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We study N =4 gauged supergravity with an SO(4) x SO(4) gauge group in the presence of
symplectic deformations and find new classes of Janus solutions preserving N =1 and N =2
supersymmetries. The N =2 solutions preserve SO(2) x SO(2) x SO(2) x SO(2) symmetry and
interpolate between N =4 supersymmetric AdS,; vacua with SO(4) x SO(4) symmetry. These
correspond holographically to N = (2,0) two-dimensional conformal defects within the dual N =4
Chern-Simons-Matter (CSM) theories with SO(4) x SO(4) symmetry. The N = 1 solutions contain two
families of Janus configurations, one interpolating between N = 4 AdS, vacua with SO(4) x SO(4)
symmetry and the other interpolating between N =4 AdS, vacua with SO(3) x SO(3) x SO(3)
symmetry. These describe, respectively, N = (1,0) conformal defects in N =4 CSM theories with
SO(4) x SO(4) and SO(3) x SO(3) x SO(3) symmetries. The latter give the first example of Janus
solutions involving nontrivial AdS, vacua in addition to the trivial SO(4) x SO(4) critical point at the
origin of the scalar manifold within the framework of N = 4 gauged supergravity.

DOI: 10.1103/PhysRevD.105.106004

I. INTRODUCTION

Janus configurations are solutions of gauged super-
gravity theories in the form of anti—de Sitter (AdS)-sliced
(curved) domain walls interpolating between AdS vacua.
According to the AdS/CFT correspondence [1-3], these
solutions holographically describe conformal interfaces or
defects within the dual conformal field theories [4]; see also
[5-8]. These defects break the conformal symmetry of the
bulk superconformal field theory (SCFT) down to that on
the codimension-1 defects by some position-dependent
operators; see [9,10] for recent results. For almost 20 years
since the first Janus solution of [4], a large number of Janus
solutions have been found in gauged supergravities in
various space-time dimensions with different numbers of
supersymmetries; see [11-37] for an incomplete list.

In this paper, we are interested in supersymmetric Janus
solutions from symplectically deformed N =4 gauged
supergravity with an SO(4) x SO(4) gauge group. The
N = 4 gauged supergravity coupled to n vector multiplets
was constructed in the embedding tensor formalism in [38]
(see [39-41] for earlier constructions), and possible
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symplectic deformations were considered in [42], extend-
ing the construction of w-deformed SO(8) maximal gauged
supergravity [43—46] to lower numbers of supersymmetry.
As pointed out in [42], for N =4 gauged supergravity
with an SO(4)xSO(4)~SO(3)xSO(3)xS0O(3)xS0O(3)
gauge group, there can be four deformation parameters
or electric-magnetic phases for each SO(3) factor. The first
two SO(3) factors are embedded in SO(6)g ~ SU(4)x R
symmetry of N = 4 supersymmetry. One of the phases for
this SO(3) x SO(3) can be set to zero by SL(2, R) trans-
formations of the global symmetry SL(2,R) x SO(6, n),
while the other gives equivalent gauged supergravities for
any nonvanishing values and can be set to 7. The phases of
the remaining two SO(3) factors embedded in the SO(n)
symmetry of the matter vector multiplets are independent
deformation parameters, in constrast to a single phase @ of
the maximal SO(8) gauged supergravity. The vacuum
structure of the symplectically deformed SO(4) x SO(4)
gauged supergravity was recently investigated in [47],
where a large number of holographic renormalization group
(RG) flow solutions was also given. In this paper, we will
look for supersymmetric Janus solutions in this gauged
supergravity.

The study of Janus solutions in N =4 gauged super-
gravity first appeared in [19], where a number of singular
Janus solutions, interpolating between singular geometries,
was given. The N = 4 gauged supergravity in this case is
obtained from a truncation of 11-dimensional supergravity
on a tri-Sasakian manifold resulting in a nonsemisimple

SO(3) X (T3, T%) gauge group. In addition, a regular Janus
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solution interpolating between the trivial AdS, vacua in
N =4 gauged supergravity with an ISO(3) x ISO(3)
gauge group, obtained from a nongeometric compactifica-
tion of type IIB theory, was given in [20]. In this case, the
solution involves only scalar fields from the gravity multi-
plet. Both of these N = 4 gauged supergravities admit only
one supersymmetric AdS, vacuum at the origin of the scalar
manifold. Therefore, Janus solutions involving more than
one critical point are not possible.

Regular Janus solutions, with nonvanishing scalars from
both gravity and vector multiplets, in the framework of
matter-coupled N =4 gauged supergravity with an
SO(4) x SO(4) gauge group appeared only recently in
[35]. This N = 4 gauged supergravity admits a number of
supersymmetric AdS, vacua [48] and can be obtained from
the symplectically deformed SO(4) x SO(4) gauged super-
gravity mentioned above for a particular choice of electric-
magnetic phases, with two of the phases vanishing and the
other two equal to 7. However, the solutions found in [35] are
obtained only in an SO(2) x SO(2) x SO(3) x SO(2) sub-
truncation of an SO(2) x SO(2) x SO(2) x SO(2) scalar
sector in which only the trivial SO(4) x SO(4) AdS, critical
point appears. Accordingly, the Janus solutions in [35]
interpolate only between the trivial SO(4) x SO(4) critical
points as well.

In this paper, we will extend this study in two main
aspects. We first look at N = 2 Janus solutions in the full
SO(2) x SO(2) x SO(2) x SO(2) scalar sector. Although
no free deformation parameters appear in this sector, as
shown in [47], we do find a number of new N = 2 Janus
solutions with SO(2) x SO(2) x SO(2) x SO(2) sym-
metry that generalize the results of [35]. Secondly, we will
consider an SO(3);,, X SO(3) sector which, in addition to
the trivial SO(4) x SO(4) critical point, admits two non-
trivial N = 4 AdS, critical points [47]. We will find N = 1
supersymmetric Janus solutions that are dependent on the
electric-magnetic phases. Moreover, we also find a new
family of N =1 Janus solutions interpolating between
nontrivial AdS, critical points. To the best of our knowledge,
these are the first Janus solutions that involve nontrivial
AdS, critical points in the framework of four-dimensional
N =4 gauged supergravity. Although a large number of
Janus solutions of this type can be found in the maximal
gauged supergravity (see, for example, [17,21,34,36]), apart
from the solutions in three-dimensional N = 8 gauged
supergravity studied recently in [37], no such solutions have
been found to date within half-maximal gauged super-
gravities in higher dimensions. We hope the results of this
paper would constitute the first step in filling this gap.

The paper is organized as follows. In Sec. II, we review
the structure of four-dimensional N =4 gauged super-
gravity with a symplectically deformed SO(4) x SO(4)
gauge group. We then set up Bogomol nyi-Prasad-
Sommerfield (BPS) equations within SO(2) x SO(2) x

SO(2) x SO(2) and SO(3)g4,, X SO(3) truncations, and

we find a number of Janus solutions preserving N = 2 and
N =1 supersymmetries in Secs. III and IV, respectively.
We end the paper with some conclusions and comments
in Sec. V.

II. MATTER-COUPLED N =4 GAUGED
SUPERGRAVITY

In this section, we give a brief review of N = 4 gauged
supergravity coupled to vector multiplets in the embedding
tensor formalism constructed in [38]. The gravity and
vector multiplets read

(ehywin, A ' 7) (1)
and
(Aa’ﬁia’ d)ma)‘ (2)

The bosonic component fields from the gravity and n vector

multiplets are given by the graviton eﬁ, the 6 4+ n vector
fields A™™ = (A7, A%), a complex scalar 7 containing the
dilaton ¢ and the axion y parametrizing the SL(2,R)/
SO(2) coset, and 6n scalars ¢™* parametrizing the
SO(6,n)/SO(6) x SO(n) coset. Indices u,v,... =0, 1,
2, 3 and g,7,...=0, 1, 2, 3 denote the space-time
and tangent space (flat) indices, respectively, while the
mn=1,...,6 and i, j=1, 2, 3, 4 indices describe
fundamental representations of SO(6), and SU(4)x R
symmetry. The n vector multiplets are labeled with indices
a,b =1,...,n. The vector fields A*™ and the magnetic dual
A~ form a doublet under SL(2, R) and will be collectively
denoted by AM, o = (+, ).

The fermionic fields contain four gravitini y,, four spin-%
fields y', and 4n gaugini 4'“. These fields and supersym-
metry parameters are subject to the chirality projections
ro = 2, (3)

YsWh = Wi vsx' = —x',

and the same holds for conjugate spinors

VsWui = — Wi VsXi = Xi rsAi = =4l (4)

By using the complex scalar 7 of the form
T=y+ie?, (5)

we can write the coset representative for SL(2,R)/SO(2) as

io?
v, = e%(" +1‘e ) (6)

Similarly, the 6n vector multiplet scalars ¢™“ can be
described using the coset representative
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VMA = (Vva VM“)- (7)

We have decomposed the SO(6) x SO(n) index as
A = (m,a). We also note that the matrix V) satisfies
the relation

mun = =Vu"VN™ + ViV, (8)

with 1,y = diag(-1,-1,-1,-1,-1,-1,1,...,1) being
the SO(6, n) invariant tensor. The inverse of VA will be
denoted by VM = (V,, M,V M)

Gaugings of the matter-coupled N = 4 supergravity are
encoded in the components of the embedding tensor &
and fouvp.- We will consider only the gaugings with
&M — (), as required by the existence of supersymmetric
AdS, vacua [49]. In addition, we will also set all fermionic
and vector fields to zero since supersymmetric Janus
solutions involve only the metric and scalar fields. The
bosonic Lagrangian can then be written as

ottt =V,

©)

where ¢ = ,/—g is the vielbein determinant. The scalar
potential is given by

1 1
6_1[, = —R +E8”MMN6'MMMN -

2 4(Imrz)?

L
16

2
+ <§ Mo — MMQ),]NR,]PS1|

1
V= |:faMNPfﬁQRsM"ﬂ |:3 MM pNR pgPS

4
- §f aMNPJ, ﬁQRSeaﬁ M MNPQRS] . (10)

The symmetric matrix M,,y, with the inverse MMV, is
defined by

MMN - VMmVNm + VMaVNa' (11)
The tensor MMNPORS ig obtained from
Mynpors = emnpqrsVMmVNnVPpVQqVRrVSS (12)

by raising the indices with #M". The matrix M% is the
inverse of the symmetric 2 X 2 matrix M4 defined by

M5 =Re(V,V)). (13)

We also need fermionic supersymmetry transformations
j i 24
Sy, = 2D,€e' — §A1 Yu€js (14)

. 4
&' = —ePV,D,Vyrte' — giA’zjej, (15)

5/151 = ZiVaMDﬂVMij}/Mé'j - 2iA2aji€j, (16)
with the fermion shift matrices defined by

Aﬁj = €aﬂ(Va)*vklMVNikVPﬂf/}MNPa
AT = PV VM VNV f g™,
A2aij = GaﬁVaVaMVikNVijfﬂMNP- (17)

The coset representatives of the forms V" and V;* are
defined in terms of the 't Hooft symbols G, as

o1 i
VMU == EVMmG:?]l (18)
and
1 i

The explicit representation of G2 used in this paper is the
same as in [47]. Upper and lower i, j, ... indices are related
by complex conjugation, as usual.

In this paper, we consider only N =4 gauged super-
gravity coupled to n = 6 vector multiplets with an SO(4) x
SO(4) gauge group. By decomposing the SO(6, 6) funda-
mental index as M = (i, in, a, a), for i, m,a,a =1, 2, 3,
we can write the embedding tensor for a symplectically
deformed SO(4) x SO(4) gauge group as

f—rhﬁ[) :gOSinaoerhﬁi;’
f—rhﬁi) :gsmaeﬁm;ﬂ
foabe = hisinfiie; e,
foaghz =hysinprez;..  (20)

f+rhr”l[7 = —Go COS A€ i ps
f+rhr”li7 = —gCoSa€yjip,
Frabe =mcospie;pe,

fiabe = hacosfarezpe,

These components of the embedding tensor were given in
[50], and we have rewritten them in the notation of [42].
Samnp and fiz5p describe the embedding of the first
SO(4) ~ SO(3) x SO(3) factorin SO(6); R symmetry. As
previously mentioned, the constants @, and a can be set to
zero and 7, respectively. gy, g, h;, and h, are gauge coupling
constants for the four SO(3) factors. In subsequent sections,
we will look for supersymmetric Janus solutions with
different numbers of unbroken supersymmetries and residual
symmetries.

III. N =2 SUPERSYMMETRIC JANUS SOLUTIONS

We begin with a truncation to scalars that are singlets
of the SO(2) x SO(2) x SO(2) x SO(2) subgroup of
the SO(4) x SO(4) gauge group. We first choose an
explicit form of SO(6,6) generators in the fundamental
representation as
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(tun)p? = 26[%1’7N]P- (21)

The SO(6,6) noncompact generators are accordingly
given by

Ymu = a6 (22)

Following [35], one can write the coset representative for
SO(2) x SO(2) x SO(2) x SO(2) singlet scalars as

Y = e?1Y330$2Y36 o#3Y63 obaYeo (23)

The metric ansatz takes the form of the usual AdS;-sliced
domain walls

ds? = e*0) <e2fpdx%1 - dp2> +dr?, (24)

in which Z denotes the radius of the AdS; slices.
dxi | = opdx®dx’, a, p =0, 1, is the flat metric on two-
dimensional Minkowski space.

All scalars ¢, i = 1, 2, 3, 4, together with the dilaton ¢
and the axion y, are allowed to depend only on r. Analyses
of relevant BPS equations have already appeared in many
places (see, for example, [17,18]), so we will simply
summarize the results. The supersymmetry transformations
Sy’ give the following equation,

1
AP =W = e, (25)

while 51//}} gives the Killing spinor of the form
¢ = eng (26)

for p-independent spinors &. In Eq. (25), W = [W|, and the
superpotential

W= %a (27)

is obtained from the eigenvalue & of Aij with the corre-

sponding eigenvectors ¢ identified with the Killing
|

W=W_

spinors. We use an index 7 to count the number of unbroken
supersymmetries.
With the projectors

7€l = eife, (28)
and
}/ﬁe? = ike'es, (29)

with k> =1 and an r-dependent phase A, the Killing
spinors can be determined from Syl to be

6? — e%Jrz%Jri%g(O);_ (30)

The spinors £©)i can (possibly) have an r-dependent phase
and satisfy the following projection conditions:

0 — jxel?. (31)

i

yre@i = &V el

With all these results, the conditions 51//3 determine the
explicit form of the phase e to be

. w w iK
iN __ X _ Al — —A . 32
C Ay L=t w2 ( ¢ ) (32)

With the projector (28), the variations 8y’ and 5., lead to
the BPS equations for scalars. Finally, we note that the sign
factor k = £1 corresponds to chiralities of the Killing
spinors on the two-dimensional defects.

For the SO(2) x SO(2) x SO(2) x SO(2) truncation,
the Aij tensor takes the form (see [47] for more details)

AY = diag(A_, A, A, AL). (33)

Both of the eigenvalues lead to an N =2 unbroken
supersymmetry with the superpotential . = %A¢ and
the Killing spinors e'* and €>, respectively. Following [47],
we will set €2 = € = 0 and choose the superpotential to be

1 4
=3 e [cosh ¢4 [g cosh ¢p3(e? sina + i cos @) — g sinh ¢, sinh ¢3]

—go cosh ¢ (cosh ¢, + i sinh ¢, sinh ) + igsin a cosh g3 cosh Pyy]. (34)

The scalar potential can be written in terms of the superpotential as
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oW oW
0P" 0P*

V = -2G" —3W?

1 1
=3 e ?[g*(1 + cos2a) + 2g3 + 2¢7 sinay (2 cos a + sinay)] — 3 e? ¢?sin’a

+ 2ggo sin a cosh ¢p; cosh ¢h, cosh 5 cosh ¢4, (35)

in which we have defined the scalars ®" = (¢, y, @1, P, 3, P4). G™ is the inverse of the scalar metric appearing in the

scalar kinetic terms.

With the coset representative (23), the kinetic term for scalar fields is given by

1
Lyin = EGrS(DN(DS/

1 1
=7 (@ +e77y) - 16 [6 + cosh2(¢h, — ¢3)
+ cosh 2(¢, + ¢3) + 2 cosh 2¢4(cosh 2¢h, cosh 25 — 1)]¢}
— cosh ¢, cosh ¢, sinh ¢5 sinh ¢4 ), — cosh 5 cosh ¢, sinh ¢, sinh P, P

1
+ sinh ¢, sinh ¢3¢ ) — 5 cosh’g, ¢

from which we can determine the scalar metric G, and its
inverse G™. Since G™* will appear in the final form of the
BPS equations, for later convenience we will give its
explicit form here,

-2 0 0l x4
G = 0 —262¢ 01><4 y (37)

A8
04><1 04><1 G

[0, = —sech?¢,sech?¢,
[0y = sech’g,tanh’¢p, — 1,

A, = sech¢,sechgp; tanh 5 tanh ¢4,
A; = —sechg,sechg; tanh ¢, tanh ¢h5,
As = tanh ¢),tanh’¢h5 tanh ¢,

The scalar potential and superpotential admit one AdS,
critical point at ¢ = ¢, = ¢p3 = ¢p4 = 0 and

¢—ln[— 90

gsina|’

= - . 40
X sina (40)

] cos o

By shifting the dilaton and axion, or equivalently by

choosing gy = —g for @ =%, we can bring this critical

1
2
|

1
-5 0%, (36)

cosh?¢, 2 5

with the 4 x 4 symmetric matrix G'°, for #,§ = 1, 2, 3, 4,
given by

G = (38)

and

[0, = —sech?¢;sech’p, — tanh?¢hs,
1
O, =— 5 sech?¢h,sech?¢s (1 + cosh 2¢p, cosh 2¢5),

A, = sech¢,sech¢; tanh ¢, tanh ¢4,
A, = —tanh ¢, tanh ¢stanh?¢p,,,
Ag = tanh?¢, tanh ¢b5 tanh ¢,. (39)

[

point to the origin of the scalar manifold SL(2,R)/
SO(2) x SO(6,6)/SO(6) x SO(6), at which all scalars
vanish. With this choice, the cosmological constant and
AdS, radius are given by

Vo = -3¢%, L= , (41)
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in which we have taken g > 0 without loss of generality. This critical point is invariant under the full SO(4) x SO(4) gauge

symmetry and preserves N = 4 supersymmetry.

Using the projector (28) and the superpotential (34), we find that all the BPS conditions with ¢>* = 0 lead to the

following BPS equations:

1
A/2 4 ﬁe_ZA — Wz’ (42)
A OW ke™ OW
AW, ow 43
¢ W O ‘W Oy w
Al oW ket OW
I — _4e20 " 4 e a “
X “"Way ‘W 0’ +
s ok AW echmsechs ™ A QW (45)
W od 2 3 Yw fW s
A OW ke ow ow
P, = Wodr T oW <2sech¢4 tanh ¢5 tanh ¢, 0, — 2sechg, 3 ¢4), (46)
i Al -
P =GV v 2(‘1})[/’ + K;W <2sech¢2sech¢3 sechg, %
—2sechg, tanh ¢5 tanh ¢b4 ;V + 2sechg, tanh ¢, tanh ¢4 8(‘;/) (47)
7 AT OW ke ow —8W
= G i (B g~ et s 7). +

with & = (¢1, Do, B3, P4). Before giving the solutions, we
first note that in the limit £ — oo, these equations reduce to
the BPS equations for RG flows studied in [47], as
expected. Furthermore, for ¢, = ¢p, =0 or ¢p; = 3 =0,
we recover the BPS equations for the Janus solutions with
SO(2) x SO(2) x SO(2) x SO(3) or SO(2) x SO(2) x
SO(3) x SO(2) symmetries studied in [35].

We now give N =2 supersymmetric Janus solutions
with SO(2) x SO(2) x SO(2) x SO(2) symmetry. After
numerically solving the BPS equations, we find examples
of Janus solutions for g=1,x=1,7=1 and g, = —¢gsina,
as in Fig. 1. In the figure, we have depicted the solutions
for different values of the phase a. We also emphasize here
that all values of a are equivalent to a = 7. We have given
the solutions for various values of a only for clarity of
presentation since solutions with different boundary con-
ditions but the same value of « are very close to each other
and difficult to see. These solutions interpolate between
SO(4) x SO(4) critical points and describe two-dimen-
sional conformal defects within the N =4 SCFT. The
defects are invariant under the SO(2) x SO(2) x SO(2) x
SO(2) subgroup of the SO(4) x SO(4) symmetry of
the three-dimensional SCFT and preserve N = (2,0) or

N = (0,2) supersymmetry in two dimensions, depending
on whether the value of x is 1 or —1.

IV. N=1 SUPERSYMMETRIC JANUS SOLUTIONS

We now move to the SO(3) 4, X SO(3) sector, whichis a
subtruncation of the SO(3) 4;,, sector studied in [47]. We will

follow the notation of [47] for the sake of comparison. The
SO(3) giag X SO(3) sector contains two singlet scalars from

an SO(6,6)/S0O(6) x SO(6) coset (see [47] for additional
details), with the coset representative
Y = e‘/’]fll 6(/)3?3, (49)

in which the noncompact generators are given by

V=Y +Yn+ Y5+ Y,
V3=Ys5i+ Yo+ Ys3 + Ysu. (50)

The A’ij tensor takes the form

AY = diag(A, B, B, B), (51)
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O
P r
T = " -5 -10 -5 0 15
~0.002 005
-0.004
-0.10
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r r
-15  -10 S 15 15 10 15
(e) )
A(r)
15
10

FIG. 1. Examples of N = 2 Janus solutions interpolating between N = 4 AdS, critical points with SO(4) x SO(4) symmetry for g = 1,
k=1,¢=1,g)=—gsinaand a = £ (purple lines), @ = % (green lines), a = % (blue lines), & = 5 (red lines). (a) ¢)() solution. (b) y(r)
solution. (c) ¢, (r) solution. (d) ¢,(r) solution. (e) ¢3(r) solution. (f) ¢,(r) solution. (g) A(r) solution.

106004-7



TISSANA ASSAWASOWAN and PARINYA KARNDUMRI

PHYS. REV. D 105, 106004 (2022)

with A leading to the superpotential

14
W= Ee%[gcosh3¢3 + hy sin B, (i sinh ¢p; — cosh ¢, sinh ¢3)?]

1
+3 e~%[g(cosh b, + i sinh ¢, sinh ;)3 —

(sinh ¢, + i cosh ¢, sinh ¢5)?

1
X hy cos ] + Ee‘%[igcoshg’% + hy sin B, (sinh ¢, + i cosh ¢, sinh ¢3)°] . (52)

The solutions in this sector then preserve N = 1 super-
symmetry. To simplify the expressions, in this case we will
set @ =% and gy = —g.

For completeness, we also note that the scalar potential
can be written as

ow ow 2 oW\ 2
r= 4(a¢) +42¢<3x> §Se°h2"”3<6751>

2 (OW\?2
§(aTs3> —3W2. (53)

The explicit form of this potential can be found in [47].
In this paper, we simply recall that the scalar potential
admits three supersymmetric AdS, critical points. The
first one is the trivial SO(4) x SO(4) critical point at
which all scalars vanish for a = 7 and g, = —g, while the
other two are given by

. 1. |h+g
it p=0;  dy=r=0. 9”1—51“[;,1 ]
1—9
1 i 3¢%h,
gb:——ln{l——], Vo= ——=——, (54)
2 i n-g
- T 1. [hi+g
ii: fr=25  d1=x=0, ‘1’3:51“[/1'1_9]’
1 g 3g°h,
=—In{l-%|, Vy=- 55
d=3n[1-5]. v, 69

Both of these critical points preserve N = 4 supersym-
metry, as can be verified by setting y =¢; =0 or
¥ = ¢3 =0, which gives A = . On the other hand, for
¢, #0 and ¢3 #0, the supersymmetry is broken to
N = 1. The holographic RG flows between these critical
points preserving N =4 and N =1 supersymmetries
were already studied in [47].

In this work, we are interested in supersymmetric Janus
solutions. We first note that setting either ¢; =0 or
¢3 = 0 does not lead to a consistent set of BPS equations
for Janus solutions. This implies that, unlike in the RG
flow case, there are no N =4 supersymmetric Janus
solutions with SO(3)4;,, X SO(3) x SO(3) or SO(3) x

SO(3)giag X SO(3) symmetries. For ¢; # 0 and ¢3 # 0,

|
truncating out y is also not consistent with the BPS
equations. Therefore, N = 1 Janus solutions must involve
all scalars in the SO(3)g;,, X SO(3) sector, as in the case
of the N = 1 RG flow solutions found in [47].

Using the same procedure as in the previous section with

€2 = e’ = ¢* =0, we find that the BPS equations can be
written as
¢ = —4%"2—:—4&?;‘%—?, (56)
a—y 2(/);‘[; ‘?g 4et ‘;_;f ‘?;:, (57)
= isech2¢3 3; 2{;‘; i hes Lp_:; ((‘;;;V (58)
By= =S+ Ssech I (59

together with the usual equation for the metric function

” e_ZA 2
A+ e W=, (60)
with the superpotential given in (52). It should be noted that
these equations again reduce to the BPS equations for
holographic RG flows studied in [47] in the limit £ — oo,
as expected.

We begin with generic solutions for different values of the
phase ;. After numerically solving the BPS equations, we
find examples of solutions for g =1, h; =2, x = 1, and
¢ =1, as shown in Fig. 2. Some of the solutions are very
close to each other, so some solutions, in particular the one
represented by the green lines, are not clearly seen. In the
figure, all the solutions are qualitatively similar and
describe two-dimensional conformal defects within a three-
dimensional N = 4 SCFT with SO(4) x SO(4) symmetry.
Unlike the solutions in the previous section, these defects
preserve only N = (1,0) or N = (0,1) supersymmetry,
depending on whether the value of x is 1 or —1.

For 8, = 0, there are two AdS, critical points, the trivial
one and critical point (i). With appropriate boundary
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FIG. 2. Examples of N = 1 Janus solutions interpolating between N = 4 AdS, critical points with SO(4) x SO(4) symmetry for

different values of §;, #; = 0 (cyan lines), f; = £ (red lines), §; =

% (green lines), #; = % (blue lines), #; = 5 (purple lines). (a) ¢(r)

solution. (b) y(r) solution. (c) ¢, (r) solution. (d) ¢3(r) solution. (¢) A(r) solution.

conditions, we find a Janus solution interpolating between
critical point (i) for g=1, h; =2, k=1, and £ =1, as
shown in Fig. 3. This solution is represented by the pink
lines. We have included the Janus solution between SO(4) x
SO(4) critical points (cyan lines) for comparison. We have
also given the solution for A’(r) to explicitly show that the
two solutions indeed interpolate between different pairs of
critical points. However, it should be noted that the critical
point (i) on both sides is generated by a holographic RG flow
from the SO(4) x SO(4) critical point. In particular, this RG

flow was one of the solutions studied recently in [47]. The
Janus solution is accordingly similar to those given in
[17,21,34,36,37]. A similar solution interpolating between
critical points (ii) can also be found, as shown by the yellow
lines in Fig. 4 withg=1,h; =2,k =1,and £ = 1. As in
Fig. 3, we have included the Janus solution between the
SO(4) x SO(4) critical points for comparison (purple lines).
These two solutions describe N = (1,0) or N = (0,1)
conformal defects within N =4 SCFTs with SO(3);,, X

SO(3) x SO(3) or SO(3) x SO(3) iy X SO(3) symmetry.
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0.5¢
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(f)

An example of N =1 Janus solutions (pink lines) interpolating between N =4 AdS, critical points with S0(3)diag X

SO(3) x SO(3) symmetry [critical point (i)]. (a) ¢(r) solution. (b) y(r) solution. (c) ¢, () solution. (d) ¢3(r) solution. (e) A(r) solution.

(f) A’(r) solution.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric Janus
solutions using four-dimensional N = 4 gauged supergrav-
ity with an SO(4) x SO(4) gauge group in the presence of
symplectic deformations. We have found two classes of
solutions preserving N =1 and N =2 supersymmetries.
The N = 2 solutions interpolate between the trivial N = 4
critical points with SO(4) x SO(4) symmetry. In this case,
electric-magnetic phases or deformation parameters do not

appear, apart from those fixed by SL(2, R) transformations
and redefinitions of the dilaton and axion, and there are no
other AdS, critical points. The solutions are invariant under
SO(2) x SO(2) x SO(2) x SO(2) symmetry and describe
N =(2,0) or N=(0,2) two-dimensional conformal
defects in the N = 4 SCFT dual to the AdS, critical point.

On the other hand, in the N = 1 case, we have found
more interesting solutions. The solutions are obtained in the

SO(3)giag X SO(3) sector, and for the particular values of
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FIG. 4. An example of N =1 Janus solutions (yellow lines) interpolating between N =4 AdS, critical points with SO(3) x
SO(3)gigg X SO(3) symmetry [critical point (ii)]. (a) ¢(r) solution. (b) y(r) solution. (c) ¢, (r) solution. (d) ¢3(r) solution. (e) A(r)

solution. (f) A’(r) solution.

the phase f; =0 and f, =7,

there are two additional
nontrivial N = 4 critical points with SO(3) e X SO(3) x
SO(3) and SO(3) x SO(3)4pe X SO(3) symmetries apart
from the trivial critical point. There are N = 1 solutions
interpolating between SO(4) x SO(4) critical points
for any values of the electric-magnetic phase f;, as in
the N = 2 solutions. Moreover, we have found solutions
interpolating between SO(3) 4, X SO(3) x SO(3) critical

points and between SO(3) x SO(3)y;,, X SO(3) critical

points. In this case, the solutions describe two-dimensional
conformal defects in N =4 SCFTs dual to AdS, critical
points (i) and (ii) that preserve N = (1,0) or N = (0, 1)
supersymmetries on the defects. These are the first exam-
ples of Janus solutions in N = 4 gauged supergavity that
involve nontrivial AdS, critical points.

It would be interesting to identify the N = 4 SCFTs dual
to the AdS, critical points considered here and study the
conformal defects dual to the Janus solutions found in this
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paper. As pointed out in [47], in the SO(3)g;,, invariant
scalar sector, both of the electric-magnetic phases #; and /3,
appear in the scalar potential and the superpotential. It
would be of particular interest to investigate this sector and
look for new supersymmetric AdS, vacua and to also find
new Janus solutions in this case. Finally, since SO(4) x
SO(4) gauged supergravity admitting AdS, vacua for any
values of the deformation parameters presently has no
known embedding in higher dimensions, it would be highly
desirable to find the corresponding embedding that would
provide an uplift for the solutions found here and those
givenin [35,47,48] to 10/11 dimensions. Along these lines,

recent developments in the double field theory formalism
would be very useful; see, for example, [50-56]. The
uplifted solutions should provide a complete gravity dual of
the N =4 SCFTs in three dimensions together with
deformations and conformal defects in a string/M-theory
context. We leave these issues for future work.
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