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We propose to develop the Kalb-Ramond theory in four-dimensional spacetime at the level of a classical
field theory by following the same formal development steps as in Maxwell theory of standard
electrodynamics. Solutions of Kalb-Ramond theory in the presence of static sources in various curved
spacetimes are then analyzed. A question that we address here is that of a possible Kalb-Ramond
polarization in curved spacetimes, like one can encounter a dielectric polarization in ordinary Maxwell
electrodynamics in certain types of spacetimes.
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I. INTRODUCTION

Electrodynamics is a remarkable theory. Synthesized in a
set of four compact equations by Maxwell in the late
nineteenth century, it is in a way a model of physical theory
on which generations of physicists have subsequently
developed new theories, to deal with gravity or fundamen-
tal interactions in the Standard Model.
Its applications are innumerable [1], but is Maxwell

theory, this model of physical theory definitely set in stone?
Physicists never stop trying to circumvent, generalize, unify,
existing theories and the same is true for electrodynamics.
Maxwell theory hasmanymathematical andphysical proper-
ties. It is linear, gauge covariant, invariant under time-reversal
symmetry, Abelian, Lorentz invariant, can even be made
generally covariant, it has Bianchi identities built in, etc., and
one may wish to preserve or not these properties or some of
them, when one tries to elaborate a new theory. Many
examples already exist. Born-Infeld theory relaxes the
linearity constraint, and even the time reversal or parity
symmetries in some of its extensions, Proca theory is not
gauge invariant, dual electrodynamics does not obey Bianchi
identities, Yang-Mills theories, viewed as generalization of
Maxwell theory, are not Abelian, etc.
Kalb-Ramond (KR) theory [2] is a beautiful alternative

to Maxwell theory. Not in the sense that it has something to
say on the fields which intervene in electrodynamics, but as

it keeps most (if not all) the previous properties mentioned
to build a new theory which is likely to capture some other
reality of our world. It was originally introduced as an
interaction between extended objects in the context of
superstring theory, with an action of the form

Sstring ¼ −μ2
Z

ðdσμνdσμνÞ1=2 − g0

Z
dσμνBμν

−
Z

d4x
1

12
MλμνMλμν ð1Þ

where dσμν is the area element of the superstring’s world
sheet and Mλμν a third-rank antisymmetric tensor which
derives from a gauge field Bμν.
Kalb-Ramond theory also attracted the attention of the

gravitation community as it appeared as a candidate for the
torsion field [3–5]. In a general study of connected spaces
(spacetimes in the context of Physics), Elie Cartan intro-
duced the concept of torsion which, together with the
curvature, is a characteristic of the connection. He tried
very early to attract the attention of Einstein (see [6]) and
this probably opened the era of unified field theories
on which Einstein himself [7], and many others [8,9],
have concentrated considerable efforts (authoritative
monographs are e.g., Refs. [10–13]). The relevance of
Kalb-Ramond theory is now pervading condensed matter
physics, where emerging Kalb-Ramond fields have been
found in quantum liquid crystals [14], semiconductor-metal
hybrids [15], and fluids [16].*bertrand.berche@univ-lorraine.fr
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In this “classical gravity” context, we believe that a study
of the classical Kalb-Ramond theory in curved spacetimes,
say at the level of Maxwell equations, is missing in the
literature and it is our aim to try to fill this gap. We will thus
propose to follow the footsteps of Maxwell theory, with
only a minor extension as an initial prerequisite, the Kalb-
Ramond hypothesis that a second-rank antisymmetric
tensor can play the role of a gauge field. We will then
develop the known machinery, jumping from the tensor
formulation to differential forms formalism which has the
great advantage of allowing a very compact formulation of
Maxwell theory and of being described by coordinate-free
equations, and ending with ordinary vector formalism to
highlight in a concrete and obvious way the differences
with the Maxwell equations in their original form.
We will also discuss briefly the possible role of Kalb-

Ramond fields as a candidate as torsion field in the context
of spacetime geometry, and propose simple solutions for
various symmetric spacetimes.

II. A MASTERPIECE OF THEORY

A. Maxwell theory

For that purpose, our starting model is Maxwell-Lorentz
electrodynamics, whose structure we summarize to then
transpose it to the KR theory. Interactions between electric
sources are mediated by the electromagnetic field, which,
in terms of exterior algebra, can be encapsulated within
four postulates. The first two posit the existence of two
closed forms in four-dimensional spacetime, a 2-form F for
the field and a 3-form J for the sources, that is

dF ¼ 0; ð2Þ

dJ ¼ 0; ð3Þ

where d is the exterior derivative (for an account of exterior
calculus in connection with electrodynamics, see [17]).
These two forms are thus locally exact, meaning that there
exists a 1-form A and a 2-form G such that

F ¼ dA; ð4Þ

J ¼ dG: ð5Þ

Equations (2) and (5) are Maxwell equations, the first one
being the Bianchi identity (or structure equation), and the
second the “equation of motion”. Equation (4) is the
definition of the field strength and (3) is the charge
conservation equation. Translated into ordinary vector
language, this leads (in flat spacetime) to four equations
∇ ×Eþ ∂tB ¼ 0, ∇ ·B ¼ 0, ∇ · D ¼ ρ and ∇ ×H−
∂tD ¼ j, involving four independent vector fields, E, B,
D and H which enter the definitions of F and G, and
sources ρ and j which define the current 3-form J .

The system of equations is not closed, and one needs
further hypotheses, the constitutive equations, fixed by
postulating an action,

SEM½A� ¼ −
Z

1

2
μ−10 F ∧ ⋆Fþ A ∧ ⋆J: ð6Þ

This expression is justified by the requirement that one
needs, under the integral, a Lorentz invariant scalar quantity
(for a Lorentz invariant theory), or more generally a scalar
under arbitrary diffeomorphisms. Indeed, the exterior
product of a p-form u with its dual (or with the dual of
another p-form) u ∧ ⋆u is such a quantity, proportional to a
full index contraction uμuμ and to the volume-form dvol.
Therefore, a term in F ∧ ⋆F in the field Lagrangian density,
being quadratic in the gauge field derivatives, has the good
properties. Also, rather than the 3-form J , let us mention
that it is customary to introduce in the action a current
1-form J: for the same reason as above, one is then
confident in the fact that A ∧ ⋆J is a scalar invariant
multiplying the volume-form.
Furthermore, the free field term displays gauge invari-

ance as it is obviously unchanged in the transformation

A → Aþ dχ; ð7Þ

with χ a zero-form. Owing to the charge conservation, this
transformation also leaves the interaction term unchanged,
up to boundary terms. Indeed, one can write the modifi-
cation of this term under the gauge transformation (7) as
dχ ∧ ⋆J ¼ dðχ ∧ ⋆JÞ þ χ ∧ ⋆d†J. The first term contrib-
utes to the action functional by a surface term which we can
neglect by assuming that there are not sources at infinity
and, using the properties of the coderivative d†, the second
term is modified into χ ∧ dJ ¼ 0, where use was made of
Eq. (3) and the relation J ¼ − ⋆ J, still to be shown. Note
that the sign of the coupling between the charges and
the gauge field is essentially arbitrary and we follow
here Ref. [18].
Being written in differential forms formalism, the theory

is linear, coordinate-free, and displays general covariance.
All these properties make it a “pleasant” theory.
Minimization of the action (6) leads to the equation of

motion in one of the following forms, in terms of the
exterior derivative, d, or of the coderivative, d†,

μ−10 d†F ¼ −J or μ−10 d ⋆ F ¼ − ⋆ J: ð8Þ

The relation among the current 1-form J and the current
3-form J is just J ¼ − ⋆ J, as one can read from
comparing (5) and (8), and this also provides the identi-
fication of

G ¼ μ−10 ⋆ F ð9Þ
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which is precisely the constitutive relation announced and
which closes the system of equations.
A complete theory for electrodynamics also requires the

dynamics of the sources given by the Lorentz force, but we
don’t need it for the present purpose. It must be remarked
that despite Maxwell theory being 150-year-old, the ques-
tion of its foundations is still debated and our choice of
axioms is not unique (for other proposals, see for instance
[19–22]).
One might appreciate having the link with the tensor

form of Maxwell equations. The action in this formalism,

SEM½A� ¼
Z

d4xLEM

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

4
μ−10 FμνFμν þ Aμjμ

�
ð10Þ

is probably more usual. It obeys the requirements of being
covariant under diffeomorphisms, gauge covariant, and
invariant under parity reversal (this latter condition avoids
a contribution in FμνF μν with the dual field strength tensor
F μν introduced below). It follows that

−
∂LEM

∂Aρ
¼ ffiffiffiffiffiffi

−g
p

jρ ð11Þ

which suggests, together with the Euler-Lagrange equation,
to define the constitutive relation in the form of

Gσρ ¼ −
∂LEM

∂ð∂σAρÞ
¼ μ−10

ffiffiffiffiffiffi
−g

p
Fσρ ð12Þ

for the equation of motion to be

1ffiffiffiffiffiffi−gp ∂σGσρ ¼ 1

μ0

1ffiffiffiffiffiffi−gp ∂σð
ffiffiffiffiffiffi
−g

p
FσρÞ ¼ jρ ð13Þ

with the conservation of the electric charge

∂ρð
ffiffiffiffiffiffi
−g

p
jρÞ ¼ 0 ð14Þ

imposed by the antisymmetry of Gσρ.
In tensor form, it is common to introduce the dual field

strength tensor

F μν ¼ 1

2
ϵμνρσFρσ ð15Þ

(with ϵμνρσ the Levi-Civita tensor) in terms of which the
Bianchi identity reads as (in Minkowski spacetime M4)

∂μF μν ¼ 0: ð16Þ

From the similarity of Eqs. (2) and (16) on one hand, and
of (5) and (13) on the other hand, it is tempting to associate

F to F μν and G to Gμν. However, this is misleading,
because (2) and (5) are in fact three-indices equations, e.g.,
dF ¼ 1

3!
ðdFÞλμνdxλ ∧ dxμ ∧ dxν. Hence, the proper form

of the Bianchi equation is better written as a third rank
tensor equation

∂λFμν þ ∂μFνλ þ ∂νFλμ ¼ 0 ð17Þ

which is true, even in curved spacetimes, as soon as one has
defined the “electromagnetic curvature” as

Fμν ¼ ∂μAν − ∂νAμ: ð18Þ

This being said, it is now clear that F corresponds
to Fμν. Accordingly, we can also rewrite the equation of
motion as a third rank tensor form, introducing the dual
of Gμν,

Gμν ¼ 1

2
ϵμνρσGρσ; ð19Þ

as

∂λGμν þ ∂μGνλ þ ∂νGλμ ¼ −
ffiffiffiffiffiffi
−g

p
J λμν: ð20Þ

This equation is not as usual as (13), but this again shows
the correct correspondence, which is between G and Gμν.
Up to now, we have implicitly assumed a certain number

of conventions. It is probably time to become more explicit
with the choices used in this paper. We consider objects
(tensors) defined on a 4-dimensional metric manifold M
equipped with a metric tensor gμν. We use the signature
convention with g00 ≥ 0, the sign of the antisymmetric
Levi-Civita tensor is chosen such as ϵ0123 ¼ þ1 in M4

(where it coincides with the Levi-Civita symbol) and the
orientation of the volume-form is dvol ¼ ffiffiffiffiffiffi−gp

dx0 ∧ dx1 ∧
dx2 ∧ dx3 with g ¼ detðgμνÞ. Differential forms are written
in sanserif Latin or upright Greek, and their Hodge dual
in calligraphic. In this paper, we also mostly follow
the notations and conventions of the excellent books
Differential geometry, gauge theories, and gravity by
Göckeler and Schücker [23] and Bertlmann’s Anomalies
in quantum field theory [18]. In particular, it means that we
use the Hodge star operation such that it discriminates the
forms according to their degree as ⋆ ⋆ u ¼ −u for even
degree while ⋆ ⋆ u ¼ u for odd degree, and the coderiva-
tive is simply d† ¼ ⋆d⋆. Among the other implicit choices,
we should specify that the vector fields E, B, D and H
have their usual meaning if we define F ¼ −E ∧ dt − B
and G ¼ −cDþ H ∧ cdt with E, B, D and H differential
forms in 3-dimensional space. The signs are imposed
by the signature choice. Similarly, the current 3-form is
J ¼ −ρcþ j ∧ cdt. We have decided, contrary to common
use, to keep the constants c and μ0, to make explicit the
difference between Fμν and Gμν, even in flat spacetime.
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B. Kalb-Ramond theory

A very instructive generalization of Maxwell electrody-
namics is provided by Kalb-Ramond extension to higher-
order tensors (a succinct treatment of the generalization to
higher order tensors and arbitrary spacetime dimensions
can be found in the book of Ortín, [24]). This is an example
which illustrates the introduction (besides, or instead of, the
Faraday tensor Fμν), of new fields, Mλμν, which couple to
new types of matter sources.
Let us thus assume the existence of a field strength

3-form M and a generalized conserved charge 2-form
acting as a source term S, both forms being closed,

dM ¼ 0; ð21Þ

dS ¼ 0: ð22Þ

Therefore, there exists a gauge field 2-form B and a 1-form
N such that

M ¼ dB; ð23Þ

S ¼ dN: ð24Þ

Equations (21) and (24) are equivalent to Maxwell equa-
tions (2) and (5). We are now facing the same problem as
with Maxwell theory, and we need some constitutive
relations to close the system of equations. For that purpose,
let us assume an action functional given by an obvious
generalization of (6),

SKR½B� ¼ −
Z

1

2
g0−1M ∧ ⋆Mþ B ∧ ⋆S ð25Þ

with g0 an unknown dimensional parameter and S intro-
duced in the action to describe the sources in analogy with
the Maxwell case. The variation of SKR½B� leads to

δSKR½B� ¼ −
Z

δB ∧ ðg0−1 ⋆ d†Mþ ⋆SÞ þ BT ð26Þ

such that, up to the boundary terms (BT), the equation of
motion follows in either of the two forms

d†M ¼ −g0S or d ⋆M ¼ −g0 ⋆ S: ð27Þ

The analogy with (8) is transparent. Using the duality
relation for the sources, S ¼ − ⋆ S, the constitutive rela-
tion follows,

N ¼ g0−1 ⋆M: ð28Þ

Although the approach using differential forms has the
advantage of a high degree of generality, valid in particular
in the case of curved spacetimes, it is convenient to write

also these expressions in their tensorial forms, or even in a
very traditional vector shape (this was briefly done in flat
spacetime in the Appendix of the original paper [2]). Thus,
we have an antisymmetric third rank field strength tensor
Mλμν which derives from an antisymmetric second-rank
gauge tensor Bμν

Mλμν ¼ ∂λBμν þ ∂μBνλ þ ∂νBλμ: ð29Þ

Mλμν has four independent components while Bμν has six.
This definition leads to the Bianchi equation

∂κMλμν − ∂λMμνκ þ ∂μMνκλ − ∂νMκλμ ¼ 0: ð30Þ

Gauge invariance of the Kalb-Ramond theory is guaranteed
by the following transformation of the gauge field

Bμν → B0μν ¼ Bνμ þ ∂μξν − ∂νξμ ð31Þ

as it can easily be shown.
The free field Lagrangian density is built in analogy to

the Maxwell case, − 1
12
g0−1MλμνMλμν. The coupling of the

gauge field Bμν to external sources requires an antisym-
metric second rank tensor describing the matter currents to
saturate the Lorentz indices, − 1

2
BμνSμν. Such sources

describe extended objects and Kalb-Ramond theory has
a natural application in the context of string theories as we
said in the introduction. The Kalb-Ramond action reads as

SKR½B� ¼
Z

d4xLKR

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

12
g0−1MλμνMλμν þ 1

2
BμνSμν

�
:

ð32Þ

The Euler-Lagrange equation is easily applied to (32),
leading to the equation of motion

1

g0

1ffiffiffiffiffiffi−gp ∂σð
ffiffiffiffiffiffi
−g

p
MσμνÞ ¼ Sμν; ð33Þ

where the antisymmetry (29) of the Kalb-Ramond field
strength tensor has been used.
This equation of motion, together with the antisymmetry

of Bμν, leads to the conservation of the second-rank tensor
current,

∂μð
ffiffiffiffiffiffi
−g

p
SμνÞ ¼ 0: ð34Þ

Rephrased now in the language of ordinary functions and
vectors, we can write equations that look very similar to
the usual Maxwell equations. Let us introduce an effective
3-metric γij (with i, j ¼ 1, 2, 3) via a space-time decom-
position
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ds2 ¼ gμνdxμdxν ¼ g00ðdx0 þ ðg0i=g00ÞdxiÞ2 − γijdxidxj

ð35Þ

with γij ¼ −gij þ g0ig0j=g00 and −g ¼ γg00 with g the
4-spacetime metric determinant and γ that of the 3-metrics.
We define a density κ (for “Kalb”) and a pseudo-vector R
(for “Ramond”) corresponding to two purely spatial differ-
ential forms, respectively a 3-form K and a 2-form R such
that M ¼ R ∧ cdtþ K (here we do not impose negative
signs like in the Maxwell case since there are no stand-
ardized definitions of the fieldsR and κ). This enables us to
write the second Bianchi equation as two equations, d3Rþ
1
c ∂tK ¼ 0 and d3K ¼ 0 (here d3 is the purely spatial
exterior derivative). The components of κ and R are
obtained from the identification κ ¼ 1

6
ϵijkffiffi
γ

p Kijk with Kijk ¼
Mijk and Ri ¼ 1

2
ϵijkffiffi
γ

p M0jk. The first Bianchi identity is then

written as

1

c
1

6
ffiffiffi
γ

p ϵijk∂tKijk −
1ffiffiffi
γ

p ∂ið ffiffiffi
γ

p
RiÞ ¼ 0: ð36Þ

In vector form, we obtain an expression which looks very
similar to that of flat spacetime [2],

1

c
Dtκ − DivR ¼ 0; ð37Þ

with here the divergence operator defined in curved space
[25] as DivR ¼ ð1= ffiffiffi

γ
p Þ∂ið ffiffiffi

γ
p

RiÞ and the time derivative
as Dtκ ¼ ð1= ffiffiffi

γ
p Þ∂tð ffiffiffi

γ
p

κÞ. The second equation following
from Bianchi identity written in 3-dimensional forms does
not have any counterpart there, except that κ is a density.
The inhomogeneous equations also have their vector

counterparts, calling for the introduction of two additional
fields, a vector field T and a scalar field λ, associated res-
pectively to a 1-form T and a zero-form λ which constitute
N ¼ g−10 ⋆M ¼ Tþ λ ∧ cdt. The external sources S ¼
σ þ s ∧ cdt are represented by a pseudovector σ (corre-
sponding to the 2-form σ) and a vector, s (the 1-form s).
We get then the equations of motion d3T ¼ σ and
d3λþ 1

c ∂tT ¼ s. In terms of ordinary fields T and λ,
one has

Curl T ¼ σ; ð38Þ

1

c
DtT −Grad λ ¼ s; ð39Þ

themselves analogs of

∇ ·D ¼ ρ; ð40Þ

∇ ×H − ∂tD ¼ j ð41Þ

in Maxwell theory. The components of the vector T are
those of the one-form T, Ti ¼ 1

2g0

ffiffiffi
γ

p ffiffiffiffiffiffi
g00

p
ϵijkM0jk and the

scalar field λ is defined as λ ¼ − 1
6g0

ffiffiffi
γ

p ffiffiffiffiffiffi
g00

p
ϵijkMijk. The

components of the sources σ are σji ¼ ffiffiffiffiffiffi
g00

p
s0i and those of

s are built from the space components of the two-form s,
sji ¼ ffiffiffiffiffiffi

g00
p

si ¼ 1
2

ffiffiffiffiffiffi
g00

p ffiffiffi
γ

p
ϵijkSjk. The curl of a vector field

in curved space is defined as [25]

CurlTji ¼ ð1= ffiffiffi
γ

p Þϵijk∂jTk; ð42Þ

and the gradient operator is defined ordinarily as
Grad λji ¼ ∂iλ.
There is an interesting observation made by Landau and

Lifshitz [25] in the case of Maxwell electrodynamics:
The reader should note the analogy (purely formal, of

course) with Maxwell equations for the electromagnetic
field in material media. In particular, in a static gravitational
field the quantity

ffiffiffi
γ

p
drop out of the terms containing time

derivatives (…) We may say that with respect of its effect
on the electromagnetic field a static gravitational field plays
the role of a medium with electric and magnetic perme-
abilities ϵ ¼ μ ¼ 1=

ffiffiffiffiffiffi
g00

p
.

It also simplifies the problem here, because then most of
the flat spacetime formulas of vector analysis apply and the
differential operators Dt and Curl or Grad commute with
each other.
The conservation of the Kalb-Ramond charges follows

from the equations of motion and reads as d3σ ¼ 0 and
d3sþ 1

c ∂tσ ¼ 0. In vector formalism, Eq. (38) demands
that σ is divergence free and, taking the curl of (39), we get
a continuity equation of the form (44)

Div σ ¼ 0; ð43Þ

Curl s −
1

c
∂tσ ¼ 0: ð44Þ

The definition of gauge potentials is suggested by the
form of the Bianchi equations above. They suggest the
introduction of a potential 2-form α and a potential 1-form
ϕ such that K ¼ d3α and R ¼ −d3ϕ − 1

c ∂tα. In vector
notation, these translate into two gauge vector potentials α
and ϕ such that the Kalb-Ramond fields are defined in
terms of these as

κ ¼ Divα; ð45Þ

R ¼ −Curlϕ −
1

c
∂tα; ð46Þ

with αi ¼ 1
2
ϵijkffiffi
γ

p αjk the components of the vector α in terms

of those of the 2-form α.
We know that in vector notation, Maxwell theory has in

the vacuum, and in the absence of a gravitational field, the

CLASSICAL KALB-RAMOND FIELD THEORY IN CURVED … PHYS. REV. D 105, 105026 (2022)

105026-5



nice property that there is a simple proportionality between
E and D on one hand and between B and H on the other
hand, these are the constitutive relations in 3D formalism.
Therefore, the four coupled first-order partial differential
Maxwell equations decouple into two second-order equa-
tions known as wave equations. This property in fact hides
a duality relation in terms of forms. The same strategy
can be used in Kalb-Ramond theory, wherefrom g0−1 ⋆
ðR ∧ cdtÞ ¼ T and g0−1 ⋆ K ¼ λcdt, and one deduces the
constitutive relations in the form

g0−1R ¼ T; ð47Þ

g0−1κ ¼ λ: ð48Þ

This leads to the Kalb-Ramond equations, now written only
in terms of the fields R and κ,

DivR −
1

c
∂tκ ¼ 0; ð49Þ

CurlR ¼ g0σ; ð50Þ

Grad κ −
1

c
∂tR ¼ g0s: ð51Þ

One may wonder why only three equations are required
in Kalb-Ramond theory whereas four are needed in
Maxwell’s (once constitutive relations have been used).
This is a natural consequence of Helmholtz decomposition
theorem: Maxwell theory involves two dynamic vector
fields (each known from its curl and divergence), whereas
Kalb-Ramond’s involves one dynamic vector field and one
dynamic scalar field.
Taking the time partial derivative of (49) and using (51)

we get, for the scalar field κ, a nonhomogeneous wave
equation

ΔLBκ −
1

c2
∂2
t κ ¼ g0∇ · s; ð52Þ

with the Laplace-Beltrami operator

ΔLBκ ¼ DivðGrad κÞ ¼ 1ffiffiffi
γ

p ∂ið ffiffiffi
γ

p
γij∂jκÞ: ð53Þ

The wave equation takes the standard form □κ ¼ 0 in flat
empty space, meaning that the scalar field propagates in the
form of waves at the light velocity c. Now, taking the
gradient of (49), the curl of (50), and combining with (51)
also leads to a nonhomogeneous wave equation for the
vector field R,

GradðDivRÞ −CurlðCurlRÞ − 1

c2
∂2
tR

¼ −g0
�
∇ × σ þ 1

c
∂ts

�
: ð54Þ

Again, one retrieves □R ¼ 0 in source-free flat space.

III. THE LINK WITH TOTALLY
ANTISYMMETRIC TORSION

The route for geometric studies of spacetime structure
was opened by Albert Einstein with his general theory of
relativity. It was there that he developed the principle of
general covariance. This principle would be called upon to
become one of the foundations of physics, not only in the
fields of gravitation and electromagnetism but also more
generally with the advent of gauge theories which will
revisit this question. General covariance (under arbitrary
changes of coordinates) is naturally expressed in tensorial
form and the laws of dynamics, which involve fields and
their derivatives, have to face the problem that, in general, a
field derivative is not a tensor. This is repaired by the
introduction of a connection Γσ

μν, which adds a piece to the
derivative to make it a tensor. Consider for example a vector
field Vσ . While ∂μVσ is not a (mixed) second-rank tensor,
the quantity ∂μVσ þ Γσ

μνVμ is such a tensor, provided that
Γσ

μν satisfies appropriate transformation laws under a
change of the coordinates. In the study of gravitation,
Einstein considered metric spacetimes and has chosen to
specify the Levi-Civita connection, given by the Christoffel
symbols (in terms of the derivatives of the metric tensor
gμν). This connection has the characteristic feature to be
symmetric with respect to the exchange of its two lower
indices, Γσ

μν ¼ Γσ
νμ, but this is not a necessary condition

for a connection. When this is not the case, the antisym-
metric part of the connection defines the torsion field

Sσμν ¼ Γσ
νμ − Γσ

μν: ð55Þ

The torsion is, by construction, an antisymmetric tensor. It
comprises 24 independent components and can be separated
into irreducible pieces [26], a vector Sμ ¼ Sσσμ, a pseudo-
vector Aρ ¼ ερσμνSσμν and the remaining 16 components are
stored in a third-rank tensor bμνσ. Various geometric theories
incorporate torsion [3], and the onewhich is relevant for us is
the torsion which derives from a second-rank antisymmetric
gauge field, i.e., following Hammond (e.g., in [3]), we
assume a spacetime for which the torsion field obeys
Kalb-Ramond equations,

Sλμν ¼ Mλμν ð56Þ

as given in Eq. (29) possibly up to proportionality factors. In
this approach, the source of torsion is the spin of elementary
particles.Apretty nice feature of this theory is that contrary to
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the more common contact interaction which does not
propagate [27], if torsion is given by (56), as we have seen
in Eqs. (52) and (54), it obeys wave equations.

IV. KALB-RAMOND STATIC FIELD
IN CURVED SPACETIMES

The Kalb-Ramond fields can be obtained via tensor
calculus (30) and (33), via ordinary vector formalism (37),
(38) and (39), but in order to illustrate the power of exterior
differential calculus, we will consider the static Kalb-
Ramond field created by a localized source distribution
in various spacetimes, assimilated to fixed backgrounds,
using mainly Eqs. (21) and (24). The source of the Kalb-
Ramond field is supposed to be independent of the source
of the gravitational field which is at the origin of the
geometry of each spacetime considered. The question that
we address here is the possibility of a nontrivial vacuum
polarization, i.e., a nontrivial relation between the compo-
nents of the dual form T and those of R. Before starting
the calculation, a comment is needed on the definition of
the form R. Following the standard definition of the
Faraday 2-form in electrodynamics, we have defined the
Kalb-Ramond 3-form asM ¼ R ∧ cdtþ K. This is a natural
definition in Minkowski spacetime, but in an arbitrary
manifold, cdt does not necessarily have an unambiguous
meaning, and, under a change of coordinates, if M remains
unchanged, e.g.,M¼ 1

3!
Mλμνdxλ ∧ dxμ ∧ dxν ¼ 1

3!
Mabcea ∧

eb ∧ ec, this is not the case forR forwhich a particular choice
of coordinate ct was done. One could also define R and K
such that

M ¼ R0 ∧ e0 þ K0 ð57Þ

where e0 is the unit vector1 in the timelike direction of the
cotangent spacetime in an orthonormalized basis of 1-forms.
This coincides with the standard definition in Minkowski
spacetime, but one has to emphasize the fact that R0 and K0
defined inEq. (57) do not, in general, coincidewith theR and
K which follow from M ¼ R ∧ cdtþ K. We will give both
expressions in the forthcoming examples. The components
in the orthonormalized basis are called “physical compo-
nents” by Hartle [28], but there, the physics obviously
appears to be compatible with special relativity, by con-
struction. In particular, there is no vacuum polarizability of
the Minkowski vacuum, so that we will refer to nontrivial
polarizability in the noninertial local coordinate system.

A. Cosmic string in Schwarzschild spacetime

Let us first contemplate the case of a cosmic string
crossing the origin of a Schwarzschild blackhole spacetime.

This is an example of a spacetime characterized by a
singular curvature.
We use the Schwarzschild coordinates ct; r; θ;φ and the

line element

ds2 ¼
�
1 −

2M
r

�
c2dt2 −

�
1 −

2M
r

�
−1

dr2 − r2dθ2

− α2r2sin2 θdφ2 ð58Þ

where α is the cosmic string defect-angle parameter
(α2 ¼ 1–4Gμ=c2 with μ the string stress tensor amplitude).
Instead of the local basis ðcdt; dr; dθ; dφÞ, the tetrad
formalism allows to write the line element in an ortho-
normalized basis ðe0; e1; e2; e3Þ,

ds2 ¼ ðe0Þ2 − ðe1Þ2 − ðe2Þ2 − ðe3Þ2 ð59Þ

with Minkowski metric. Here, the coframe basis vectors
are obtained by inspection, e0 ¼ ð1 − 2M

r Þ1=2cdt, e1 ¼
ð1 − 2M

r Þ−1=2dr, e2 ¼ rdθ, and e3 ¼ αr sin θdφ. Using
the equivalent of Gauss law, (38), which, due to the form
degree is more like an Ampère law for Kalb-Ramond fields,
we can write

Z
Σ
dT ¼

Z
∂Σ

T ¼
Z
Σ
σ ð60Þ

and call Φσ this quantity, by analogy with a flux. Let us
mention again that this quantity is produced by some
charge density σ which is not specified more, and in
particular, which is not the source of the metric (58).
Equation (60) is a counting procedure of the Kalb-Ramond
charges crossing the compact domain Σ: as underlined by
[20], (60) defines a purely topological quantity and must
not depend explicitly on the spacetime geometry (physical
parameters M and α). Assuming cylindrical symmetry in
the Minkowskian coframe, we choose for the surface Σ a
disk of radius ρ ¼ r sin θ with contour ∂Σ. The total KR
charge crossing the disk is characterized by the flux
denoted as Φσ. The 1-form T can be expressed either on
the local basis, or using the dual tetrad basis ðe0; e1; e2; e3Þ
where cylindrical symmetry imposes an expression of the
form T ¼ T3e3. Then, using the relation to the local basis,
e3 ¼ α sin θdφ, one gets

T ¼ T3e3 ¼ T3αr sin θdφ ¼ Tφdφ ð61Þ

with T3 ¼ T3ðρÞ ¼ T3ðr sin θÞ. Therefore one deduces
from (60)

T3ðr sin θÞ ¼ Φσ

2παr sin θ
¼ Φσ

2παρ
; and Tφ ¼ Φσ

2π
:

ð62Þ
1We use the term “vector” meaning an element of a generic

vector space, not an ordinary vector that would be in the tangent
spacetime.
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Now, in absence of the field K, using the relations

M ¼ R0 ∧ e0 ¼ R ∧ cdt ¼ g0 ⋆ N ¼ g0 ⋆ T ð63Þ

and the expression of the Hodge dual in the local co-tetrad
frame (with metric tensor there denoted as ηab),

⋆T ¼
ffiffiffiffiffi
jηj

p
η33T3ϵ3012e0 ∧ e1 ∧ e2; ð64Þ

we can read that

g0 ⋆ T ¼ g0T3e1 ∧ e2 ∧ e0

¼ g0
Tφ

α sin θ
dr ∧ dθ ∧ cdt: ð65Þ

The first line leads to the “Minkwoskian” identification
R0
12 ¼ g0T3, while in the local basis, we can interpret our

result as a nontrivial vacuum polarization, since we can
write

Rrθ ¼ gðr sin θÞTφ ¼ g0
α sin θ

Φσ

2π
ð66Þ

with gðr sin θÞ ¼ g0
α sin θ the analogue of a relative

permittivity.
One may wonder about the robustness of this result with

respect to a change of local coordinates. For that purpose,
we will now consider a cosmic string in a Schwarzschild
spacetime with Israel coordinates [29]. The main interest is
that the metric tensor is not diagonal in this case. The
Schwarzschild plus string metric in Israel coordinates
ðy; x; θ;φÞ reads

ds2 ¼ −r2S

�
4dx

�
y2dx
1þ xy

þ dy

�

þ ð1þ xyÞ2ðdθ2 þ α2sin2θdφ2Þ
�

ð67Þ

where x and y are linked to Schwarzschild coordinates via
t ¼ rSð1þ xyþ lnðy=xÞÞ and r ¼ rSð1þ xyÞ. We have
also added the cosmic string with defect-angle α. The
(opposite of the) metric tensor takes the form

ð−gμνÞ ¼

0
BBBBB@

0 2r2S 0 0

2r2S
4r2Sy

2

1þxy 0 0

0 0 r2Sð1þ xyÞ2 0

0 0 0 r2Sð1þ xyÞ2α2 sin2 θ

1
CCCCCA
:

ð68Þ

and its determinant is

−g ¼ 4r8Sð1þ xyÞ4α2 sin2θ: ð69Þ

The cotetrad vectors are given by

e0 ¼ rS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xy

p
y

dy; ð70Þ

e1 ¼ rS

�
2yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xy

p dxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xy

p
y

dy

�
; ð71Þ

e2 ¼ rSð1þ xyÞdθ; ð72Þ

e3 ¼ rSð1þ xyÞα sin θdφ; ð73Þ

with again Eq. (59) satisfied by this choice. Note that we
specify (by choice) that the 0 coordinate is along y. Again,
in the orthonormalized basis, one has

Z
T ¼ Φσ ¼

Z
T3ðρÞe3 ð74Þ

which requires that

T3ðρÞ ¼
Φσ

2πrSð1þ xyÞα sin θ
¼ Φσ

2παρ
ð75Þ

and, like in Schwarzschild coordinates, Tφ ¼ Φσ=ð2πÞ in
the coordinate basis. The Hodge dual ⋆T is the same as the
first line of equation (65) in the orthonormalized basis, but
it delivers, in the present coordinate basis, the following
expression

Rxθ ¼
2g0r2S
α sin θ

Φσ

2π
; ð76Þ

hence a different “permittivity.” The consequences of the
choice of coordinate basis will be commented in the
discussion.

B. Wiggly cosmic string

Cosmic strings may have a structure, and the case of the
“wiggly” cosmic string is particularly interesting for our
purpose, since the line element acquires a further space
dependence. The presence of wiggles indeed generates a far
gravitational field contribution and averaging the effect of
these perturbations along the string increases the linear
mass density μ̃ and decreases the string tension T̃, (with an
equation of state μ̃ T̃ ¼ μ2), leading the wiggly string to
exert a gravitational field at large distances. We can thus
address here the question of the form of the vacuum
polarization in such a case.
In the weak gravitational field approximation, the lin-

earized line element in the presence of a wiggly string
oriented along the z-axis is given by [30–33]:
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ds2 ¼ ð1þ 8ε ln ðρ=ρ0ÞÞc2dt2 − dρ2

− α2ρ2dφ2 − ð1 − 8ε ln ðρ=ρ0ÞÞdz2; ð77Þ

where the conical deficit-angle associated to the string is
now α2 ¼ 1–4Gðμ̃þ T̃Þ=c2 (with 4Gðμ̃þ T̃Þ=c2 ≪ 1).
The parameter ε defines the excess of mass-energy density,
2ε ¼ Gðμ̃ − T̃Þ=c2. The value ofGðμ̃þ T̃Þ accounts for the
discrepancy between flat and conical geometries, whereas
Gðμ̃ − T̃Þ accounts for the discrepancy between straight
and wiggly strings. The constant ρ0 denotes the effective
string radius [34]. We also consider the limit where
ε ln ðρ=ρ0Þ ≪ 1.
The calculation of T follows the same lines of reasoning

as in the previous section, and one just has a slight
modification due to the use of a different ordering of the
local (cylindrical) coordinates, ðct; ρ;φ; zÞ, which now
demands that T ¼ T2e2, with e2 ¼ αρdφ, thus

T ¼ Φσ

2παρ
e2 ¼ Φσ

2π
dφ: ð78Þ

The dual follows,

⋆T ¼ Φσ

2παρ
dz ∧ dρ ∧ cdt; ð79Þ

hence Rzρ ¼ g0Tφ=ðαρÞ.

C. Chiral cosmic string spacetime

Probably more interesting is the case of a nondiagonal
metric associated with nonzero torsion, axially localized.
As an example, we consider a chiral cosmic string for
which the line element is given by

ds2 ¼ c2dt2 − dρ2 − ρ2dφ2 − ðβdφþ dzÞ2; ð80Þ

where β is the Burgers parameter of the cosmic string. Like
in the previous example, the string at the origin of the form
of the metric is not the source of the KR field that we
calculate. We can also write down the metric tensor

ðgμνÞ ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −ðρ2 þ β2Þ −β
0 0 −β −1

1
CCCA; ð81Þ

which allows building the dual tetrad basis e0 ¼ cdt,
e1 ¼ dρ, e2 ¼ ρdφ and e3 ¼ βdφþ dz.
Due to the use of the same system of local coordinates,

the 1-form T takes the same simple form as for the wiggly
string, T ¼ T2ðρÞe2, and its line integral along the contour
of radius ρ is again transparent

Z
T ¼

Z
T2 e2 ¼

Z
T2ðρÞρdφ ¼ 2πρT2ðρÞ ¼ Φσ: ð82Þ

It follows the same expression (78) on the local coordinate
basis. Then we obtain

g0 ⋆ T ¼ g0T2e3 ∧ e1 ∧ e0

¼ g0
Φσ

2πρ
ðdz ∧ dρ − βdρ ∧ dφÞ ∧ cdt ð83Þ

and, as a result of the nondiagonal character of the metric,
the spacetime of the chiral cosmic string induces a nonzero
vacuum polarization, with anisotropic, space-dependent
polarizability and two nonvanishing components for the
2-form R

Rzρ ¼
g0
ρ
Tφ; ð84Þ

Rρφ ¼ −
g0β
ρ

Tφ: ð85Þ

V. DISCUSSION

It is important to stress that symmetry (here cylindrical
symmetry) dictates the formofT, since the relationdT ¼ σ is
a topological relation (it does not involve the metric tensor),
hence it does not depend on the precise choice of coordinates.
T has the same expression in the coordinate basis in the
examples considered (see, e.g., Eqs. (62) and (78)). On the
other hand,R is obtained via Hodge duality. This means that
the precise formof themetric on the local basis plays a central
role. This is not true in the Minkowskian frame (more
precisely the metric tensor components, there, are constants)
for which one always observes an absence of polarizability.
An interesting feature of the relations between R and T

concerns the property of gauge invariance with respect to
the choice of the coframe. Indeed, the cotetrad basis vectors
define a set of sixteen components, eaμ which obey the
constraint

eaμebνηab ¼ gμν: ð86Þ

There are thus only ten relations among them because the
metric tensor gμν is symmetric. This leaves a freedom, that
is also called gauge freedom, in the orientation of the
orthonormal basis (three rotations and three boosts which
preserve the covariance of the laws of special relativity
under Lorentz transformations). This property is ensured by
the properties of change of bases in a vector space, but it is
instructive for our purpose to study an example. Let us then
consider the case of the chiral cosmic string and, instead
of the previous tetrad, we now propose another choice
ẽ0 ¼ cdt, ẽ1 ¼ cos φdρ − ρ sin φdφ, ẽ2 ¼ sin φdρþ
ρ cos φdφ and ẽ3 ¼ ðβ=ρÞ sin φdρþ ρ cos φdφþ dz.
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In terms of these, the 1-form T now becomes T ¼ T̃1ẽ1 þ
T̃2ẽ2 with T̃1 ¼ − sin φT2 and T̃2 ¼ cos φT2 with no
apparent symmetry. The basis feag is an orthonormalized
“cylindrical” basis while fẽag is a “Cartesian” basis, both
with Minkowski metrics. The former is adapted to the
natural expression of cylindrical symmetry while the
second is not. Nevertheless, it is easy to show also that
Eqs. (84) and (85) remain true.
We have learned enough from the examples above to

draw general conclusions for arbitrary metrics [we will
focus here on the use of local coordinates of “cylin-
drical type” ðct; ρ;φ; zÞ]. We still consider cylindrically
symmetric sources, and as we have argued earlier, this
can have a sensible meaning only in the orthonormalized
basis ea ¼ eaμdxμ of the cotangent spacetime, so here
T ¼ Tμdxμ ¼ T2ðρÞe2. Using the relation e2 ¼ e2μdxμ

between the orthonormalized and the local basis, and
integrating in the former basis along a closed curve at ρ
and z constant, one has

Z
C
T ¼ T2ðρÞ

Z
2π

0

e2φdφ ¼ Φσ ð87Þ

or

T2ðρÞ ¼ Φσ

�Z
2π

0

e2φdφ

�
−1
; Tφ ¼ e2φT2ðρÞ: ð88Þ

In the case where e2φ does not depend on φ (all examples
studied earlier fall into this category, except the “tilde”
rotated basis discussed above), this is simply T2ðρÞ ¼
Φσ=ð2πe2φÞ and Tφ ¼ Φσ=ð2πÞ. Now, in the orthonormal-
ized basis, we have calculated ⋆T several times already and
we pass to the local basis using e3 ¼ e3μdxμ and
e1 ¼ e1νdxν. For the time component, there is a certain
freedom and we set e0 ¼ e0tcdtþ e0idxi to identify a
particular time direction. This defines a general formula

R ¼ g0
Tφ

e2φ
ðe3μe1ν − e3νe1μÞe0tdxμ ∧ dxν: ð89Þ

All previous results are recovered from this general
expression.
One may also wonder whether we can easily generate a

nonzero 3-form K. The discussion above shows that this
will be the case if e0 comprises space terms in e0idxi. An
example is the spinning cosmic string [35]

ds2 ¼ ðcdt − adφÞ2 − dρ2 − α2ρ2dφ2 − dz2 ð90Þ

which couples the time coordinate to the angle of rotation
(here around z) and for which T is still given by (78). The
presence of dφ in e0 ¼ cdt − adφ then leads to two terms
in ⋆T,

g0 ⋆ T ¼ R ∧ cdtþ K with

R ¼ g0
Tφ

ρ
dz ∧ dφ ð91Þ

K ¼ −g0
aTφ

ρ
dρ ∧ dφ ∧ dz; ð92Þ

and, as announced, a nonzero K emerges.
Other particular metrics not considered in this paper

could also be of interest. Let us mention the case of
Kleinian metrics with specific signature alterations leading
to the emergence of two time components [36,37]. This
may be of specific interest in the context of the identi-
fication of the 2-form R.
Finally, we wish to close this discussion on a point raised

in the course of this article. The Kalb-Ramond field is a
candidate to describe the torsion of spacetime. Here we
have assumed various background spacetimes in which we
have calculated the Kalb-Ramond fields, neglecting a
possible backreaction on the geometric structure of space-
time. An interesting extension of this work would be to
consider for example the free motion of test particles in the
original background spacetime modified by the induced
torsion. In particular, due to the presence of torsion, the
geodesic curves would now differ from the autoparallel
curves.
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