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In our previous paper, we have presented a covariant BRST quantization of unimodular gravity which
may account for the smallness of the cosmological constant, and we have shown that the physical degrees
of freedom in the theory are the same as general relativity. The formulation has been given by using rank-2
antisymmetric tensor fields for both ghosts and antighosts. Here we give an alternative formulation using a
vector field for the antighost but keeping the same structure for the ghosts. This gives a significantly simpler
covariant quantization with less ghosts and no tripole modes in the ghost sector. We show that this also
gives only two physical transverse modes as in general relativity.
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I. INTRODUCTION

In our previous paper [1], hereafter referred to as I, we
have presented a covariant local BRST quantization of
unimodular gravity (UG), and have shown that the physical
degrees of freedom (dofs) in the theory are two transverse
modes as in general relativity (GR). UG is an interesting
theory that may explain why the cosmological constant is
extremely small [2–7].
UG can be formulated as GR with the constraint that the

determinant of the metric should be a fixed volume form in
the general relativity:

SUG ¼ ZN

Z
d4x½ ffiffiffiffiffiffi

−g
p

Rþ λð ffiffiffiffiffiffi
−g

p
− ωÞ�; ð1:1Þ

where ZN ¼ 1=ð16πGNÞ with GN being the Newton con-
stant, and λ is a Lagrange multiplier field to impose the
constraint

ffiffiffiffiffiffi
−g

p ¼ ω; ð1:2Þ
with ω being a fixed volume form. Because of the
unimodular constraint

ffiffiffiffiffiffi−gp ¼ ω, we can derive only the

traceless part of the Einstein equation even if there may be a
“cosmological constant” in the action. The real cosmo-
logical constant may be introduced as an integration
constant, and thus is determined by the boundary condition,
not by a constant term in the action even if we have such
a term.
The question how many physical degrees of freedom

(dofs) there exist in UG in the covariant quantization is a
nontrivial problem and there has been a lot of debate
[8–24]. The reason is the following. In the covariant
BRST quantization of GR, there exist full diffeomorphism,
and we have four sets of ghosts and antighosts. This leaves
10 − 8 ¼ 2 dofs in GR. However in UG, we have only
transverse (or volume-preserving) diffeomorphism TDiff:

δBgμν ¼ −∇μcνT −∇νcμT; ð1:3Þ

δBλ ¼ 0; ð1:4Þ

expressed in terms of diffeomorphism Faddeev-Popov (FP)
ghosts, cμT, which satisfies a transversality condition:

∇μc
μ
T ¼ 0: ð1:5Þ

The condition (1.5) eliminates one dof from the FP ghosts.
We would also have the same number of antighosts.
Consequently the BRST quantization of this system intro-
duces only three sets of ghosts and antighosts. We also have
unimodular constraint, but it does not appear to introduce
additional set of ghost and antighost. Thus it seems that we
are left with 10 − 6 − 1 ¼ 3 dofs, one more dof than GR.
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In order to quantize UG in the covariant manner, we have
to realize the symmetry (1.3) off shell, i.e., without using
field equations. This is a nontrivial task, and it may appear
to require nonlocal projection operator [14]. However this
is not the case, and it has long been known in supergravity
[25–27] that a vector subject to transverse constraint can be
expressed by an unconstrained antisymmetric tensor even
in the curved spacetime. In our previous paper I, based on
this idea, we have expressed the reparametrization ghosts as

cμT ¼ ∇νcνμ; ð1:6Þ

which automatically satisfy the transverse condition with
rank-2 antisymmetric tensor ghost cμν. It turns out that after
the first gauge fixing, the ghost system needs the ghosts for
ghosts [28–30]. The reason is clear: The unconstrained
rank-2 tensor has 6 dofs which are more than required to
express the transverse vector ghost modes with 3 dofs. We
have found that this redundancy manifests itself in the form
of the gauge invariance in the ghost system, and this further
requires the gauge fixing and the introduction of ghosts,
reducing the number of dofs. Thus the ghost system
becomes significantly more complicated than usual.
Since we must have the same number of the antighosts,
it is natural to introduce similar rank-2 tensor antighosts,
and this further requires the ghosts for ghosts. We have to
continue the gauge fixing and the introduction of the ghosts
until there remains no more gauge invariance. The impor-
tant discovery in I is that after all this gauge fixing of TDiff,
the multiplier field λ is actually identified with a BRST
daughter. This means that there exists a set of ghost and
antighost corresponding to the unimodular constraint after
gauge fixing only TDiff, contrary to the above naive
expectation. This is the key observation to get the correct
number of dofs.
This formulation is nice in the sense that it gives a

formulation symmetric in ghosts and antighosts, but use of
the rank-2 antisymmetric tensors for both ghosts and
antighosts gives a complicated structure because of the
necessity of the ghosts for ghosts in both sectors. Here we
note that what is really required for the off-shell gauge
fixing of TDiff is to use the antisymmetric tensor fields only
for the ghosts (not antighosts) to express the transverse
transformation parameter as in (1.6). We further notice that,
in our other paper [24] for the quantization of GR in
unimodular gauge, we have actually presented a general
way of imposing such a transverse-vector gauge condition
by using a (d-component) vector antighost. It is realized at
the price of adding an extra scalar field BRST doublet, a set
of BRST parent and daughter. The variation of the action by
this BRST daughter field impose the transverse condition
on shell on the vector antighost, thus leaving the necessary
number of dofs for antighosts. Because the structure in the
antighost sector in this formulation does not need the
ghosts for ghosts, we expect that this formulation gives

considerably simpler covariant quantization of UG with
less ghosts. This is what we aim in this paper, and indeed
we show that this formulation successfully gives an
alternative and simpler covariant BRST quantization with
correct number of dofs. It turns out that this formulation
also has the advantage that in the ghost and antighost
sectors, there do not exist tripole modes, which existed in I
due to the use of the ghosts and antighosts with derivatives
(1.6). The formulation, however, gives the asymmetric one
in the ghost and antighost sectors.
This paper is organized as follows. In Sec. II, we start

with the off-shell gauge fixing of TDiff using rank-2
antisymmetric tensor ghosts and vector antighosts. The
structure in the ghost sector is basically the same as in I, and
we have the ghosts for ghosts phenomena. We gauge fix
TDiff until there remains no more invariance. The structure
for the antighost sector is similar to that in [24]. In Sec. III,
to study the spectrum in the theory, we concentrate on the
theory at the linearized level. First, to check that we have
fully gauge fixed the gauge invariance, in Sec. III A, we
show that there indeed exist the propagators for the flat
background for simplicity. Next, in Sec. III B, we derive the
equations of motion (EOMs) at the linearized order. We can
see that there is simplification in the antighost sector, and
there is no tripole field in ghosts and antighosts in contrast
to our pervious formulation in I though there is tripole in
the graviton excitation. In Sec. IV, we identify which fields
represent independent modes. We use this result in Sec. V
to examine how most of the fields fall into the BRST
quartets and show that there remain only 2 physical dofs in
the theory. In Sec. VI, we summarize our results and
conclude the paper with some discussions.

II. BRST QUANTIZATION
OF UNIMODULAR GRAVITY

The action (1.1) is invariant under the BRST trans-
formation (1.3) and (1.4) expressed in terms of diffeo-
morphism FP ghosts, cμT, which satisfies a transversality
condition (1.5).
In our previous paper I, we have expressed this field in

terms of an unconstrained antisymmetric rank-2 tensor
ghost cμν as (1.6). It was shown in detail that imposing the
nilpotency of the BRST transformation automatically
clarifies the existence of additional gauge invariance and
ghosts for ghosts [28–30]. Here we just summarize the
result, referring to I for the details. The BRST trans-
formation laws are

δBcνμ ¼ cνTc
μ
T þ i∇ρdρνμ;

δBdρνμ ¼ icρTc
ν
Tc

μ
T −∇σtσρνμ;

δBtσρνμ ¼ icσTc
ρ
Tc

ν
Tc

μ
T: ð2:1Þ

The field dρνμ is a hermitian boson carrying double ghost
number NFP ¼ þ2 and denotes the ghost for the ghost
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corresponding to the gauge transformation of cμν under
which the “field strength” cμT ¼ ∇νcνμ is invariant. Another
field tσρνμ is similarly introduced.
We now consider the BRST quantization of this UG

system. Here the crucial difference from our previous paper
I is that we do not use the antisymmetric tensor field as the
multiplier BRST doublet field for fixing the ðd − 1Þð¼3Þ-
component TDiff gauge invariance. Instead we use the
method developed in [24] to use a dð¼4Þ-component
(unconstrained) vector multiplier doublet field ðc̄μ; bμÞ:

δBc̄μ ¼ ibμ; ð2:2Þ

for fixing the (d − 1)-component TDiff gauge at the price of
adding an extra scalar BRST doublet field ðS; CSÞ, trans-
forming as

δBS ¼ CS: ð2:3Þ

The gauge-fixing and FP ghost (GFþ FP) terms in the
first step are given by [31,32]

LGFþFP;1 ¼ −iδB½c̄μð∂λg̃λμ − g̃μν∂νSÞ�
¼ bμð∂λg̃λμ − g̃μν∂νSÞ þ ic̄μ½∂νδBðg̃μνÞ
− δBðg̃μνÞ∂νS −

ffiffiffiffiffiffi
−g

p ∂μCS�; ð2:4Þ

where g̃μν ≡ ffiffiffiffiffiffi−gp
gμν, and

δBg̃μν ¼ −
ffiffiffiffiffiffi
−g

p ð∇μcνT þ∇νcμTÞ þ g̃μν∇λcλT

¼ −
ffiffiffiffiffiffi
−g

p ð∇μ∇ρcρν þ∇ν∇ρcρμÞ: ð2:5Þ

Here in Eq. (2.4), we can see the double roles of the extra
scalar S. First, the gauge-fixing condition resulting from the
variation of the multiplier field bμ is

∂λg̃λμ − g̃μν∂νS ¼ 0; ð2:6Þ

which demands that the 4-component de Donder
gauge condition ∂λg̃λμ ¼ 0 be satisfied aside from the
“longitudinal” component g̃μν∂νS≡ ffiffiffiffiffiffi−gp ∂μS which
remains arbitrary since S is nowhere else specified. So
the presence of ∂μS term reduces the actual number of
gauge conditions on the metric field from 4 to 3. Second,
the variation of the BRST partner CS of S gives the
transverse constraint on the partner multiplier c̄μ ≔ gμνc̄ν
of bμ ≔ gμνbν:

∂μð
ffiffiffiffiffiffi
−g

p
gμνc̄νÞ ¼

ffiffiffiffiffiffi
−g

p ∇μc̄μ ¼ 0: ð2:7Þ

The variation of S field itself yields the BRST transform of
this equation as the EOM:

δB½∂μð
ffiffiffiffiffiffi
−g

p
gμνc̄νÞ� ¼

ffiffiffiffiffiffi
−g

p ∇μδBðgμνc̄νÞ
¼ ffiffiffiffiffiffi

−g
p ð∇μbμ þ∇μδBðgμνÞc̄νÞ

¼ 0: ð2:8Þ

Although δBc̄ν ¼ bν, the contravariant multiplier bμ ¼
gμνbν is required to be transverse on shell up to FP ghost
quadratic term ∇μ½δBðg̃μνÞc̄ν�.
This ghost Lagrangian (2.4) depends on cνμ only

through cμT ¼ ∇νcνμ and has the gauge invariance under
the transformations with rank-3 totally antisymmetric
parameters ερνμ:

δcνμ ¼ ∇ρε
ρνμ: ð2:9Þ

This is just the gauge invariance already lifted in our BRST
transformation (2.1) with the ghost for ghost field dρνμ. We
take the following gauge-fixing condition and introduce a
multiplier BRST doublet to impose it:

gauge fixing cond: ∶ multiplier BRST doublet

∇½ρcνμ� ¼ 0 ∶ ðd̄ρνμ; c̄ρνμÞ; δBd̄ρνμ¼ c̄ρνμ:
ð2:10Þ

Here and in what follows, the bracket [ ] attached to the
indices means the weight 1 antisymmetrization; e.g.,
A½μBν� ¼ ð1=2ÞðAμBν − AνBμÞ. Similarly we will also use
( ) for the symmetrization with weight 1.
The GFþ FP terms in the second step are

LGFþFP;2 ¼
i
2

ffiffiffiffiffiffi
−g

p
δBðd̄ρνμ∇ρcνμÞ

¼ i
2

ffiffiffiffiffiffi
−g

p
δBðd̄ρνμ∇ρcνμÞ

¼ i
2

ffiffiffiffiffiffi
−g

p ½c̄ρνμ∇ρcνμ −∇ρd̄ρνμ · δBðgνσgμκÞcσκ

−∇ρd̄ρσκ · ðcσTcκT þ i∇μdμσκÞ�; ð2:11Þ

where partial integrations have been performed in the
second and third terms, and use has been made of the
commutativity δBð∇½μ1Aμ2���μn�Þ ¼ ∇½μ1δBðAμ2���μn�Þ follow-
ing from the equality ∇½μ1Aμ2���μn� ¼ ∂ ½μ1Aμ2���μn� valid for
any totally antisymmetric tensor Aμ2���μn.
This action (2.11) still has the gauge invariance under the

transformations [30]

δdρνμ ¼ ∇σε
σρνμ; ð2:12Þ

δd̄ρνμ ¼ ∇σε̄
σρνμ; ð2:13Þ

δc̄ρνμ ¼ ∇σθ̄
σρνμ; ð2:14Þ

since it depends on these tensor fields only through their
covariant divergences like ∇ρdρνμ, if partial integration is
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performed when necessary. Here again, the first gauge
invariance (2.12) is the one already lifted in our BRST
transformation (2.1) with the ghost for ghost field −tσρνμ.
The second gauge transformation (2.13) for the BRST
parent field d̄ρνμ is contained as a part of the multiplier
BRST transformation in Eq. (2.10). We fix the former two
gauge invariances by the following gauge-fixing conditions
and introduce the corresponding multiplier BRST doublets
to impose them:

gauge fixing cond: ∶ multiplier BRS doublet

∇½σdρνμ� ¼ 0 ∶ ðt̄σρνμ; d̄σρνμÞ; δBt̄σρνμ ¼ id̄σρνμ;

∇½σd̄ρνμ� ¼ 0 ∶ ðcσρνμ; dσρνμÞ; δBcσρνμ ¼ idσρνμ:

ð2:15Þ
The third gauge-invariance is automatically fixed by the
gauge-fixing on d̄ρνμ of the second gauge-invariance
because of δBd̄ρνμ ¼ c̄ρνμ.

The GFþ FP Lagrangian in the third step is

LGFþFP;3 ¼ −iδB
� ffiffiffiffiffiffi

−g
p �

−
1

6
t̄σρνμ

�
∇σdρνμ þ α

4
dσρνμ

�
þ 1

6
cσρνμ∇σd̄ρνμ

��

¼ 1

6

ffiffiffiffiffiffi
−g

p �
−d̄σρνμ∇σdρνμ −

α

4
d̄σρνμdσρνμ þ i∇σ t̄σρνμ · ð−∇λtλρνμ þ icρTc

ν
Tc

μ
TÞ

þ dσρνμ∇σd̄ρνμ þ icσρνμ∇σ c̄ρνμ þ i∇σ t̄σρνμ · dκτλ · δBðgρκgντgμλÞ − i∇σcσρνμ · d̄κτλδBðgρκgντgμλÞ
�
: ð2:16Þ

We have introduced a gauge parameter α for later conven-
ience. The gauge condition for the third gauge symmetry
(2.14) follows from the terms containing cσρνμ in (2.16). We
see that our antighost system is drastically simplified
compared with that in I.
Now there remains no further invariance and we expect

that the system is now fully gauge fixed. To avoid too many
tensor suffices, however, we rewrite the antisymmetric
tensor fields by their (Hodge) dual fields. Our sequence
of ghost fields, cμν; dμνρ and tμνρσ are expressed by their
dual fields Cμν; Dμ; T (generally denoted by the corre-
sponding uppercase letters) as

ffiffiffiffiffiffi
−g

p
cμν ¼ 1

2
εμνρσCρσ;ffiffiffiffiffiffi

−g
p

dμνρ ¼ εμνρσDσ;ffiffiffiffiffiffi
−g

p
tμνρσ ¼ εμνρσT: ð2:17Þ

Our convention for the ε is ε0123 ¼ þ1 and ε0123 ¼ −1.
The 3 multiplier BRST doublets are expressed by their

duals as

ffiffiffiffiffiffi
−g

p �
d̄μνρ

c̄μνρ

�
¼ −εμνρσ

�
D̄σ

C̄σ

�
;

ffiffiffiffiffiffi
−g

p �
t̄μνρσ

d̄μνρσ

�
¼ −εμνρσ

�
T̄

D̄

�
;

ffiffiffiffiffiffi
−g

p �
cμνρσ

dμνρσ

�
¼ −εμνρσ

�
C

D

�
; ð2:18Þ

Furthermore cμT should be understood to represent

cμT ¼ ∇νcνμ ¼ −
1

2
ffiffiffiffiffiffi−gp εμνρσ∂νCρσ: ð2:19Þ

In terms of these dual fields, the BRST transformations
for the ghost fields are rewritten as follows:

δBCμν ¼ −
1

2

ffiffiffiffiffiffi
−g

p
εμνρσc

ρ
Tc

σ
T þ ið∂μDν − ∂νDμÞ;

δBDμ ¼
i
3!

ffiffiffiffiffiffi
−g

p
εμνρσcνTc

ρ
Tc

σ
T þ ∂μT;

δBT ¼ −
i
4!

ffiffiffiffiffiffi
−g

p
εμνρσc

μ
Tc

ν
Tc

ρ
Tc

σ
T: ð2:20Þ

The BRST transformations of multiplier BRST doublets
are trivial for covariant vectors and scalars:

δBD̄μ ¼ C̄μ; δBT̄ ¼ iD̄; δBC ¼ iD: ð2:21Þ
By using these dual fields, the GFþ FP ghost

Lagrangians (2.4), (2.11), and (2.16) are rewritten as

LGFþFP;1 ¼ bμð∂λg̃λμ − g̃μν∂νSÞ

þ ic̄μ

�
∂ν∇ðμðενÞρσλ∂ρCσλÞ

− δBðg̃μνÞ∂νS − g̃μν∂νCS

�
; ð2:22Þ

LGFþFP;2 ¼ iδB½
ffiffiffiffiffiffi
−g

p
D̄σ∇ρCρσ�

¼ ffiffiffiffiffiffi
−g

p �
iC̄σ∇ρCρσ

þ 3i
4

ffiffiffiffiffiffi−gp εκμνλ∇ρD̄σ ·∇½ρCκσ� ·∇μCνλ

þ ð∇μD̄ν −∇νD̄μÞð∇μDν − igρλCρνδBgμλÞ
�
;

ð2:23Þ
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LGFþFP;3 ¼ −iδB½
ffiffiffiffiffiffi
−g

p ðT̄∇σDσ þ αT̄Dþ C∇σD̄σÞ�

¼ ffiffiffiffiffiffi
−g

p ½D̄∇μDμ þ αD̄DþD∇μD̄μ þ iC∇μC̄μ −
1

4
∇σT̄ ·∇½σCνμ�ð∇μCλρ ·∇νCλρ − 4∇λCμ

ρ · ∇νCλρ

þ 2∇λCμ
ρ ·∇λCνρ − 2∇λCμρ ·∇ρCνλÞ − i∇μT̄ · ∇μT þ ði∇μT̄ ·Dν þ i∇μC · D̄νÞδBgμν�; ð2:24Þ

where

δBgμν ¼ −ð ffiffiffiffiffiffi
−g

p Þ−1gλðνελρστ∇μÞ∇ρCστ ð2:25Þ

is to be substituted in the above equations.

III. PROPAGATORS AND EQUATIONS
OF MOTION AT LINEAR ORDER

A. Propagators

Now the total Lagrangian of our UG system is given by

LUG ¼ ffiffiffiffiffiffi
−g

p
Rþ λð ffiffiffiffiffiffi

−g
p

− ωÞ þ LGFþFP;1ð2.22Þ
þ LGFþFP;2ð2.23Þ þ LGFþFP;3ð2.24Þ: ð3:1Þ

Let us check in detail if we get nonsingular fully gauge
fixed action on the flat background with ω ¼ 1. We
introduce a fluctuation hμν around the flat metric ημν

defined by

g̃μν ¼ ημν þ hμν; ð3:2Þ

and then to the linear order we have

gμν ¼ ημν−hμνþ
1

2
ημνhþ��� ; ffiffiffiffiffiffi

−g
p ¼ 1þ1

2
hþ��� ð3:3Þ

In what follows indices of the fields will be raised and
lowered by using ημν and ημν, respectively. The quadratic
terms in our total action are given by

LUGjquadr ¼ LNFP¼0 þ LjNFPj¼1 þ LjNFPj¼2 þ LjNFPj¼3;

LNFP¼0 ¼
1

4
hμν□hμν þ 1

2
ð∂νhμνÞ2 −

1

8
h□hþ 1

2
λh

þ bμð∂λhμλ − ∂μSÞ;

LjNFPj¼1 ¼
i
2
εμνρσ c̄μ□∂νCρσ − ic̄μ∂μCS þ iC∂μC̄μ

þ iC̄μ∂νCνμ;

LjNFPj¼2 ¼ −D̄μð□Dμ − ∂ν∂μDνÞ þ D̄∂μDμ þ αD̄D

þ ∂μD̄μ ·D;

LjNFPj¼3 ¼ iT̄□T: ð3:4Þ

We start with NFP ¼ 0 sector. The 2-point vertex Γð2Þ
NFP¼0

in momentum space is

Γð2Þ
NFP¼0 ¼

hρσ S bρ λ

h μν

S

bμ
λ

0
BBBBB@

−p2½1
2
Pð2Þμν;ρσ − 1

12
dμνdρσ

− 1
4
ðdμνeρσ þ eμνdρσÞ − 3

4
eμνeρσ� 0 −ipðμηνÞρ 1

2
ημν

0 0 ipρ 0

ipðρησÞμ −ipμ 0 0

1
2
ηρσ 0 0 0

1
CCCCCA

; ð3:5Þ

by using the projection operators

dμν ¼ ημν −
pμpν

p2
; eμν ¼

pμpν

p2
; ð3:6Þ

Pð2Þ
μν;ρσ ¼ 1

2

�
dμρdνσ þ dμσdνρ −

2

3
dμνdρσ

�
; ð3:7Þ

which satisfy

pμdμν ¼ 0; dμνημν ¼ 3; eμνημν ¼ 1; ð3:8Þ

dμαdαν ¼ dμν; eμαeαν ¼ eμν; dμαeαν ¼ 0; ð3:9Þ

Pð2Þ
μν;αβd

αβ ¼ 0; Pð2Þ
μν;αβe

αβ ¼ 0; Pð2Þ
μν;αβP

ð2Þαβ;ρσ ¼Pð2Þρσ
μν :

ð3:10Þ

We can straightforwardly compute the inverse of the
matrix, Γð2Þ−1

NFP¼0:
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Γð2Þ−1
NFP¼0 ¼

1

−p2
×

hρσ S bρ λ

h μν

S

bμ
λ

0
BBBBB@

½2Pð2Þ
μν;ρσ − 1

3
dμνdρσ

þðdμνeρσ þ eμνdρσÞ − 3eμνeρσ�
dμν − 3eμν 2ipðμdνÞρ −p2ðdμν − eμνÞ

dρσ − 3eρσ −3 −ipρ p2

−2ipðρdσÞμ ipμ 0 0

−p2ðdρσ − eρσÞ p2 0 0

1
CCCCCA

: ð3:11Þ

The 2-point vertex Γð2Þ
jNFPj¼1

in momentum space is

Γð2Þ
jNFPj¼1

¼
Cρσ C CS

c̄μ

C̄μ

� 1
2
εμνρσp2pν 0 pμ

−p½ρησ�μ −pμ 0

�
; ð3:12Þ

the inverse of which is given by

Γð2Þ−1
jNFPj¼1 ¼

1

−p2
×

c̄ρ C̄ρ

Cμν

C

CS

0
B@

εμνρλpλ=p2 2p½μην�ρ
0 pρ

−pρ 0

1
CA :

ð3:13Þ

The 2-point vertex Γð2Þ
jNFPj¼2

in momentum space is

Γð2Þ
jNFPj¼2

¼
Dρ D

D̄μ

D̄

�
p2dμρ −ipμ

ipρ α

�
; ð3:14Þ

the inverse of which is given by

Γð2Þ−1
jNFPj¼2¼

1

−p2
×

D̄ρ D̄

Dμ

D

�½−δμρþðαþ1Þpμpρ=p2� ipμ

−ipρ 0

�
:

ð3:15Þ

Finally the 2-point vertex Γð2Þ
jNFPj¼3

for T and T̄ in
momentum space is given by

Γð2Þ
jNFPj¼3

¼ −ip2; ð3:16Þ

and the inverse of which is given by

Γð2Þ−1
jNFPj¼3 ¼

i
p2

: ð3:17Þ

Thus we have confirmed that the propagator may be
obtained and the system is fully gauge fixed.

B. Equations of motion at linear order

Let us denote the total action as S. The EOMs to linear
order are given as follows: for α ¼ −1,

NFP ¼ 0 sector

δSUG
δλ

∶ hð≡ημνhμνÞ ¼ 0; ð3:18Þ

δSUG
δhμν

∶
1

2
□hμν − ∂ðμðhνÞ þ bνÞÞ þ

1

2
λημν ¼ 0; ð3:19Þ

δSUG
δbμ

∶ ∂νhμν − ∂μS ¼ 0; ð3:20Þ

δSUG
δS

∶ ∂μbμ ¼ 0; ð3:21Þ

NFP ¼ �1 sector

δSUG
δc̄μ

∶
1

2
εμνρσ□∂νCρσ − ∂μCS ¼ 0; ð3:22Þ

δSUG
δCμν

∶
1

2
εμνρσ□∂ρc̄σ − ∂ ½μC̄ν� ¼ 0; ð3:23Þ

δSUG
δC̄μ ∶ ∂νCνμ þ ∂μC ¼ 0; ð3:24Þ

δSUG
δC

∶ ∂μC̄μ ¼ 0; ð3:25Þ

δSUG
δCS

∶ ∂μc̄μ ¼ 0; ð3:26Þ

NFP ¼ �2 sector

δSUG
δD̄

;
δSUG
δD

∶ ∂μDμ ¼ D; ∂μD̄μ ¼ D̄; ð3:27Þ

δSUG
δD̄μ ;

δSUG
δDμ

∶ □Dμ ¼ 0; □D̄μ ¼ 0; ð3:28Þ

NFP ¼ �3 sector

δSUG
δT̄

;
δSUG
δT

∶ □T ¼ 0; □T̄ ¼ 0: ð3:29Þ
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where hμ ≡ ∂νhμν. Note also that Eqs. (3.19), (3.23),
and (3.28) are already simplified by their preceding
equations.
Taking the trace of (3.19) and using (3.18) and (3.21), we

find

2λ ¼ ∂μ∂νhμν: ð3:30Þ

The divergence of the gravity equation (3.19), combined
with (3.30) and (3.21), yields

□bμ ¼ −∂μλ; ð3:31Þ

which, together with (3.21), gives

□λ ¼ 0: ð3:32Þ

Equation (3.20) gives

−□Sþ 2λ ¼ 0: ð3:33Þ

Equations (3.31) and (3.33) imply that bμ and S fields
satisfy dipole equations □2bμ ¼ 0 and □

2S ¼ 0, and their
dipole parts are supplied by the simple pole λ field.
Applying □ to the gravity field equation (3.19) and using
Eqs. (3.31) and (3.33), we get

1

2
□

2hμν − ∂μ∂νλ ¼ 0: ð3:34Þ

So, we see that h̃μν field is now a tripole field, and the
tripole part is supplied by the simple pole λ field and the
dipole parts are supplied by simple pole parts of S and bμ.
For the NFP ≠ 0 ghost sector, we find from (3.22)

□CS ¼ 0: ð3:35Þ

The dual of (3.22) gives

□
2Cμν ¼ 0: ð3:36Þ

Taking the ∂ν divergence of (3.23) and using (3.25)
gives

□C̄μ ¼ 0: ð3:37Þ

The dual of (3.23) yields

□
2c̄μ ¼ 0: ð3:38Þ

Equations (3.24), (3.28), and (3.29) show that all the other
ghost fields are of simple pole:

□C¼□D¼□D̄¼□Dμ ¼□D̄μ ¼□T ¼□T̄¼ 0: ð3:39Þ

There are no tripole ghost fields, in contrast to our paper I,
though there are in the graviton fluctuation. This is one of
the simplifications that our new formulation brings in.

IV. IDENTIFYING THE INDEPENDENT FIELDS

We have not only the usual simple pole fields but also
dipole and tripole fields in this system. So the number of
independent particle modes are different from that of
independent fields. To avoid the complication of decom-
posing the multipole fields into simple pole modes, we also
adopt here, as in the previous paper I, the 4-dimensional
Fourier expansion [33] of the fields

ϕðxÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

d4pθðp0Þ½ϕðpÞeipxþϕ†ðpÞe−ipx� ð4:1Þ

to define annihilation and creation operators ϕðpÞ and
ϕ†ðpÞ for such general multipole fields. We analyze
independent 4-dimensional Fourier modes for each ghost
number NFP sector successively, in the Lorentz frame in
which the 3-momentum p is along x3 axis:

pμ ¼ðp0;0;0;p3Þ; i:e:; pi ¼ 0ði¼ 1;2Þ; p3≕ jpj> 0:

ð4:2Þ

Note that if the field ϕ is a massless simple pole field
ϕðpÞ ∝ δðp2Þ, this reads

pμϕðp2Þ ¼ ðjpj; 0; 0; jpjÞϕðp2Þ; i:e:; p0 ¼ p3 ¼ jpj:
ð4:3Þ

We will show in the following analysis that the inde-
pendent fields in each ghost number sector are given by the
list in Table I.

A. NFP = 0 sector

We begin with the fields with ghost numberNFP ¼ 0. We
have 10 component gravity hμν field, 1 scalar field S, 1
unimodular multiplier field λ, plus a 4 component vector
NL field bμ; thus, 10þ 1þ 1þ 4 ¼ 16 component fields
in all. Let us count/identify the independent fields among
them, by using the EOMs (3.18)–(3.21).
These EOMs (3.18)–(3.21) in this NFP ¼ 0 sector take

exactly the same forms as those in GR theory in unimodular
gauge, if we identify the unimodular NL field b there with

TABLE I. List of independent fields. i denotes transverse
directions 1 and 2.

NFP ¼ 0 hT1; hT2; χ0; χi ; b0; bi
jNFPj ¼ 1 C0i; C12; C ; c̄0; c̄i; C̄0

jNFPj ¼ 2 D0; Di; D ; D̄0; D̄i; D̄
jNFPj ¼ 3 T ; T̄
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the present unimodular multiplier λ. The same counting
there also applies here.
The 10 component hμν is subject to the 1 traceless

condition (3.18) and the 4-vector de Donder gauge con-
dition (3.20), so has 10 − 1 − 4 ¼ 5 independent fields, as
which we can take the same fields as in GR case. First, we
have two BRST invariant simple-pole (hence physical)
fields

hT1ðpÞ≔ ð1=2Þðh11−h22ÞðpÞ; hT2ðpÞ≔ h12ðpÞ: ð4:4Þ

These transverse modes are BRST invariant since the
BRST transformation of hμνðpÞ at linearized level is
given by

δBhμνðpÞ ¼ −ipμcνTðpÞ − ipνcμTðpÞ; ð4:5Þ

while the transverse momentum components pi (i ¼ 1, 2)
vanish by definition. Simple-pole property □hTjðpÞ ¼ 0

also follows from the EOM (3.19) and pi ¼ 0. In addition
to these two, we have a transverse vector field (hence
possessing 3 independent components):

χ0ðpÞ ≔ 1

2p0

�
h00 −

1

2
ðh11 þ h22Þ

�
ðpÞ

¼ 1

2p0

1

2
ðh00 þ h33ÞðpÞ;

χiðpÞ ≔ 1

p0
h0iðpÞ; ði ¼ 1; 2Þ;

χ3ðpÞ ≔ 1

2p3

�
h33 −

1

2
ðh11 þ h22Þ

�
ðpÞ

¼ 1

2p3

1

2
ðh00 þ h33ÞðpÞ; ð4:6Þ

satisfying transversality pμχ
μðpÞ¼p0χ

0ðpÞþp3χ
3ðpÞ¼0.

So we can forget the redundant component χ3ðpÞ hence-
forth. The second equality for the expression χ0ðpÞ
[or χ3ðpÞ] follows from the tracelessness Eq. (3.18),
h ≔ ημνhμν ¼ 0,

ðh11 þ h22ÞðpÞ ¼ ðh00 − h33ÞðpÞ: ð4:7Þ

This χμðpÞ field has a very simple BRST transformation
property

δBχ
μðpÞ ¼ −icμTðpÞ: ð4:8Þ

Next, the gauge fixing NL field bμ is subject to the
transversality (3.21), p0b0ðpÞ þ p3b3ðpÞ ¼ 0, so we can
take 3 fields b0 and biðpÞ (i ¼ 1, 2) as its independent
components. These 5 components hTi, χ0 and χi from hμν
and 3 components b0 and bi give the all of the independent
fields listed in the NFP ¼ 0 sector in Table I.

The other fields λ and S as well as the other 5 dependent
components in hμν

ðh11þh22ÞðpÞ; ðh00−h33ÞðpÞ; h3iðpÞ; h03ðpÞ ð4:9Þ

can be shown to be explicitly expressed by the above 5þ 3
independent fields by using EOMs (3.18)–(3.21) as follows.
In Eq. (3.31) which we already derived from those

EOMs, the unimodular multiplier λ was identified with the
dipole part of the gauge-fixing multiplier (NL) field b0:

λðpÞ ¼ −i
1

p0
□b0ðpÞ: ð4:10Þ

This is an important relation showing that the unimodular
multiplier field λ becomes the BRST daughter field, hence a
member of a BRST quartet. As for the S field, we can
rewrite Eq. (3.19) into the following form by substituting
hμ ¼ ∂μS of Eq. (3.20):

∂μ∂νS ¼ 1

2
□hμν − ∂ðμbνÞ þ 1

2
λημν: ð4:11Þ

Adding two equations with indices ðμ; νÞ ¼ ð0; 0Þ and (3,3)
and dividing by −ðp2

0 þ p2
3Þ, we obtain

SðpÞ ¼ −
2p0

p2
0 þ p2

3

ð□χ0 − ib0ÞðpÞ: ð4:12Þ

Now the 5 dependent components in hμν in Eq. (4.9). The
first dependent field ðh11 þ h22ÞðpÞ is already given by the
second field ðh00 − h33ÞðpÞ in Eq. (4.7). The latter one is
shown in Eq. (4.43) in the previous paper I to be

ðh00 − h33ÞðpÞ ¼ 4ip0

p2
0 þ p2

3

b0ðpÞ; ð4:13Þ

which is actually the same equation as Eq. (4.12)
if we substitute −ðp2

0 þ p2
3ÞSðpÞ ¼ iðp0h0 þ p3h3ÞðpÞ ¼

p2
0h

00ðpÞ − p2
3h

33ðpÞ following from ∂ν∂μS ¼ ∂νhμ ¼
∂ν∂λhμλ. The rest two components h3i and h03 follow from
the de Donder gauge condition (3.20), ∂νhνμ ¼ ∂μS; the
μ ¼ i (i ¼ 1, 2) component gives

h3iðpÞ ¼ p2
0

p3
χiðpÞ; ð4:14Þ

and the vanishing difference 0 ¼ ∂ ½ν∂μ�S ¼ ∂ ½ν∂λhμ�λ with
ðμ; νÞ ¼ ð0; 3Þ gives Eq. (4.41) in I:

h03ðpÞ ¼ 4p2
0p

3

p2
0 þ p2

3

χ0ðpÞ: ð4:15Þ
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B. NFP ≠ 0 sectors

In NFP ¼ þ1 ghost sector we have 6 component Cμν and
2 scalars, CS and C, so 8 components in all. In NFP ¼ −1
antighost sector we have two 4-component vectors c̄μ and
C̄μ, so also 8 components in all.
Begin with the NFP ¼ þ1 ghost sector. The constraint

equation (3.24), ∂νCνμ þ ∂μC ¼ 0, takes the same form as
that in the previous paper I, which implied that only 3
components C0i and C12 are independent among 6 Cμν if
the scalar C is chosen as another independent field;
the other 3 components are expressed by these and
C as the Eq. (4.52) in I with C̄μν and C̄ there replaced
by Cμν and C:

C03 ¼−CðpÞ; C3i ¼−
p0

p3
C0iðpÞ; ði¼ 1;2Þ: ð4:16Þ

These 3þ 1 ¼ 4 fields C0i, C12 and C are the all of the
independent fields listed in the NFP ¼ 1 sector in Table I.
The other remaining field CS is indeed expressed by the
dipole part of the independent field C12; the μ ¼ 0
component of EOM (3.22) gives

CSðpÞ ¼
1

2p0
ε03ij□p3CijðpÞ ¼ □C12ðpÞ; ð4:17Þ

where in the second equality, p3 ¼ p0 has been used since
□C12ðpÞ is a massless simple pole field.
Next consider the NFP ¼ −1 antighost sector, consisting

of two vectors c̄μ and C̄μ. Equations (3.26) and (3.25) show
that these vectors are both transversal:

p0c̄0 þ p3c̄3 ¼ 0 → c̄3 ¼ −
p0

p3
c̄0; ð4:18Þ

p0C̄0 þ p3C̄3 ¼ 0 → C̄3 ¼ p0

p3
C̄0 ¼ C̄0; ð4:19Þ

where p0 ¼ p3 has been used in front of the simple pole
field C̄μ. Moreover, Eq. (3.23) gives constraint relations
between c̄μ and C̄ν: noting that □c̄μ is also a simple pole
field,

ðμ ¼ 0; ν ¼ 3Þ∶ p0C̄3 − p3C̄0 ¼ 0 → C̄0 ¼ C̄3; ð4:20Þ

ðμ ¼ 0 or 3; ν ¼ iÞ∶ εij□p3c̄jðpÞ þ p0C̄i ¼ 0

→ C̄iðpÞ ¼ −εij□c̄jðpÞ
ði; j ¼ 1; 2; εij ¼ −εjiÞ; ð4:21Þ

ðμ ¼ 1; ν ¼ 2Þ∶ □p0c̄3 −□p3c̄0 ¼ 0 → □c̄3 ¼ −□c̄0:

ð4:22Þ

Equations (4.20) and (4.22) merely give identical relations
with the transversality of vectors c̄μ and C̄ν. Only the
Eq. (4.21) implies new relations that C̄iðpÞ are given by the
dipole part of εijc̄jðpÞ. We thus have shown that 3þ 1 ¼ 4

fields c̄0, c̄i and C̄0 are all of the independent fields in
NFP ¼ −1 antighost sector as listed in Table I.
Finally, the EOMs (3.27)–(3.29) in the jNFPj ¼ 2,

3 sectors are trivial. So we can immediately see that the
independent fields in these sectors can be chosen as written
in the list of Table I.

V. IDENTIFYING BRST QUARTETS

Now that all the independent fields are listed up in
Table I, we can show that all of them other than the two
physical transverse modes hT1 and hT2, fall into BRST
quartets, decoupling properly from the physical sector. In
order to do so, we recall the BRST transformation at
linearized level (which is also the BRST transformation of
the asymptotic fields under the perturbative assumption):

δBλ ¼ 0; ð5:1Þ

δBhμν ¼ −2∂ðμcνÞT ¼ ∂ðμενÞτρσ∂τCρσ; ð5:2Þ

δBCμν ¼ ið∂μDν − ∂νDμÞ; ð5:3Þ

δBS ¼ CS; δBCS ¼ 0; ð5:4Þ

δBc̄μ ¼ ibμ; δBbμ ¼ 0; ð5:5Þ

δBD̄μ ¼ C̄μ; δBC̄μ ¼ 0; ð5:6Þ

δBDμ ¼ ∂μT; δBT ¼ 0; ð5:7Þ

δBT̄ ¼ iD̄; δBD̄ ¼ 0; ð5:8Þ

δBC ¼ iD; δBD ¼ 0: ð5:9Þ

The BRST quartet is generally a pair of the BRST
doublets which satisfy the properties schematically drawn
as [34]

ð5:10Þ

We denote this BRST quartet described by this scheme by
using the same notation as used in I simply as

ðAðpÞ → CðpÞ; C̄ðpÞ → iBðpÞÞ; ð5:11Þ
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This scheme means that a pair of BRST doublets satisfying
(assuming AðpÞ a boson),

δBAðpÞ ¼ ½iQB; AðpÞ� ¼ CðpÞ;
δBC̄ðpÞ ¼ fiQB; C̄ðpÞg ¼ iBðpÞ; ð5:12Þ

have nonvanishing inner-product with each other:

h0jC̄ðpÞC†ðqÞj0i ¼ h0jC̄ðpÞiQBA†ðqÞj0i
¼ ih0jBðpÞA†ðqÞj0i ∝ δ4ðp − qÞ
≠ 0; ð5:13Þ

or, equivalently, in terms of commutation relation,

0¼fiQB; ½C̄ðpÞ;A†ðqÞ�g
¼ ½iBðpÞ;A†ðqÞ�−fC̄ðpÞ;C†ðqÞg
→ ½iBðpÞ;A†ðqÞ�¼fC̄ðpÞ;C†ðqÞg
∝δ4ðp−qÞ≠0: ð5:14Þ

We should note that the existence of nonvanishing inner-
products/commutators can also be judged from the non-
vanishing propagators. As explained in I, generally, the
expressions of commutation relations (CR) and the propa-
gators for the free fields ϕi have the following exact
correspondence:

propagator hϕiϕji CR ½ϕiðpÞ;ϕ†
jðqÞ�

1
i ½ 1p2 ; 1

p4 ; 1
p6� ↔ ½δðp2Þ;−δ0ðp2Þ; 1

2
δ00ðp2Þ�θðp0Þδ4ðp − qÞ;

; ð5:15Þ

where three terms on both sides correspond to the terms of
simple-pole, dipole and tripole parts, respectively. This
correspondence also holds for the fermion fields if the
commutators are understood to be anticommutators. We
use an abbreviated notation for the propagator in momen-
tum space:

hϕiϕjip ¼
Z

d4xe−ipxh0jTϕiðxÞϕjð0Þj0i; ð5:16Þ

which is identical with i times the inverse of the 2-point
vertex, iΓð2Þ−1

ij , so can be read directly from the results
given in Sec. III.
Now let us start the task to identify the BRST quartets.

Among the fields in Table I, we can list all the boson fields
which are not BRST invariant. Then they must be BRST
parents of certain BRST doublets, which can be read from
the BRST transformation Eqs. (5.1)–(5.9). Thus we find all
the BRST doublets possessing boson parent as

δBχ
0ðpÞ ¼ −ic0TðpÞ ¼ −p3C12ðpÞ; ð5:17Þ

δBχ
iðpÞ ¼ −iciTðpÞ ¼ εijðp3C0j − p0C3jÞðpÞ

¼ −εij
1

p3
□C0jðpÞ; ð5:18Þ

δBD0ðpÞ ¼ ip0TðpÞ; ð5:19Þ

δBD̄0ðpÞ ¼ C̄0ðpÞ; ð5:20Þ

δBD̄iðpÞ ¼ C̄iðpÞ ¼ −εij□c̄jðpÞ; ð5:21Þ

where in Eq. (5.18), use has been made of Eq. (4.16) to
rewrite C3jðpÞ as −ðp0=p3ÞC0jðpÞ in the last equality. We

have used Eq. (4.21) in the last line to rewrite C̄i which does
not appear in Table I as independent fields. In the sameway,
all the BRST doublets possessing fermion parent can be
found as

δBC0iðpÞ ¼ −p0DiðpÞ; ð5:22Þ

δBCðpÞ ¼ iDðpÞ; ð5:23Þ

δBc̄0ðpÞ ¼ ib0ðpÞ; ð5:24Þ

δBc̄iðpÞ ¼ ibiðpÞ; ð5:25Þ

δBT̄iðpÞ ¼ iD̄ðpÞ: ð5:26Þ

At this stage we notice that all the independent fields in
Table I other than the physical transverse graviton modes
already appear in these BRST doublets, as the parent or
daughter fields. Since the BRST doublets are known to
necessarily form BRST quartets which essentially decouple
from physical subspace, one is tempted to conclude that the
unitarity proof is completed. We must, however, be very
careful about the dipole and tripole fields appearing in the
BRST parent position. For instance, if A is a dipole and B is
a simple pole for the BRST doublet δBA ¼ iB, then this
implies δB□A ¼ 0. That is, the simple pole field □A,
representing the dipole part mode in the A field is BRST
invariant. So □A must appear somewhere at BRST daugh-
ter position in the full list of the BRST doublets. Otherwise,
the unphysical □A mode becomes a BRST singlet appear-
ing in the physical subspace and violates unitarity.
All the multipole fields which appear in the parent

position in these BRST doublets (5.17)–(5.26) are:
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χ0; χi; C0i; c̄0; c̄i. Let us examine the BRST doublets
possessing these parent fields in turn.
First is the doublet (5.17), δBχ0ðpÞ ¼ −p3C12ðpÞ. The

parent χ0ðpÞ is tripole while the daughter C12ðpÞ is dipole,
meaning that the tripole mode part □2χ0ðpÞ could be a
dangerous BRST singlet. But Eq. (3.34), ð1=2Þ□2hμν ¼
∂μ∂νλ, tells us □2χ0ðpÞ ∝ λðpÞ and the unimodular multi-
plier field λðpÞ was already noted in Eq. (4.10) to be a safe
BRST daughter field ∝ □b0ðpÞ and it indeed appears in the
daughter position of the BRST doublet (5.24). Note that
this BRST doublet is a safe doublet, in which both the
parent c̄0ðpÞ and the daughter b0ðpÞ are dipole fields,
implying that it actually represents two simple-pole BRST
doublets:

δB ˆ̄c0ðpÞ ¼ ib̂0ðpÞ and δB□c̄0ðpÞ ¼ i□b0ðpÞ; ð5:27Þ

where the hat symbol ϕ̂ means the simple-pole part in the
multipole field. Here we emphasize that the second
equation of (5.27) means that the multiplier field λ impos-
ing the unimodular constraint becomes the BRST daughter
□b0 ¼ ip0λ and has associated ghost and antighost. This is
the key how we get the correct number of remaining
physical dofs.
Second is the doublet (5.18), δBχ

iðpÞ ¼
−εij□C0jðpÞ=p3. Since the parent χiðpÞ is a dipole field
while □C0jðpÞ is a simple-pole field, the dipole part
□χiðpÞ is a potentially dangerous BRST singlet. But
EOMs (3.19) and (3.20) lead to □χiðpÞ ¼ □h0iðpÞ=p0 ¼
ibiðpÞ, which safely appears in the daughter position of the
doublet (5.25).
Third is the doublet (5.22), in which the parent C0iðpÞ is

dipole while the daughter DiðpÞ is simple-pole. So
□C0iðpÞ is a potentially dangerous BRST singlet but it
actually appears in the daughter position of the dou-
blet (5.18).
Lastly are the doublets (5.24) and (5.25); the former

doublet (5.24) was already noted in advance to represent a
safe and double BRST doublets in Eq. (5.27). In the latter
doublet (5.25), the parent c̄iðpÞ is dipole while biðpÞ is
simple-pole. But the potentially dangerous BRST singlet
□c̄iðpÞ just appears in the daughter position of the
doublet (5.21).
We thus have finished to show that the list of the BRST

doublets in Eqs. (5.17)–(5.26) is complete; that is, it
contains all the independent modes in our UG theory other
than the physical transverse modes and they all fall into
BRST doublets decoupling from the physical sector.
For the unitarity proof, this is enough. For completeness,

however, we identify how those BRST doublets form
BRST quartets. The task for doing so is only to find for
each BRST doublet with boson parent in (5.17)–(5.21)
a partner BRST doublet with fermion parent from
(5.22)–(5.26) which has nonvanishing inner-product with

each other. As explained before, the existence of non-
vanishing inner-products can be easily found by examining
the nonvanishing propagators given in Sec. III. In this way,
we can identify the following BRST quartets:

ðχ0ðpÞ → −p3C12ðpÞ; c̄0ðpÞ → ib0ðpÞÞ; ð5:28Þ

ðχiðpÞ→−ð1=p3Þεij□C0jðpÞ; c̄iðpÞ→ ibiðpÞÞ; ði¼1;2Þ;
ð5:29Þ

ðD0ðpÞ → ip0TðpÞ; T̄ðpÞ → iD̄ðpÞÞ; ð5:30Þ

ðD̄0ðpÞ → C̄0ðpÞ; CðpÞ → iDðpÞÞ; ð5:31Þ

ðD̄iðpÞ → −εij□c̄jðpÞ; C0iðpÞ → −p0DiðpÞÞ: ð5:32Þ

The relevant propagators showing the existence of non-
vanishing inner-products between the pair doublets in these
BRST quartets are the following:

hib0 χ0ip ¼ p3hc̄0 C12ip ¼ i
p2
3

ðp2Þ2 ; ð5:33Þ

hibi χiip ¼ 1

p3
hc̄i εij C0jip ¼ i

1

p2
; ð5:34Þ

hiD̄ D0ip ¼ −p0hT̄ iTip ¼ −i
p0

p2
; ð5:35Þ

hiD D̄0ip ¼ hC C̄0ip ¼ −i
p0

p2
; ð5:36Þ

p0hDi D̄iip ¼ −hC0i ε
ij
□c̄jip ¼ i

p0

p2
: ð5:37Þ

Here we note that the propagators in the first line are of
dipole. It implies that the first BRST quartet (5.28) in fact
represents two BRST quartets each consisting of simple-
pole fields:

ð□χ0ðpÞ → −p3
□C12ðpÞ; ˆ̄c0ðpÞ → ib̂0ðpÞÞ; ð5:38Þ

ðχ̂0ðpÞ → −p3Ĉ12ðpÞ; □c̄0ðpÞ → i□b0ðpÞÞ; ð5:39Þ

where hat means the simple-pole part. This structure can be
understood if we note the following relevant propagators of
simple-pole:

hib0 □χ0ip ¼ p3hc̄0 □C12ip ¼ −i
p2
3

p2
; ð5:40Þ

hi□b0 χ0ip ¼ p3h□c̄0 C12ip ¼ −i
p2
3

p2
: ð5:41Þ
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The nonvanishing inner-products exist between the simple-
pole parts and the dipole parts.
Thus we have confirmed that all the fields including

multipole fields except for the transverse modes fall into the
BRST quartets and decouple from the physical sector,
leaving the two transverse graviton modes as physical
states.

VI. CONCLUSIONS

In this paper, combining the new ideas in I and [24], we
have given a new covariant BRST quantization of UG.
First, we have used rank-2 antisymmetric tensor fields for
the ghosts which satisfy the transverse condition. This gives
further gauge invariance in the ghost sector and we have
successfully gauge fixed TDiff. For the antighosts, we need
fields with the same number of dofs. In I, we have used the
same rank-2 antisymmetric tensor fields, but this leads to a
formulation with lots of ghosts and tripole modes in the
ghost sector. Here instead we have used vector antighost
which satisfy transverse condition on shell due to the
additional scalar field S. We have shown that this leads to a
fully gauge-fixed theory, and all the modes except for the 2
transverse graviton modes fall into the BRST quartets and

completely decouple from the physical subspace. In this
way we have succeeded in giving a covariant BRST
quantization of UG with the correct number of dofs, the
same as GR.
This formulation has two advantages compared with our

previous formulation in I. One is that the formulation
contains less number of ghosts without those originating
from antighosts. The second is that we do not have tripole
modes in the ghost sector. These lead to considerable
simplification in the resulting system. A difference is that
this formulation is asymmetric in ghost and antighost
sectors, while that in I is symmetric. Both formulations
give the correct number of dofs. Which formulation is more
useful for covariant study of UG remains to be seen, but we
hope that our formulations should be useful for further
study of UG.
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