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Noncentral heavy ion collisions lead to the production of a quark gluon plasma with angular momentum.
We investigate, using holographic AdS (anti–de Sitter)/QCD models, how does rotation of the medium
affects the confinement/deconfinement transition temperature Tc. In holographic models, this transition is
represented by a Hawking-Page process involving two asymptotically AdS spaces. The plasma is
represented here by extending the holographic approach to anti–de Sitter spaces with cylindrical symmetry.
Then the rotation of the medium is introduced through a Lorentz boost. We consider hard and soft wall
AdS/QCD models. In both cases we find it out that, as the rotational velocity v increases, Tc decreases,
following the expression TcðvÞ ¼ Tcð0Þ=γðvÞ, where γðvÞ is the Lorentz factor.
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I. INTRODUCTION

Heavy ion collisions, as produced in particle acceler-
ators, lead to the formation of hadronic matter in a state
where quarks and gluons interact strongly but are not
confined. This very short lived state of matter, called quark
gluon plasma (QGP), cannot be observed directly. All the
available information about QGP comes from the particles
reaching the detectors after hadronization. For reviews
about QGP, see for example [1–4].
The QGP behaves approximately as in thermal equilib-

rium and there is a critical temperature Tc below which
the hadronic matter is confined. The value of Tc is known
to be affected by the density of the medium and also by
the presence of magnetic fields B⃗. Noncentral heavy ion
collisions produce strong magnetic fields. For examples of
studies of the effect of B⃗ fields on Tc see, for example,
Refs. [5–14].
In this type of collisions, besides the presence of strong

magnetic fields, the plasma also has a large angular
momentum. The purpose of this article is to study the
effect of rotation of the plasma on Tc. Holographic AdS

(anti–de Sitter)/QCD models, in particular the hard wall
[15–17] and the soft wall [18] ones, provide an interesting
tool to estimate Tc, as discussed in [19,20]. We extend the
previous studies of confinement/deconfinement transition
in these models to the case when the medium has angular
momentum.
This article is organized as follows: in Sec. II we present

cylindrical AdS geometries and show how to implement a
rotation in such systems. Then in Sec. III we discuss the
thermodynamics of the hard and soft wall models with
cylindrical symmetry. In Sec. IV, we study the confinement/
deconfinement transition for a rotating plasma dual to the
AdS geometries. Finally in Sec. V we analyze our results
and comment on them.

II. CYLINDRICAL BLACK HOLE
IN AdS SPACE AND ROTATION

The holographic models we are going to consider are
defined on planar five-dimensional anti–de Sitter (AdS5)
geometries, that show up as solutions of Einstein’s equa-
tions with negative cosmological constant Λ ¼ − 12

L2 and
constant curvature R ¼ − 20

L2. At zero temperature the
geometry is an anti–de Sitter space with radius L. At finite
temperature there are two solutions. One is the thermal AdS
space that, in the Euclidean signature with compact time
direction, is described by the metric

ds2 ¼ L2

z2
ðdt2 þ dx⃗2 þ dz2Þ: ð2:1Þ

The other is the AdS black hole space
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ds2 ¼ L2

z2

�
fðzÞdt2 þ dx⃗2 þ dz2

fðzÞ
�
; ð2:2Þ

with fðzÞ ¼ 1 − z4=z4h, where zh is the location of the
horizon.
For the black hole geometry, the time coordinate is

periodic, with period β, related to the temperature and the
horizon position by T ¼ 1=β ¼ 1=ðπzhÞ [21]. In the
thermal AdS case, requiring that the asymptotic limits of
the two geometries at z ¼ ϵ, with ϵ → 0, are the same, one
finds that the period is β0 ¼ πzh

ffiffiffiffiffiffiffiffiffi
fðϵÞp

.

A. Cylindrical AdS geometries

The geometry with cylindrical symmetry, relevant for
studying a medium that is rotating, is obtained by consid-
ering the case when the boundary, spanned by the x
coordinates in the metrics (2.1) and (2.2), take, respectively,
the forms

ds2 ¼ L2

z2

�
−dt2 þ l2dϕ2 þ

X2
i¼1

dx2i þ dz2
�

ð2:3Þ

and

ds2 ¼ L2

z2

�
−fðzÞdt2 þ l2dϕ2 þ

X2
i¼1

dx2i þ
dz2

fðzÞ
�
; ð2:4Þ

where we now consider Lorentzian signature, l is the radius
of a hypercylinder and 0 ≤ ϕ ≤ 2π.
Using metrics (2.3) and (2.4) we will see that one can

represent a medium that rotates with homogeneous velocity.
This is clearly not the exact situation of a real QGP formed
when twoheavy ions collide.However this analysiswillmake
it possible to understand qualitatively the effect of rotation on
the value of the critical temperature Tc. This is similar to the
approach followed in most studies about magnetic fields B⃗
acting on a plasma, as for example in Refs. [22–26], where
uniform magnetic fields are considered.

B. Lorentz boost: Rotating cylindrical black hole

Rotation can be introduced by performing a coordinate
transformation as is [27,28], corresponding to the change to
an observer for which the angular coordinate is varying
uniformly with time:

t →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2ω2
p ðtþ l2ωϕÞ; ð2:5Þ

ϕ →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2ω2
p ðϕþ ωtÞ; ð2:6Þ

where ω is the angular velocity of the rotating cylindrical
black hole, associated with the rotation of the plasma via

gauge/gravity duality. The resulting metric for the rotating
BH reads [29]

ds2 ¼ gttdt2 þ gtϕdtdϕþ gϕtdϕdtþ gϕϕl2dϕ2

þ gzzdz2 þ gxx
X2
i¼1

dx2i ; ð2:7Þ

with

gtt ¼
γ2ðωÞL2

z2
ðω2l2 − fðzÞÞ; ð2:8Þ

gϕϕ ¼ γ2ðωÞL2

z2
ð1 − ω2l2fðzÞÞ; ð2:9Þ

gtϕ ¼ gϕt ¼
γ2ðωÞL2

z2
ωl2ð1 − fðzÞÞ; ð2:10Þ

gzz ¼
L2

z2fðzÞ ; ð2:11Þ

gxx ¼
L2

z2
; ð2:12Þ

where γ is the Lorentz factor,

γðωlÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p : ð2:13Þ

This metric represents a rotating black hole with cylin-
drical symmetry which will describe, via holography, a
plasma that rotates with the same angular velocity ω around
a cylinder with radius l.
For consistency, it is important to check if the metric

(2.7) is a solution of the same Einstein equation satisfied by
the AdS black hole metrics (2.2) and (2.4). For both metrics
the equation reads

Rmn −
1

2
Rgmn þ Λgmn ¼ 0; ð2:14Þ

where R ¼ −20=L2, Λ is the negative cosmological con-
stant and there is no energy density. Equation (2.14) implies
that the Ricci tensor Rmn is proportional to the metric. Both
Rmn and gmn are second rank tensors that transform under
coordinate transformations as

T 0
αβ ¼

∂xm
∂x0α

∂xn
∂x0β Tmn ≡Mmn

αβ Tmn: ð2:15Þ

The transformation matrix Mmn
αβ for the present case is

easily obtained from the inverse of the coordinate trans-
formations (2.5) and (2.6),
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t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p ðt0 − l2ωϕ0Þ; ð2:16Þ

ϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ω2

p ðϕ0 − ωt0Þ: ð2:17Þ

The curvature scalar is not affected by coordinate
transformations. Contracting Mmn

αβ with Eq. (2.14) and
using (2.15) one finds

R0
αβ −

1

2
Rg0αβ þ Λg0αβ ¼ 0; ð2:18Þ

so the metric (2.7) satisfies the same Einstein equation
satisfied by the original metric (2.4).
The Lorentz boost affects the relation between the

Hawking temperature T of the black hole and the horizon
position. Rewriting the rotating metric (2.12) in the
canonical form, see [27,30], one obtains

ds2 ¼ −NðzÞdt2 þ L2

z2
dz2

fðzÞ þ RðzÞðdϕþ PðzÞdtÞ2

þ L2

z2
X2
i−1

dx2i ; ð2:19Þ

with

NðzÞ ¼ L2

z2
fðzÞð1 − ω2l2Þ
1 − fðzÞω2l2

; ð2:20Þ

RðzÞ ¼ L2

z2
ðγ2l2 − fðzÞγ2ω2l4Þ; ð2:21Þ

PðzÞ ¼ ωð1 − fðzÞÞ
1 − fðzÞω2l2

: ð2:22Þ

Now, defining h00 ¼ −NðzÞ, the temperature can be
obtained from the surface gravity formula [29]:

T ¼
���� κG2π

���� ¼
������
limz→zh −

1
2

ffiffiffiffiffiffiffiffiffiffiffi
gzz

−h00ðzÞ
q

h00;z

2π

������ ¼
1

πzh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p
;

ð2:23Þ

where κG is the surface gravity, and gzz the z − z component
of the inverse of the cylindrical black hole metric.
The standard entropy of the black hole is determined by

S ¼ 1
4
A, where A is the area of the event horizon. In our

case, it takes the form

s ¼ 2πL3

κ2
1

z3h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2l2

p ; ð2:24Þ

where s ¼ S=V3D is the entropy density. For the mass
and angular momentum, the result has already been
determined1 in Refs. [27,28]. For this reason, we only
present the result found, given by

M ¼ L3

κ2
ω2l2 þ 3

2ð1 − ω2l2Þ ; ð2:25Þ

J ¼ 2L3

κ2
ωl

z4hð1 − w2l2Þ ; ð2:26Þ

where M ¼ m=V3D and J ¼ j=V3D are the mass and
angular momentum densities, respectively. One can check
that the first law of thermodynamic dM ¼ Tdsþ ωdJ is
satisfied for the rotating black hole geometry, as discussed
in [27,28]. In the Appendix, we perform the calculation of
the thermodynamic quantities for the hard wall model,
using the holographic prescription, finding the same mass,
angular momentum, and entropy.

III. REGULARIZED FREE ENERGY DENSITY
IN HARD AND SOFT WALL MODELS

The hard [15–17] and soft [18] wall holographic
AdS/QCD models consist in introducing an energy param-
eter in the AdS geometry. This parameter is interpreted, in
the gauge theory side of the gauge/gravity duality, as an
infrared (IR) cutoff. In the first case, this is done by just
imposing that the z coordinate of the AdS spaces has a
maximum value: 0 ≤ z ≤ z0. In the second case one
introduces in the geometry a dilaton background ΦðzÞ that
contains an energy parameter.
One can write the five-dimensional gravitational action

for both models, at zero temperature, in the general
form [19,20]

I ¼ −
1

2κ2

Z
z0

0

dz
Z

d4x
ffiffiffi
g

p
e−ΦðR − ΛÞ

¼ 4

L2κ2

Z
z0

0

Z
d4x

ffiffiffi
g

p
e−cz

2

; ð3:1Þ

where κ is the gravitational coupling associated with the
Newton constant, and, as mentioned in the previous
section, the cosmological constant and the curvature are
related to the AdS radius by Λ ¼ 3

5
R ¼ −12

L2 . The hard wall
model corresponds to choosing c ¼ 0 and taking 1=z0 as
the IR energy parameter. For the soft wall z0 → ∞ and

ffiffiffi
c

p
is the energy parameter.

1The authors use the method developed by Regge-Teitelboim
[31,32]. The approach consists of writing the gravity action into
the Hamiltonian form where a surface term is introduced to
ensure that the Hamiltonian equation is satisfied. Then, the task is
to find the surface term and associate it with the mass and angular
momentum. For more details see Refs. [31,32].
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In order to perform the analysis of the Hawking-Page
transition for the cylindrical rotating AdS spaces, we
consider the metric (2.7) for the BH case and a similar
expression, but with fðzÞ ¼ 1 for the thermal AdS. In both
cases, the determinant of the metric is g ¼ L10

z10 , such that the
finite temperature version of (3.1) reads

Ion shell ¼
4L3

κ2

Z
zmin

0

dz
Z

d4xz−5e−cz
2

; ð3:2Þ

where zmin is the minimum of ðz0; zhÞ. Note that for the
thermal AdS there is no horizon, or equivalently zh → ∞.
The integration over the spatial bulk coordinates x is trivial,
so we define an action density dividing the on shell action
by the spacial volume factor of the bulk, E ¼ 1

V3D
Ion shell.

For a compact time direction in the Euclidean signature, we
have 0 ≤ t < β̄, where, as explained in the previous section,
for the black hole geometry β̄ ¼ β ¼ 1=T, while for the
thermal AdS β̄ ¼ β0 ¼ ffiffiffiffiffiffiffiffiffi

fðϵÞp
=T. Then, the action den-

sities, including the ultraviolet regulator ε, have the
following general form:

EsðεÞ ¼
4L3

κ2

Z
β̄

0

dt
Z

zf

ε
dz z−5e−cz

2

: ð3:3Þ

For both the thermal AdS and the rotating AdS black hole
the free energy densities are infinite in the limit ε → 0.
In order to obtain a finite quantity, one defines the

regularized free energy density of the rotating black hole as
the difference between the energy densities of the two
geometries,

△EðεÞ ¼ lim
ε→0

½EBHðεÞ − EAdSðεÞ�; ð3:4Þ

where

EBHðεÞ ¼
4L3

κ2
β

Z
minðzh;z0Þ

ε
dz z−5e−cz

2

; ð3:5Þ

EAdSðεÞ ¼
4L3

κ2
β0
Z

z0

ε
dz z−5e−cz

2

: ð3:6Þ

The regularized free energy density (3.4) determines
the Hawking-Page transition, as it measures the stability
of the rotating black hole. When △E is positive (negative),
the BH is unstable (stable), since the free energy density of
the AdS space is smaller (greater) than the black hole one.
From the gauge/gravity duality, this analysis concerning
black hole (in)stability corresponds to the transition
between the confined hadronic phase and the deconfined
plasma phase.

IV. CONFINEMENT-DECONFINEMENT
TRANSITION IN A ROTATING PLASMA

The phase transition occurs when the regularized free
energy density vanishes. The computation of Eq. (3.4)
depends on the holographic model, i.e., on how the IR
energy scale is introduced. Let us consider separately the
hard wall [15–17] and soft wall [18] AdS/QCD models.

A. Hard wall model

In the hard wall model there is no dilaton field in the
background, so we take c ¼ 0 in Eqs. (3.5) and (3.6) with
metrics (2.7) and (2.3), respectively. The regularized free
energy density of Eq. (3.4) then takes the form

△Eðωl; TÞ ¼
8<
:

L3π
κ2

ffiffiffiffiffiffiffiffiffiffiffi
1−ω2l2

p 1
2z3h

; z0 < zh

L3πzh
κ2

ffiffiffiffiffiffiffiffiffiffiffi
1−ω2l2

p
�

1
z4
0

− 1
2z4h

�
; z0 > zh

: ð4:1Þ

Using the Hawking temperature (2.23) for the rotating
BH geometry, one automatically concludes that the
Hawking-Page transition occurs at the critical temperature

TðHWÞ
c ðωlÞ ¼ 21=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2l2

p

πz0
¼ TðHWÞ

c ð0Þ
γðωlÞ ; ð4:2Þ

where γðωlÞ is the usual Lorentz factor and Tcð0Þ is the
critical temperature when the medium is not rotating. This
result shows that the critical temperature depends on the
QGP angular velocity. As ωl increases, Tc decreases.

B. Soft wall AdS/QCD model

In the soft wall AdS/QCD model [18] z0 → ∞, while
c ≠ 0 is the parameter responsible for introducing the mass
scale

ffiffiffi
c

p
in the model. Equations (3.5) and (3.6) now

lead to

△Eðωl; zhÞ ¼
γðwlÞL3π

κ2z3h

�
−e−cz2hð−1þ cz2hÞ

þ 1

2
þ c2z4hEið−cz2hÞ

	
: ð4:3Þ

This is just the factor γðwlÞ times the free energy of the soft
wall model without rotation obtained in Ref. [19]. So, the
condition △Eðωl; zhÞ ¼ 0 leads to the same relation found
in this reference for the horizon position at the critical
temperature:

cz2h ¼ 0.419035: ð4:4Þ

Defining a dimensionless temperature

T̄ ¼ T=
ffiffiffi
c

p ð4:5Þ

BRAGA, FAULHABER, and JUNQUEIRA PHYS. REV. D 105, 106003 (2022)

106003-4



and using the relation between the horizon position and the
temperature for the case with rotation, given by Eq. (2.23),
one finds

T̄cðωlÞ ¼
0.491728
γðωlÞ ¼ T̄cð0Þ

γðωlÞ ; ð4:6Þ

which is the same dependence on ωl found in the case of
the hard wall model. In Fig. 1, we plot the free energy
densities of the rotating plasma, in the soft wall case, as a
function of T̄, at fixed values of ωl. As one can see, the
critical temperatures, defined by Eq. (4.6), decreases as the
rotational velocity increases, in the same way as in the hard
wall model. This result does not depend on the choice of
the infrared parameter c, since we are working with the
dimensionless temperature (4.5).
In Fig. 2(a), we plot the free energy density of the plasma

in the soft wall case, as a function of T̄ and ωl. The curve
T̄cðωlÞ is determined by the intersection between
△Eðωl; T̄Þ and the plane △Eðωl; T̄Þ ¼ 0, indicated in
Fig. 2(b). This intersection, for 0 ≤ ωl ≤ 1, corresponds
to the blue curve plotted in Fig. 3. In the same figure, the
orange curve represents T̄cðωlÞ of the hard wall case.

C. Comparison of the results for the two models

The holographic prediction for both hard wall and soft
wall models is that Tc decreases as the absolute value of
the velocity ωl increases. So, for a rotating plasma the
confinement/deconfinement phase transition occurs at
lower temperatures than for a static plasma. The fact that
the critical temperature has the very same dependence on
the velocity for both models, as shown in Eqs. (4.2)
and (4.6), was not expected since these models are very
different and produce, for example, different mass spectra
for hadrons. The explanation is that the free energies of
the hard and soft wall models [given, respectively, by
Eqs. (4.1) and (4.3)] are equal to the free energies without
rotation times the factor γðwlÞ. In other words, rotation
does not affects the horizon position corresponding to the
condition of vanishing free energy. Therefore, Eq. (2.23)
relating the horizon position to the temperature implies the
same dependence on ωl found here for the critical temper-
ature of both models.

V. ANALYSIS OF THE RESULTS
AND CONCLUSIONS

In noncentral relativistic heavy ion collisions, one can
estimate the angular velocity and the size (or radius) of the
rotating QGP that is produced—see, for instance, [33–36].
In [33], the authors argued that experimental results for Λ,
Λ− baryons polarization give the average value ω ∼ 6 MeV
for the angular velocity of the plasma. Hydrodynamic
simulations of heavy-ion collisions worked out in [34]
predict even larger magnitudes of the angular velocity with
ω ∼ 20–40 MeV. Meanwhile, typical values for the QGP
size were estimated in [35], in which the authors used
relativistic hydrodynamics to make predictions for a
possible future run of ArAr and OO collisions at the
Large Hadron Collider.
With these information, one can use Eqs. (4.2) and

(or) (4.6) to compute some typical value of the variation of
the critical temperature T̄cðwlÞ=T̄cð0Þ caused by rotation

FIG. 1. Free energy density of rotating plasma (△E) as a
function of T̄, at different rotational velocities ωl, for the soft
wall model.

FIG. 2. (a) Free energy density of rotating plasma as a function of T and ωl. (b) Hawking-Page curve for critical temperatures
represented by the intersection between △Eðωl; T̄Þ and the plane △Eðωl; T̄Þ ¼ 0.
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of the plasma. For example, for radius l ¼ 5 fm and
ω ¼ 20 MeV one finds

T̄cðωlÞ=T̄cð0Þ ¼
1

γð0.5Þ ¼ 0.87: ð5:1Þ

The result that the critical temperature of the
confinement/deconfinement transition decreases with
increasing angular velocity is in agreement with recent
studies of this transition in rotating QCD using phenom-
enological models [37–39]. The authors of Ref. [37]
investigated the rotation effect on the deconfinement phase
transition in an Einstein-Maxwell-Dilaton model in pure
gluon and two-flavor holographic QCD models in the
presence of a chemical potential. The authors extended a
model proposed in Ref. [40] to finite angular velocity.
Then, from the analysis of thermodynamic quantities, it is
shown that the critical temperature decreases with angular
velocity. It is also shown that the pressure, energy density,
entropy density, and specific heat are enhanced by the
angular velocity. To get full understanding of the phase
transition, and to check the physical contents of the
geometric phase transition, the authors of [37] investigated
the order parameter of the deconfinement transition,
i.e., the loop operators. In contrast, here we analyzed the
rotation effect considering the Hawking/Page phase tran-
sition in the hard wall model and soft wall model without
chemical potential. The analytical expressions (4.2) and
(4.6) show that the critical temperature decrease with the
increase of the angular velocity, which is in qualitative
agreement with the result found [37]. The same behavior
was found also in Nambu-Jona-Lansinio model [41], in
which the critical temperature in rotating QCD decreases
due to suppression of the chiral condensate.
On the other hand, the simulations of relativistic rotation

on the confinement/deconfinement phase transition in
gluodynamics lattice [36], using different types of

boundary conditions (open, periodic and Dirichlet), found
that the critical temperature increases with increasing
angular velocity for all boundary conditions and all lattice
parameters used in the calculations, showing up an opposite
behavior if compared to our result and to the other models
[37–39,41] cited above. However, the same authors of [36]
have recently presented the first lattice results in [42]
(preliminary) for the confinement/deconfinement phase
transition taking into account dynamical fermions. Such
a preliminary result shows that the critical temperature with
rotating fermions decreases with the grow of angular
velocity, thus also in agreement with our prediction. For
previous studies of the thermodynamics of rotating black
holes, see [43–45], and for rotating quark gluon plasma in
the context of holography, see for example [46–49].
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APPENDIX: HOLOGRAPHIC
RENORMALIZATION AND THERMODYNAMICS

In Sec. II we have presented the thermodynamic quan-
tities of the rotating cylindrical black hole obtained from
general relativity. Now, we will study the thermodynamics
of rotating black holes in the hard-wall model. We will not
perform this analysis for the soft wall model because in
this case we cannot compare the results with the general
relativity ones, since this phenomenological model is not a
solution to Einstein equation. We will consider the hard
wall model with zo > zh, when the Einstein equations are
satisfied, using the holography prescription. This can be
done by evaluating the Euclidean bulk on shell action
together with the appropriate counterterm and the Gibbons-
Hawking action. The counterterm is necessary to handle
with the UV divergence present in the bulk and Gibbons-
Hawking actions, as prescribed by the holographic renorm-
alization. For this reason, we consider the following
gravitational action

IT ¼ Ibulk þ IGH þ Ic:t:: ðA1Þ

The on shell bulk action has already been calculated (3.1)
and reads

Ibulk ¼
L3V3D

κ2
β

�
1

ϵ4
−

1

z4h

�
; ðA2Þ

where ϵ is the ultraviolet regulator. The Gibbons-Hawking
action is calculated from

FIG. 3. Dimensionless critical temperature T̄c versus rotational
velocity (ωl) in the soft wall (blue), and hard wall (orange)
models. For the hard wall we use T̄c ≡ z0Tc.
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IGH ¼ −
1

κ2

Z
d4x

ffiffiffi
h

p
K; ðA3Þ

where K is the trace of the extrinsic curvature at a boundary
hypersurface,

K ¼ ∇ana ¼
1ffiffiffi
g

p ∂að
ffiffiffi
g

p
naÞ; ðA4Þ

with na ¼ ð−z ffiffiffiffiffiffiffiffiffi
fðzÞp

=L; 0; 0; 0; 0Þ being an unitary vector
normal to the boundary, and h the determinant of
the induced metric hμν at the boundary, such thatffiffiffi
h

p ¼ L4
ffiffiffiffiffiffi
fðzÞ

p
z4 . Therefore, the surface action for the cylin-

drical rotating black hole reads

IGH ¼ −
4L3V3D

κ2
β

�
1

ϵ4
−

1

2z4h

�
: ðA5Þ

The counterterm action for the AdS5 can be written as

Sct ¼
1

κ2

Z
d4x

ffiffiffi
h

p 3

L
; ðA6Þ

then, replacing
ffiffiffi
h

p
, one finds

Ict ¼
3L3V3D

κ2
β

ϵ4
ffiffiffiffiffiffiffiffiffi
fðϵÞ

p
≃
3L3V3D

κ2
β

�
1

ϵ4
−

1

2z4h

�
: ðA7Þ

Now, replacing (A2), (A5), and (A7) into (A1), one gets the
total action density

ET ¼−
L3

κ2
β

2z4h
¼−

L3π4

2κ2
T3

ð1−w2l2Þ2¼−
L3π4

2κ2
1

β3ð1−w2l2Þ2 :

ðA8Þ

Using the semiclassical approximation, the on shell action
is related to the partition function Z and the thermodynamic
potential Φ via

Z ¼ e−ET ; with ET ¼ βΦ; ðA9Þ

from which the potential becomes

Φ ¼ −
L3π4

2κ2
T4

ð1 − w2l2Þ2 ¼ −
L3π4

2κ2
1

β4ð1 − w2l2Þ2 : ðA10Þ

In the end, the thermodynamic quantities are derived from
Φ using the thermodynamics relations:

s ¼ −
∂Φ
∂T ¼ 2L3π4

κ2
T3

ð1 − w2l2Þ2 ¼
2L3π

κ2
1

z3h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2l2

p ;

J ¼ −
∂Φ
∂ω ¼ 2L3

κ2
ω

z4hð1 − w2l2Þ ;

M ¼ Φþ sT þ ωJ ¼ L3

2κ2
ðω2 þ 3Þ

z4hð1 − ω2l2Þ : ðA11Þ

As we can see, the first law dM ¼ Tdsþ ωdJ is auto-
matically satisfied in agreement with the result found
in [27,28].
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