anomaly. Thus, we see that the
set of γ is spanned by (1c

0
1
). If h and g were both rotations

and thus, cyclic subgroups, we know that restriction to any
subgroup is not injective, so that will in general not be
optimal for allowing us to detect the anomaly. We con-
clude that
Proposition 3.4. For the dicyclic group DicN , where the

anomaly is a 4N-th root of unity, genus-one data contain the
most information is when the whole group can be gene-
rated, i.e., when g is a generator of rotation, and h is a
reflection.

This forces γ to be in the coset of the matrices,�−1 0

−c −1

�
;

�−1 −2N
0 −1

�
: ð18Þ

Recall that when G is just a cyclic group and h is trivial,
the choice of acting on the partition function by (1

0
jGj
1
)

extracted a nontrivial G-th root of unity eigenvalue. Acting
by the first matrix in (18) shifts the modulus from τ ↦ τ

τþc
and amounts to applying Tc and then S transformations to
the partition function TrHðgqh− c

24q̄h̄−
c̄
24Þ, where g is wrapped

in the spatial direction. By the spin selection rule, applying
Tc for c mod jGj will not produce a jGj-th root of unity.
We therefore expect that the second matrix in (18) will
detect the anomaly. We can test this on a theory, which
has as its symmetry a general dicyclic group, and
defer the computation of the anomaly for a specific
partition function and symmetry group to the next section.
Let T g ¼ S½TrHðgqh− c

24q̄h̄−
c̄
24Þ�, then acting by (−1

0
−2N
−1 ) gives

T g ⟶
−ðT2NÞ

exp

�
πil
N

�
T g−1 ; ð19Þ

where we have used that fact that ð−1
0

0
−1ÞT g ¼ T g−1 . But

T g−1 ¼ T hgh−1 , since g is a rotation and h is a reflection, and
T hgh−1 ¼ T g by cyclicity of the trace. At best, we are able
to detect only a 2N-th root of unity. The map

H3ðBG;Uð1ÞÞ!
R
H1ðMG;Uð1ÞÞ therefore has a kernel that

is at least of order 2.
The restriction to the cyclic subgroup of rotations gives

f0; 2Ng mod 4N as the elements of the Z2 kernel. One
could hope to detect an anomaly α ∈ f0; 2Ng. A common
strategy when faced with anomalies and extensions of a
group is to gauge some symmetry subgroup. The group
DicN ¼ C:Z2 as a nonsplit, noncentral extension with C ≅
Z2N a normal subgroup. By the Serre spectral sequence, we
have H•ðDicN ;Uð1ÞÞ ⇐ H•ðZ2;H•ðC;Uð1ÞÞÞ, with the E2

page,

Eij
2 ¼

j
Sym2 Ĉ Sym2 Ĉ

0 0 0 …

Ĉ Z2 Z2 Z2 …

Uð1Þ Uð1Þ Z2 0 Z2 0

0 1 2 3 4 i;

ð20Þ

where Ĉ denotes the Pontryagin dual of C and is the dual
symmetry after gauging C. The entry Sym2 Ĉ survives on
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the E∞ page because it is the image of the restriction map
H3ðDicN ;Uð1ÞÞ↠H3ðC;Uð1ÞÞ. The Z2 in bidegree (2,1)
survives on E∞ for degree reasons; along with Sym2 Ĉ,
these two contribute an order of already 4N, and so the
d2∶ E1;1

2 → E3;0
2 must be an isomorphism. The data of α

living purely over Z2 in (2,1) now become the extension of
the groups Ĉ:Z2 for the gauged theory. In particular, this
group is dihedral if α ¼ 0 and again dicyclic if α ¼ 2N.
Reflections lift with order 2 in former case and order 4 in
the latter. A reflection h in the ungauged theory squares to
−1 in the group and lives on inZ2 part of the gauged theory.
However, this is insufficient to tell if this h is −1 in the Z2

action, and thus, in conclusion, we are unable to distinguish
the elements in the kernel.

IV. WZW EXAMPLE

In this section, we present an example of attempting
to detect the anomaly in a WZW theory with symmetry
G ¼ Q8 and failing to fully capture all possible values of
the anomaly. The quaternion group not only fits the bill for
Proposition 3.3, but from the point of view of essential
cohomology, it was shown in [20] that a p group has
essential cohomology if all its elements of order p are
central. Q8 is the unique group in which every element of
order 2 is central. We consider the WZW theory cSUð2Þk,
which has SUð2ÞL×SUð2ÞR

Z2
symmetry (see [21] for a summary

of symmetries for WZW CFTs), and anomaly ðk;−kÞ. We
can consider the SUð2ÞL symmetry, to whichQ8 ⊂ SUð2ÞL.
From computing H3ðBQ8;Uð1ÞÞ, we know that this group
should admit an anomaly that is mod 8, and therefore, we
take k also mod 8. We deem that the anomaly is detectable
if we can extract the full Z8 group for the range of k. The
generator g of the Z4 group of rotation is placed on one
cycle of the torus, and the identity e is placed on the other
due to the fact that the pair must commute. The characters
of cSUð2Þk are given by the Weyl-Kac character formula and
take the form [22, Sec. 11],

χklðτ; zÞ ¼
Θlþ1;kþ2ðτ; zÞ − Θ−l−1;kþ2ðτ; zÞ

Θ1;2ðτ; zÞ − Θ−1;2ðτ; zÞ
; ð21Þ

with 0 ≤ l < k and the generalized SU(2) Θ functions
defined as

Θl;kðτ; zÞ ¼
X

n∈Zþ l
2k

qkn
2

e−2πinkz: ð22Þ

The partition function is defined by Zðτ; τ̄; z; z̄Þ ¼P
k
j¼1 χ

k
j χ̄

k
j . When twisted in the spatial direction by g, this

gives

Zg;e ¼ TrHðgqh− c
24q̄h̄−

c̄
24e−2πizĵ

3

e2πiz̄ĵ
3Þ; ð23Þ

where z is the chemical potential for the U(1) charge, and
ĵ 3 plays the role of the operator that has as its eigenvalue
the Z

2
representation of SU(2) in the usual angular momen-

tum algebra. When g wraps in the time direction, after
applying an S transformation to (23), we see that by
conjugation we can take g to ĵ 3 and thus, giving

TrHg
ðqh− c

24q̄h̄−
c̄
24e−2πiðzþ1

4
Þĵ3e2πiz̄ĵ

3Þ: ð24Þ

This is because any element κ ∈ Q8 can be written as iσi,
for some Pauli matrix σi, in the Lie algebra of SU(2) and all
SU(2) elements are conjugate to each other. When g is
applied in the spatial direction, unless g is the central
element, this breaks the global symmetry to U(1), which is
the centralizer of g. Any meaningful partition functions
could then only have U(1) elements wrapping the
time direction, in particular, a U(1) group spanned by
exp ð−2πizĵ 3Þ. Applying the S transformation to (23) so
that g is wrapped in the time direction essentially amounts
to shifting z ↦ zþ 1

4
. Then applying −ðT2NÞ, for N ¼ 2,

on the partition function and using the spin selection rule
gives a phase exp ð2πið2NÞð l

ð2NÞ2 þ Z
2NÞÞ ¼ expðπilN Þ, which

is only a fourth-root of unity.
Remark. There is another analogous computation we

can conduct with free fermions. The fact that the dicyclic
group is a subgroup of SU(2) means it acts on C2. It
therefore also acts on the vertex algebra of two complex
fermions. The generators of rotations and reflections in this
case are, respectively,

g ↦

�
eπi=N 0

0 e−πi=N

�
; h ↦

�
0 1

−1 0

�
: ð25Þ

We can compute twisted-twining genera for this vertex
algebra and just see how these modular functions transform
under SLð2;ZÞ. One subtlety to note is that this method
uses a fermionic theory whose anomalies are classified
differently than in the bosonic case. One should then take
the appropriate restriction to the bosonic part of the full
anomaly.
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