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Vacuum fluctuations can obscure the detection signal of the measurement of the smallest quantum objects
like single particles seemingly implying a fundamental limit to measurement accuracy. However, as we show
relativistic invariance implies the disappearance of fluctuations for the spacelike spectrum of an observable
at zero temperature. This complete absence of noise can be harnessed to perform noiseless measurement of
single particles, as we illustrate for electrons or photons. We outline a general scheme to illustrate the
noiseless measurement involving the spacelike spectrum of observables based on the self-interference of
counterpropagating paths of a single particle in a triangular Sagnac interferometer.
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I. INTRODUCTION

The standard projection postulate is insufficient to define
realistic quantum measurement in fundamental relativistic
quantum theories [1,2]. Relativistic measurements are often
related to the fictitious Unruh-deWitt detection model [3,4]
that is hardly feasible experimentally. Current standard
high-energy measurements [5] are realized for large beam
colliders and the detection is usually destructive since the
particles are absorbed. Various theoretical models of rela-
tivistic measurements are constantly being invented [6–11].
The problem is that such invasive measurements heavily
disturb the system, destroy coherence, or make undesired
changes in the state [12,13].
To avoid problems related to the projections postulate,

one could introduce weak, almost noninvasive measure-
ments [14,15] that in principle allow detection of particles
without losing coherence. The measurement is always
accompanied by some noise. There are three main sources
of this noise: internal detector’s noise, thermal, and zero-
temperature vacuum fluctuations. The detector’s noise is
large for weak measurements, but its effect can be reduced
by averaging the results of many independent detectors.
In this paper we focus in particular on vacuum fluctuations
in the limit of zero temperature. Such a vacuum noise can be
much larger than the signal. For example, when detecting a
single particle, the vacuum noise can make it impossible to
distinguish between the presence and absence of the
particle. Estimating the effect of vacuum fluctuations on
the measurement, one has to take into account the spatio-
temporal scale of the detection. In particular, the fluctua-
tions cannot be neglected if the measurement time τ is

shorter than the inverse mass m−1 of the particle. Obviously
massless particles require a separate treatment. Electrons in
a vacuum have a mass largely exceeding the present
measurement frequency scale (in the sense of time-energy
uncertainty). In all such cases the actual influence of
vacuum fluctuations on the detection of single particles
involves many factors: detector efficiency (some particles
remain undetected), dark counts (false registering of a
particle when none actually arrived), or the spatial scale
of the detector.
The above questions can also be studied in condensed

matter systems with an analogous description of particles as
in high energy physics. Here interaction effects or the band
structure can lead to effective masses larger or smaller than
that of free particles. Furthermore, the relevant velocity is
the Fermi velocity, which is typically 2 or 3 orders of
magnitude smaller than the velocity of light. Interestingly,
the two-dimensional Dirac dynamics of relativistic electrons
is realized in graphene and other 2D crystals [16,17].
Furthermore, Dirac semimetals feature three-dimensional
Dirac cones [18–20]. A large variety of engineered systems
allows constructing detectors in a regime that is inaccessible
in high-energy physics [21,22].
The noise can be only partially suppressed by reducing

temperature because some fluctuations remain nonzero
even at zero temperature. As we show below, the fluc-
tuation-dissipation theorem and the positivity of hX2i
combined with relativistic invariance imply that the
spectral density of certain fluctuations must be zero for
spacelike frequency-wave-vector relations. As possible
realization, we suggest a setup in which a particle is sent
into a triangular Sagnac interferometer [23]. The interfer-
ometer will produce a standing wave that can be detected
by observing a physical quantity in the spacelike spec-
trum, e.g., the components of the electric current or the
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energy-momentum tensor. The setup works both for
fermionic as well as bosonic particles.
The paper is organized as follows. We start by recalling

the mathematical conventions in any relativistic quantum
field theory. Then we show the disappearance of vacuum
fluctuations at zero temperature and spacelike spectrum.
Next, we outline the proposed measurement setup based on
Sagnac interferometer. Finally, we discuss possible appli-
cations and the development of the proposed scheme. Some
lengthy proofs are left in the Appendixes.

II. VACUUM FLUCTUATIONS IN THE
SPACELIKE SPECTRUM

There exists a vacuum state, which is invariant under
Lorentz transformations (assuming flat metric), which is
either postulated [24–26] or proved perturbatively [27]. One
can consider also thermal states, described by a temperature
T, with T ¼ 0 being the standard vacuum, or add perturba-
tions (e.g., single particles). For T ≠ 0 thermal states are
defined in a preferred reference frame. Formal quantum
correlations of fields (operators Â; B̂; Ĉ;…) in the state ρ̂
have the form

hAðxÞBðyÞCðzÞ � � �i ¼ Tr½ρ̂ ÂðxÞB̂ðyÞĈðzÞ � � ��: ð1Þ

These correlations describe the measurable properties of a
given system and correspond to correlation measurements,
response functions, or internal noises. They do depend on
the order of operators, as these are usually not commuting. In
principle, every quantum process can be written in terms of
correlations (1). Technically the calculation of (1) involves
usually closed time path (CTP) formalism [28–31], see
Appendix A, but it is important that correlations are Lorentz
invariant in the vacuum at zero temperature.
Let us analyze the universal relativistic properties of

second-order correlations of local fields in the invariant
zero-temperature vacuum or at very low temperatures
(compared to relevant energy-momentum scales). For rela-
tivistic notation conventions, seeAppendixA. For a uniform
quantity XðxÞ (i.e., depending only on local fields, not
directly on x) the translation symmetry (valid also at nonzero
temperature) implies

hXðqÞXðpÞi ¼ δðqþ pÞGðpÞ ð2Þ

with XðpÞ ¼ R
eix·pXðxÞdx and Gð−pÞ ¼ G�ðpÞ.

Moreover, the fluctuation-dissipation theorem states that
G�ðpÞ ¼ e−βp

0

GðpÞ [32] for the inverse temperature
β ¼ 1=T. In the zero-temperature limit β → þ∞ all corre-
lations become Lorentz invariant (covariant if X is com-
bined with a Lorentz vector) [24–27]. For spacelike p we
can always find a reference frame with p0 > 0 and then
e−βp

0

→ 0, and accordinglyGðpÞ → 0. Hence, we canwrite

G ¼ Gþðp · pÞδþðp · pÞ with δþðp · pÞ ¼ θðp0Þδðp · pÞ
selecting the forward timelike cone for p.
In fact all two-point correlations

hXðpÞYðqÞi ¼ δðpþ qÞGXYðpÞ ð3Þ

are suppressed exponentially by the factor expð−βðjpj −
jp0jÞ=2Þ inGXY [33,34], which we also prove perturbatively
in Appendix C for a generic family of quantum field
theories. In the limit β → þ∞ at constant p it means again
thatGXYðpÞ → 0 at p · p < 0. IfGXX ¼ hXðpÞXð−pÞi ¼ 0
(and hXðpÞi ¼ 0) then, for a positive underlying probability,
we have a general observation that

XðpÞjvaci ¼ 0; p · p < 0; ð4Þ

meaning that thevacuum state jvaci is the eigenstate ofXðpÞ
with the eigenvalue 0 and so XðpÞ does not fluctuate then at
all, it is noiseless. This universal property of relativistic field
theories is the main result of the article and fundamental for
our subsequent analysis. Any observable with zero average
defined within the spacelike spectrum must be suppressed
completely to zero in the (zero-temperature) vacuum.

A. Alternative proof by symmetry and positivity

Interestingly, for special vector and tensor quantities, like
the electric current jμðpÞ or the energy-momentum tensor
TμνðpÞ, the lack of noise in the vacuum state follows purely
from translation and Lorentz invariance and the assumption
that second-order correlations are positive definite, i.e.,
hX2i ≥ 0 for any quantity X which can be spacetime
dependent or a linear combination of other quantities. We
donot need quantummechanics at all to show it although it is
worth mentioning that all second-order quantum correla-
tions are indeed positive definite [35].
Let us show it for a generic real vector quantity AμðxÞ.

From translation invariance we have

hAμðpÞAνðqÞi ¼ δðpþ qÞGμνðpÞ: ð5Þ

The Lorentz invariance implies for p · p < 0 that
GμνðpÞ ¼ pμpνηðp · pÞ with some function ηðp · pÞ ≥ 0

[36,37] (see also Appendix D). For p ¼ ð0;…; 0; pDÞ in
Dþ 1 dimensional spacetime we have noiseless compo-
nents Aμ for μ ¼ 0;…; D − 1. We note that a generic AμðpÞ
can be projected onto a noiseless quantity defined by
ÃμðpÞ ¼ ðp · pÞAμðpÞ − pμðp · AÞ. Hence, it is always
possible to define a noiseless vector observable, at least
for some components. Moreover, if Aμ is a conserved
quantity, i.e., ∂μAμ ¼ 0, then p · AðpÞ ¼ 0 so pμGμνðpÞ ¼
0 and η ¼ 0. Note that one cannot assume conservation in
the case of anomalies [38–41] but our general proof in
Appendix C is then still applicable.
A bit more complicated reasoning applies to a generic

symmetric tensor quantity BμνðxÞ ¼ BνμðxÞ. Then
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hBμνðpÞBσρðqÞi ¼ δðpþ qÞGμνσρðpÞ: ð6Þ

Lorentz invariance and positivity implies that for p · p < 0
(see Appendix D),

Gμνσρ ¼ ðgμν − bpμpνÞðgσρ − bpσpρÞw
þ pμpνpσpρa ð7Þ

with w, a ≥ 0 and b being real functions of p · p. If
additionally conservation holds, i.e., ∂μBμν ¼ 0 (e.g., in the
case of energy-momentum), then pμGμνσρ ¼ 0 giving
further restriction

Gμνσρ ¼ ðgμν − pμpν=p · pÞðgσρ − pσpρ=p · pÞw ð8Þ

with w ≥ 0. For example, taking p ¼ ð0; 0; 0; p3Þ the
observables B12, B01, B02, B11 − B22, and B00 þ B11 are
noiseless (equal 0). Again, a genericBμνðpÞ can be projected
onto a noiseless one by defining

B̃μνðpÞ ¼ ðp · pÞ2BμνðpÞ − ðp · pÞðgμνðp · pÞ − pμpνÞB=3
þ ðgμνðp · pÞ − 4pμpνÞp · B · p=3 ð9Þ

with B ¼ Bμ
μ. In the case of a conserved quantity p · B ·

p≡ 0 identically so, dividing by p · p, we have just

B̃μνðpÞ ¼ ðp · pÞBμνðpÞ − ðgμνðp · pÞ − pμpνÞB=3: ð10Þ

For an antisymmetric second rank tensor Bμν ¼ −Bνμ

(e.g., the electromagnetic field Fμν ¼ ∂μAν − ∂νAμ) the
generic invariant correlation gives simply G ¼ 0 in this
case (seeAppendixD). Such tensor analysis can be certainly
generalized tomore complicated tensors. Therefore a family
of generic vectors and tensors remains noiseless in the
spacelike spectrum in the vacuum, just assuming invariance
and positivity.

B. Approximate localization

In practice, all noiseless observables will be localized in
real spacetime, resulting in a convolution in momentum
space

Aμðp̄Þ →
Z

dpAμðpÞNðp − p̄Þ ð11Þ

with some distribution N (e.g., Gaussian). Then the inverse
variance of NðpÞ gives the spatiotemporal spread of AμðxÞ.
We can still project onto a noiseless subspace, because
the multiplication by a polynomial of p corresponds to
derivatives in spacetime. It is impossible to have exactly
NðpÞ ¼ 0 for all timelike p, but it is more realistic to
assume it decays exponentially for a sufficiently smooth
localization function NðxÞ. Therefore, the contribution to

the noise due to the finite spacetime volume of the
measurement is negligible in practice.

C. Realistic interpretation

Quantum correlations involving only two observables
can be explained as classical probability (positive definite)
[35]. However, some correlations involving three or more
observables, calculated using (1), can violate the classical
inequalities like Cauchy-Bunyakovsky-Schwarz inequality
hXYi2 ≤ hX2ihY2i for at least one composite observable
e.g., X ¼ XaXb. Therefore, general correlations defined by
(1) make a realistic interpretation by a statistical distribu-
tion with a positive probability impossible. As further
consequences, higher order correlations such as hXYZi
can remain nonzero even if e.g., X is noiseless in the sense
of (4). For a detailed discussion of these problems we refer
the readers to [15,36,42], and examples in quantum field
theory in Appendices E and F. Not all correlations exhibit
these problems and one can restrict the set of observables to
those explained by a positive probability. Another potential
solution could be to define correlations in a different way
from (1). Even if such a definition is possible, it may be
very hard within the natural class of quantum interpreta-
tions (based on measurement models within the usual
quantum field theory algebra), so we leave this discussion
for future considerations.

III. APPLICATION TO MEASUREMENTS
OF SINGLE PARTICLES

In this section, we investigate the advantage of noiseless
observables in single particle detection over the standard
projection. We shall see that the vacuum fluctuations,
contributing to the noise of low-mass particle detectors
can be eliminated by using noiseless observables and a
homodyne detection using a Sagnac interferometer.

A. Vacuum fluctuation in a simple measurement

Suppose we want to measure a single particle by an
observable

S̄ ¼
Z
V;τ

SðxÞdx: ð12Þ

where S ¼ jμ, or T00, i.e., measuring current or energy
density, over the spatial volume V and time τ. In the
vacuum hS̄2i is determined purely by vacuum fluctuations.
For free theories, if the particle has a mass m (either boson
or fermion) then the minimal frequency of the vacuum
fluctuations is 2m (similarly to the Zitterbewegung).
Therefore hS̄2i ¼ 0 for 2mτ < 1 and the vacuum fluctua-
tions do not mask realistic detection signals which have a
frequency scale 1=τ ≪ m.
However, the situation is different in the massless case,

including low-energy systems, e.g., described by an
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effective mass in the band structure in condensed matter.
Here, the contribution of the vacuum fluctuations is nonzero
and can be estimated. For e.g., current density, S ¼ j1, we
can use the massless relativistic results for current-current
correlations inD dimensions, i.e., spacetime ðx0; x1;…; xDÞ

hjμðpÞjνðqÞi ∼ δðpþ qÞðpμpν − gμνp · pÞ

×

8>><
>>:

δðp · pÞ for D ¼ 1

θðp · pÞ= ffiffiffiffiffiffiffiffiffiffi
p · p
p

for D ¼ 2:

θðp · pÞ for D ¼ 3

ð13Þ

Taking a detector of volume V and measurement time τ ≫
V1=D the fluctuations of S̄ for S ¼ j1 read hS̄2i ∼ V2τ2−2D.
Analogously, for the energy-momentum and electromag-
netic field, with S ¼ T00, we have hS̄2i ∼ V2τ−2D, so the
vacuum fluctuations of S̄ are still finite. Note that these
fluctuations are algebraic in τ. They are actually independent
of edge effects discussed in Sec. II B and we do not need to
assume a sufficiently smooth localization function NðxÞ.
Now, let us consider a single massless particle above the

vacuum, with the four-momentum ðE ¼ jk3j; 0; 0; k3Þ. To
make it simple, let us take a detector of volume V with
periodic boundary condition and the measurement time τ.
Then, hS̄i ∼ τ for S ¼ j0; j3 and hS̄i ∼ Eτ for S ¼ T00. For
an open space and the length L along the propagation
direction, shown in Fig. 1, the measurement time τ is
replaced by L (the speed is 1). There will be no difference if
a wave packet of finite size travels in open space. Now, the
relation between hS̄i and hS̄2iwill essentially depend on the
parameters τ, L, and E. For instance, for a very short
measurement, the significant contribution of the vacuum
fluctuations will dominate the signal, because hS̄i gets
smaller while hS̄2i gets larger with decreasing τ, see the
qualitative behavior in Fig. 2.

B. Measuring single particles with observables in the
spacelike spectrum

In the cases where the measurement has a time limitation,
the elimination of the vacuum fluctuation terms is desirable.
Hence, we shall employ the lack of spacelike vacuum
fluctuations to perform a noiseless measurement of single

particles. The lack of vacuum noise helps to discriminate
between registering the particle and no particle.
Let us consider a triangular Sagnac interferometer [23]

depicted in Fig. 3(a). As we discuss below, in this particular
measurement configuration the particle can be detected by
observables in a spacelike spectrum. Its actual realization
may depend on the energy of the particles but there is no
fundamental obstacle to imagine high-energy counterparts
of mirrors and beam splitters.

V

L

FIG. 1. A simple measurement of a single particle. The particle
goes into the detector’s volume V of the length L and is measured
over the time τ.

FIG. 2. Qualitative comparison between the signal hS̄i and
vacuum fluctuation hS̄2i1=2 for S ¼ j3 and a massless particle
depending on the dimension D with respect to the measurement
time τ.

BS

MM

e(a)

Lv
(b)

FIG. 3. Sagnac interferometer configuration to generate the
standing wave. (a) The incoming electron is split into half [beam
splitter (BS)], with each part bouncing from the mirror (M) to get
counterpropagating and overlapping at the shaded circle, giving
nonzero expectation value of jμðpÞ at spacelike p-momentum
difference between counterpropagating waves. (b) Measurement
region V of counterpropagating waves. The particle travels in the
form of the wave packet at the group velocity v. In the
overlapping region, we define the rectangle, whose width L
along propagation direction, will scale the measurement output.
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We extend the definition (12) to the observable

S̄ðpÞ ¼
Z
V;τ

cosðx · pÞSðxÞdx ð14Þ

restricted to a spatial volume V and a time interval τ [see
Fig. 3(b)]. Consider now a superposition of two counter-
propagatingwaves of particles ofmassm, with wavevectors
k ¼ ðE; 0; 0;�k3Þ, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðk3Þ2

p
that meet in the

triangular loop in Fig. 3, and take p ¼ ð0; 0; 0; 2k3Þ in
(14). Then hS̄ðpÞiwill essentially depend on the interference
of the two waves. To adjust the measured observable to the
actual wave packets, we need to know the measuring region
V, at least approximately. For the circular beam cross
section, we define it as a cylinder with the axis along the
beam, and we take the timewindow sufficiently long for the
particle to pass through it.
The calculation of hS̄ðpÞi depends on the specific type of

particle. We show in Appendix G, assuming the counter-
propagating particles and the detector fill all the space V
and the measurement lasts the time τ, that

hS̄nðpÞi ¼ hS̄ðpÞin: ð15Þ

This means the superposition of counterpropagating par-
ticles is an eigenstate of S̄ðpÞ. For an open space, we repeat
the reasoning in the preceding subsection for thewave group
velocity v ¼ k3=E and the energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðk3Þ2

p
. For a

size L [shown in Fig. 3(b)] along the propagation direction
the measurement time τ is replaced by L=v. It is important
that the vacuum noise does not contribute to fluctuations of
S̄ðpÞ, which helps to avoid dark counts. The remaining
contribution from edge effects of the beam and V can be
eliminated by taking sufficiently smooth NðxÞ, as in
Sec. II B.
We can apply the above scenario to the cases of fermions

and bosons. For the Dirac spinor we take the counter-
propagating superpositions of left-handed and right-handed
states (see Appendix G),

ffiffiffi
2
p
jψai ¼ jL; k3i þ jR;−k3i;ffiffiffi
2
p
jψbi ¼ jL; k3i − jL;−k3i ð16Þ

andmeasure eitherSa ¼ j0 orSb ¼ j1. One can alternatively
also replaceLwithR, reversing themiddle sign in the second
case. Then hS̄aðpÞia ¼ τm=2E and hS̄bðpÞib ¼ τk3=2E. In
both cases the average of S̄ðpÞ is nonzero whereas the noise
is given by Eq. (15) which allows one to detect single
fermions not obscured by vacuum fluctuations. However, Sa
and Sb dominate at low and high energies, jk3j ≪ m and
jk3j≫ m, respectively. One has to keep coherence between
waves, i.e., S must be adjusted if a possible phase shift
occurs.

Next, for a scalar (bosonic) field ϕ of mass m we
consider the energy-momentum tensor (Appendix E)

Tμν ¼ ∂μϕ∂νϕ − gμνðgστ∂σϕ∂τϕ −m2ϕ2Þ=2: ð17Þ

Here the counterpropagating waves with p ¼ ð0; 0; 0; 2k3Þ
give only nonzero hT00i and taking S ¼ T00 we get
hS̄i ¼ τm2=2E. At high energies it becomes smaller but
still should exceed residual vacuum fluctuations caused by
edge effects.
A more interesting case is for electromagnetic field

Aμ ¼ ðA0;AÞ, where the tensor reads

Tμν ¼ gμνFδγFδγ=4 − FμαgαβFνβ ð18Þ

with Fμν ¼ ∂μAν − ∂νAμ. Decomposing into electric and
magnetic fields E ¼ −∂tA0 −∇A, B ¼ ∇ × A we have
T00 ¼ ðjEj2 þ jBj2Þ=2 (energy density), T0i ¼ Si ¼ ðE ×
BÞ (Poynting vector), and Tij ¼ EiEj þ BiBj − δijðjEj2 þ
jBj2Þ=2 (Maxwell stress tensor).
Let us consider again two superposition of counter-

propagating vertical photons (field E in positive direction 1
at x ¼ 0) with momenta k ¼ ð0; 0; k3Þ and −k with k3 > 0,

ffiffiffi
2
p
jψi ¼ jV;þk3i þ jV;−k3i: ð19Þ

Then hS̄i ¼ Eτ=2 (here E ¼ jk3j) for S ¼ T11 þ T00

or S ¼ ðT11 − T22Þ=2.
The above examples show that the noiseless observables

indeed can be used to register single particles if one
overcomes technical problems such as high energy beam
splitters and maintaining coherence.

C. Homodyne detector

The above configuration suffices to prepare the state and
well-defined noiseless observable. The actual detection
must differ a lot from the standard, absorptive chambers
[5]. Instead, the interference region must be probed by yet
another beam of particles. For spacelike p ¼ ð0; 0; 0; 2k3Þ,
we can detect jμðpÞ by measuring electromagnetic field
AμðpÞ ¼ −jμðpÞ=p · p. We can send a beam of electrons
(or other charged particles) of momentum k ¼ ð0; 0; k3Þ
towards the region of nonzero jμðpÞ. Then a (small) part of
the beam will be reflected with momentum −p and (partly)
changed spin. For jk3j≪ m (mass of an electron) we can
use a nonrelativistic approximation for single electrons of
charge e,

H ¼ −j∇ − ieAj2=2mþ eσ · B=2m: ð20Þ

We propose a balanced homodyne detection scheme,
Fig. 4 [43]. Namely, the initial beam with the momentum
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−k splits into a superposition of left and right arm with
momentum −k and þk. The lower part is reflected by the
mirror to get the momentum −k The left arm beam
interacts with S̄ðpÞ for p ¼ ð0; 0; 0; 2k3Þ (more precisely
B ¼ ∇ × A, which translates into ip × A for A restricted
to xy part) and some part [proportional to S̄ for
SðpÞ ¼ j1;2ðpÞ] of the beam gets reflected with momen-
tum −k. Finally, another beam splitter (half-splitting)
combines the beams so that the left arm gets the amplitude
∼1þ αS̄ðpÞ while the right one ∼1 − αS̄ðpÞ with some
interaction coefficient α to be calibrated by the actual
overlap of the beam with the region of nonzero SðxÞ
and beam attenuation. The detectors collect particles
and the average difference, proportional to j1þ αS̄ðpÞj2 −
j1− αS̄ðpÞj2 ≃ 4αS̄ðpÞ. Additional simple elements
(e.g., magnets or movable mirrors) can tune the phase
of the particles and calibrate the signal. On the other hand,
the beams should be shielded from stray electromagnetic
fields that can cause decoherence.
The scheme can be, in principle, adopted also to measure

Tμν but the naturally coupled gravitational field is
extremely weak. A more realistic approach would require
effective nonlinear electrodynamics, i.e., Euler-Heisenberg
term of Lagrangian density [44]. Recent experiments on
photon-photon scattering [45] show that this route may be
feasible although still demanding, with the necessity to
extract the right tensor from detector-system interaction
given by a Euler-Heisenberg Lagrangian, possibly with
several independent detectors. An alternative is a nonlinear
media (crystal) allowing one to probe second-order observ-
ables (e.g., products of fields) [46,47].

D. Condensed matter applications

Because of the limited feasibility of the above high-
energy proposals, the scheme may be applied to various 1D
and 2D condensed matter systems, with spectral relations
analogous to relativity. In particular, systems such as
electronic leads, junctions, wires, also in the quantum
Hall regime can be treated by a 1D massless Dirac
Hamiltonian. One only needs to replace the speed of light
with the Fermi velocity, whose value is material dependent
andmuch smaller than the speed of light. The states in the 1D
case reduce to left- and rightgoing electrons with

Ĥ ¼
Z
ðψ̂†

L∂1ψ̂L − ψ̂†
R∂1ψ̂RðxÞÞidx1 ð21Þ

for position x1 and fψ̂†
L;Rðx1Þ; ψ̂L;Rðy1Þg ¼ δðx1 − y1Þ and

zero otherwise. Here the Fermi velocity determines the
propagation speed just like the speed of light in vacuum
dynamics. In momentum space it reads

Ĥ ¼
X
k

kðψ̂†
Rkψ̂Rk − ψ̂†

Lkψ̂LkÞ ð22Þ

with fψ̂†
L;R;k; ψ̂L;R;kg ¼ 1. At zero temperature, all states L

with k < 0 andRwith k > 0. The caseD ¼ 2 can be realized
in graphene [16] or topological insulators [17]. Then

Ĥ ¼
Z
ð ψ̂†

L ψ̂†
R Þ

� ∂1 ∂2

∂2 −∂1

��
ψ̂L

ψ̂R

�
idx1dx2 ð23Þ

with ψ̂ depending on x1, x2. The 3D case is also realized in
condensed matter resulting in full Dirac dynamics [18–20].
We refrain here from a further analysis of the feasibility of
the setup, because it depends on many material-connected
factors. Nevertheless, the outlined scheme could be useful
well beyond high-energy physics.

IV. CONCLUSION

Thevacuumnoise can limit the accuracy and reliable time
scales of detection of single particles at high energies.
In order to go beyond this limitation, we proposed to use
observables in the spacelike spectrum because they are
essentially noiseless in the zero-temperature limit. This lack
of noise is a universal property of relativistically invariant
systems, following either from the fluctuation-dissipation
theorem or the weak positivity (positive definite second
order correlations).
A practical detection of the particle is then realized by

splitting a wave packet into a standing wave of counter-
propagating modes. The detector-system interaction can be
used in the homodyne schemewhen a beam in one armof the
interferometer interacts weakly with the spacelike observ-
able so that the presence of the particle shows up as a
difference in final beams’ intensities. This general concept

BS

BS

M
z

1 2

FIG. 4. Balanced homodyne detection scheme. The electron
beam starts from the left upper corner. It splits on the upper beam
plitter (BS). The upper beam gets partially reflected by interaction
with the noiseless observable S̄ðpÞ (shaded rectangle—the same
as in Fig. 3) and recombines with the lower beam, reflected by the
mirror (M), at the lower beam splitter. The small difference
between intensities j1� αS̄j2 of the beam will be proportional to
the value of the noiseless observable. The scheme can be adjusted
by phase shifts and spin rotations if necessary.
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can be realized in many ways. Electrons and other charged
particles can be probed by another charged beam while
photons need the weak photon-photon interaction. From a
practical point of view, the proposal relies on the feasibility
of beam splitters or mirrors for high-energy particles or
fields and the actual form of the particle-detector interaction.
The range of potential implementations will be limited by
certain experimental obstacles.Nevertheless,webelieve that
the fundamental benefit of such ameasurement, which is the
lack of noise and compliance with relativistic symmetries,
will motivate experiments to translate our scheme into a
real setup.
Finally, the concept we presented is not restricted to

relativistic high-energy physics. On the contrary, we expect
that it will be easier implemented in various condensed
matter analogs of relativistic physics.
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APPENDIX A: CLOSED TIME PATH
FORMALISM IN RELATIVITY

We use the following, common conventions and notation
in relativistic quantum field theory. We use dimensionless
units i.e., speed of light, Planck’s and Boltzmann’s con-
stants are c ¼ ℏ ¼ kB ¼ 1. The four-position x ¼ ðx0 ¼
t; xÞ ¼ ðx0; x1;…; xDÞ in 1 time dimension t, and D
dimensional spatial position x (in the standard space
D ¼ 3). We identify a scalar as without index, e.g., mass
m, four-vectors by a single index, e.g., Aμ and tensors with
double index Bμν. If not ambiguous, indices will be omitted
or replaced by the summation convention Xμ

μ ¼ X ¼P
D
μ¼0 X

μ
μ, extending to multi-index expressions. We

assume flat metric

gαβ ¼ gαβ ¼

8>><
>>:
þ1 for α ¼ β ¼ 0

−1 for α ¼ β ¼ 1…D

0 otherwise

ðA1Þ

and Xα ¼ gαβXβ, X · Y ¼ XαYα, XμYμνZν ¼ X · Y · Z.
∂α ¼ ∂=∂xα, Fourier (energy-momentum) representation
of fields (functions of four-position) XðpÞ ¼ R

eix·pXðxÞdx
with the integral over the whole spacetime dx ¼
dx0 � � �dxD. Quantum states and operators can change
under Lorentz transformations, algebraic representations
of Lorentz (Poincare in general) group of linear trans-
formations of spacetime, preserving the metric.
In general interacting theories, it is more convenient to

use an equivalent path integral approach, as it is manifestly
compliant with the relativistic symmetries. The correlations
(1) are expressed in terms of path correlations

hAðxÞBðyÞCðzÞ � � �i

¼ Z−1
Z

DϕAðxÞBðyÞCðzÞ � � � exp
Z

iLðwÞdw ðA2Þ

where L is the Lagrangian density in terms of local fields
ϕðxÞ, while A, B, C are also functions of local fields. The
integral is normalized to

Z ¼
Z

Dϕ exp
Z

iLðxÞdx: ðA3Þ

The integration over x1.:D extends over infinite volume,
while time x0 flows over Keldysh-Schwinger-Kadanoff-
Baym-Matsubara closed time path (CTP) [28–31] tðsÞ with
s ∈ ½si; sf� ⊂ R with dt=ds ≠ 0 and Imdt=ds ≤ 0.
tðsiÞ − tðsfÞ ¼ iβ, β ¼ 1=T (inverse temperature). In the
case T → 0 we have tðs∓Þ → �i∞. The order of A, B, C
must be preserved on the time path. The order will be
denoted by x > y if sx > sy and then x > y > z in (A2). In
particular, the time can go forward (on real axis), then
backwards, and again if necessary. In most cases a single
flat (Keldysh-Schwinger) part suffices which splits into t →
t� ¼ tðs�Þ ¼ t� iϵ (ϵ → 0þ, a small positive number
going to 0 in the limit) and x� ¼ ðt�; xÞ with sþ < s−.
In the case of zero temperature T → 0þ or β → þ∞ the
time extends to �i∞, see Fig. 5. The quantum closed time
path framework consistent with relativity is summarized in
Appendix A. The correlations in interacting theories can be
perturbatively expressed in terms of free propagators and
vertices, see [48–51] and Appendix B.
Although the Lagrangian density is manifestly relativ-

istically invariant, time has still a special role in CTP.
Fortunately, one can show directly, but perturbatively, that
correlations (A2) are invariant at zero temperature, by
direct application of generators of relativistic transforma-
tions [27].
The physical interpretation of correlations hAðxÞ

BðyÞCðzÞ � � �i with real x; y; z;… is problematic because
it depends on the order on the CTP, i.e.,

FIG. 5. The time path in the CTP approach in the case of finite
temperature β ¼ 1=T. At zero temperature, the shift β stretches to
infinity with ti → þi∞, tf → −i∞.
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x0; y0; z0 → x0; y0; z0 � iϵ. For the two-point correlation
hAðxÞBðyÞi one can take x0 → x0 þ iϵ, y0 → y0 − iϵ so that
x > y on the contour. It can be generalized to three or more
points using a generalized CTP, see Fig. 7, so that x > y >
z > … on the contour.We shall denote correlations as h ⃖� � � i
in this case. Another important ordering is symmetric time
ordered, common in weak measurements [15,36], i.e., one
takes the average over AðxÞ with x0 → x0 � iϵ, i.e.,
upper and lower parts of the contour, for all observables.
This case will be denoted as h·ic. The last option is
full symmetrization of the ordering, i.e., hA1 � � �Anis ¼P

PhPðA1 � � �AnÞ
 ��������i=n!, summing over all permutations. It

has no connection to any physical measurement model but
is free from some artifacts of weak measurements, such as
time symmetry violation or energy nonconservation
[15,42]. In situations where the order is irrelevant or the
differences between orderings are negligible, we will
simply use h·i notation. Note that average hAi never
depends on the order while second order correlations satisfy
hABic ¼ hABis
The states, dynamics, and operators in relativistic

quantum field theory can be formally defined just like
in the nonrelativistic case, in appropriate Hilbert space.
However, they are initially defined in a particular reference
frame, so the invariance must be proven. The invariance is
much more manifest when translating the standard
Hamiltonian-based matrix-operator products into correla-
tions with respect to path integrals involving Lagrangian
density.
In the operator approach, we define time-independent

field Hermitian operators ÂðxÞ which can have additional
vector or tensor structure and Hamiltonian Ĥ. Next, the
time-dependent (Heisenberg) field operators read
ÂðxÞ ¼ eiĤx0 Âe−iĤx0 . The vacuum state is the ground
eigenstates of Ĥ with the lowest possible eigenvalues—
energy. Thermal states are given by ρ̂ ¼ Z−1e−βĤ for β ¼
1=T (T ¼ temperature), with Z ¼ Tre−βĤ so that Trρ̂ is
normalized to 1. The accordance of quantum field theory
with relativity requires that its dynamics (defined by
Lagrangian density) and the zero-temperature vacuum state
are invariant under the Poincare group. This is formally a
Wightman postulate and it is not trivial to show that a
particular model satisfies it. Four-position can be trans-
formed according to the Poincare group, which combines
translations xμ → xμ þ aμ for constant four-vector a and
Lorentz group rotations xμ → Λμ

νxν for a constant matrixΛ
such that gαβ ¼ gμνΛμ

αΛν
β, so that ðx − yÞ · ðx − yÞ is

invariant under this group. In fact, here we only need its
continuous subgroup, i.e., detΛ ¼ 1 and Λ0

0 > 0 (exclud-
ing time x0 → −x0 and space x → −x reversal). The
representations of the Poincare group apply to all quantities

appearing in quantum field theory, including fields (scalar,
vector, spinor), states (vacuum, thermal, perturbed),
dynamics (Lagrangian, energy, and momentum). The
zero-temperature state, i.e., β → þ∞, is relativistic invari-
ance, either by postulates [24–26] or by direct proof [27].

APPENDIX B: CLOSED TIME PATH
PROPAGATORS FOR INTERACTING FIELDS

The most convenient free Hamiltonian is the quadratic
form of bosonic and fermionic operators

Ĥ0 ¼
X
kl

ðbklx̂kx̂l þ fklϕ̂kϕ̂lÞ ðB1Þ

where x̂ and ϕ̂ are Hermitian operators with bosonic and
fermionic commutation relations, respectively, ½x̂k; x̂l� ¼
igkl1̂, fϕk;ϕlg ¼ hkl1̂, with real g and h.
One can always diagonalize Ĥ0 so that

Ĥ0 ¼ Hvac þ
X
k

EkðÂ†
kÂk þ ψ̂†

kψ̂kÞ ðB2Þ

whereHvac is the vacuum energy (can be ignored), Â and ψ̂
are linear combinations of x̂ and ϕ̂, respectively, with the
property

½Âk; Âl� ¼ fψ̂k; ψ̂ lg¼ 0; ½Âk; Â
†
l � ¼ fψ̂k; ψ̂

†
l g¼ δkl; ðB3Þ

and ½Âk; ψ̂ l� ¼ ½Â†
k; ψ̂ l� ¼ 0. It is especially simple and

instructive to find Green’s functions for the above
Hamiltonian, extended to the whole CTP. In the case of
bosonic operators, hÂðtÞi0 ¼ hÂ†ðtÞi0 ¼ 0 and

hÂkðtÞÂlðt0Þi0 ¼ hÂ†
kðtÞÂ†

l ðt0Þi0 ¼ 0;

hÂkðtÞÂ†
l ðt0Þi0 ¼ δkl

eiðt0−tÞEk

1 − e−βEk

hÂ†
kðtÞÂlðt0Þi0 ¼ δkl

eiðt−t0ÞEk

eβEk − 1
:

hψ̂kðtÞψ̂ lðt0Þi0 ¼ hψ̂†ðtÞkψ̂†
l ðt0Þi0 ¼ 0;

hψ̂kðtÞψ̂†
l ðt0Þi0 ¼ δkl

eiðt0−tÞEk

1þ e−βEk
;

hψ̂†
kðtÞψ̂ lðt0Þi0 ¼ −δkl

eiðt−t0ÞEk

eβEk þ 1
: ðB4Þ

for t > t0 on CTP.
The many-point Green’s functions are obtained from

Wick theorem [52]. For products of odd numbers of
operators, the Green’s function vanishes while for the even
number 2n,
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�
T
Y2n
k¼1

x̂kðtkÞ
�

0

¼ 1

n!2n
X
σ

Yn
k¼1
hT x̂σð2k−1Þðtσð2k−1ÞÞx̂σð2kÞðtσð2kÞÞi0;

�
T
Y2n
k¼1

ϕ̂kðtkÞ
�

0

¼ sgnσ
n!2n

X
σ

Yn
k¼1
hT ϕ̂σð2k−1Þðtσð2k−1ÞÞϕ̂σð2kÞðtσð2kÞÞi0 ðB5Þ

with T denoting time ordering on CTP, i.e.,

T
Y2n
k¼1

x̂kðtkÞ ¼ x̂ρð1Þðtρð1ÞÞ � � � x̂ρð2nÞðtρð2nÞÞ ðB6Þ

where ρ is such a permutation that tρðkÞ > tρðjÞ if k < j and

T
Y2n
k¼1

ϕ̂kðtkÞ ¼ sgnρϕ̂ρð1Þðtρð1ÞÞ � � � ϕ̂ρð2nÞðtρð2nÞÞ ðB7Þ

APPENDIX C: PROOF OF EXPONENTIAL
SUPPRESSION OF SPACELIKE CORRELATIONS

We shall take for granted that free theories for a scalar,
Dirac, or electromagnetic field have well-defined energy
eigenstates with the relativistic constraint E ≥ jPj where P
is the total momentum of the state. Moreover, the eigen-
states of energy are also eigenstates of total momentum, jPi
and any local observable X̂ðxÞ can be decomposed into

X̂ðxÞ ¼
Z

dpdqX̂pqeiðp−qÞ·xjpihqj ðC1Þ

where X̂pq is X̂ restricted to the elements between momen-
tum eigenstates q and p (there can be many). From
spacetime invariance we can calculate

GXYðpÞ ¼ ð2πÞDþ1
Z

dxeip·xhXðxÞYð0Þi: ðC2Þ

We shall write down X and Y in the eigenbasis of free
theory, namely

GXY ¼ ð2πÞ2Dþ1
Z

dteip
0t

Z
dqhX̂q;q−pðtÞŶq−p;qi ðC3Þ

in the Heisenberg picture. Finally in the thermal state, with
ρ̂ ∝ expð−βĤÞ we have

GXYðpÞ ¼ ð2πÞ2Dþ2Z−1
Z

dqe−βEðqÞδðp0 − Eðq − pÞ

þ EðqÞÞtrX̂q;q−pŶq−p;q ðC4Þ

with the normalization factor Z, independent of p.

From inequalities

Eðq − pÞ ≥ jq − pj ≥ jpj − jqj ðC5Þ

and EðqÞ ≥ jqj, and restriction p0 ¼ Eðq − pÞ − EðqÞ, we
have

2EðqÞ ¼ EðqÞ þ Eðq − pÞ − p0

≥ jqj þ jpj − jqj − p0 ≥ jpj − jp0j: ðC6Þ

In this way the damping factor is ≤ eðjp0j−jpjÞβ=2.
For interacting theories, we have to insert all combina-

tions of ĤI perturbatively. Without loss of generality we
insert it k times after Ŷ and before X̂ and n times after X̂ and
before Ŷ, including the vertical Matsubara part, contribut-
ing to nþ kth perturbation order (ignoring temporarily
corrections to global normalization Z). We decompose

ĤI ¼
X
p

ĤIp ðC7Þ

with ĤIp restricted to momentum eigenstates jpi. We
assume the dynamics to be translation invariant so ĤI
cannot mix different momenta. We shall additionally label
momentum eigenstates with their (noninteracting) energy,
i.e., jEpi. We are left with the following integral contrib-
uting to GXY :

Z
dtT

Z
−iβ

t
dnt0eiE0nðt0nþiβÞhE00qjX̂q;q−pjE00kq− pi

×

�Yn−1
r¼0

eiE
0
rðt0r−t0rþ1ÞhE0rþ1qjĤIqjE0rqi

�

× T
Z

t

0

dkt00eiE
00
kðt00k−tÞeip0thE000q− pjŶq−p;qjE0nqi

×
�Yk−1

j¼0
eiE

00
jþ1ðt00j−t00jþ1ÞhE00jþ1q− pjĤIq−pjE00jq− pi

�
: ðC8Þ

Here dnt0 ¼ dt01 � � � dt0n, dkt00k ¼ dt001 � � � dt00k , T denotes time
order, i.e., t00jþ1 > t00j and t0rþ1 > t0r with the order along
CTP, and t000 ¼ 0, t00k < t, t00 ¼ t, t0n < −iβ.
The critical factor is the integral over times, which we

reordered into
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Z
dtT

Z
−iβ

t
dnt0eiE0nðt0nþiβÞ

Yn−1
r¼0

eiE
0
rðt0r−t0rþ1Þ

× T
Z

t

0

dkt00eiE
00
kðt00k−tÞeip0t

Yk−1
j¼0

eiE
00
j ðt00j−t00jþ1Þ ðC9Þ

equal

Z
dteip

0te−βE
0
neiðE

0
0
−E00kÞtT

Z
−iβ

t
dnt0

×
Yn
r¼1

eiðE0r−E0r−1Þt0rT
Z

t

0

dkt00
Yk
j¼1

eiðE
00
j−E

00
j−1Þt00j : ðC10Þ

The integrals over t0 and t00 can be done recursively. For
instance

Z
t00
2

0

dt001e
iðE00

1
−E00

0
Þt00
1 ¼ eiðE

00
1
−E00

0
Þt00
2 − 1

iðE001 − E000Þ
: ðC11Þ

Of course it can happen that E001 ¼ E000 but then the integral
has a well-defined limit. We can prove by induction that

Z
t00sþ1

0

dst00
Ys
j¼1

eiðE
00
j−E

00
j−1Þt00j ¼

Xs
j¼0

As
je

iðE00s−E00j Þt00sþ1 ðC12Þ

with coefficients As
j independent of t

00
sþ1 (but depending on

E00). By induction hypothesis the integral reads

Xs−1
j¼0

As−1
j

Z
t00sþ1

0

dt00seiðE
00
s−E00s−1Þt00s eiðE

00
s−1−E

00
j Þt00s

¼
Xs−1
j¼0

As−1
j

eiðE
00
s−E00j Þt00s − 1

iðE00s − E00j Þ
ðC13Þ

so As
j ¼ As−1

j =iðE00s − E00j Þ for j < s and As
s ¼P

s−1
j¼0 i=ðE00s − E00j Þ Therefore

T
Z

t

0

dkt00
Yk
j¼1

eiðE
00
j−E

00
j−1Þt00j ¼

Xk
j¼0

Aje
iðE00k−E00j Þt ðC14Þ

and, shifting time,

e−βE
0
neiðE

0
0
−E00kÞtT

Z
−iβ

t
dnt0

Yn
r¼1

eiðE0r−E0r−1Þt0r

¼
Xn
r¼0

Bre
−iE00k teE

0
nðit−βÞeiðE0n−E0rÞð−iβ−tÞ ðC15Þ

so finally we get the factor

Xk
j¼0

Xn
r¼0

AjBr

Z
dteip

0teiðE
0
r−E00j Þt−βE0r : ðC16Þ

Integrating over t we get

Xk
j¼0

Xn
r¼0

2πAjBrδðp0 þ E0r − E00j Þe−βE0r : ðC17Þ

We have then

2E0r ¼E0rþE00j −p0 ≥ jqjþ jq− pj−p0 ≥ jpj−p0 ðC18Þ

which gives the same estimate as in the noninteracting
theory.
The above proof ignored global corrections to normali-

zation Z. We can incorporate these corrections by perturba-
tive expansion in two-point propagators (not just vertices).
However, the problem is that not only normal-ordered
propagators hÂ†Âi or hψ̂†ψ̂i with positive energy appear
in the expansion, but also antinormal propagators. i.e., hÂÂ†i
or hψ̂ ψ̂†i, with negative energy, i.e., −Ek. Fortunately, they
are damped by e−βEk, see (B4). We shall see that a careful
collecting of these damping factors will restore eventually
the same global damping as in the previous proof.
As in the previous proof, we can time-order ĤI and

integrate recursively over times. It does not matter that
only some propagators have their endpoints at specific ĤI ,
we just integrate all propagators whose time interval
(specified by endpoints) contains the given time interval,
see Fig. 6. It applies also to the vertical shift by −iβ. The
energies E0r and E00j are now sums of individual energies of
the propagators, i.e.,

E0r ¼ E0rþ − E0r−; E00j ¼ E00jþ − E00j− ðC19Þ

with

E0r� ¼
X
α

ϵ0rα�; E00j� ¼
X
γ

ϵ00jγ� ðC20Þ

where the αþ and γþ indicate positive energies, while
α− and γ− indicate negative energies (each ϵ and E� is

Y

X

time on CTP

FIG. 6. The propagators in the proof of decay of correlations are
cut at all times corresponding to some vertices HI , even for those
that do not end at this HI .
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positive by definition, the actual sign is given explicitly in
front of the energy). The negative energies bring the
damping factor e−βE

0
r−, e−βE

00
j− (some energies ϵ− can cover

several intervals but it is here irrelevant, we pick them only
once). The final expression contains the sum

Xk
j¼0

Xn
r¼0

2πAjBrδðp0 þ E0r − E00j Þe−βE
0
r−βE0r−−βE00j− : ðC21Þ

Now E0r ¼ E00j − p0 so E0rþ þ E00j− ¼ E0r− þ E00jþ − p0 and

2ðE0r þ E0r− þ E00j−Þ ¼ 2ðE0rþ þ E00j−Þ
¼ E0rþ þ E0r− þ E00jþ þ E00j− − p0: ðC22Þ

On the other hand, momentum conservation (each propa-
gator has a well-defined momentum p that sums up to the
total momentum) and the fact that ϵðpÞ ≥ jpj for individual
momentum p, gives

E0rþ þ E0r− ≥ jqj; E00jþ þ E00j− ≥ jq − pj ðC23Þ

completing the proof.

APPENDIX D: RESTRICTION OF VACUUM
CORRELATIONS

The Lorentz invariance implies that GμνðpÞ ¼ pμpνηðp ·
pÞ − gμνξðp · pÞ with some functions ξ and η [36,37]. Let
us check the positivity of G for p ¼ ð0;…; 0; qÞ. Then
G11 ¼ ξ ¼ −G00 so ξ ¼ 0.
A bit more complicated reasoning applies to a generic

symmetric tensor quantity BμνðxÞ ¼ BνμðxÞ and BμνðpÞ ¼R
dxeip·xBμνðxÞ. Then

hBμνðxÞBσρðyÞi ¼ Gμνσρðx − yÞ ðD1Þ

from translation invariance and

hBμνðpÞBσρðqÞi ¼ ð2πÞDþ1δðpþ qÞGμνσρðpÞ: ðD2Þ

Lorentz invariance and symmetry implies that

GμνσρðpÞ ¼ pμpνpσpρa−pμpνgσρb−pσpρgμνb�

þ ðpμpσgνρþpμpρgνσ þpνpσgμρþpνpρgμσÞf
þ ðgμσgνρþ gνσgμρÞvþ gμνgσρw ðD3Þ

where a, f, v, w are real functions of p · p. The exception is
b that can be complex and depend also on the sign of p0 but
only for p · p > 0, with b�ðpÞ ¼ bð−pÞ, while b is real
for p · p < 0.
We shall analyze positivity of G only for D ≥ 3 and

p · p < 0. The ðDþ 1Þ × ðDþ 1Þ matrix has some sym-
metries. Let us take p ¼ ð0; 0; 0; qÞ. Then G1212 ¼ v ¼

−G0101 so v ¼ 0 and G0303 ¼ q2f ¼ −G1313 so f ¼ 0
while a, b (now only real) and w combine to a positive
definite form

Gμνσρ ¼ ðgμν − ðb=wÞpμpνÞðgσρ − ðb=wÞpσpρÞw
þ pμpνpσpρða − b2=wÞ ðD4Þ

with w ≥ 0 and aw ≥ b2. We obtain (7) by replacing
b=w → b and a − b2=w → a.
For an antisymmetric tensor Bμν ¼ −Bνμ (e.g., field

Fμν ¼ ∂μAν − ∂νAμ) the generic invariant correlation reads

GμνσρðpÞ ¼ ϵμνρσaþðgμσgνρ− gνσgμρÞv
þðpμpσgνρ−pμpρgνσ −pνpσgμρþpνpρgμσÞf

ðD5Þ

where ϵμνρσ is a constant completely antisymmetric tensor.
For spacelike p, taking again p ¼ ð0; 0; 0; qÞ we get
G1212 ¼ v ¼ −G0101 so v ¼ 0, G0303 ¼ q2f ¼ −G1313 so
f ¼ 0, G0123 ¼ a so a ¼ 0.

APPENDIX E: SCALAR FIELD AND ITS
ENERGY-MOMENTUM

Real scalar field ϕ̂ðxÞ with conjugate field π̂ðxÞ, satisfy
commutation relation

½ϕ̂ðxÞ; π̂ðyÞ� ¼ iδðx − yÞ ðE1Þ

The relativistic field Hamiltonian reads

Ĥ ¼
Z

dxðπ̂2ðxÞ þ j∇ϕ̂ðxÞj2 þm2ϕ̂2ðxÞÞ=2: ðE2Þ

Here the ∇ term is in fact a sum of partial derivatives

j∇ϕ̂ðxÞj2 ¼
X3
j¼1
ð∂jϕ̂ðxÞÞ2: ðE3Þ

The Heisenberg picture [for x ¼ ðt; xÞ] reads

ϕ̂ðxÞ ¼ eiĤtϕ̂ðxÞe−iĤt: ðE4Þ

Translation into path integrals reads

hΦ0j expð−iĤtÞjΦi ¼
Z

ϕðx0¼t;…Þ¼Φ0

ϕðx0¼0;…Þ¼Φ
Dϕ exp

Z
iLðxÞdx;

ðE5Þ

where

EFFECT OF RELATIVITY AND VACUUM FLUCTUATIONS ON … PHYS. REV. D 105, 105027 (2022)

105027-11



2LðxÞ ¼ ∂ϕðxÞ · ∂ϕðxÞ −m2ϕ2ðxÞ: ðE6Þ

Derivative rule:

∂0 ¼ ðdt=dsÞ−1∂=∂s ðE7Þ

and differential dx ¼ dx0dx1 � � � dxD with dx0 ¼
ðdt=dsÞds and delta

δðx− yÞ ¼ δðx0 − y0Þδðx1 − y1Þδðx2 − y2Þδðx3 − y3Þ ðE8Þ

with δðx0 − y0Þ ¼ δðsx − syÞ=ðdt=dsÞjs¼sx¼sy .
With such definitions one can calculate all relevant

quantum field theory functions, i.e.,

hϕðxÞϕðyÞ� � �i¼ hT ϕ̂ðxÞϕ̂ðyÞ � � �i

¼Z−1
Z

DϕϕðxÞϕðyÞexp
Z

iLðzÞdz ðE9Þ

with

Z ¼
Z

Dϕ exp
Z

iLðzÞdz ðE10Þ

where T denotes ordering by s, i.e.,

T ϕ̂ðyÞϕ̂ðzÞ ¼
�
ϕ̂ðxÞϕ̂ðyÞ if sx > sy

ϕ̂ðyÞϕ̂ðxÞ if sy > sz
: ðE11Þ

Simple correlations read

hϕðxÞϕðyÞi ¼
R
DϕϕðxÞϕðyÞ exp R iLðzÞdzR

Dϕ exp
R
iLðzÞdz ðE12Þ

with special cases defined on the flat Keldysh part
(Im x → 0). We denote ϕ�ðxÞ ¼ ϕðx�Þ, 2ϕcðxÞ ¼
ϕþðxÞ þ ϕ−ðxÞ and ϕqðyÞ ¼ ϕþðyÞ − ϕ−ðyÞ, so that
hϕqðxÞϕqðyÞi ¼ 0 and

hϕþðpÞϕ−ðqÞi ¼ ð2πÞ5δðq · q −m2Þθðq0Þδðqþ kÞ;

hϕcðpÞϕcðqÞi ¼ 16π5
Z

δðq · q −m2Þδðqþ pÞ;

hϕcðpÞϕqðqÞi ¼ ð2πÞ4δðqþ pÞi=ðqþ · qþ −m2Þ; ðE13Þ

where q0þ ¼ q0 − iϵ (ϵ → 0þ), in the zero temperature limit.
The energy-momentum stress tensor by Noether theorem

reads

Tμν ¼ ∂μϕ∂νϕ − gμνðgστ∂σϕ∂τϕ −m2ϕ2Þ=2 ðE14Þ

where we denoted Tμν
q ðxÞ ¼ TμνðxþÞ − Tμνðx−Þ,

Tμν
c ðxÞ¼ ∂μϕc∂νϕc−gμνð∂ϕc ·∂ϕc−m2ϕ2

cÞ=2
þ∂μϕq∂νϕq=4−gμνð∂ϕq ·∂ϕq−m2ϕ2

qÞ=8: ðE15Þ

APPENDIX F: HIGHER ORDER CORRELATIONS

The most natural definition, consistent with natural
notion of weak measurement [15,49], is symmetrizing
on CTP, i.e.,

Tμν → Tμν
c ðxÞ ¼ ðTμνðxþÞ þ Tμνðx−ÞÞ=2 ðF1Þ

with x� ¼ ðx0 � iϵ; xÞ on the upper/lower flat part of the
contour. No problems occur for averages and second order
correlations, but starting from the third order, correlations
become problematic. Let us consider D ¼ 3 and

hTμνðkÞϕð−pÞϕð−qÞi ¼ ð2πÞ4δðpþq− kÞGμνðp;qÞ ðF2Þ

for a real scalar field ϕ and k ¼ ð0; 0; 0; k3Þ, see Fig. 8. For
the standard order the correlation reads (see Appendix E)

hTμν
c ðkÞϕcð−pÞϕcð−qÞi: ðF3Þ

Let us take e.g., p ¼ ðv; 0; 0; w=2Þ, q ¼ ð−v; 0; 0; w=2Þ
so that also k ¼ ð0; 0; 0; wÞ is definitely spacelike. Then the
only terms contributing to the correlation originate from ϕq

in Tμν giving the expression proportional to

pμqν − gμνðp · qþm2Þ=2
ðp · p −m2Þðq · q −m2Þ ðF4Þ

which is obviously nonzero for μ ¼ ν ¼ 3 (∼w2=8þm2=2
for v ¼ 0). It it also nonzero for the noiseless combination
2T00 þ T11 þ T22 (∼ − 2v2).
An attempt to resolve this problem, namely symmetrized

ordering, i.e., splitting CTP into three parts (see Fig. 7) and
defining

1

2
3

FIG. 7. CTP modified to incorporate three time parts, 1,2,3, in
this order on the contour. For better visibility the parts are
separated by iϵ with ϵ → 0þ.
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hAðxÞBðyÞCðzÞi ¼
X
σð123Þ
hAðx1ÞBðx2ÞCðx3Þi ðF5Þ

with summation over permutations of 123, restores
conservation, i.e., ∂μTμν ¼ 0 but still gives nonzero

hð2T00ðkÞ þ T11ðkÞ þ T22ðkÞÞϕð−pÞϕð−qÞi ðF6Þ

with 2T00 þ T11 þ T22 being noiseless in the sense of (4)
and Sec. II A. The problematic term isϕ1T2ϕ3 with b on the
middle part. The term can be written as

Z
dp0dq0ð2p000q000þp011q011þp022q022Þ

× δðk−p0−q0Þhϕþð−pÞϕ−ðp0Þihϕþðq0Þϕ−ð−qÞi: ðF7Þ

Taking p ¼ ðE; 0; 0; w=2Þ, q ¼ ð−E; 0; 0; w=2Þ for E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ w2=4

p
the propagators are nonzero (on-shell delta)

but the prefactor equals −2E2, again nonvanishing. Note
that it is necessary to have timelike quantities ϕð−pÞ with
p · p > 0 in the correlation. Symmetrized correlations of
only spacelike momenta will vanish as shown in [34]
(alternatively one can adopt our proof in Appendix C).

APPENDIX G: CALCULATION OF MOMENTS
OF SPACELIKE MEASUREMENT FOR

COUNTERPROPAGATING SUPERPOSITIONS

Introducing Pauli matrices

σ0 ¼
�
1 0

0 1

�
; σ1 ¼

�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
ðG1Þ

we define matrices γ (4 × 4) in Weyl representation,

γ0 ¼
�
0 1

1 0

�
; γk ¼

�
0 σk

−σk 0

�
ðG2Þ

where 0 and 1 denote 2 × 2 matrices with 0s and 1s on the
diagonal, respectively.

In the volume V the field reads [53]

ψ̂ðxÞ ¼
X

k;X¼L;R

1ffiffiffiffi
V
p ðâXk uXk e−ik·x þ b̂†Xk vXk e

ik·xÞ ðG3Þ

with particle annihilation operators â and antiparticle
creation b̂† and E ¼ k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jkj2

p
. The anticommuta-

tion relations read

fâXk ; â†Xk g ¼ fb̂Xk ; b̂†Xk g ¼ 1 ðG4Þ

while all other anticommutators are zero.
Free states of momentum k ¼ ð0; 0; k3Þ have the general

spinor form, with left-handed and right-handed states

uLk ¼ ð2EÞ−1=2

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − k3
p

θð−k3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ k3
p

θðk3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ k3
p

θð−k3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
E − k3
p

θðk3Þ

1
CCCCCA;

uRk ¼ ð2EÞ−1=2

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E − k3
p

θðk3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ k3
p

θð−k3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ k3
p

θðk3Þffiffiffiffiffiffiffiffiffiffiffiffiffi
E − k3
p

θð−k3Þ

1
CCCCCA: ðG5Þ

At k3 ¼ 0 the left-handed and right-handed spinors inter-
change. In the limit m → 0 the spinors simplify to

uL →

0
BBB@

θð−k3Þ
θðk3Þ
0

0

1
CCCA; uR →

0
BBB@

0

0

θðk3Þ
θð−k3Þ

1
CCCA: ðG6Þ

The current operator ĵ ¼ ψ̂†γ0γψ̂ can be simplified to the
spinor matrix form

j0¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; j1¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA;

j2¼

0
BBB@

0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA; j3¼

0
BBB@
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1
CCCA: ðG7Þ

Let us evaluate hj1ðpÞi for p ¼ ð0; 0; 0; 2k3Þ on the
superposition

FIG. 8. The graph contributing to (F2). The lines are hϕϕi
propagators with arrows indicating the direction of positive
momentum (labeled).
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jψi ¼ ðjL; k3i þ jR;−k3iÞ=
ffiffiffi
2
p

ðG8Þ

where jX; k3i ¼ â†XðE;0;0;k3Þj0i (j0i—vacuum state). We find

hj0ðpÞia ¼ hS̄aia ¼ τm=2E ðG9Þ

for Sa ¼ j0 where τ is the total measurement time.
For

jψbi ¼ ðjL; k3i − jL;−k3iÞ=
ffiffiffi
2
p

ðG10Þ

we evaluate for Sb ¼ j1

hj1ðpÞib ¼ hS̄bib ¼ τk3=2E: ðG11Þ

For higher moments, we get simply hS̄na;bi ¼ hS̄a;bin.
For a scalar field we expand

ϕ̂ðxÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffi
2EV
p ðâke−ik·x þ â†ke

ik·xÞ ðG12Þ

with commutators ½âk; â†k� ¼ 1 and all others zero. Taking
the state

jψi ¼ ðjk3i þ j − k3iÞ=
ffiffiffi
2
p

ðG13Þ

where jk3i ¼ â†ðE;0;0;k3Þj0i and S ¼ T00 given by (17)

we get

hS̄ni ¼ ðτm2=4EÞn: ðG14Þ

For the electromagnetic field, let use the standard
quantization

ÂðxÞ ¼
X
k;λ

1ffiffiffiffiffiffiffiffiffi
2EV
p ðeλkâλke−ik·x þ e�λk â

†λ
k eik·xÞ ðG15Þ

with λ ¼ H, V for the two polarizations and E ¼ jkj and
commutation ½âλk; â†λk � ¼ 1. In our case let us take

eðE;0;0;k3Þ ¼ ð1; 0; 0Þ: ðG16Þ

We have B ¼ ∇ × A and E ¼ −∂0A. Let us take
the state

jψi ¼ ðjV; k3i þ jV;−k3i ðG17Þ

with jV; k3i ¼ â†VðE;0;0;k3Þj0i. Then hT̄00i ¼ 0 while

hðT̄11Þni ¼ hð−T̄22Þni ¼ τE: ðG18Þ
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