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Interactions growing slower than a certain exponential of the square of a scalar field are well behaved
when evolved under the functional renormalization group linearized around the Gaussian fixed point. They
satisfy properties usually taken for granted, and reproduce standard perturbative quantization. However, the
more challenging effects appear, the more interactions grow faster than this. We show explicitly that firstly,
the flow no longer splits uniquely into operators of definite scaling dimension; secondly, (linearized) flows
to the infrared can end prematurely in a singularity; and finally, new interactions can spontaneously appear
at any scale.
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I. INTRODUCTION

In this paper, we will be mostly concerned with the
functional (also known as exact) renormalization group
(RG) linearized around the Gaussian fixed point. One
might think that everything is known about such a simple
situation. However, we show that new effects appear once
interactions are allowed to grow as fast as an exponential
of the square of the field (for large field). These effects
challenge our expectations of the RG. As the speed of
growth is increased, the first effect to appear is that the
linearized flow no longer splits uniquely into a sum over
eigenoperators (operators of definite scaling dimension).
The next effect to appear is that the linearized flows toward
the infrared (IR) can end prematurely in a singularity (after
which the flow ceases to exist). These cases include linear
combinations of the hypothesized Halpern-Huang inter-
actions [1–23]. Finally, if interactions growing faster than
any exponential of the field-squared are allowed, then the
effective action at one point on the flow no longer
determines its form at lower scales, even at the linearized
level. New interactions can spontaneously appear at any
lower scale.
For clarity and simplicity, we focus on the linearized

effective potential Vðφ;ΛÞ for a single component
scalar field φ (with standard kinetic term), where Λ is
the effective cutoff, and choose four (Euclidean) dimen-
sions. The effective action is then simply

Z
d4x

�
1

2
ð∂μφÞ2 þ Vðφ;ΛÞ

�
: ð1:1Þ

However, it will be clear that the qualitative conclusions
are the same in any dimension greater than two,1 for more
general field theories (e.g., multi-component scalar fields)
and for general local interactions (thus also containing
space-time derivatives). Although there are different ver-
sions of the flow equation [25–30] and different choices of
the cutoff profile, at the linearized level they all collapse to
the same thing. For the effective potential Vðφ;ΛÞ, we have
(e.g., see [23] or Sec. 2 of Ref. [31])

Λ∂ΛVðφ;ΛÞ ¼ −
Λ2

2a2
V 00ðφ;ΛÞ; ð1:2Þ

where prime stands for ∂φ. At the linearized level, there is
no anomalous dimension. The only quantum correction
is the tadpole integral hφðxÞφðxÞi of the massless scalar
field. The effective ultraviolet (UV) regularized version is
Λ2=2a2 (independent of x), where the Λ2 dependence is
guaranteed by dimensions and the dimensionless parameter
a captures the entire dependence on the regularization
scheme in this situation.
The point of a flow equation is that it tells us how the

effective action changes as we lower the cutoffΛ. Choosing
some initial2 potential Vðφ;Λ0Þ at some high scaleΛ ¼ Λ0,
we can follow its evolution at the linearized level as we
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1In two dimensions, the engineering dimension of a scalar field
vanishes. The linearized RG leads instead to Sine-Gordan models.
This was derived in [24], at Oð∂0Þ (which at the linearized level is
exact).

2Basically, this is the bare potential. See Refs. [32,33] for the
precise relationship.
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integrate out all the modes by solving (1.2). As Λ → 0, we
recover the physical potential Vðφ; 0Þ.
We stress that at the linearized level, the flow equa-

tion (1.2) is exact if we start with only potential inter-
actions. No other approximation has been applied apart
from linearization. In particular the result should not be
confused with use of the so-called Local Potential
Approximation [34]. The exact quantum correction arises
from a term

Z
d4xd4yhφðxÞφðyÞi δ2

δφðxÞδφðyÞ
Z

d4z VðφðzÞ;ΛÞ

¼ hφðxÞφðxÞi
Z

d4xV 00ðφðxÞ;ΛÞ; ð1:3Þ

so no terms are generated other than corrections to the
effective potential.
Of course one should question if linearization is appro-

priate. We will come back to this in Sec. VI of the
conclusion. For the moment, we just note that this is standard
practice, being the first step in deriving the eigenoperators
(e.g., see the reviews [25,35–44]). Our exposition follows
[23,31]. We recast in dimensionless terms using the cutoff,
φ ¼ φ̃Λ, V ¼ ṼΛ4, and then separate variables, leading to a
solution

Ṽðφ̃;ΛÞ ¼ g̃ðΛÞṼðφ̃Þ; ð1:4Þ

where g̃ is the scaled coupling

g̃ðΛÞ ¼ g
Λλ ; ð1:5Þ

λ being the RG eigenvalue and g a constant of dimension λ.
According to (1.5), this linearized coupling grows, stays
constant, or shrinks, as we flow to the infrared, i.e., the
coupling is relevant, marginal, or irrelevant, depending on
whether λ is positive, zero, or negative, respectively. The
function Ṽðφ̃Þ satisfies the eigenoperator equation

λṼðφ̃Þ þ φ̃Ṽ 0 − 4Ṽ ¼ Ṽ 00

2a2
; ð1:6Þ

where prime is now the differentiation with respect to φ̃.
The general nonsingular solution of (1.6) is a linear

combination of the Kummer M functions [45–47]:

ωλðφ̃Þ ≔ M

�
λ

2
− 2;

1

2
; a2φ̃2

�
; φ̃M

�
λ

2
−
3

2
;
3

2
; a2φ̃2

�
:

ð1:7Þ

These are in fact entire functions of φ̃, the first (second)
being an even (odd) function of φ̃. For simplicity, we will
mostly focus on the even eigenoperators and as in [23],
we call them ωλðφ̃Þ.

For λ ¼ 4 − n, with n being an even (odd) non-negative
integer, the first (second) solution is proportional to a
Hermite polynomial. We normalize these polynomials as3

Onðφ̃Þ ¼ Hnðaφ̃Þ=ð2aÞn ¼ φ̃n − nðn − 1Þφ̃n−2=4a2 þ � � � :
ð1:8Þ

The (scaling) dimension of the operatorOn is thus 4 − λ ¼ n,
coinciding with the engineering dimension ½φn� of its top
term. The lower powers appear due to the tadpole corrections.
At the nonlinear level, expanding over these On operators
reproduces perturbation theory [23,25,31,35–44].
The remaining eigenoperator solutions are the hypoth-

esized Halpern-Huang (HH) interactions [1–23]. They
attract interest especially because the λ > 0 operators
appear to offer relevant interactions that would allow
genuine interacting continuum limits for scalar fields (such
as the Higgs field) in four space-time dimensions. They
grow like ea

2φ̃2

for large field. More precisely, we have for
the even operators that asymptotically

ωλðφ̃Þ ∼
ffiffiffi
π

p
Γðλ=2 − 2Þ jφ̃j

λ−5ea
2φ̃2

; as φ̃ → �∞ ð1:9Þ

(λ ≠ 4 − 2n, with n being a non-negative integer).
It will be useful for us to note that at λ ¼ 5þ n (n being

a non-negative integer), the HH operators are up to
normalization given by4

Onðφ̃Þ≔ ea
2φ̃2

Hnðiaφ̃Þ=ð2iaÞn
¼ ea

2φ̃2ðφ̃nþnðn−1Þφ̃n−2=4a2þ���Þ; ðλ¼5þnÞ:
ð1:10Þ

To prove this, note that after substituting Ṽðφ̃Þ↦ Ṽðφ̃Þea2φ̃2

into (1.6) and simplifying (1.6), one recovers the eigenop-
erator equation again but with λ replaced by 9 − λ and a
replaced with ia [31]. This new equation is therefore solved
by (1.8) with a replaced by ia, and λ ¼ 5þ n.
The eigenoperator equation is of the Sturm-Liouville

type. The corresponding Sturm-Liouville (SL) measure is

e−a
2φ̃2

: ð1:11Þ

Perturbations Ṽðφ̃Þ that are square integrable under this
measure are particularly well behaved. We start by review-
ing these properties. We then prove that there are solutions
to the linearized flow equation (1.2) that start inside this
space, stay inside this space, and have all the desired

3Kummer functions are normalized such that M ¼ 1 at φ̃ ¼ 0.
4Note that these are indexed by a superscript in contrast to the

(1.8). These are the analytic continuation of δnðφ̃Þ operators [31]
under a ↦ ia. See Ref. [31] for more properties.
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properties that are usually taken for granted. In particular,
the linearized flow of the effective interaction is then
unique and can be split uniquely into a convergent sum
over eigenoperators. The point of proving this is to contrast
it with solutions that lie outside of this space. As we will
see, the further we move outside of this space, the less these
properties can be taken for granted.

II. SL PERTURBATIONS

Let us refer to perturbations that are square integrable
under the SL measure as “SL perturbations” and the space
of such perturbations as the “SL space”.5 Mathematically
this space is a Hilbert space (which should not, however,
be confused with state space in quantum mechanics). The
eigenoperator solutions in the SL space are the Hermite
polynomials (1.8). In this space they are orthonormal

Z
∞

−∞
dφ̃ e−a

2φ̃2

Onðφ̃ÞOmðφ̃Þ ¼
1

a

�
1

2a2

�
n
n!

ffiffiffi
π

p
δnm; ð2:1Þ

and complete. To see what this implies, start with some
initial perturbation V ¼ Vðφ;Λ0Þ at an initial scale
Λ ¼ Λ0. If Vðφ;Λ0Þ grows slower than

1ffiffiffiffiffiffijφjp exp

�
a2φ2

2Λ2
0

�
ð2:2Þ

as φ → �∞, then it is inside the SL space. Then com-
pleteness means we are guaranteed a convergent expansion
over the operatorsOn in the square-integrable sense (which
means it converges in the usual point-wise sense almost
everywhere). Explicitly, if we define the coefficients

g̃nðΛ0Þ ¼
affiffiffi
π

p ð2a2Þn
n!

Z
∞

−∞
dφ̃ e−a

2φ̃2

Onðφ̃ÞṼðφ̃;Λ0Þ; ð2:3Þ

then we are guaranteed that the norm-squared of the
remainder

Z
∞

−∞
dφ̃ e−a

2φ̃2

�
Ṽðφ̃;Λ0Þ −

XN
n¼0

g̃nðΛ0ÞOnðφ̃Þ
�2

→ 0

as N → ∞ ð2:4Þ

vanishes as we send N → ∞. Taking the limit, we have a
well-defined expansion

Ṽðφ̃;Λ0Þ ¼
X∞
n¼0

g̃nðΛ0ÞOnðφ̃Þ: ð2:5Þ

Notice that these coefficients g̃nðΛ0Þ are defined by (2.3)
and are not yet expressed in terms of dimensionful
couplings. However, if we now define dimensionful cou-
plings gn by writing

g̃nðΛÞ ¼ gnΛn−4 ð2:6Þ

(in particular at Λ ¼ Λ0), then the result builds in the
separation of the variables solution (1.4). Thus the expansion

Ṽðφ̃;ΛÞ ¼
X∞
n¼0

g̃nðΛÞOnðφ̃Þ ð2:7Þ

provides the solution to the flow equation for the given initial
condition V ¼ Vðφ;Λ0Þ. Furthermore by orthonormality
(2.1), these g̃nðΛÞ are also given by

g̃nðΛÞ ¼
affiffiffi
π

p ð2a2Þn
n!

Z
∞

−∞
dφ̃ e−a

2φ̃2

Onðφ̃ÞṼðφ̃;ΛÞ ð2:8Þ

at these lower scales. Finally (2.7) still converges at these
lower scales. To prove this,we use the orthonormality relation
(2.1) together with (2.6) to compute the norm-squared

Z
∞

−∞
dφ̃ e−a

2φ̃2

Ṽ2ðφ̃;ΛÞ ¼
ffiffiffi
π

p
Λ8a

X∞
n¼0

n!g2n

�
Λ2

2a2

�
n

: ð2:9Þ

Since the right hand side (RHS) converges for Λ ¼ Λ0, the
radius of convergence is greater than or equal to Λ0, and
therefore it continues to converge for all 0 < Λ ≤ Λ0.
Therefore, we have proven that Ṽðφ̃;ΛÞ remains in the SL
space asΛ is lowered. This in turn implies that the equivalent
bound to (2.2) remains satisfied at lower scales, i.e., for all
Λ ≤ Λ0 we have proven that Vðφ;ΛÞ grows slower than

1ffiffiffiffiffiffijφjp exp

�
a2φ2

2Λ2

�
ð2:10Þ

as φ → �∞.
Writing the expansion over eigenoperators (2.7) instead

in dimensionful terms

Vðφ;ΛÞ¼
X∞
n¼0

ΛngnOnðφ=ΛÞ

¼
X∞
n¼0

gnðφn−nðn−1ÞΛ2φn−2=4a2þ���Þ; ð2:11Þ

the expansion converges for all 0 ≤ Λ ≤ Λ0, i.e., also in the
physical limit Λ → 0. Notice that this means that the gn

5It has been studied within model approximations (which,
however, are exact at the linearized level) in Ref. [23], seen also
[21,22], and exactly in Ref. [31]. In the following, we also use
insights from the behavior for the negative kinetic term (see
footnote 4). However, we keep the exposition self contained.
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are just the Taylor expansion coefficients of the physical
potential Vðφ; 0Þ (at the linearized level):

Vðφ; 0Þ ¼
X∞
n¼0

gnφn: ð2:12Þ

In fact, Vðφ; 0Þ is an entire function, the RHS converging
for all real φ. This follows from (2.9) since convergence of
its RHS requires that the gn vanish faster than 1=

ffiffiffiffiffi
n!

p
for

large n.
Substituting (2.8) into (2.7) for the case Ṽðφ̃;Λ0Þ ¼

Ṽ0ðφ̃Þ, we have

Vðφ;ΛÞ ¼
Z

∞

−∞
dφ0GΛ;Λ0

ðφ − φ0ÞV0ðφ0Þ; ð2:13Þ

where the Green’s function G is given by its spectral
expansion:

GΛ;Λ0
ðφ−φ0Þ ¼

a
Λ0

ffiffiffi
π

p
X∞
n¼0

1

n!

�
2a2Λ
Λ0

�
n

On

�
φ

Λ

�
On

�
φ0

Λ0

�
:

ð2:14Þ

We can get it in closed form by recognizing that the flow
equation (1.2) is the heat diffusion equation in disguise.
Indeed, introducing the “time”

T ¼ Λ0
2 − Λ2; ð2:15Þ

we get precisely the heat diffusion equation for diffusion
coefficient 1=4a2,

∂
∂T Vðφ; TÞ ¼ 1

4a2
V 00ðφ; TÞ; ð2:16Þ

and thus from the well-known form of its Green’s function
(e.g., see [48]) we find

GΛ;Λ0
ðφ − φ0Þ ¼

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðΛ2

0 − Λ2Þ
p exp

�
−
a2ðφ − φ0Þ2
Λ2
0 − Λ2

�
;

ðΛ < Λ0Þ: ð2:17Þ

Note that as a function of φ and Λ, GΛ;Λ0
ðφ − φ0Þ satisfies

the flow equation (1.2) for Λ < Λ0, as it must by (2.13), but
which can also be checked explicitly. In fact, it evidently
satisfies the flow equation for all Λ ≠ Λ0. However, since
GΛ;Λ0

ðφ − φ0Þ → δðφ − φ0Þ as Λ → Λ0, and is pure imagi-
nary for Λ0 > Λ, this representation only makes physical
sense for Λ ≤ Λ0, reflecting the fact that (2.16) is parabolic,
so that the Cauchy initial value problem is only well
defined in the positive T direction, i.e., for RG flows in the
IR direction.

In fact, while the linearized RG flows can exist all the
way toΛ → ∞ [finite sums over the polynomials (2.7) such
that gn ¼ 0 for n > nmax are examples], typically they
extend only up to a finite range, failing at some higher
critical scale. An example is provided by starting at Λ ¼ Λ0

with the bare potential

V0ðφÞ ¼ A1 exp

�
−
φ2

μ21

�
þ A2 exp

�
−
φ2

μ22

�
; ð2:18Þ

where the Ai are constants of dimension four and we set
0 < μ1 < μ2. It is easy to see from (2.17) that this isffiffiffi
π

p
μ1A1GΛ0;Λ1

ðφÞ þ ffiffiffi
π

p
μ2A2GΛ0;Λ2

ðφÞ, where the Λi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
0 þ a2μ2i

p
. Therefore, the solution to the flow

equation is

Vðφ;ΛÞ ¼ ffiffiffi
π

p
μ1A1GΛ;Λ1

ðφÞ þ ffiffiffi
π

p
μ2A2GΛ;Λ2

ðφÞ ð2:19Þ

for all scales Λ < Λ1. However, as Λ approaches Λ1 from
below,

Vðφ;ΛÞ → ffiffiffi
π

p
μ1AδðφÞ þ

ffiffiffi
π

p
μ2A2GΛ;Λ2

ðφÞ; ð2:20Þ

after which the flow ceases to exist. If we persist in trying to
use it for Λ > Λ1, we find a potential that is now complex.
This is also a generic feature. To see this (for simplicity),

assume a potential that is square integrable [such as is
the case for (2.18)]. Then from the flow equation (1.2),
we see that

Λ
∂
∂Λ

Z
∞

−∞
dφV2ðφ;ΛÞ ¼ Λ2

a2

Z
∞

−∞
dφ fV 0ðφ;ΛÞg2; ð2:21Þ

by integration of parts. Since the right hand side is positive,
the integral over V2 can only increase asΛ increases, in turn
increasing the right hand side even more. The integrals
diverge at the singularity. The only way the integral over V2

can be finite once Λ is above this is if the right hand side
then contributes an infinitely negative amount. But since
the right hand side is the integral of a square, this can only
happen if V is no longer real.

III. ALTERNATIVE EXPANSIONS

We recall briefly the physical importance of being able
to split the linearized flow uniquely into irrelevant,
marginal, and relevant parts, as implied by (2.7). It leads
to universality of the continuum limit since the latter is
parameterized only by the few marginal and relevant
operators [25] (e.g., see [35]). However, once we violate
the bound (2.10) (and are thus outside the SL space), it is
no longer possible to split the linearized flow uniquely into
relevant and irrelevant parts, at least in a way that holds for
all points on the flow. A perturbation can start outside the
SL space, where it can be expanded in HH interactions
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(1.7) and then, at lower scales, enter the SL space where
instead it is expanded in the polynomial eigenoperators.
These two expansions can disagree about what parts of the
flow are relevant.
For example, consider the Green’s functionGΛ;Λ0

ðφÞ but
where we replace Λ0 with iμ. Since GΛ;Λ0

ðφÞ solves the
flow equation when Λ ≠ Λ0, it also solves it for any μ > 0.
Discarding

ffiffiffi
π

p
and reintroducing the dimension four

constant, A, we thus have the solution

Vðφ;ΛÞ ¼ μaAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Λ2

p exp

�
a2φ2

μ2 þ Λ2

�
: ð3:1Þ

Notice that while Λ > μ, this solution violates the bound
(2.10). Now we Taylor expand it in μ, yielding odd powers
of μ, and thus by dimensions,

Ṽðφ̃;ΛÞ ¼ aA
X∞
n¼0

μ2nþ1

Λ2nþ5
υ̃nðφ̃Þ: ð3:2Þ

Since the RHS solves the flow equation for all μ, it must be
that the Λ−2n−5υ̃nðφ̃Þ separately solve the flow equation.
We recognize (from both the eigenvalue and the asymptotic
behavior) that these are proportional to the HH interactions
defined in (1.10), and therefore

Vðφ;ΛÞ ¼ A
X∞
n¼0

cnðaμ=ΛÞ2nþ1O2nðφ=ΛÞ; ð3:3Þ

where the cn are numbers. In complex μ space, (3.1) is
analytic except at μ ¼ �iΛ. Thus the series above con-
verges for all φ and for all Λ > μ.
On the other hand, when Λ < μ, we see that the growth

for large φ lies inside the bound (2.10), and thus that the
solution lies inside the SL space. Therefore, here we
can write the solution (3.1) uniquely as a series expansion
over the polynomial eigenoperators Onðφ̃Þ. Recalling
(2.12), we can read off the conjugate couplings from the
Taylor expansion of Vðφ; 0Þ. Thus using (2.11), we have
the expansion

Vðφ;ΛÞ ¼ aA
X∞
n¼0

1

n!

�
aΛ
μ

�
2n
O2n

�
φ

Λ

�
; ð3:4Þ

which converges for all φ and for allΛ < μ. [The expansion
can also be derived directly from (2.14) on using properties
of Hermite polynomials.]
We thus have two equivalent descriptions of the same

flow, but with apparently contradictory RG behavior. In the
former case (3.3), one would deduce that the flow involves
only relevant couplings, since in the expansion all the
eigenoperators are relevant. In the latter case (3.4), how-
ever, all the eigenoperators are irrelevant apart from the
first three.

IV. SINGULAR FLOWS

We have already seen at the end of Sec. II that flows
upwards can end in a singularity. This is not unexpected;
there is no reason a priori why a freely chosen effective
action Vðφ;Λ0Þ should be the result of integrating out
modes starting with some potential Vðφ;Λ1Þ at a higher
scale Λ1 > Λ0. However, once we are even further outside
the SL space, it is also the case that linearized flows towards
the IR may end in a singularity. This can happen if Vðφ;ΛÞ
grows faster than the square of the bound (2.10) (as we
explain in the next section). The solution

Vðφ;ΛÞ ¼ μaAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − μ2

p exp
�

a2φ2

Λ2 − μ2

�
; ðΛ > μÞ ð4:1Þ

will illustrate this behavior. It is just the previous solution
(3.1) after replacing μ with iμ, and dividing by i.
Comparing to the bound (2.10), we see that (4.1) indeed
grows faster than its square (for all Λ > μ). Mapping
from (3.3), we see that it has a convergent HH expansion
in this domain:

Vðφ;ΛÞ ¼
X∞
n¼0

ð−Þncnðaμ=ΛÞ2nþ1O2nðφ=ΛÞ ð4:2Þ

(the cn being the same numbers as before). However, we
see from (4.1) that it ends in a singularity as Λ → μ, where
it diverges for all values of φ. To be clear, we emphasize
that since it diverges everywhere, there is no sense in which
it can still be regarded as a solution once we reach Λ ¼ μ. If
we nevertheless cavalierly attempt to continue the solution
below this point, the solution becomes pure imaginary.
Notice that (4.1) is proportional to the Green’s function

GΛ;μðφÞ continued above its domain of validity. A generic
solution illustrating these properties would follow from the
Green’s function representation (2.13) if we choose V0ðφ0Þ
to be integrable, imaginary, and of compact support. Then

Vðφ;ΛÞ ¼
Z

∞

−∞
dφ0 GΛ;μðφ − φ0ÞV0ðφ0Þ ð4:3Þ

is a solution that is real and well behaved for Λ > μ, but
which diverges everywhere as Λ → μ from above.

V. NONUNIQUE FLOWS

In the Wilsonian RG literature, it is taken for granted that
the solution to the flow equation is unique once the initial
effective action is specified as Vðφ;Λ0Þ ¼ V0ðφÞ. In fact,
this property is true for solutions only if they grow
sufficiently slowly for large φ.
Of course by construction the solution expanded over

the eigenoperators Onðφ̃Þ (2.7), (2.11), or written as the
convolution (2.13), is unique. While the former makes
sense only if the initial perturbation V0ðφÞ grows slower
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than the bound (2.2), the latter converges for a larger space of
initial perturbations V0ðφÞ. From the explicit form of the
Green’s function (2.17), the convolution form of the solution
converges for all Λ ≤ Λ0, provided V0ðφÞ is integrable and
grows slower than the square of the bound (2.2).
Note that these properties are consistent with our

previous examples. Example (3.1) lies outside the bound
(2.10) for Λ > μ and therefore does not have an expansion
over the On. However, it lies inside the square and the
bound. Therefore, it has a convergent Green’s function
representation which gives a nonsingular flow to the IR.
On the other hand, for any Λ > μ, the example (4.1)
violates both the bound (2.10) and its square. Therefore,
it can neither be expanded over the On nor does it have a
convergent Green’s function representation. This is
reflected in the fact that actually the solution becomes
singular as Λ → μ from above.
Even though the Green’s function construction (when

convergent) yields a unique solution, this does not mean it
is the only solution. However, it is the only solution if we
restrict the solution space to Vðφ;ΛÞ that grow slower than
some exponential of φ2, i.e., to solutions that, for all
0 ≤ Λ ≤ Λ0, grow slower than

expðBφ2Þ; ð5:1Þ

for some fixed (sufficiently large) positive constant B. The
proof follows from the equivalence (2.15), (2.16) to the heat
equation, since uniqueness of such bounded solutions is
proven for the latter. E.g., see Theorem 7 of Sec. 2.3 in
Ref. [49] where the proof is the result of applying the
maximum principle together with some careful limits.

Now, we show that solutions are no longer unique if they
are allowed to grow faster than any such exponential (5.1).
In this case one can have two solutions, V1ðφ;ΛÞ and
V2ðφ;ΛÞ, to the flow equation (1.2) which agree for all
scales Λ ≥ μ, but disagree once Λ < μ. Since the flow
equation is linear, this is equivalent to the statement that
their difference, Vðφ;ΛÞ ¼ V1ðφ;ΛÞ − V2ðφ;ΛÞ, is a non-
trivial solution that nevertheless vanishes identically at all
scales Λ ≥ μ. Using the equivalence (2.15), (2.16) and
following Tychonoff [50], we show that

Vðφ;ΛÞ ¼ v
X∞
k¼0

1

ð2kÞ!
�
2aφ
μ

�
2k
gðkÞ

�
μ2 − Λ2

μ2

�
ð5:2Þ

is such a solution (v being a proportionality constant of
dimension four). It is constructed from the kth derivatives
of the function

gðtÞ ¼ e−t
−α

for t > 0

¼ 0 for t ≤ 0 ð5:3Þ

where one must choose the parameter α > 1. Note that gðtÞ
and all its derivatives are continuous at t ¼ 0, so in the
series (5.2), each term vanishes smoothly as Λ → μ from
below and of course vanishes identically for all Λ ≥ μ. It is
straightforward to verify by direct substitution that (5.2) is
indeed a (formal) solution of the flow equation (1.2). It
would only be a formal solution, however, unless one can
show that the series (5.2) converges. In fact, the series is
absolutely convergent, cf., Appendix [50,51]. From that
analysis, one also sees that V stays within the envelopes

FIG. 1. The α ¼ 2 Tychonoff solution in units of v and μ=a. On the left, it is plotted for Λ ¼ 0 (red), 0.6 μ (green), 0.7 μ (blue), and
0.8 μ (black), and on the right it is plotted for Λ ¼ 0.9 μ.
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jVðφ;ΛÞj ≤ jvj exp
�

4a2φ2

ðμ2 − Λ2Þr − FðrÞ
�

μ2

μ2 − Λ2

�
α
�

for Λ < μ: ð5:4Þ

These envelopes are parameterized by an 0 < r < 1 which
additionally must be chosen so that

Reð1þ reiθÞ−α ð5:5Þ
is bounded below by a positive number FðrÞ for all
0 ≤ θ < 2π (see Appendix). Note that these envelopes
all exceed the bound (5.1) for Λ sufficiently close to μ
(whatever we choose for B) but, since α > 1, for any fixed
φ they vanish as μ → Λ. This demonstrates that Vðφ;ΛÞ
also vanishes as μ → Λ (in fact, uniformly for bounded
complex φ).
As Λ is lowered through the critical point Λ ¼ μ, the

Tychonoff solution (5.2) takes the form of a divergent
wave-packet that comes in from infinite φ (see Fig. 1).
Lowering Λ still further, the solution becomes less oscil-
latory. At values of φ (much less than the wave-packet
position), we still have V ≈ 0, while for values φ, much
larger than the wave-packet position, V rapidly tends to v.
[The fact that the series in (5.2) tends to 1 as φ → ∞

seems far from obvious, but can be convincingly demon-
strated numerically. Individual terms in (5.2) become very
large but cancel each other to a high degree. For example,
for the point φ ¼ 3.8 μ=a in the right hand plot in Fig. 1,
individual terms grow to 1045v. To get accurate results
required high digits accuracy and many terms, e.g., 90
digits and close to 300 terms for the right hand plot.
Numerically, we established that V → v for large φ by
working to even greater accuracy. For example, for
Λ ¼ 0.6 μ we followed the solution out to φ ¼ 16 and
established that there, V ¼ 0.9999v to four decimal places.
However, this required working to 244 digits accuracy and
summing 1230 terms.]

VI. CONCLUSIONS

We summarize our main findings as follows. Nonsingular
solutions Vðφ;ΛÞ to the linearized flow equation (1.2), that
grow slower than (2.10),

1ffiffiffiffiffiffijφjp exp
�
a2φ2

2Λ2

�
; ð6:1Þ

are square-integrable under the Sturm-Liouville measure.
They can be expanded over polynomial eigenoperators, the
Hermite polynomials (1.8), with the series converging in the
square integrable sense. The flow towards the IR is unique and
nonsingular. Generically, however, flows towards the ultra-
violet fail at a singularity, after which the solution no longer
exists, at least as a real solution. We proved this in Sec. II.
The uniqueness of the expansion over eigenoperators is

an important property since it allows for the universality

of the continuum limit, this being parameterized by the
marginal/relevant couplings that can be uniquely identified
in this expansion. However, if solutions grow at large φ in a
way such as to exceed the above bound, they need no
longer have a unique expansion over eigenoperators. In
Sec. III, we demonstrated this by the solution (3.1). It has a
convergent expansion over the HH eigenoperators (1.10)
for Λ > μ, such that all are relevant, but has a convergent
expansion over the polynomial eigenoperators (1.8) when
Λ < μ, such that all but three of them are irrelevant.
If the solution grows faster than the square of the above

bound, the flow towards the IR can end in a singularity
and thus lead to flows that cannot be completed (i.e., such
that there is an obstruction to integrating out all the modes).
We saw this in Sec. IV, where we also saw that a convergent
expansion over HH eigenoperators can lead to such
singularities and thus incomplete flows. In Sec. V, we
related this to the fact that solutions that grow faster than
the square of the above no longer have a convergent
Green’s function representation.
Finally, in Sec. V we saw that if we allow growth faster

than any exponential eBφ
2

(with fixed constant B), then
solutions are no longer uniquely determined by the initial
“bare” potential Vðφ;Λ0Þ. New interactions can sponta-
neously appear at lower scales through “Tychonoff” wave-
packets that travel in from φ ¼ ∞.
It is tempting to try and find a physical rôle for such an

effect, just as it was for the HH eigenoperators [1–20] (see
our discussion in Sec. I), and indeed it is tempting to search
for physical meaning in the other challenging effects we
have just summarized. However, our objections [21–23] to
HH interactions apply equally well to all these effects. In
particular, if we use the flow equation for the Legendre
effective action with IR cutoff [28–30]

∂
∂ΛΓ½φ� ¼ 1

2
tr

�
Rþ δ2Γ

δφδφ

�−1 ∂R
∂Λ ; ð6:2Þ

then for any interaction that exceeds (6.1), the right hand side
is forced to vanish at large φ, no matter how small we make
the interaction at any finite φ [23]. It follows that working
with the linearized flow equation (1.2) is not justified at
large φ. Instead, at sufficiently large φ, the flow equation
collapses to ∂ΛΓ½φ� ¼ 0, i.e., mean-field evolution takes
over such that, in fact, the action is frozen out and
independent of Λ. For interactions that grow at large field
like eBφ

2

, for some B, since they are frozen out, we find that
at scales Λ < a=

ffiffiffiffiffiffi
2B

p
they will again be inside the bound

(6.1) and thus have “fallen” back into the SL space where
they can be expanded over the polynomial eigenoperators, as
in (2.11) [21–23]. Interactions that grow faster than eBφ

2

for
any B6, do not fall back into the SL space, but nevertheless

6For example V ∼ eCφ
4

.
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their exact evolution is very different from that described by
the linearized flow equation (1.2).
We finish with more general remarks. Firstly, one has to

bear in mind that a linearized perturbation of the fixed point
action might be redundant [52,53]. Being reparameteriza-
tions, such perturbations about the Gaussian fixed point
would have to contain □φ as a factor. Since our perturba-
tions involve only an effective potential, we know that none
of them are redundant.
Secondly, beyond the linearized level, we need to worry

about stability. Interactions that are unbounded from below
are clearly dangerous (at the nonperturbative level). In this
paper, we have for simplicity focused on even interactions.
These are stable provided we choose the sign so that they
are positive for large field.
Thirdly, we have concentrated exclusively on Wilsonian

RG linearized around the Gaussian fixed point. This allows
us to be completely rigorous. But it is natural to expect this
at the qualitative level our conclusions hold more generally.
In our earlier work, we used the Local Potential

Approximation [34,54] and its generalization to derivative
expansion approximations [22,24,35,55] to analyze non-
perturbative fixed points and their perturbations. Although
such approximation schemes are uncontrolled, in practice
they yield reasonably accurate results [35–44]. Around such
nonperturbative fixed points Γ�, the second derivative
term in the linearized flow equation, that is the analogue
of the right hand side in (1.2), now has a coefficient that
depends on the fixed point action itself (through the δ2φΓ�
terms above). Solving for the corresponding Sturm-Liouville
measure, we found that SL perturbations (ones that are
square-integrable under the SL measure) grow slower than

φ̃q expðcφ̃pÞ ð6:3Þ
at large field (where c > 0, p > 0, and q are nonuniversal)
[21,22]. Eigenoperator solutions divide into two sets:
one with quantized scaling dimensions whose large field
dependence grows like a power of the field and which span
this SL space, and one with nonquantized scaling dimen-
sions whose dependence at large field grows like the square
of (6.3). As recalled above, we already noted that the use of
linearized equations for these latter perturbations is actually
not justified.
From this, one can already begin to see how the results

will generalize. The rôle of bound (6.1) is now played
by (6.3). Within the derivative expansion, the large field
behavior of the flow equation linearized around Γ� should
be amenable to mathematical analysis [49]. We expect that
solutions that exceed the bound (6.3) no longer have a
unique expansion over eigenoperators, that solutions that
grow faster than the square of the bound can have flow to
the IR that ends prematurely in a singularity, and finally,
if solutions are allowed that grow faster than any expo-
nential eBφ

p
(with fixed constant B), then Tychonoff-like

wave-packets can spontaneously appear at lower scales.
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APPENDIX: CONVERGENCE AND ENVELOPES

Here we derive the envelope formula (5.4) and prove
absolute convergence of the series (5.2). Our derivation
closely follows the exposition of Tychonoff’s proof as
given in Chapt. 7 of [51].
First we note that the series (5.2) is absolutely convergent

if the sum

X∞
k¼0

1

ð2kÞ!
				
�
2aφ
μ

�
2k
gðkÞ

�
μ2 − Λ2

μ2

�				 ðA1Þ

converges, i.e., where all terms are taken positive. To prove
that the above sum converges, we use Cauchy’s represen-
tation of derivatives of analytic functions

gðkÞðtÞ ¼ k!
2πi

I
dz

e−z
−α

ðz − tÞkþ1
; ðA2Þ

where we take real t > 0, putting us in the regime Λ < μ.
Choosing the contour to be the circle z ¼ tð1þ reiθÞ,
where 0 ≤ θ < 2π and r is fixed in the range 0 < r < 1,
we have

Reð−z−αÞ ¼ −t−αReð1þ reiθÞ−α: ðA3Þ

Now if r is small enough, the last factor, which is (5.5), is
bounded below by a positive constant, which we call FðrÞ.
This can be determined by minimizing over θ. For example,
if α ¼ 2, we find that we must have r < 1ffiffi

2
p . Then we find

that FðrÞ ¼ 1
2
ð1 − 2r2Þ=ð1 − r2Þ2 for r > 1

2
, while for

0 < r < 1
2
we have FðrÞ ¼ 1=ð1þ rÞ2. Thus from (A2)

we have that

jgðkÞðtÞj ≤ k!
ðrtÞk e

−FðrÞt−α : ðA4Þ

Finally, since k!=ð2kÞ! < 1=k!, we see that the kth term
in (A1) is bounded above by

1

k!

�
4a2φ2

ðμ2 − Λ2Þr
�

k

e−FðrÞt−α : ðA5Þ

Since the sum of these terms converges, it follows that the
sum (A1) converges, and thus that the sum in (5.2) is
absolutely convergent. In fact, the above is just a term-wise
expansion of the exponential in (5.4) (up to the factor jvj).
Since its sum is larger than (A1), which in turn is larger in
magnitude than the sum in (5.2), we have also proven that
jVðφ;ΛÞj is bounded by the envelopes (5.4).
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