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We show that the integrability of the SOðNÞ=SOðN − 1Þ principal chiral model (PCM) originates from
the Pohlmeyer reduction of the OðNÞ nonlinear sigma model (NLSM). In particular, we show that the Lax
pair of the PCM is related upon redefinitions and identification of parameters to the zero curvature
condition, which is a consequence of the flatness of the enhanced space used in the Pohlmeyer reduction.
This identification provides the solution of the auxiliary system that corresponds to an arbitrary
NLSM/PCM solution.
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I. INTRODUCTION

The classical integrability of the principal chiral model
(PCM) is guaranteed by the formulation of its equations of
motion and the zero curvature condition, which is satisfied
automatically by the current, as a Lax pair [1]. For a recent
review see [2]. Both equations can be derived as the
compatibility condition of the auxiliary system:

∂�ΨðλÞ ¼ L�ΨðλÞ; L� ¼ ð∂�gÞg−1
1� λ

; ð1Þ

where λ ∈ C is the spectral parameter. In the literature, this
system also goes by the name of fundamental linear
problem. In our previous work [3] we solved these
equations for g ∈ SOð3Þ=SOð2Þ. This was achieved in a
brute force manner, which was inspired by the application
of the dressing method on elliptic strings in R × S2 [4], as
well as on the elliptic minimal surfaces in H3 [5]. We
introduced spherical coordinates and bootstrapped the
solution of the auxiliary system using all the available
equations. In this work, we will solve these equations for an
arbitrary g ∈ SOðNÞ=SOðN − 1Þ in a more elegant way.
A key element of our derivation will be the so-called

Pohlmeyer reduction of the OðNÞ NLSM [6,7]. In a

nutshell, considering the target space SN−1 embedded in
RN , the embedding equations of the NLSM solution in RN

are multicomponent generalizations of the sine-Gordon
equations, known as symmetric space sine Gordon models,
for a recent review see [8]. This process is the Pohlmeyer
reduction. It is important to point out that the Pohlmeyer
reduction is a many-to-one mapping. In particular, there is
an infinite family of NLSM solutions, which correspond to
the same Pohlmeyer counterpart. Finally, it worth noticing
that for a given solution of the Pohlmeyer reduced theory,
the equations of motion of the NLSM become linear.
The solution of the auxiliary system (1) is of great

interest since it is related to the monodromy matrix, which
provides an infinite tower of conserved charges. In par-
ticular, the monodromy matrix Tðσf; σi; λÞ is defined as

Tðσf; σi; λÞ ¼ Ψðτ; σf; λÞΨ−1ðτ; σi; λÞ: ð2Þ

It is straightforward to show that its time derivative reads

∂τTðσf;σi;λÞ¼Lτðτ;σfÞTðσf;σi;λÞ−Tðσf;σi;λÞLτðτ;σiÞ:
ð3Þ

The Lax connection Lτ appears in the auxiliary system
when it is expressed in terms of the world sheet coordinates
σ and τ. In particular, the relevant equation reads
∂τΨðτ; σ; λÞ ¼ LτΨðτ; σ; λÞ. The values of σi and σf are
related to the specific solution and its boundary conditions.
The latter also specify the explicit form of the conserved
quantity. Let us make this statement clear. If Lτ vanished
both at σi and σf, which for instance may happen at �∞,
then the monodromy matrix is conserved. On the contrary,
when imposing periodic boundary conditions, it is its trace
that is conserved. Finally, let us also mention that in the
case of open string boundary conditions one can employ
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the formalism of Cherdnik and Sklyanin by defining a
boundary monodromy matrix [9,10].
There is another use for the solution of the auxiliary

system. It is the necessary input for the application of the
dressing method [1,11,12]. The latter is a technique which
enables the construction of new solutions of the NLSM,
once a solution is already known. The known solution is
referred to as the seed solution. The Pohlmeyer reduced
theory has a counterpart of the dressing transformations,
known as the Bäcklund transformations. Interestingly
enough, a dressing transformation on the NLSM solution,
automatically performs a Bäcklund transformation at the
avatar of the solution in the Pohlmeyer reduced theory [13].
In [3] we claimed that the systematic solution of the

auxiliary system corresponding to the Oð3Þ NLSM, points
to a nonlinear superposition rule for NLSMs on symmetric
spaces. In order to obtain a new NLSM solution one can
combine a NLSM solution with a “virtual” one, i.e., one
that obeys inadmissible Virasoro constraints when the
model is embedded in string theory, both corresponding
to the same Pohlmeyer counterpart. We verify this state-
ment in the case of OðNÞ NLSM.

II. THE POHLMEYER REDUCTION
OF THE OðNÞ NLSM

In this section we review the Pohlmeyer reduction of the
OðNÞ NLSM. The main reason for doing so is that we will
use slightly unusual conventions, which will facilitate the
rest of the paper. The equations of motion of the NLSM
read

∂þ∂−X⃗ þ ð∂þX⃗ · ∂−X⃗ÞX⃗ ¼ 0; ð4Þ

where we used the coordinates ξ� ¼ ξ1 � ξ0. They are
accompanied by the geometric constraint

jX⃗j2 ¼ 1; ð5Þ

as well as by the conservation of the stress-energy tensor T,
which in appropriate coordinates implies

T�� ¼ j∂�X⃗j2 ¼ m2
�: ð6Þ

We introduce a basis V ¼ fv⃗1;…; v⃗Ng in RN , where
v⃗N−2 ¼ ∂−X⃗, v⃗N−1 ¼ ∂þX⃗ and v⃗N ¼ X⃗ [14]. On the rest of
the vectors we impose the orthonormality conditions

v⃗i · v⃗j ¼ δij; v⃗i · v⃗N−2 ¼ v⃗i · v⃗N−1 ¼ v⃗i · v⃗N ¼ 0: ð7Þ

The norms of the last three vectors are fixed by Eqs. (5) and
(6). As a consequence, in the subspace spanned by the
vectors X⃗ and ∂�X⃗ the only unconstrained degree of
freedom is the angle between ∂þX⃗ and ∂−X⃗. Thus, we
define the primary Pohlmeyer field φ through

∂þX⃗ · ∂−X⃗ ¼ mþm− cosφ: ð8Þ

Let us expand the derivatives of the vectors, which form the
basis, on the basis itself as

∂�v⃗α ¼ ðA�Þαβv⃗β; ð9Þ

or in matrix form as

∂�V ¼ A�V; Vij ¼ ðv⃗iÞj: ð10Þ

By definition ∂þv⃗N ¼ v⃗N−1 and ∂−v⃗N ¼ v⃗N−2, implying
that the elements ðAþÞNα ¼ δαðN−1Þ and ðA−ÞNα ¼ δαðN−2Þ.
The equations of motion imply that ðAþÞðN−2Þα ¼
−mþm− cosφδαN and similarly ðA−ÞðN−1Þα ¼ −mþm−

cosφδαN . Taking into account the following inner products

ð∂2
�X⃗Þ · X⃗ ¼ −m2

�; ð11Þ

ð∂2
�X⃗Þ · ∂�X⃗ ¼ 0; ð12Þ

ð∂2
�X⃗Þ · ∂∓X⃗ ¼ −mþm− sinφ∂�φ; ð13Þ

we obtain

∂2
�X⃗ ¼ −m2

�X⃗ þ cotφ∂�φ∂�X⃗

−
m�
m∓

∂�φ
sinφ

∂∓X⃗ þm�a�i v⃗i; ð14Þ

where a�i are additional Pohlmeyer fields, which are
grouped as two ðN − 3Þ × 1 column matrices a� [15].
Finally, we define

v⃗j · ∂�v⃗i ¼ ðA�Þij; ð15Þ

where A� are ðN − 3Þ × ðN − 3Þ antisymmetric matrices.
Thus, the matrices A� are given by:

Aþ¼

0
BBBBB@

Aþ
cosφaþ
m− sin2ϕ

− aþ
mþ sin2ϕ

0

0T 0 0 −mþm−cosφ

mþaTþ −mþ
m−

∂þφ
sinφ cotφ∂þφ −m2þ

0T 0 1 0

1
CCCCCA

ð16Þ

and

A−¼

0
BBBBB@

A− − a−
m− sin2ϕ

cosφa−
mþ sin2ϕ

0

m−aT− cotφ∂−φ −m−
mþ

∂−φ
sinφ −m2

−

0T 0 0 −mþm−cosφ

0T 1 0 0

1
CCCCCA
: ð17Þ
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The compatibility condition ∂þ∂−v⃗i ¼ ∂−∂þv⃗i, is equiv-
alent to the zero curvature condition

∂−Aþ − ∂þA− þ ½Aþ; A−� ¼ 0: ð18Þ

Explicitly, the equations of motion of the Pohlmeyer
reduced theory read:

Fþ− ¼ cosφ
sin2 φ

½a−aTþ − aþaT−� ð19Þ

D�a∓ ¼ ∂∓φ
sinφ

a� ð20Þ

∂þ∂−φþ aTþa−
sinφ

þmþm− sinφ ¼ 0; ð21Þ

where D� ¼ IN−3∂� −A� and Fþ− ¼ ½Dþ;D−� [16].
Notice that the Pohlmeyer reduced theory depends only
on the product mþm−. This is crucial for the rest of the
paper. It seems that we ended up facing a more complicated
problem than the original NLSM. However, this is not the
case since the physical degrees of freedom are actually only
N − 2. Let us define the ðN − 2Þ × ðN − 2Þ matrices

Ãþ ¼

0
B@Aþ − aþ

tanφ

aTþ
tanφ 0

1
CA; Ã− ¼

0
B@ A−

a−
sinφ

− aT−
sinφ 0

1
CA: ð22Þ

Notice that ÃT
� ¼ −Ã�, thus Ã� are valued in the Lie

algebra soðN − 2Þ. The equations of motion (19)–(21)
imply that Ã� constitute a flat connection, i.e.,

∂−Ãþ − ∂þÃ− þ ½Ãþ; Ã−� ¼ 0: ð23Þ

Moreover, Eq. (20) assumes the form

D̃−ãþ ¼ ãT−ãþ
sinφ

Z̃þ ∂þφ
sinφ

ã−; ð24Þ

D̃þã− ¼ −
ãT−ãþ
tanφ

Z̃þ ∂−φ

sinφ
ãþ; ã� ¼

�
a�
0

�
; ð25Þ

where Z̃i ¼ δi;ðN−2Þ and D̃� ¼ IN−2∂� − Ã�. Finally,
Eq. (21) assumes the form

∂þ∂−φþ ãTþã−
sinφ

þmþm− sinφ ¼ 0: ð26Þ

The solution of Eq. (23) is Ã� ¼ ð∂�ÕÞÕT , where
Õ ∈ SOðN − 2Þ, which implies that

ãþ ¼ tanφÕ∂þZ; ã− ¼ − sinφÕ∂−Z; ð27Þ

where Z ¼ ÕTZ̃ is of unit norm. It is straightforward to
show that Eqs. (24) and (25) are equivalent to

∂þ∂−Zþ ∂þφ
tanφ

∂−Zþ ∂−φ

sinφcosφ
∂þZþð∂−ZT∂þZÞZ¼ 0;

ð28Þ

while Eq. (21) becomes

∂þ∂−φ − tanφð∂−ZT∂þZÞ þmþm− sinφ ¼ 0: ð29Þ

These two equations, describing theN − 2 physical degrees
of freedom, appeared in [17]. One can obtain another set of
equations by interchanging tanφ ↔ − sinφ in (22).
Actually, the equations of motion can be derived from a
SOðN − 1Þ=SOðN − 2Þ gauged Wess-Zumino-Witten
model perturbed by a potential term implementing an
appropriate gauge fixing [18], see also [8]. Remnants of
symmetry are also present in the above construction.
Had Z̃ been a dynamical field, the theory described by
Eqs. (23)–(26) would have the following SOðN − 2Þ gauge
redundancy

ã� → Õã�; Z̃ → ÕZ̃;

SA� → ÕS̃Ã�ÕT þ ð∂�ÕÞÕT: ð30Þ

Since Z̃ has a specific value, one may interpret this fact as a
gauge fixing condition.

III. THE AUXILIARY SYSTEM

The solution of the NLSM, henceforth denoted as the
column X, corresponds to an element g of the coset
SOðNÞ=SOðN − 1Þ through the mapping

g ¼ θðI − 2XXTÞ; θ ¼ ðI − 2X0XT
0 Þ; ð31Þ

where I is theN × N identity matrix, X0 is a constant vector
and both X and X0 are of unit norm. By construction g
obeys:

ḡ ¼ g; gθgθ ¼ I; gT ¼ g−1; ð32Þ

implying that indeed g ∈ SOðNÞ=SOðN − 1Þ. Let us define
Ψ̂ via the equation [19]

Ψ ¼ gΨ̂: ð33Þ

It is straightforward to show that the auxiliary system
assumes the form

∂�Ψ̂ ¼ � 2λ

1� λ
ĵ�Ψ̂; ð34Þ

where ĵ� ¼ − 1
2
g−1∂�g. Its explicit form is
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ĵ� ¼ ð∂�XÞXT − X∂�XT: ð35Þ

For reasons that will become apparent shortly, we let

Ψ̂ ¼ V−1Δ−1Ψ̃; Δ ¼

0
BBBBB@

IN−3 0 0 0

0 1þλ
1−λ 0 0

0 0 1−λ
1þλ 0

0 0 0 1

1
CCCCCA

ð36Þ

where V is the matrix introduced in Eq. (10). Taking
Eq. (36) into account, as well as Eq. (10), the auxiliary
system (34) assumes the form

∂�Ψ̃ ¼ Δ
�
A� � 2λ

1� λ
Vĵ�V−1

�
Δ−1Ψ̃: ð37Þ

Equation (10) implies that the matrix V is given by

VT ¼ ð v1 … vN−2 vN−1 vN Þ: ð38Þ

The inverse of this matrix, i.e., V−1 is

V−1 ¼ ð v1 … v0N−2 v0N−1 vN Þ; ð39Þ

where v0N−2 and v0N−1 are given by

v⃗0N−2 ¼
1

m2
−sin2φ

�
∂−X⃗ −

m−

mþ
cosφ∂þX⃗

�
; ð40Þ

v⃗0N−1 ¼
1

m2þsin2φ

�
∂þX⃗ −

mþ
m−

cosφ∂−X⃗

�
: ð41Þ

Using Eqs. (38), (39), and (35), one obtains

VĵþV−1 ¼

0
BBBBB@

0N−3 0 0 0

0T 0 0 mþm− cosφ

0T 0 0 m2þ
0T 0 −1 0

1
CCCCCA

ð42Þ

Vĵ−V−1 ¼

0
BBBBB@

0N−3 0 0 0

0T 0 0 m2
−

0T 0 0 mþm− cosφ

0T −1 0 0

1
CCCCCA

ð43Þ

where 0N−3 is the ðN − 3Þ × ðN − 3Þ zero matrix. Thus, it
is straightforward to show Eqs. (37) actually assume the
form

∂�Ψ̃ ¼ ½A�jm�→
1∓λ
1�λm�

�Ψ̃; ð44Þ

which in view of Eq. (10) implies that Ψ̃ is given by

Ψ̃ ¼ Vjm�→
1∓λ
1�λm�

: ð45Þ

Putting everything together, Ψ reads

ΨðλÞ ¼ gV−1Δ−1
�
Vjm�→

1∓λ
1�λm�

�
: ð46Þ

This calculation indicates that given the whole family of
NLSM solutions, which correspond to the same solution of
the Pohlmeyer reduced theory, one can trivially construct
the solution of the auxiliary system. This is possible
because the transformation m� → 1∓λ

1�λm� leaves invariant
the Pohlmeyer reduced theory. In a sense, the fact that the
Pohlmeyer reduction is a many-to-one mapping, generates
the spectral parameter λ.
One could multiply the solution by any constant matrix

as Ψ → ΨC, we choose the normalization used for the
application of the dressing method, namely

Ψð0Þ ¼ g: ð47Þ

As the elements of the matrix V are real functions of the
real parameters m�, it is evident that ΨðλÞ obeys by
construction the reality condition

Ψ̄ðλ̄Þ ¼ ΨðλÞ: ð48Þ

It is straightforward to show that

ΨTΨ ¼ ΨΨT ¼ I: ð49Þ

Finally, the consistency of the auxiliary system (1) for
λ → 1=λ requires that gθΨð1=λÞθ belong to the set of
solutions of the equations, i.e., gθΨð1=λÞθ ¼ ΨðλÞM for
some constant matrix M. By an elementary multiplication
of matrices, it turns out that

ΔðλÞVθgV−1Δ−1ð1=λÞ¼I ; I ¼
�
IN−3 0

0 −I3

�
: ð50Þ

Thus, using Eqs. (33) and (36) it follows that Ψ̃ is subject to
the constraint

IΨ̃ð1=λÞθ ¼ Ψ̃ðλÞM: ð51Þ

Finally, taking Eq. (45) into account, this constraint is
equivalent to

V−1IðVjm�→−m�Þθ ¼ M; ð52Þ

which has to be satisfied by the vector of the basis.
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IV. DISCUSSION

In this work we obtained the formal solution of the
auxiliary system corresponding toOðNÞNLSM. As long as
the whole family of NLSM solutions, which correspond to
a given solution of the Pohlmeyer reduced theory, is
known, the solution of the auxiliary system can be con-
structed systematically.
There are various implications of this construction. To

begin with, one can calculate the values of the conserved
charges directly, by expanding the monodromy matrix.
Also, in view of our result, the dressing method is the
implementation of a nonlinear superposition of solutions
with “virtual” ones. There are no differential equations to
be solved. The same is also true for the Bäcklund trans-
formation of the Pohlmeyer reduced theory. Essentially, the
nonlinear superposition is the NLSM counterpart of the
insertion of solitons in the Pohlmeyer reduced theory. In
this spirit, our results, combined with the addition formula
for the on-shell action derived in [5] enable the calculation
of instanton contributions over any classical configuration
of the OðNÞ NLSMs. It would be compelling to use this
formalism in order to make contact with studies on the
possible path integration contours for such models [20] or
to discuss semiclassical quantization.
Regarding the monodromy matrix, the form of the

solution of the auxiliary system (46) implies that in the
case of periodic boundary conditions its eigenvalues
coincide with the eigenvalues of the matrix

T ¼ Vðτ; σfÞV−1ðτ; σiÞjm�→
1∓λ
1�λm�

: ð53Þ

It is very important to point out that the NLSM solution and
correspondingly the coset element g and the matrix V
satisfy periodic boundary conditions for specific m�. The
rescaling of these parameters spoils the periodic boundary
conditions (at least for arbitrary λ). This is the mechanism
behind the nontrivial monodromy matrix. One should

perceive the notation of (53) as rescaling m� first and
then substituting the value of σ. More details and a worked-
out example can be found in the follow up publication [21].
Of course, there are intriguing generalizations of these

results. For instance, one could study other symmetric
spaces or introduce supersymmetry. Besides the math-
ematical curiosity, such generalizations are also interesting
for practical reasons. In the context of AdS=CFT corre-
spondence [22–24] it is known that classical free IIB
superstring theory on AdS5 × S5 and the operators of
nonperturbative planar N ¼ 4 super-Yang- Mills share a
spectral curve [25]. Generalizing the presented construction
for the Metsaev-Tseytlin action [26], it could be the case
that string configuration can be related to specific dual
operators. Of course this would require the analogous
construction on the field theory side. Nevertheless, the
presented construction concerns the SOð6Þ sector in the
vector representation, whose spectral curve was presented
in [27].
Finally, this construction may be relevant for the study of

the stability of classical strings propagating on spheres in
the spirit of [28,29]. Classical strings are unstable whenever
superluminal solitons can propagate on the background of
the Pohlmeyer counterpart of these configurations. As the
boundary conditions are crucial for such studies, it is
unsure how feasible it is to study the stability of arbitrary
string configurations, yet one could study specific string
solutions if available.
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