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We propose to develop the Kalb-Ramond theory in four-dimensional spacetime at the level of a classical
field theory by following the same formal development steps as in Maxwell theory of standard
electrodynamics. Solutions of Kalb-Ramond theory in the presence of static sources in various curved
spacetimes are then analyzed. A question that we address here is that of a possible Kalb-Ramond
polarization in curved spacetimes, like one can encounter a dielectric polarization in ordinary Maxwell

electrodynamics in certain types of spacetimes.
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I. INTRODUCTION

Electrodynamics is a remarkable theory. Synthesized in a
set of four compact equations by Maxwell in the late
nineteenth century, it is in a way a model of physical theory
on which generations of physicists have subsequently
developed new theories, to deal with gravity or fundamen-
tal interactions in the Standard Model.

Its applications are innumerable [1], but is Maxwell
theory, this model of physical theory definitely set in stone?
Physicists never stop trying to circumvent, generalize, unify,
existing theories and the same is true for electrodynamics.
Maxwell theory has many mathematical and physical proper-
ties. Itis linear, gauge covariant, invariant under time-reversal
symmetry, Abelian, Lorentz invariant, can even be made
generally covariant, it has Bianchi identities built in, etc., and
one may wish to preserve or not these properties or some of
them, when one tries to elaborate a new theory. Many
examples already exist. Born-Infeld theory relaxes the
linearity constraint, and even the time reversal or parity
symmetries in some of its extensions, Proca theory is not
gauge invariant, dual electrodynamics does not obey Bianchi
identities, Yang-Mills theories, viewed as generalization of
Maxwell theory, are not Abelian, etc.

Kalb-Ramond (KR) theory [2] is a beautiful alternative
to Maxwell theory. Not in the sense that it has something to
say on the fields which intervene in electrodynamics, but as
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it keeps most (if not all) the previous properties mentioned
to build a new theory which is likely to capture some other
reality of our world. It was originally introduced as an
interaction between extended objects in the context of
superstring theory, with an action of the form

Sstring = _#2/<d6m/do./u/)l/2 _QO/dG;wBlw
1
- / d4xEMMMﬂW (1)

where do" is the area element of the superstring’s world
sheet and M, a third-rank antisymmetric tensor which
derives from a gauge field B,,, .

Kalb-Ramond theory also attracted the attention of the
gravitation community as it appeared as a candidate for the
torsion field [3-5]. In a general study of connected spaces
(spacetimes in the context of Physics), Elie Cartan intro-
duced the concept of torsion which, together with the
curvature, is a characteristic of the connection. He tried
very early to attract the attention of Einstein (see [6]) and
this probably opened the era of unified field theories
on which Einstein himself [7], and many others [8,9],
have concentrated considerable efforts (authoritative
monographs are e.g., Refs. [10-13]). The relevance of
Kalb-Ramond theory is now pervading condensed matter
physics, where emerging Kalb-Ramond fields have been
found in quantum liquid crystals [14], semiconductor-metal
hybrids [15], and fluids [16].

© 2022 American Physical Society


https://orcid.org/0000-0002-4254-807X
https://orcid.org/0000-0002-3429-0304
https://orcid.org/0000-0001-7045-054X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.105026&domain=pdf&date_stamp=2022-05-31
https://doi.org/10.1103/PhysRevD.105.105026
https://doi.org/10.1103/PhysRevD.105.105026
https://doi.org/10.1103/PhysRevD.105.105026
https://doi.org/10.1103/PhysRevD.105.105026

BERCHE, FUMERON, and MORAES

PHYS. REV. D 105, 105026 (2022)

In this “classical gravity” context, we believe that a study
of the classical Kalb-Ramond theory in curved spacetimes,
say at the level of Maxwell equations, is missing in the
literature and it is our aim to try to fill this gap. We will thus
propose to follow the footsteps of Maxwell theory, with
only a minor extension as an initial prerequisite, the Kalb-
Ramond hypothesis that a second-rank antisymmetric
tensor can play the role of a gauge field. We will then
develop the known machinery, jumping from the tensor
formulation to differential forms formalism which has the
great advantage of allowing a very compact formulation of
Maxwell theory and of being described by coordinate-free
equations, and ending with ordinary vector formalism to
highlight in a concrete and obvious way the differences
with the Maxwell equations in their original form.

We will also discuss briefly the possible role of Kalb-
Ramond fields as a candidate as torsion field in the context
of spacetime geometry, and propose simple solutions for
various symmetric spacetimes.

II. A MASTERPIECE OF THEORY
A. Maxwell theory

For that purpose, our starting model is Maxwell-Lorentz
electrodynamics, whose structure we summarize to then
transpose it to the KR theory. Interactions between electric
sources are mediated by the electromagnetic field, which,
in terms of exterior algebra, can be encapsulated within
four postulates. The first two posit the existence of two
closed forms in four-dimensional spacetime, a 2-form F for
the field and a 3-form 7 for the sources, that is

dF =0, (2)
dJ =0, (3)

where d is the exterior derivative (for an account of exterior
calculus in connection with electrodynamics, see [17]).
These two forms are thus locally exact, meaning that there
exists a I-form A and a 2-form G such that

F = dA, (4)
J = dG. (5)

Equations (2) and (5) are Maxwell equations, the first one
being the Bianchi identity (or structure equation), and the
second the “equation of motion”. Equation (4) is the
definition of the field strength and (3) is the charge
conservation equation. Translated into ordinary vector
language, this leads (in flat spacetime) to four equations
VXE+09,B=0, V-B=0, V.D=p and VxH-
0,D = j, involving four independent vector fields, E, B,
D and H which enter the definitions of F and G, and
sources p and j which define the current 3-form 7.

The system of equations is not closed, and one needs
further hypotheses, the constitutive equations, fixed by
postulating an action,

1
SEM[A]:—/EyglF/\*F-i-A/\*J. (6)

This expression is justified by the requirement that one
needs, under the integral, a Lorentz invariant scalar quantity
(for a Lorentz invariant theory), or more generally a scalar
under arbitrary diffeomorphisms. Indeed, the exterior
product of a p-form u with its dual (or with the dual of
another p-form) U A U is such a quantity, proportional to a
full index contraction u,u* and to the volume-form dvol.
Therefore, aterm in F A xF in the field Lagrangian density,
being quadratic in the gauge field derivatives, has the good
properties. Also, rather than the 3-form 7, let us mention
that it is customary to introduce in the action a current
1-form J: for the same reason as above, one is then
confident in the fact that A A xJ is a scalar invariant
multiplying the volume-form.

Furthermore, the free field term displays gauge invari-
ance as it is obviously unchanged in the transformation

A - A+ dy, (7)

with y a zero-form. Owing to the charge conservation, this
transformation also leaves the interaction term unchanged,
up to boundary terms. Indeed, one can write the modifi-
cation of this term under the gauge transformation (7) as
dy A *J =d(y A *J) +y A xd'J. The first term contrib-
utes to the action functional by a surface term which we can
neglect by assuming that there are not sources at infinity
and, using the properties of the coderivative d', the second
term is modified into ¥y A dJ = 0, where use was made of
Eq. (3) and the relation J = — x J, still to be shown. Note
that the sign of the coupling between the charges and
the gauge field is essentially arbitrary and we follow
here Ref. [18].

Being written in differential forms formalism, the theory
is linear, coordinate-free, and displays general covariance.
All these properties make it a “pleasant” theory.

Minimization of the action (6) leads to the equation of
motion in one of the following forms, in terms of the
exterior derivative, d, or of the coderivative, d’,

pug'd'F=—=d or ugld*F=—xJ. (8)
The relation among the current 1-form J and the current
3-form J is just J =—*J, as one can read from

comparing (5) and (8), and this also provides the identi-
fication of

G=ypu;'«F 9)
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which is precisely the constitutive relation announced and
which closes the system of equations.

A complete theory for electrodynamics also requires the
dynamics of the sources given by the Lorentz force, but we
don’t need it for the present purpose. It must be remarked
that despite Maxwell theory being 150-year-old, the ques-
tion of its foundations is still debated and our choice of
axioms is not unique (for other proposals, see for instance
[19-22]).

One might appreciate having the link with the tensor
form of Maxwell equations. The action in this formalism,

SEM[A] = / d'x Lpym
1
——/d4x,/—g<zﬂ51FﬂbF””—}—Aﬂj”) (10)

is probably more usual. It obeys the requirements of being
covariant under diffeomorphisms, gauge covariant, and
invariant under parity reversal (this latter condition avoids
a contribution in F,, F** with the dual field strength tensor
JFH introduced below). It follows that

OLeMm ,
- S 1
0A, 97 (11)

which suggests, together with the Euler-Lagrange equation,
to define the constitutive relation in the form of

aEEM _ 1 op
a(agAp) = Ho \/_gF (12)

Gor =

for the equation of motion to be
g L
vV—9g Ho~/—9

with the conservation of the electric charge
ap(\/ —gj°) =0 (14)

imposed by the antisymmetry of G°°.
In tensor form, it is common to introduce the dual field
strength tensor

Oy(v/=gF?) = j*  (13)

1
Fr =S eF,, (15)

(with e#*P° the Levi-Civita tensor) in terms of which the
Bianchi identity reads as (in Minkowski spacetime M*)

8,Fm = 0. (16)

From the similarity of Egs. (2) and (16) on one hand, and
of (5) and (13) on the other hand, it is tempting to associate

F to 7# and G to G**. However, this is misleading,
because (2) and (5) are in fact three-indices equations, e.g.,
dF = §;(dF),,,dx* A dx* A dx*. Hence, the proper form
of the Bianchi equation is better written as a third rank
tensor equation

aiFW—F@MFM-l—@yFM :0 (17)

which is true, even in curved spacetimes, as soon as one has
defined the “electromagnetic curvature” as

F,, = 0,A,—0,A,. (18)

This being said, it is now clear that F corresponds
to F,,. Accordingly, we can also rewrite the equation of
motion as a third rank tensor form, introducing the dual
of G,

1
gﬂb = E €ﬂv/mG/}m ( 1 9)

as

axlg/w + a/zgvl + avgﬁﬂ = _\/__gjﬁ/w’ (20)

This equation is not as usual as (13), but this again shows
the correct correspondence, which is between G and G, .
Up to now, we have implicitly assumed a certain number
of conventions. It is probably time to become more explicit
with the choices used in this paper. We consider objects
(tensors) defined on a 4-dimensional metric manifold M
equipped with a metric tensor g,,. We use the signature
convention with ggy > 0, the sign of the antisymmetric
Levi-Civita tensor is chosen such as €y,; = +1 in M*
(where it coincides with the Levi-Civita symbol) and the
orientation of the volume-form is dvol = \/—_gdxo A dx' A
dx* A dx* with g = det(g,, ). Differential forms are written
in sanserif Latin or upright Greek, and their Hodge dual
in calligraphic. In this paper, we also mostly follow
the notations and conventions of the excellent books
Differential geometry, gauge theories, and gravity by
Gockeler and Schiicker [23] and Bertlmann’s Anomalies
in quantum field theory [18]. In particular, it means that we
use the Hodge star operation such that it discriminates the
forms according to their degree as * » U = —U for even
degree while x x U = u for odd degree, and the coderiva-
tive is simply d' = xd*. Among the other implicit choices,
we should specify that the vector fields E, B, D and H
have their usual meaning if we define F = —E A dt — B
and G = —cD + H A c¢dr with E, B, D and H differential
forms in 3-dimensional space. The signs are imposed
by the signature choice. Similarly, the current 3-form is
J = —pc + | A cdt. We have decided, contrary to common
use, to keep the constants ¢ and y,, to make explicit the
difference between F* and G*"*, even in flat spacetime.
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B. Kalb-Ramond theory

A very instructive generalization of Maxwell electrody-
namics is provided by Kalb-Ramond extension to higher-
order tensors (a succinct treatment of the generalization to
higher order tensors and arbitrary spacetime dimensions
can be found in the book of Ortin, [24]). This is an example
which illustrates the introduction (besides, or instead of, the
Faraday tensor F,), of new fields, M,,,, which couple to
new types of matter sources.

Let us thus assume the existence of a field strength
3-form M and a generalized conserved charge 2-form
acting as a source term S, both forms being closed,

dM =0, (21)
dS = 0. (22)

Therefore, there exists a gauge field 2-form B and a 1-form
N such that

M = dB, (23)
S = dN. (24)

Equations (21) and (24) are equivalent to Maxwell equa-
tions (2) and (5). We are now facing the same problem as
with Maxwell theory, and we need some constitutive
relations to close the system of equations. For that purpose,
let us assume an action functional given by an obvious
generalization of (6),

Skr|B] = —/;go‘lM AsMEBA S (25)

with g, an unknown dimensional parameter and S intro-
duced in the action to describe the sources in analogy with
the Maxwell case. The variation of Skr[B] leads to

such that, up to the boundary terms (BT), the equation of
motion follows in either of the two forms

dM=—-gS or d*M=—g,*S. (27)
The analogy with (8) is transparent. Using the duality

relation for the sources, S = — x S, the constitutive rela-
tion follows,

N=g,"' » M. (28)

Although the approach using differential forms has the
advantage of a high degree of generality, valid in particular
in the case of curved spacetimes, it is convenient to write

also these expressions in their tensorial forms, or even in a
very traditional vector shape (this was briefly done in flat
spacetime in the Appendix of the original paper [2]). Thus,
we have an antisymmetric third rank field strength tensor
M,,, which derives from an antisymmetric second-rank
gauge tensor B,

Ml/w == 8/13#” + aﬂBM + 6L,B,1ﬂ. (29)

M,,,, has four independent components while B, has six.
This definition leads to the Bianchi equation

aKMl;w - alM/uﬂc + ayde - auMK/l;t =0. (30)

Gauge invariance of the Kalb-Ramond theory is guaranteed
by the following transformation of the gauge field

BM — B = BW 4 & — e (31)

as it can easily be shown.

The free field Lagrangian density is built in analogy to
the Maxwell case, — 75 go ™' M, M**. The coupling of the
gauge field B,, to external sources requires an antisym-
metric second rank tensor describing the matter currents to
saturate the Lorentz indices, —%BWS’““. Such sources
describe extended objects and Kalb-Ramond theory has
a natural application in the context of string theories as we
said in the introduction. The Kalb-Ramond action reads as

SKR[B] —/d4XEKR

1 1
- - / d*x\/=g (12 9o~ M, M + 2B,,DS””> )
(32)

The Euler-Lagrange equation is easily applied to (32),
leading to the equation of motion

11
— 0, (/=gM™) = S, 33
075 (v=gM) (33)

where the antisymmetry (29) of the Kalb-Ramond field
strength tensor has been used.

This equation of motion, together with the antisymmetry
of B*¥, leads to the conservation of the second-rank tensor
current,

9u(v/=g$") = 0. (34)

Rephrased now in the language of ordinary functions and
vectors, we can write equations that look very similar to
the usual Maxwell equations. Let us introduce an effective
3-metric y;; (with i, j =1, 2, 3) via a space-time decom-
position

105026-4
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ds* = gy, dxtdx’ = goo(dx” + (goi/ goo)dx')* = yisdx’ dx/
(35)

with y;; = —g;; + 90i90;/ 900 and —g = ygoy with g the
4-spacetime metric determinant and y that of the 3-metrics.
We define a density « (for “Kalb”) and a pseudo-vector R
(for “Ramond”) corresponding to two purely spatial differ-
ential forms, respectively a 3-form K and a 2-form R such
that M = R A c¢dt + K (here we do not impose negative
signs like in the Maxwell case since there are no stand-
ardized definitions of the fields R and «). This enables us to
write the second Bianchi equation as two equations, d;R +
%&K =0 and d;K =0 (here d; is the purely spatial
exterior derivative). The components of k¥ and R are
obtained from the identification x = 1<%

67

M, and R = éé\?Mo jk- The first Bianchi identity is then

ljk with Kijk =

written as

11 1
v v

In vector form, we obtain an expression which looks very
similar to that of flat spacetime [2],

€k Kijx —

8i(\/77Ri) =0. (36)

1
~Dx—DivR =0, (37)
C

with here the divergence operator defined in curved space
[25] as DivR = (1/,/7)9:(,/7R’) and the time derivative
as Dk = (1/4/7)90,(y/7k). The second equation following
from Bianchi identity written in 3-dimensional forms does
not have any counterpart there, except that « is a density.

The inhomogeneous equations also have their vector
counterparts, calling for the introduction of two additional
fields, a vector field T and a scalar field A, associated res-
pectively to a 1-form T and a zero-form A which constitute
N=gy' *M=T+2A cdr. The external sources S =
oc+Ss /\ cdt are represented by a pseudovector ¢ (corre-
sponding to the 2-form o) and a vector, s (the 1-form S).
We get then the equations of motion d;T =0 and
diA+19,T=s. In terms of ordinary fields T and 2,
one has

CurlT =, (38)

1
-D,T—-Grad1=s, (39)
c

themselves analogs of
V-D=p, (40)

VxH-0D=j (41)

in Maxwell theory. The components of the vector T are
those of the one-form T, T; = ﬁ V7 Goo€ixM®* and the

scalar field A is defined as 4 = ——\/’ 900 el ]kM” The

components of the sources 6 are 6|’ = /goos” and those of
s are built from the space components of the two-form s,
S|; = /9005 = 5+/J00\/7€ijxS’*. The curl of a vector field
in curved space is defined as [25]

Curl T|! = (1/,/7)€'*d,T,, (42)

and the gradient operator is defined ordinarily as
Grad 1|, = 0;A.

There is an interesting observation made by Landau and
Lifshitz [25] in the case of Maxwell electrodynamics:

The reader should note the analogy (purely formal, of
course) with Maxwell equations for the electromagnetic
field in material media. In particular, in a static gravitational
field the quantity ,/y drop out of the terms containing time
derivatives (...) We may say that with respect of its effect
on the electromagnetic field a static gravitational field plays
the role of a medium with electric and magnetic perme-
abilities € = u = 1//goo-

It also simplifies the problem here, because then most of
the flat spacetime formulas of vector analysis apply and the
differential operators D, and Curl or Grad commute with
each other.

The conservation of the Kalb-Ramond charges follows
from the equations of motion and reads as d3o = 0 and
d;s +%6,0 = 0. In vector formalism, Eq. (38) demands
that o is divergence free and, taking the curl of (39), we get
a continuity equation of the form (44)

Dive =0, (43)
1

Curls —-0,6 =0. (44)
c

The definition of gauge potentials is suggested by the
form of the Bianchi equations above. They suggest the
introduction of a potential 2-form « and a potential 1-form
¢ such that K= dsa and R = —d3¢—%8,a. In vector
notation, these translate into two gauge vector potentials a
and ¢ such that the Kalb-Ramond fields are defined in
terms of these as

k = Dive, (45)

1
R = —Curl¢g - E@,a, (46)

1 ¢k
=2 5%k

of those of the 2-form a.
We know that in vector notation, Maxwell theory has in
the vacuum, and in the absence of a gravitational field, the

with o the components of the vector a in terms

105026-5
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nice property that there is a simple proportionality between
E and D on one hand and between B and H on the other
hand, these are the constitutive relations in 3D formalism.
Therefore, the four coupled first-order partial differential
Maxwell equations decouple into two second-order equa-
tions known as wave equations. This property in fact hides
a duality relation in terms of forms. The same strategy
can be used in Kalb-Ramond theory, wherefrom g,~! *
(R A cdt) =T and g,~! x K = Acdt, and one deduces the
constitutive relations in the form

9% 'R=T, (47)
g0~ 'k = A. (48)

This leads to the Kalb-Ramond equations, now written only
in terms of the fields R and «,

1
DivR — -0,k =0, (49)
C
CurlR = g0, (50)
1
Gradkx ——0,R = gs. (51)
c

One may wonder why only three equations are required
in Kalb-Ramond theory whereas four are needed in
Maxwell’s (once constitutive relations have been used).
This is a natural consequence of Helmholtz decomposition
theorem: Maxwell theory involves two dynamic vector
fields (each known from its curl and divergence), whereas
Kalb-Ramond’s involves one dynamic vector field and one
dynamic scalar field.

Taking the time partial derivative of (49) and using (51)
we get, for the scalar field x, a nonhomogeneous wave
equation

1
ALBK - —28,2K = gOV - S, (52)
c
with the Laplace-Beltrami operator
1 .
ALBK = DiV(Grad K') = 7_81(\/}—’}/U81K) (53)
4

The wave equation takes the standard form [k = 0 in flat
empty space, meaning that the scalar field propagates in the
form of waves at the light velocity c. Now, taking the
gradient of (49), the curl of (50), and combining with (51)
also leads to a nonhomogeneous wave equation for the
vector field R,

1
Grad(DivR) — Curl(CurlR) - 5 9/R
c
1
= —gp (V X 6 + —8,s> . (54)
c

Again, one retrieves [JR = 0 in source-free flat space.

III. THE LINK WITH TOTALLY
ANTISYMMETRIC TORSION

The route for geometric studies of spacetime structure
was opened by Albert Einstein with his general theory of
relativity. It was there that he developed the principle of
general covariance. This principle would be called upon to
become one of the foundations of physics, not only in the
fields of gravitation and electromagnetism but also more
generally with the advent of gauge theories which will
revisit this question. General covariance (under arbitrary
changes of coordinates) is naturally expressed in tensorial
form and the laws of dynamics, which involve fields and
their derivatives, have to face the problem that, in general, a
field derivative is not a tensor. This is repaired by the
introduction of a connection I'?,,,, which adds a piece to the
derivative to make it a tensor. Consider for example a vector
field V°. While 9, V? is not a (mixed) second-rank tensor,
the quantity 9,V? + 1, V* is such a tensor, provided that
I, satisfies appropriate transformation laws under a
change of the coordinates. In the study of gravitation,
Einstein considered metric spacetimes and has chosen to
specify the Levi-Civita connection, given by the Christoffel
symbols (in terms of the derivatives of the metric tensor
guw)- This connection has the characteristic feature to be
symmetric with respect to the exchange of its two lower
indices, I'?,,, =T, but this is not a necessary condition
for a connection. When this is not the case, the antisym-
metric part of the connection defines the torsion field

8% =T, -17,. (55)

The torsion is, by construction, an antisymmetric tensor. It
comprises 24 independent components and can be separated
into irreducible pieces [26], a vector S, = §7,,, a pseudo-
vector A, = €,,,,5°* and the remaining 16 components are
stored in a third-rank tensor b,,,,. Various geometric theories
incorporate torsion [3], and the one which is relevant for us is
the torsion which derives from a second-rank antisymmetric
gauge field, i.e., following Hammond (e.g., in [3]), we
assume a spacetime for which the torsion field obeys
Kalb-Ramond equations,

S/I;u/ = M/luv (56)
as given in Eq. (29) possibly up to proportionality factors. In

this approach, the source of torsion is the spin of elementary
particles. A pretty nice feature of this theory is that contrary to

105026-6
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the more common contact interaction which does not
propagate [27], if torsion is given by (56), as we have seen
in Egs. (52) and (54), it obeys wave equations.

IV. KALB-RAMOND STATIC FIELD
IN CURVED SPACETIMES

The Kalb-Ramond fields can be obtained via tensor
calculus (30) and (33), via ordinary vector formalism (37),
(38) and (39), but in order to illustrate the power of exterior
differential calculus, we will consider the static Kalb-
Ramond field created by a localized source distribution
in various spacetimes, assimilated to fixed backgrounds,
using mainly Eqgs. (21) and (24). The source of the Kalb-
Ramond field is supposed to be independent of the source
of the gravitational field which is at the origin of the
geometry of each spacetime considered. The question that
we address here is the possibility of a nontrivial vacuum
polarization, i.e., a nontrivial relation between the compo-
nents of the dual form T and those of R. Before starting
the calculation, a comment is needed on the definition of
the form R. Following the standard definition of the
Faraday 2-form in electrodynamics, we have defined the
Kalb-Ramond 3-formasM = R A c¢dt + K. This is a natural
definition in Minkowski spacetime, but in an arbitrary
manifold, cdt does not necessarily have an unambiguous
meaning, and, under a change of coordinates, if M remains
unchanged, e.g., M =3, M, dx* A dx* A dx” =M ;€% A
e’ A e, thisis not the case for R for which a particular choice
of coordinate ct was done. One could also define R and K
such that

M=R Ae’+K (57)

where €° is the unit vector' in the timelike direction of the
cotangent spacetime in an orthonormalized basis of 1-forms.
This coincides with the standard definition in Minkowski
spacetime, but one has to emphasize the fact that R’ and K’
defined in Eq. (57) do not, in general, coincide with the R and
K which follow from M = R A cdt + K. We will give both
expressions in the forthcoming examples. The components
in the orthonormalized basis are called “physical compo-
nents” by Hartle [28], but there, the physics obviously
appears to be compatible with special relativity, by con-
struction. In particular, there is no vacuum polarizability of
the Minkowski vacuum, so that we will refer to nontrivial
polarizability in the noninertial local coordinate system.

A. Cosmic string in Schwarzschild spacetime

Let us first contemplate the case of a cosmic string
crossing the origin of a Schwarzschild blackhole spacetime.

'We use the term “vector” meaning an element of a generic
vector space, not an ordinary vector that would be in the tangent
spacetime.

This is an example of a spacetime characterized by a
singular curvature.

We use the Schwarzschild coordinates ct, r, 6, ¢ and the
line element

oM oM\ -1
ds* = (1 - —) cdr* - (1 - —) dr? — r*de*
r r
— a?r’sin’ Odg? (58)

where a is the cosmic string defect-angle parameter
(@? = 1-4Gu/ c? with u the string stress tensor amplitude).
Instead of the local basis (cdt,dr,d@,dy), the tetrad
formalism allows to write the line element in an ortho-
normalized basis (e°, e',e?,e?),

ds® = (e°)? = (e')* = (?)* - (&) (59)

with Minkowski metric. Here, the coframe basis vectors
are obtained by inspection, €° = (1 —24)1/2¢cds, e! =
(1 -2M)=12gr, € = rdf, and e*® = ar sin Odg. Using
the equivalent of Gauss law, (38), which, due to the form
degree is more like an Ampere law for Kalb-Ramond fields,

we can write
/dT:/ T:/a (60)
by o)) b

and call @, this quantity, by analogy with a flux. Let us
mention again that this quantity is produced by some
charge density o which is not specified more, and in
particular, which is not the source of the metric (58).
Equation (60) is a counting procedure of the Kalb-Ramond
charges crossing the compact domain X: as underlined by
[20], (60) defines a purely topological quantity and must
not depend explicitly on the spacetime geometry (physical
parameters M and ). Assuming cylindrical symmetry in
the Minkowskian coframe, we choose for the surface X a
disk of radius p = r sin# with contour 0X. The total KR
charge crossing the disk is characterized by the flux
denoted as ®,. The 1-form T can be expressed either on
the local basis, or using the dual tetrad basis (e°, e', €2, &%)
where cylindrical symmetry imposes an expression of the
form T = T;e3. Then, using the relation to the local basis,
e’ = a sin Odp, one gets

T =Tse* = Tsar sin Odg = T ,dy (61)

with T3 = T5(p) = T3(r sin 8). Therefore one deduces
from (60)

Ts(r sin ) = —2° P and T, =2
rsin 0) = = an =7,
3 2rar sinf  2xap’ ? 2

(62)
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Now, in absence of the field K, using the relations
M=R Ae"=RAcdt=gyxN=gyxT (63)

and the expression of the Hodge dual in the local co-tetrad
frame (with metric tensor there denoted as 7,,),

*T = |I1|7733T3€3012eo AN el AN ez, (64)

we can read that

90 *T:goT3el VAN 82 VAN eo

T,
=go————dr A df A cdt. (65)
a sin 0

The first line leads to the ‘“Minkwoskian” identification
R, = goT5, while in the local basis, we can interpret our
result as a nontrivial vacuum polarization, since we can
write

. 90 q)(;
R,y = o)r, = —
ro g(r Sin ) [ a Sin 9 2” (66)
with g(r sin ) = % the analogue of a relative

permittivity.

One may wonder about the robustness of this result with
respect to a change of local coordinates. For that purpose,
we will now consider a cosmic string in a Schwarzschild
spacetime with Israel coordinates [29]. The main interest is
that the metric tensor is not diagonal in this case. The
Schwarzschild plus string metric in Israel coordinates

(y,x,0,¢) reads
2
yodx
ds?* = —r} [4dx<1 g + dy)

+ (1 +xy)*(d6* + azsinZHd(pz)] (67)

where x and y are linked to Schwarzschild coordinates via
t=rs(1+xy+In(y/x)) and r=rg(1+xy). We have
also added the cosmic string with defect-angle a. The
(opposite of the) metric tensor takes the form

0 2r§ 0 0
o 4r2y?
(=9u) = 5 Tow 0 0
0 0 ri(1+uxy)? 0
0 0 0 ra(1+xy)>a*sin?0
(68)
and its determinant is
—g = 4r§(1 + xy)*a? sin?6. (69)

The cotetrad vectors are given by

V1
e’ = rsﬁdy, (70)
y
2 V1

el = rs( Y ax+ +xydy>, (71)

VI+xy y
e? = rg(1 + xy)do, (72)
e = rg¢(1 + xy)a sin Odg, (73)

with again Eq. (59) satisfied by this choice. Note that we
specify (by choice) that the O coordinate is along y. Again,
in the orthonormalized basis, one has

/ T=0,= / T5(p)e® (74)

which requires that

o

@ @,
2zrg(1 4+ xy)asin @ 2zap

T5(p)
and, like in Schwarzschild coordinates, T, = ®,/(27) in
the coordinate basis. The Hodge dual * T is the same as the
first line of equation (65) in the orthonormalized basis, but
it delivers, in the present coordinate basis, the following
expression

2gor: @
o gOrS_G (76)

asin02r’

x0

hence a different “permittivity.” The consequences of the
choice of coordinate basis will be commented in the
discussion.

B. Wiggly cosmic string

Cosmic strings may have a structure, and the case of the
“wiggly” cosmic string is particularly interesting for our
purpose, since the line element acquires a further space
dependence. The presence of wiggles indeed generates a far
gravitational field contribution and averaging the effect of
these perturbations along the string increases the linear
mass density ji and decreases the string tension 7', (with an
equation of state i T = u?), leading the wiggly string to
exert a gravitational field at large distances. We can thus
address here the question of the form of the vacuum
polarization in such a case.

In the weak gravitational field approximation, the lin-
earized line element in the presence of a wiggly string
oriented along the z-axis is given by [30-33]:
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ds* = (1+8¢1In(p/py))c?di* — dp?
— a2p2dg? — (1 - 8¢ In(p/py))dz2,  (77)

where the conical deficit-angle associated to the string is
now o =1-4G(i+T)/c® (with 4G(a+T)/c* < 1).
The parameter ¢ defines the excess of mass-energy density,
2e = G(ji — T)/c?. The value of G(ji + T) accounts for the
discrepancy between flat and conical geometries, whereas
G(ji — T) accounts for the discrepancy between straight
and wiggly strings. The constant p, denotes the effective
string radius [34]. We also consider the limit where
eln(p/py) < 1.

The calculation of T follows the same lines of reasoning
as in the previous section, and one just has a slight
modification due to the use of a different ordering of the
local (cylindrical) coordinates, (ct,p,,z), which now
demands that T = T,e?, with €> = apdep, thus

() )
T=—2¢e>=""dyp. 78
2rap 2r ¢ (78)
The dual follows,
@,
*T = dz A dp A cdt, (79)
2rap

hence R_, = g,T,/(ap).

C. Chiral cosmic string spacetime

Probably more interesting is the case of a nondiagonal
metric associated with nonzero torsion, axially localized.
As an example, we consider a chiral cosmic string for
which the line element is given by

ds* = c*di* — dp* — p*de?* — (Pdp + dz)*,  (80)

where £ is the Burgers parameter of the cosmic string. Like
in the previous example, the string at the origin of the form
of the metric is not the source of the KR field that we
calculate. We can also write down the metric tensor

1 0 0 0
(0,) = 0 -1 0 0 (81)
Mo 0~y s

0 0 B -1

which allows building the dual tetrad basis € = cdt,
e' =dp, € = pdy and € = Bdy + dz.

Due to the use of the same system of local coordinates,
the 1-form T takes the same simple form as for the wiggly
string, T = T»(p)€?, and its line integral along the contour
of radius p is again transparent

[T= [ 120 = [ ooy = 2m70) = 2, 82

It follows the same expression (78) on the local coordinate
basis. Then we obtain

90 *T:goTze3 AN el VAN eo

()
=go=——(dz ANdp—pdp N dp) A cdt  (83)
27p

and, as a result of the nondiagonal character of the metric,
the spacetime of the chiral cosmic string induces a nonzero
vacuum polarization, with anisotropic, space-dependent
polarizability and two nonvanishing components for the
2-form R

17

R, = ;‘)T,p, (84)
9oP

R,, = —%T(p. (85)

V. DISCUSSION

It is important to stress that symmetry (here cylindrical
symmetry) dictates the form of T, since the relation dT = o is
a topological relation (it does not involve the metric tensor),
hence it does not depend on the precise choice of coordinates.
T has the same expression in the coordinate basis in the
examples considered (see, e.g., Egs. (62) and (78)). On the
other hand, R is obtained via Hodge duality. This means that
the precise form of the metric on the local basis plays a central
role. This is not true in the Minkowskian frame (more
precisely the metric tensor components, there, are constants)
for which one always observes an absence of polarizability.

An interesting feature of the relations between R and T
concerns the property of gauge invariance with respect to
the choice of the coframe. Indeed, the cotetrad basis vectors
define a set of sixteen components, e, which obey the
constraint

eaﬂebunab = G- (86)

There are thus only ten relations among them because the
metric tensor g,, is symmetric. This leaves a freedom, that
is also called gauge freedom, in the orientation of the
orthonormal basis (three rotations and three boosts which
preserve the covariance of the laws of special relativity
under Lorentz transformations). This property is ensured by
the properties of change of bases in a vector space, but it is
instructive for our purpose to study an example. Let us then
consider the case of the chiral cosmic string and, instead
of the previous tetrad, we now propose another choice
8% = cdt, &' =cos pdp — p sin pdp, &* = sin @pdp +
p cos pdp and &° = (B/p)sin @dp + p cos pdp + dz.
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In terms of these, the 1-form T now becomes T = 7,8' +
T,8* with T, = —sin ¢T, and T, = cos T, with no
apparent symmetry. The basis {€“} is an orthonormalized
“cylindrical” basis while {€“} is a “Cartesian” basis, both
with Minkowski metrics. The former is adapted to the
natural expression of cylindrical symmetry while the
second is not. Nevertheless, it is easy to show also that
Egs. (84) and (85) remain true.

We have learned enough from the examples above to
draw general conclusions for arbitrary metrics [we will
focus here on the use of local coordinates of ‘“cylin-
drical type” (ct,p,,z)]. We still consider cylindrically
symmetric sources, and as we have argued earlier, this
can have a sensible meaning only in the orthonormalized
basis e’ = e“,dx" of the cotangent spacetime, so here
T =T,dx* =T,(p)e*. Using the relation e = ¢2,dx*
between the orthonormalized and the local basis, and
integrating in the former basis along a closed curve at p
and z constant, one has

[T=10) [Tto=0, 57

or

2 -1
T2<p>=<1>,,( / e%ﬂdqo) L T,=,Ta(). (88)

In the case where ezq, does not depend on ¢ (all examples
studied earlier fall into this category, except the “tilde”
rotated basis discussed above), this is simply T5(p) =
®,/(2ne?,) and T,, = ®,/(2x). Now, in the orthonormal-
ized basis, we have calculated * T several times already and
we pass to the local basis using e’ =e’,dx* and
e' = ¢!, dx". For the time component, there is a certain
freedom and we set € = e,cdt + €%,dx’ to identify a
particular time direction. This defines a general formula

T
R= gOT¢(e3ﬂely —e?yel)eddxt Adxr. (89)
e

<

All previous results are recovered from this general
expression.

One may also wonder whether we can easily generate a
nonzero 3-form K. The discussion above shows that this
will be the case if €” comprises space terms in e°;dx’. An
example is the spinning cosmic string [35]

ds*> = (cdt — adg)? — dp* — o*p*dg* — dz*>  (90)
which couples the time coordinate to the angle of rotation
(here around z) and for which T is still given by (78). The

presence of dg in €° = cdt — adp then leads to two terms
in xT,

go* T =R A cdt+K with

T
R:gofdz/\dzp (91)

T
K = —go%dp Ado A dz, (92)

and, as announced, a nonzero K emerges.

Other particular metrics not considered in this paper
could also be of interest. Let us mention the case of
Kleinian metrics with specific signature alterations leading
to the emergence of two time components [36,37]. This
may be of specific interest in the context of the identi-
fication of the 2-form R.

Finally, we wish to close this discussion on a point raised
in the course of this article. The Kalb-Ramond field is a
candidate to describe the torsion of spacetime. Here we
have assumed various background spacetimes in which we
have calculated the Kalb-Ramond fields, neglecting a
possible backreaction on the geometric structure of space-
time. An interesting extension of this work would be to
consider for example the free motion of test particles in the
original background spacetime modified by the induced
torsion. In particular, due to the presence of torsion, the
geodesic curves would now differ from the autoparallel
curves.
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