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We study N ¼ 4 gauged supergravity with an SOð4Þ × SOð4Þ gauge group in the presence of
symplectic deformations and find new classes of Janus solutions preserving N ¼ 1 and N ¼ 2

supersymmetries. The N ¼ 2 solutions preserve SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ symmetry and
interpolate between N ¼ 4 supersymmetric AdS4 vacua with SOð4Þ × SOð4Þ symmetry. These
correspond holographically to N ¼ ð2; 0Þ two-dimensional conformal defects within the dual N ¼ 4

Chern-Simons-Matter (CSM) theories with SOð4Þ × SOð4Þ symmetry. The N ¼ 1 solutions contain two
families of Janus configurations, one interpolating between N ¼ 4 AdS4 vacua with SOð4Þ × SOð4Þ
symmetry and the other interpolating between N ¼ 4 AdS4 vacua with SOð3Þ × SOð3Þ × SOð3Þ
symmetry. These describe, respectively, N ¼ ð1; 0Þ conformal defects in N ¼ 4 CSM theories with
SOð4Þ × SOð4Þ and SOð3Þ × SOð3Þ × SOð3Þ symmetries. The latter give the first example of Janus
solutions involving nontrivial AdS4 vacua in addition to the trivial SOð4Þ × SOð4Þ critical point at the
origin of the scalar manifold within the framework of N ¼ 4 gauged supergravity.

DOI: 10.1103/PhysRevD.105.106004

I. INTRODUCTION

Janus configurations are solutions of gauged super-
gravity theories in the form of anti–de Sitter (AdS)-sliced
(curved) domain walls interpolating between AdS vacua.
According to the AdS=CFT correspondence [1–3], these
solutions holographically describe conformal interfaces or
defects within the dual conformal field theories [4]; see also
[5–8]. These defects break the conformal symmetry of the
bulk superconformal field theory (SCFT) down to that on
the codimension-1 defects by some position-dependent
operators; see [9,10] for recent results. For almost 20 years
since the first Janus solution of [4], a large number of Janus
solutions have been found in gauged supergravities in
various space-time dimensions with different numbers of
supersymmetries; see [11–37] for an incomplete list.
In this paper, we are interested in supersymmetric Janus

solutions from symplectically deformed N ¼ 4 gauged
supergravity with an SOð4Þ × SOð4Þ gauge group. The
N ¼ 4 gauged supergravity coupled to n vector multiplets
was constructed in the embedding tensor formalism in [38]
(see [39–41] for earlier constructions), and possible

symplectic deformations were considered in [42], extend-
ing the construction of ω-deformed SOð8Þmaximal gauged
supergravity [43–46] to lower numbers of supersymmetry.
As pointed out in [42], for N ¼ 4 gauged supergravity
with an SOð4Þ×SOð4Þ∼SOð3Þ×SOð3Þ×SOð3Þ×SOð3Þ
gauge group, there can be four deformation parameters
or electric-magnetic phases for each SOð3Þ factor. The first
two SOð3Þ factors are embedded in SOð6ÞR ∼ SUð4ÞR R
symmetry of N ¼ 4 supersymmetry. One of the phases for
this SOð3Þ × SOð3Þ can be set to zero by SLð2;RÞ trans-
formations of the global symmetry SLð2;RÞ × SOð6; nÞ,
while the other gives equivalent gauged supergravities for
any nonvanishing values and can be set to π

2
. The phases of

the remaining two SOð3Þ factors embedded in the SOðnÞ
symmetry of the matter vector multiplets are independent
deformation parameters, in constrast to a single phase ω of
the maximal SOð8Þ gauged supergravity. The vacuum
structure of the symplectically deformed SOð4Þ × SOð4Þ
gauged supergravity was recently investigated in [47],
where a large number of holographic renormalization group
(RG) flow solutions was also given. In this paper, we will
look for supersymmetric Janus solutions in this gauged
supergravity.
The study of Janus solutions in N ¼ 4 gauged super-

gravity first appeared in [19], where a number of singular
Janus solutions, interpolating between singular geometries,
was given. The N ¼ 4 gauged supergravity in this case is
obtained from a truncation of 11-dimensional supergravity
on a tri-Sasakian manifold resulting in a nonsemisimple
SOð3Þ ⋉ ðT3; T̂3Þ gauge group. In addition, a regular Janus
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solution interpolating between the trivial AdS4 vacua in
N ¼ 4 gauged supergravity with an ISOð3Þ × ISOð3Þ
gauge group, obtained from a nongeometric compactifica-
tion of type IIB theory, was given in [20]. In this case, the
solution involves only scalar fields from the gravity multi-
plet. Both of these N ¼ 4 gauged supergravities admit only
one supersymmetric AdS4 vacuum at the origin of the scalar
manifold. Therefore, Janus solutions involving more than
one critical point are not possible.
Regular Janus solutions, with nonvanishing scalars from

both gravity and vector multiplets, in the framework of
matter-coupled N ¼ 4 gauged supergravity with an
SOð4Þ × SOð4Þ gauge group appeared only recently in
[35]. This N ¼ 4 gauged supergravity admits a number of
supersymmetric AdS4 vacua [48] and can be obtained from
the symplectically deformed SOð4Þ × SOð4Þ gauged super-
gravity mentioned above for a particular choice of electric-
magnetic phases, with two of the phases vanishing and the
other two equal to π

2
. However, the solutions found in [35] are

obtained only in an SOð2Þ × SOð2Þ × SOð3Þ × SOð2Þ sub-
truncation of an SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ scalar
sector inwhich only the trivial SOð4Þ × SOð4ÞAdS4 critical
point appears. Accordingly, the Janus solutions in [35]
interpolate only between the trivial SOð4Þ × SOð4Þ critical
points as well.
In this paper, we will extend this study in two main

aspects. We first look at N ¼ 2 Janus solutions in the full
SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ scalar sector. Although
no free deformation parameters appear in this sector, as
shown in [47], we do find a number of new N ¼ 2 Janus
solutions with SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ sym-
metry that generalize the results of [35]. Secondly, we will
consider an SOð3Þdiag × SOð3Þ sector which, in addition to
the trivial SOð4Þ × SOð4Þ critical point, admits two non-
trivial N ¼ 4 AdS4 critical points [47]. We will find N ¼ 1
supersymmetric Janus solutions that are dependent on the
electric-magnetic phases. Moreover, we also find a new
family of N ¼ 1 Janus solutions interpolating between
nontrivial AdS4 critical points. To the best of our knowledge,
these are the first Janus solutions that involve nontrivial
AdS4 critical points in the framework of four-dimensional
N ¼ 4 gauged supergravity. Although a large number of
Janus solutions of this type can be found in the maximal
gauged supergravity (see, for example, [17,21,34,36]), apart
from the solutions in three-dimensional N ¼ 8 gauged
supergravity studied recently in [37], no such solutions have
been found to date within half-maximal gauged super-
gravities in higher dimensions. We hope the results of this
paper would constitute the first step in filling this gap.
The paper is organized as follows. In Sec. II, we review

the structure of four-dimensional N ¼ 4 gauged super-
gravity with a symplectically deformed SOð4Þ × SOð4Þ
gauge group. We then set up Bogomol’nyi-Prasad-
Sommerfield (BPS) equations within SOð2Þ × SOð2Þ ×
SOð2Þ × SOð2Þ and SOð3Þdiag × SOð3Þ truncations, and

we find a number of Janus solutions preserving N ¼ 2 and
N ¼ 1 supersymmetries in Secs. III and IV, respectively.
We end the paper with some conclusions and comments
in Sec. V.

II. MATTER-COUPLED N = 4 GAUGED
SUPERGRAVITY

In this section, we give a brief review of N ¼ 4 gauged
supergravity coupled to vector multiplets in the embedding
tensor formalism constructed in [38]. The gravity and
vector multiplets read

ðeμ̂μ;ψ i
μ; Am

μ ; χi; τÞ ð1Þ

and

ðAa
μ; λia;ϕmaÞ: ð2Þ

The bosonic component fields from the gravity and n vector
multiplets are given by the graviton eμ̂μ, the 6þ n vector
fields AþM ¼ ðAm

μ ; Aa
μÞ, a complex scalar τ containing the

dilaton ϕ and the axion χ parametrizing the SLð2;RÞ=
SOð2Þ coset, and 6n scalars ϕma parametrizing the
SOð6; nÞ=SOð6Þ × SOðnÞ coset. Indices μ; ν;… ¼ 0, 1,
2, 3 and μ̂; ν̂;… ¼ 0, 1, 2, 3 denote the space-time
and tangent space (flat) indices, respectively, while the
m; n ¼ 1;…; 6 and i, j ¼ 1, 2, 3, 4 indices describe
fundamental representations of SOð6ÞR and SUð4ÞR R
symmetry. The n vector multiplets are labeled with indices
a; b ¼ 1;…; n. The vector fields AþM and the magnetic dual
A−M form a doublet under SLð2;RÞ and will be collectively
denoted by AαM, α ¼ ðþ;−Þ.
The fermionic fields contain four gravitini ψ i

μ, four spin-12
fields χi, and 4n gaugini λia. These fields and supersym-
metry parameters are subject to the chirality projections

γ5ψ
i
μ ¼ ψ i

μ; γ5χ
i ¼ −χi; γ5λ

ia ¼ λia; ð3Þ

and the same holds for conjugate spinors

γ5ψμi ¼ −ψμi; γ5χi ¼ χi; γ5λ
a
i ¼ −λai : ð4Þ

By using the complex scalar τ of the form

τ ¼ χ þ ieϕ; ð5Þ

we can write the coset representative for SLð2;RÞ=SOð2Þ as

Vα ¼ e
ϕ
2

�
χ þ ieϕ

1

�
: ð6Þ

Similarly, the 6n vector multiplet scalars ϕma can be
described using the coset representative
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VM
A ¼ ðVM

m;VM
aÞ: ð7Þ

We have decomposed the SOð6Þ × SOðnÞ index as
A ¼ ðm; aÞ. We also note that the matrix VM

A satisfies
the relation

ηMN ¼ −VM
mVN

m þ VM
aVN

a; ð8Þ

with ηMN ¼ diagð−1;−1;−1;−1;−1;−1; 1;…; 1Þ being
the SOð6; nÞ invariant tensor. The inverse of VM

A will be
denoted by VA

M ¼ ðVm
M;Va

MÞ.
Gaugings of the matter-coupled N ¼ 4 supergravity are

encoded in the components of the embedding tensor ξαM

and fαMNP. We will consider only the gaugings with
ξαM ¼ 0, as required by the existence of supersymmetric
AdS4 vacua [49]. In addition, we will also set all fermionic
and vector fields to zero since supersymmetric Janus
solutions involve only the metric and scalar fields. The
bosonic Lagrangian can then be written as

e−1L ¼ 1

2
Rþ 1

16
∂μMMN∂μMMN −

1

4ðImτÞ2 ∂μτ∂μτ� − V;

ð9Þ
where e ¼ ffiffiffiffiffiffi−gp

is the vielbein determinant. The scalar
potential is given by

V ¼ 1

16

�
fαMNPfβQRSMαβ

�
1

3
MMQMNRMPS

þ
�
2

3
ηMQ −MMQ

�
ηNRηPS

�

−
4

9
fαMNPfβQRSϵ

αβMMNPQRS

�
: ð10Þ

The symmetric matrix MMN , with the inverse MMN , is
defined by

MMN ¼ VM
mVN

m þ VM
aVN

a: ð11Þ
The tensor MMNPQRS is obtained from

MMNPQRS ¼ ϵmnpqrsVM
mVN

nVP
pVQ

qVR
rVS

s ð12Þ

by raising the indices with ηMN . The matrix Mαβ is the
inverse of the symmetric 2 × 2 matrix Mαβ defined by

Mαβ ¼ ReðVαV�
βÞ: ð13Þ

We also need fermionic supersymmetry transformations

δψ i
μ ¼ 2Dμϵ

i −
2

3
Aij
1 γμϵj; ð14Þ

δχi ¼ −ϵαβVαDμVβγ
μϵi −

4

3
iAij

2 ϵj; ð15Þ

δλia ¼ 2iVa
MDμVM

ijγμϵj − 2iA2aj
iϵj; ð16Þ

with the fermion shift matrices defined by

Aij
1 ¼ ϵαβðVαÞ�Vkl

MVN
ikVP

jlfβMNP;

Aij
2 ¼ ϵαβVαVkl

MVN
ikVP

jlfβMNP;

A2ai
j ¼ ϵαβVαVa

MVik
NVP

jkfβMN
P: ð17Þ

The coset representatives of the forms VM
ij and Vij

M are

defined in terms of the ’t Hooft symbols Gij
m as

VM
ij ¼ 1

2
VM

mGij
m ð18Þ

and

Vij
M ¼ −

1

2
Vm

MðGij
mÞ�: ð19Þ

The explicit representation of Gij
m used in this paper is the

same as in [47]. Upper and lower i; j;… indices are related
by complex conjugation, as usual.
In this paper, we consider only N ¼ 4 gauged super-

gravity coupled to n ¼ 6 vector multiplets with an SOð4Þ ×
SOð4Þ gauge group. By decomposing the SOð6; 6Þ funda-
mental index as M ¼ ðm̂; m̃; â; ãÞ, for m̂; m̃; â; ã ¼ 1, 2, 3,
we can write the embedding tensor for a symplectically
deformed SOð4Þ × SOð4Þ gauge group as

fþm̂ n̂ p̂ ¼ −g0 cosα0ϵm̂ n̂ p̂; f−m̂ n̂ p̂ ¼ g0 sinα0ϵm̂ n̂ p̂;

fþm̃ ñ p̃ ¼ −g cosαϵm̃ ñ p̃; f−m̃ ñ p̃ ¼ g sinαϵm̃ ñ p̃;

fþâ b̂ ĉ ¼ h1 cosβ1ϵâ b̂ ĉ; f−â b̂ ĉ ¼ h1 sin β1ϵâ b̂ ĉ;

fþã b̃ c̃ ¼ h2 cosβ2ϵã b̃ c̃; f−ã b̃ c̃ ¼ h2 sin β2ϵã b̃ c̃: ð20Þ

These components of the embedding tensor were given in
[50], and we have rewritten them in the notation of [42].
f�m̂ n̂ p̂ and f�m̃ ñ p̃ describe the embedding of the first
SOð4Þ ∼ SOð3Þ × SOð3Þ factor in SOð6ÞR R symmetry. As
previously mentioned, the constants α0 and α can be set to
zero and π

2
, respectively. g0, g, h1, and h2 are gauge coupling

constants for the four SOð3Þ factors. In subsequent sections,
we will look for supersymmetric Janus solutions with
different numbers of unbroken supersymmetries and residual
symmetries.

III. N = 2 SUPERSYMMETRIC JANUS SOLUTIONS

We begin with a truncation to scalars that are singlets
of the SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ subgroup of
the SOð4Þ × SOð4Þ gauge group. We first choose an
explicit form of SOð6; 6Þ generators in the fundamental
representation as

NEW SUPERSYMMETRIC JANUS SOLUTIONS FROM N ¼ 4 … PHYS. REV. D 105, 106004 (2022)

106004-3



ðtMNÞPQ ¼ 2δQ½MηN�P: ð21Þ

The SOð6; 6Þ noncompact generators are accordingly
given by

Yma ¼ tm;aþ6: ð22Þ

Following [35], one can write the coset representative for
SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ singlet scalars as

V ¼ eϕ1Y33eϕ2Y36eϕ3Y63eϕ4Y66 : ð23Þ

The metric ansatz takes the form of the usual AdS3-sliced
domain walls

ds2 ¼ e2AðrÞ
�
e
2ρ
ldx21;1 þ dρ2

�
þ dr2; ð24Þ

in which l denotes the radius of the AdS3 slices.
dx21;1 ¼ ηαβdxαdxβ, α, β ¼ 0, 1, is the flat metric on two-
dimensional Minkowski space.
All scalars ϕi, i ¼ 1, 2, 3, 4, together with the dilaton ϕ

and the axion χ, are allowed to depend only on r. Analyses
of relevant BPS equations have already appeared in many
places (see, for example, [17,18]), so we will simply
summarize the results. The supersymmetry transformations
δψ i

α̂ give the following equation,

A02 ¼ W2 −
1

l2
e−2A; ð25Þ

while δψ i
ρ̂ gives the Killing spinor of the form

ϵî ¼ e
ρ
2lϵ̃î ð26Þ

for ρ-independent spinors ϵ̃î. In Eq. (25),W ¼ jWj, and the
superpotential

W ¼ 2

3
α̂ ð27Þ

is obtained from the eigenvalue α̂ of Aij
1 with the corre-

sponding eigenvectors ϵî identified with the Killing

spinors. We use an index î to count the number of unbroken
supersymmetries.
With the projectors

γr̂ϵ
î ¼ eiΛϵî ð28Þ

and

γρ̂ϵ
î ¼ iκeiΛϵî; ð29Þ

with κ2 ¼ 1 and an r-dependent phase Λ, the Killing
spinors can be determined from δψ i

r̂ to be

ϵî ¼ e
A
2
þ ρ

2lþiΛ
2εð0Þî: ð30Þ

The spinors εð0Þî can (possibly) have an r-dependent phase
and satisfy the following projection conditions:

γr̂ε
ð0Þî ¼ εð0Þ

î
; γρ̂ε

ð0Þî ¼ iκεð0Þ
î
: ð31Þ

With all these results, the conditions δψ i
α̂ determine the

explicit form of the phase eiΛ to be

eiΛ ¼ W
A0 þ iκ

l e
−A ¼ W

W2

�
A0 −

iκ
l
e−A

�
: ð32Þ

With the projector (28), the variations δχi and δλia lead to
the BPS equations for scalars. Finally, we note that the sign
factor κ ¼ �1 corresponds to chiralities of the Killing
spinors on the two-dimensional defects.
For the SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ truncation,

the Aij
1 tensor takes the form (see [47] for more details)

Aij
1 ¼ diagðA−;Aþ;Aþ;A−Þ: ð33Þ

Both of the eigenvalues lead to an N ¼ 2 unbroken
supersymmetry with the superpotential W∓ ¼ 2

3
A∓ and

the Killing spinors ϵ1;4 and ϵ2;3, respectively. Following [47],
we will set ϵ2 ¼ ϵ3 ¼ 0 and choose the superpotential to be

W ¼ W−

¼ 1

2
e−

ϕ
2½coshϕ4½g coshϕ3ðeϕ sin αþ i cos αÞ − g0 sinhϕ1 sinhϕ3�

−g0 coshϕ1ðcoshϕ2 þ i sinhϕ2 sinhϕ4Þ þ ig sin α coshϕ3 coshϕ4χ�: ð34Þ

The scalar potential can be written in terms of the superpotential as
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V ¼ −2Grs ∂W
∂Φr

∂W
∂Φs − 3W2

¼ −
1

4
e−ϕ½g2ð1þ cos 2αÞ þ 2g20 þ 2g2 sin αχð2 cos αþ sin αχÞ� − 1

2
eϕg2sin2α

þ 2gg0 sin α coshϕ1 coshϕ2 coshϕ3 coshϕ4; ð35Þ

in which we have defined the scalars Φr ¼ ðϕ; χ;ϕ1;ϕ2;ϕ3;ϕ4Þ. Grs is the inverse of the scalar metric appearing in the
scalar kinetic terms.
With the coset representative (23), the kinetic term for scalar fields is given by

Lkin ¼
1

2
GrsΦr0Φs0

¼ −
1

4
ðϕ02 þ e−2ϕχ02Þ − 1

16
½6þ cosh 2ðϕ2 − ϕ3Þ

þ cosh 2ðϕ2 þ ϕ3Þ þ 2 cosh 2ϕ4ðcosh 2ϕ2 cosh 2ϕ3 − 1Þ�ϕ02
1

− coshϕ2 coshϕ4 sinhϕ3 sinhϕ4ϕ
0
1ϕ

0
2 − coshϕ3 coshϕ4 sinhϕ2 sinhϕ4ϕ

0
1ϕ

0
3

þ sinhϕ2 sinhϕ3ϕ
0
1ϕ

0
4 −

1

2
cosh2ϕ4ϕ

02
2 −

1

2
cosh2ϕ4ϕ

02
3 −

1

2
ϕ02
4 ; ð36Þ

from which we can determine the scalar metric Grs and its
inverse Grs. Since Grs will appear in the final form of the
BPS equations, for later convenience we will give its
explicit form here,

Grs ¼

0
B@

−2 0 01×4
0 −2e2ϕ 01×4

04×1 04×1 Ĝr̂ ŝ

1
CA; ð37Þ

with the 4 × 4 symmetric matrix Ĝr̂ ŝ, for r̂; ŝ ¼ 1, 2, 3, 4,
given by

Ĝr̂ ŝ ¼

0
BBB@

□1 Δ1 Δ2 Δ3

Δ1 □2 Δ4 Δ5

Δ2 Δ4 □3 Δ6

Δ3 Δ5 Δ6 □4

1
CCCA ð38Þ

and

□1 ¼ −sech2ϕ2sech2ϕ3; □2 ¼ −sech2ϕ3sech2ϕ4 − tanh2ϕ3;

□3 ¼ sech2ϕ2tanh2ϕ4 − 1; □4 ¼ −
1

2
sech2ϕ2sech2ϕ3ð1þ cosh 2ϕ2 cosh 2ϕ3Þ;

Δ1 ¼ sechϕ2sechϕ3 tanhϕ3 tanhϕ4; Δ2 ¼ sechϕ2sechϕ3 tanhϕ2 tanhϕ4;

Δ3 ¼ −sechϕ2sechϕ3 tanhϕ2 tanhϕ3; Δ4 ¼ − tanhϕ2 tanhϕ3tanh2ϕ4;

Δ5 ¼ tanhϕ2tanh2ϕ3 tanhϕ4; Δ6 ¼ tanh2ϕ2 tanhϕ3 tanhϕ4: ð39Þ

The scalar potential and superpotential admit one AdS4
critical point at ϕ1 ¼ ϕ2 ¼ ϕ3 ¼ ϕ4 ¼ 0 and

ϕ ¼ ln

�
−

g0
g sin α

�
; χ ¼ −

cos α
sin α

: ð40Þ

By shifting the dilaton and axion, or equivalently by
choosing g0 ¼ −g for α ¼ π

2
, we can bring this critical

point to the origin of the scalar manifold SLð2;RÞ=
SOð2Þ × SOð6; 6Þ=SOð6Þ × SOð6Þ, at which all scalars
vanish. With this choice, the cosmological constant and
AdS4 radius are given by

V0 ¼ −3g2; L ¼
ffiffiffiffiffiffiffiffiffiffi
−

3

V0

s
¼ 1

g
; ð41Þ

NEW SUPERSYMMETRIC JANUS SOLUTIONS FROM N ¼ 4 … PHYS. REV. D 105, 106004 (2022)

106004-5



in which we have taken g > 0 without loss of generality. This critical point is invariant under the full SOð4Þ × SOð4Þ gauge
symmetry and preserves N ¼ 4 supersymmetry.
Using the projector (28) and the superpotential (34), we find that all the BPS conditions with ϵ2;3 ¼ 0 lead to the

following BPS equations:

A02 þ 1

l2
e−2A ¼ W2; ð42Þ

ϕ0 ¼ −4
A0

W
∂W
∂ϕ − 4eϕ

κe−A

lW
∂W
∂χ ; ð43Þ

χ0 ¼ −4e2ϕ
A0

W
∂W
∂χ þ 4eϕ

κe−A

lW
∂W
∂ϕ ; ð44Þ

ϕ0
1 ¼ Ĝ1r̂ A

0

W
∂W
∂Φ̂r̂ − 2sechϕ2sechϕ3sechϕ4

κe−A

lW
∂W
∂ϕ3

; ð45Þ

ϕ0
2 ¼ Ĝ2r̂ A

0

W
∂W
∂Φ̂r̂ þ

κe−A

lW

�
2sechϕ4 tanhϕ3 tanhϕ4

∂W
∂ϕ3

− 2sechϕ4

∂W
∂ϕ4

�
; ð46Þ

ϕ0
3 ¼ Ĝ3r̂ A

0

W
∂W
∂Φ̂r̂ þ

κe−A

lW

�
2sechϕ2sechϕ3sechϕ4

∂W
∂ϕ1

−2sechϕ4 tanhϕ3 tanhϕ4

∂W
∂ϕ2

þ 2sechϕ4 tanhϕ2 tanhϕ3

∂W
∂ϕ4

�
; ð47Þ

ϕ0
4 ¼ Ĝ4r̂ A

0

W
∂W
∂Φ̂r̂ þ

κe−A

lW

�
2sechϕ4

∂W
∂ϕ2

− 2sechϕ4 tanhϕ2 tanhϕ3

∂W
∂ϕ3

�
; ð48Þ

with Φ̂r̂ ¼ ðϕ1;ϕ2;ϕ3;ϕ4Þ. Before giving the solutions, we
first note that in the limit l → ∞, these equations reduce to
the BPS equations for RG flows studied in [47], as
expected. Furthermore, for ϕ2 ¼ ϕ4 ¼ 0 or ϕ1 ¼ ϕ3 ¼ 0,
we recover the BPS equations for the Janus solutions with
SOð2Þ × SOð2Þ × SOð2Þ × SOð3Þ or SOð2Þ × SOð2Þ ×
SOð3Þ × SOð2Þ symmetries studied in [35].
We now give N ¼ 2 supersymmetric Janus solutions

with SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ symmetry. After
numerically solving the BPS equations, we find examples
of Janus solutions for g¼1, κ¼1, l¼1 and g0 ¼ −g sin α,
as in Fig. 1. In the figure, we have depicted the solutions
for different values of the phase α. We also emphasize here
that all values of α are equivalent to α ¼ π

2
. We have given

the solutions for various values of α only for clarity of
presentation since solutions with different boundary con-
ditions but the same value of α are very close to each other
and difficult to see. These solutions interpolate between
SOð4Þ × SOð4Þ critical points and describe two-dimen-
sional conformal defects within the N ¼ 4 SCFT. The
defects are invariant under the SOð2Þ × SOð2Þ × SOð2Þ ×
SOð2Þ subgroup of the SOð4Þ × SOð4Þ symmetry of
the three-dimensional SCFT and preserve N ¼ ð2; 0Þ or

N ¼ ð0; 2Þ supersymmetry in two dimensions, depending
on whether the value of κ is 1 or −1.

IV. N = 1 SUPERSYMMETRIC JANUS SOLUTIONS

We nowmove to the SOð3Þdiag × SOð3Þ sector, which is a
subtruncation of the SOð3Þdiag sector studied in [47]. Wewill
follow the notation of [47] for the sake of comparison. The
SOð3Þdiag × SOð3Þ sector contains two singlet scalars from
an SOð6; 6Þ=SOð6Þ × SOð6Þ coset (see [47] for additional
details), with the coset representative

V ¼ eϕ1Ŷ1eϕ3Ŷ3 ; ð49Þ

in which the noncompact generators are given by

Ŷ1 ¼ Y11 þ Y22 þ Y33 þ Y44;

Ŷ3 ¼ Y51 þ Y62 þ Y73 þ Y84: ð50Þ

The Aij
1 tensor takes the form

Aij
1 ¼ diagðA;B;B;BÞ; ð51Þ
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(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 1. Examples of N ¼ 2 Janus solutions interpolating between N ¼ 4 AdS4 critical points with SOð4Þ × SOð4Þ symmetry for g ¼ 1,
κ ¼ 1, l ¼ 1, g0 ¼ −g sin α and α ¼ π

6
(purple lines), α ¼ π

4
(green lines), α ¼ π

3
(blue lines), α ¼ π

2
(red lines). (a) ϕðrÞ solution. (b) χðrÞ

solution. (c) ϕ1ðrÞ solution. (d) ϕ2ðrÞ solution. (e) ϕ3ðrÞ solution. (f) ϕ4ðrÞ solution. (g) AðrÞ solution.
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with A leading to the superpotential

W ¼ 1

2
e
ϕ
2½gcosh3ϕ3 þ h1 sin β1ði sinhϕ1 − coshϕ1 sinhϕ3Þ3�

þ 1

2
e−

ϕ
2½gðcoshϕ1 þ i sinhϕ1 sinhϕ3Þ3 − ðsinhϕ1 þ i coshϕ1 sinhϕ3Þ3

× h1 cos β1� þ
1

2
e−

ϕ
2½igcosh3ϕ3 þ h1 sin β1ðsinhϕ1 þ i coshϕ1 sinhϕ3Þ3�χ: ð52Þ

The solutions in this sector then preserve N ¼ 1 super-
symmetry. To simplify the expressions, in this case we will
set α ¼ π

2
and g0 ¼ −g.

For completeness, we also note that the scalar potential
can be written as

V ¼ 4

�∂W
∂ϕ

�
2

þ 4e2ϕ
�∂W
∂χ

�
2

þ 2

3
sech2ϕ3

�∂W
∂ϕ1

�
2

þ 2

3

�∂W
∂ϕ3

�
2

− 3W2: ð53Þ

The explicit form of this potential can be found in [47].
In this paper, we simply recall that the scalar potential
admits three supersymmetric AdS4 critical points. The
first one is the trivial SOð4Þ × SOð4Þ critical point at
which all scalars vanish for α ¼ π

2
and g0 ¼ −g, while the

other two are given by

i∶ β1 ¼ 0; ϕ3 ¼ χ ¼ 0; ϕ1 ¼
1

2
ln

�
h1 þ g
h1 − g

�
;

ϕ ¼ −
1

2
ln

�
1−

g2

h21

�
; V0 ¼ −

3g2h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 − g2

p ; ð54Þ

ii∶ β1 ¼
π

2
; ϕ1 ¼ χ ¼ 0; ϕ3 ¼

1

2
ln

�
h1 þ g
h1 − g

�
;

ϕ ¼ 1

2
ln

�
1−

g2

h21

�
; V0 ¼ −

3g2h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 − g2

p : ð55Þ

Both of these critical points preserve N ¼ 4 supersym-
metry, as can be verified by setting χ ¼ ϕ1 ¼ 0 or
χ ¼ ϕ3 ¼ 0, which gives A ¼ B. On the other hand, for
ϕ1 ≠ 0 and ϕ3 ≠ 0, the supersymmetry is broken to
N ¼ 1. The holographic RG flows between these critical
points preserving N ¼ 4 and N ¼ 1 supersymmetries
were already studied in [47].
In this work, we are interested in supersymmetric Janus

solutions. We first note that setting either ϕ1 ¼ 0 or
ϕ3 ¼ 0 does not lead to a consistent set of BPS equations
for Janus solutions. This implies that, unlike in the RG
flow case, there are no N ¼ 4 supersymmetric Janus
solutions with SOð3Þdiag × SOð3Þ × SOð3Þ or SOð3Þ ×
SOð3Þdiag × SOð3Þ symmetries. For ϕ1 ≠ 0 and ϕ3 ≠ 0,

truncating out χ is also not consistent with the BPS
equations. Therefore, N ¼ 1 Janus solutions must involve
all scalars in the SOð3Þdiag × SOð3Þ sector, as in the case
of the N ¼ 1 RG flow solutions found in [47].
Using the same procedure as in the previous section with

ϵ2 ¼ ϵ3 ¼ ϵ4 ¼ 0, we find that the BPS equations can be
written as

ϕ0 ¼ −4
A0

W
∂W
∂ϕ − 4eϕ

e−Aκ
lW

∂W
∂χ ; ð56Þ

χ0 ¼ −4e2ϕ
A0

W
∂W
∂ϕ þ 4eϕ

e−Aκ
lW

∂W
∂ϕ ; ð57Þ

ϕ0
1 ¼ −

2

3
sech2ϕ3

A0

W
∂W
∂ϕ1

−
2

3
sechϕ3

e−Aκ
lW

∂W
∂ϕ3

; ð58Þ

ϕ0
3 ¼ −

2

3
ϕ3

A0

W
∂W
∂ϕ3

þ 2

3
sechϕ3

e−Aκ
lW

∂W
∂ϕ1

ð59Þ

together with the usual equation for the metric function

A02 þ e−2A

l2
¼ W2; ð60Þ

with the superpotential given in (52). It should be noted that
these equations again reduce to the BPS equations for
holographic RG flows studied in [47] in the limit l → ∞,
as expected.
We begin with generic solutions for different values of the

phase β1. After numerically solving the BPS equations, we
find examples of solutions for g ¼ 1, h1 ¼ 2, κ ¼ 1, and
l ¼ 1, as shown in Fig. 2. Some of the solutions are very
close to each other, so some solutions, in particular the one
represented by the green lines, are not clearly seen. In the
figure, all the solutions are qualitatively similar and
describe two-dimensional conformal defects within a three-
dimensional N ¼ 4 SCFT with SOð4Þ × SOð4Þ symmetry.
Unlike the solutions in the previous section, these defects
preserve only N ¼ ð1; 0Þ or N ¼ ð0; 1Þ supersymmetry,
depending on whether the value of κ is 1 or −1.
For β1 ¼ 0, there are two AdS4 critical points, the trivial

one and critical point (i). With appropriate boundary
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conditions, we find a Janus solution interpolating between
critical point (i) for g ¼ 1, h1 ¼ 2, κ ¼ 1, and l ¼ 1, as
shown in Fig. 3. This solution is represented by the pink
lines. We have included the Janus solution between SOð4Þ ×
SOð4Þ critical points (cyan lines) for comparison. We have
also given the solution for A0ðrÞ to explicitly show that the
two solutions indeed interpolate between different pairs of
critical points. However, it should be noted that the critical
point (i) on both sides is generated by a holographic RG flow
from the SOð4Þ × SOð4Þ critical point. In particular, this RG

flow was one of the solutions studied recently in [47]. The
Janus solution is accordingly similar to those given in
[17,21,34,36,37]. A similar solution interpolating between
critical points (ii) can also be found, as shown by the yellow
lines in Fig. 4 with g ¼ 1, h1 ¼ 2, κ ¼ 1, and l ¼ 1. As in
Fig. 3, we have included the Janus solution between the
SOð4Þ × SOð4Þ critical points for comparison (purple lines).
These two solutions describe N ¼ ð1; 0Þ or N ¼ ð0; 1Þ
conformal defects within N ¼ 4 SCFTs with SOð3Þdiag ×
SOð3Þ × SOð3Þ or SOð3Þ × SOð3Þdiag × SOð3Þ symmetry.

(a) (b)

(c) (d)

(e)

FIG. 2. Examples of N ¼ 1 Janus solutions interpolating between N ¼ 4 AdS4 critical points with SOð4Þ × SOð4Þ symmetry for
different values of β1, β1 ¼ 0 (cyan lines), β1 ¼ π

6
(red lines), β1 ¼ π

4
(green lines), β1 ¼ π

3
(blue lines), β1 ¼ π

2
(purple lines). (a) ϕðrÞ

solution. (b) χðrÞ solution. (c) ϕ1ðrÞ solution. (d) ϕ3ðrÞ solution. (e) AðrÞ solution.
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V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have studied supersymmetric Janus
solutions using four-dimensional N ¼ 4 gauged supergrav-
ity with an SOð4Þ × SOð4Þ gauge group in the presence of
symplectic deformations. We have found two classes of
solutions preserving N ¼ 1 and N ¼ 2 supersymmetries.
The N ¼ 2 solutions interpolate between the trivial N ¼ 4

critical points with SOð4Þ × SOð4Þ symmetry. In this case,
electric-magnetic phases or deformation parameters do not

appear, apart from those fixed by SLð2;RÞ transformations
and redefinitions of the dilaton and axion, and there are no
other AdS4 critical points. The solutions are invariant under
SOð2Þ × SOð2Þ × SOð2Þ × SOð2Þ symmetry and describe
N ¼ ð2; 0Þ or N ¼ ð0; 2Þ two-dimensional conformal
defects in the N ¼ 4 SCFT dual to the AdS4 critical point.
On the other hand, in the N ¼ 1 case, we have found

more interesting solutions. The solutions are obtained in the
SOð3Þdiag × SOð3Þ sector, and for the particular values of

(a) (b)

(c) (d)

(e) (f)

FIG. 3. An example of N ¼ 1 Janus solutions (pink lines) interpolating between N ¼ 4 AdS4 critical points with SOð3Þdiag ×
SOð3Þ × SOð3Þ symmetry [critical point (i)]. (a) ϕðrÞ solution. (b) χðrÞ solution. (c) ϕ1ðrÞ solution. (d) ϕ3ðrÞ solution. (e) AðrÞ solution.
(f) A0ðrÞ solution.
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the phase β1 ¼ 0 and β1 ¼ π
2
, there are two additional

nontrivial N ¼ 4 critical points with SOð3Þdiag × SOð3Þ ×
SOð3Þ and SOð3Þ × SOð3Þdiag × SOð3Þ symmetries apart
from the trivial critical point. There are N ¼ 1 solutions
interpolating between SOð4Þ × SOð4Þ critical points
for any values of the electric-magnetic phase β1, as in
the N ¼ 2 solutions. Moreover, we have found solutions
interpolating between SOð3Þdiag × SOð3Þ × SOð3Þ critical
points and between SOð3Þ × SOð3Þdiag × SOð3Þ critical

points. In this case, the solutions describe two-dimensional
conformal defects in N ¼ 4 SCFTs dual to AdS4 critical
points (i) and (ii) that preserve N ¼ ð1; 0Þ or N ¼ ð0; 1Þ
supersymmetries on the defects. These are the first exam-
ples of Janus solutions in N ¼ 4 gauged supergavity that
involve nontrivial AdS4 critical points.
It would be interesting to identify the N ¼ 4 SCFTs dual

to the AdS4 critical points considered here and study the
conformal defects dual to the Janus solutions found in this

(a) (b)

(c) (d)

(e) (f)

FIG. 4. An example of N ¼ 1 Janus solutions (yellow lines) interpolating between N ¼ 4 AdS4 critical points with SOð3Þ ×
SOð3Þdiag × SOð3Þ symmetry [critical point (ii)]. (a) ϕðrÞ solution. (b) χðrÞ solution. (c) ϕ1ðrÞ solution. (d) ϕ3ðrÞ solution. (e) AðrÞ
solution. (f) A0ðrÞ solution.
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paper. As pointed out in [47], in the SOð3Þdiag invariant
scalar sector, both of the electric-magnetic phases β1 and β2
appear in the scalar potential and the superpotential. It
would be of particular interest to investigate this sector and
look for new supersymmetric AdS4 vacua and to also find
new Janus solutions in this case. Finally, since SOð4Þ ×
SOð4Þ gauged supergravity admitting AdS4 vacua for any
values of the deformation parameters presently has no
known embedding in higher dimensions, it would be highly
desirable to find the corresponding embedding that would
provide an uplift for the solutions found here and those
given in [35,47,48] to 10=11 dimensions. Along these lines,

recent developments in the double field theory formalism
would be very useful; see, for example, [50–56]. The
uplifted solutions should provide a complete gravity dual of
the N ¼ 4 SCFTs in three dimensions together with
deformations and conformal defects in a string/M-theory
context. We leave these issues for future work.
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