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Loop corrections to cosmological particle creation

E.T. Akhmedov®'? and P. A. Anempodistov 1.2*

nstitutskii per. 9, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
’B. Cheremushkinskaya, 25, Institute for Theoretical and Experimental Physics, 117218, Moscow, Russia

® (Received 6 April 2022; accepted 11 May 2022; published 23 May 2022)

We consider dynamics of the massive minimally coupled scalar field theory in an expanding Friedmann-
Lemaitre-Robertson-Walker universe. We consider the standard toy model of the conformally flat space-
time where the conformal factor becomes constant at the distant past and the distant future. Employing the
Schwinger-Keldysh diagrammatic technique, we compute infrared loop corrections to the occupation
number and anomalous quantum average of the scalar field and show that these corrections are growing
with time. Using these observations, we demonstrate that the regularized stress-energy tensor at the distant
future acquires substantial quantum corrections which exceed the long known tree-level contributions to

the particle flux.
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I. INTRODUCTION

In this paper we consider massive minimally coupled
scalar quantum field theory in an expanding Friedmann-
Lemaitre-Robertson-Walker universe. For simplicity we
mostly consider two-dimensional situation, but also briefly
discuss the situation in higher dimensions in the Appendix.
(In higher dimensions the situation appears to be very
similar.) The universe that we consider has the expanding
geometry, which is sandwiched between flat space-time
regions at past and future infinities. Namely the conformal
factor of the metric continuously changes from one con-
stant in the remote past to another constant in the remote
future. Due to such a geometry of space-time there is a
particle creation. Namely in the Gaussian approximation,
1.e., for the fields without self-interactions, this model was
extensively studied long ago and the particle creation was
rate was calculated in [1,2].

The aim of this paper is to investigate the behavior of
self-interacting fields in this background. We consider
massive scalar field theory with A¢* self-interaction.
Based on the intuition gained by the previous work of
our group we expect that loop corrections to the stress-
energy fluxes will grow with time and overcome the tree-
level contribution [3]. That is due to strong infrared (secular
or memory) corrections, which appear even for massive
fields due to nonstationary situation in the system under
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consideration, which is caused by the time-dependent
metric. In fact, below we find that the stress-energy flux
which was found in [1,2] receives strong (growing with
time or secular) loop corrections.

Secularly growing loop corrections occur in various
strong backgrounds and the character of the secular growth
is sensitive to the choice of the background geometry and to
the choice of the initial state and even the Cauchy surface.
In fact, one encounters such a phenomenon in cosmological
backgrounds [4,5] in the black hole collapse background
[6], in strong electric field backgrounds [7,8], in the
backgrounds of moving mirrors [9-11] and even in scalar
field backgrounds [12,13]. There is an evidence that secular
growth of loop corrections in nonstationary situations or in
background fields is quite a generic phenomenon [3] (see,
however, [14—17] for some specific situations).

Concretely in this paper we calculate loop corrections to
the two point correlation functions and extract from them
corrections to the occupation (or level population) numbers
TrLﬁagaqr] and to the anomalous quantum averages (or
anomalous expectation values) Tr[pazaz]. (Here p is a
density matrix characterizing the state of the theory, ag
and a; are creation and annihilation operators in the theory
and the trace “Tr” is taken over the Fock space of the theory.)
Then we investigate how the regularized stress-energy tensor
changes due to the quantum loop generation of the level
population and anomalous expectation value. We find that
loop corrections to the latter quantities grow as the average
time of the two-point functions is taken to the future infinity.

The structure of the paper is as follows: in Sec. II we
describe the background geometry, define modes, and
construct propagators for the Schwinger-Keldysh diagram-
matic technique for generic spatially homogeneous states.
In Sec. IIl we compute infrared loop corrections to the
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occupation number and anomalous quantum average and
demonstrate that n, and k, acquire growing with time
corrections. In the concluding section we calculate the
regularized stress-energy tensor and find contributions to
it due to the self-interaction of the field. In the Appendix, we
discuss some issues concerning the generalization of our
considerations to higher dimensions.

II. SETUP FOR THE PROBLEM

A. Space-time geometry and modes

We consider expanding universe with the following
metric

ds* = C(n)(di® — dx?), (1)
where the conformal factor is given by [1,2]:
C(n) = A + Btanh(pn), (2)

with some positive constants A > B, and p. In the main text
of this paper we consider the two-dimensional situation (to
highlight its peculiarities) and then extend it to any
dimensional case in the Appendix. The situation in higher
dimensions is not very much different.

We consider massive minimally coupled scalar field on
this gravitational background with the action given by

m2

s:/dﬁxﬁB(aﬂzﬁ)z—?dﬂ—%df‘} (3)

up(n, x) = e™gd(n) = { 1

where

F<1 - ia)in/ﬂ)r(_iwout/p)
[(—iw, /p)I(1 —io, /p)’
F<1 - ia)in/p)r(ia)out/p)

pk) = (1 + io_/p)T(iw_/p) ©)

a(k) =

From (8) one can see that in the flat asymptotic past
(n —» —o0) the in-modes correspond to the usual notion of
the particle in flat space-time, because they are described by
single waves. That is the reason why they are referred to as
in-modes.

The mode decomposition of the field operator is

Pln.x) = / ™ dkla (n, ) + aluiz (. )], (10)

(e8]

| ikx—iw;
el ta)mn’

e [a(k)e~ i@l + B(k)ei @], as n — +o0,

As the background geometry is spatially homogeneous, it is
convenient to separate the variables as:

ikx

up(n, x) = e™gi(n). (4)

Then, for a free field the equation for the temporal part of
the mode function is

§9k<n> + 2 + CymPlg(m) =0. (5

Among all possible solutions of the equation above one
distinguishes the in-modes that are given by

i _Likx—iw, n—i*=log[2cosh
" (n.x) = (4nwy,) 2e +n—i“=log[2cosh(pn)]

iwin. 1 +tanh(ﬂ'l) (6)
P 2 ’

XF<1+—_7—_a1_ s
P p

where F(a, b;c;z) is the Gaussian hypergeometric func-
tion and

win(k)=1/k*+m*(A-B),
Dou(k) =[R2 (A4 B). and @, =3 (o). (7)

Using transformation formulas for the hypergeometric
function, one can show that the in-modes (6) have the
following asymptotics

as g > —oo

(8)

|
Using the properties of the hypergeometric functions, one
can show that the canonical commutation relations for the
field ¢ with its conjugate momentum and for a; with a}; are
satisfied.

Similarly, one can define out-modes as

Lo o
u(]zut(n’x) _ (4ﬂa)in)_7€lkx i, n—i= log|2 cosh(pn)]

XF<1+M>__,iw__; +iwout;1—tanh(pf7)>_
PP P 2

(11)

They correspond to the usual notion of the particle in flat
space-time in the flat asymptotic future (7 — +o0). In fact,
they have the following asymptotic behavior:
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1 ikx —iwi, o, _
" . T [y(k)e~"@n +5(k)e'®n'], asn——oco
(n,x) =e™ g™ ()~ - (12)
1 ikx—iwouh
me s asn— +oo,
|
where 1 _
¢! :§<¢+ +¢7),
Pl =" —¢. (15)

F(l + iwout/p)r<iwin/p)

L(io, /p)I(1 +iw, /p)

F(l + iwoul/p)r(_iwin//o)
(1 +iw_/p)L(iw_/p)

(k) =

(k) = (13)

The mode decomposition of the field operator in these
modes we will denote as follows:

¢mm—Lgmww )+ B (2] (14)

We find it instructive to calculate loop corrections both for
in- and out- Fock space states separately.

B. Schwinger-Keldysh formalism

Below we will show that loop corrections to the expect-
ation value of the stress-energy tensor grow with time, thus,
signaling substantial amplification of the particle creation
rate by quantum loop corrections. This is the generic
situation in time-dependent or strong background fields,
as was explained in the Introduction. The background that
we consider here (1), (2) is time-dependent. Hence, the free
Hamiltonian of the scalar theory under consideration (3)
also depends on time. Hence, we are dealing here
with an example of nonstationary situation. In such a case
to calculate loop corrections one has to apply the
Schwinger-Keldysh rather than Feynman diagrammatic
technique (see e.g., [18-20] for the introduction into the
subject).

In the Schwinger-Keldysh formalism the system is
considered to evolve on a closed time contour which
consists of two branches: forward branch (from —oco to
+00) and backward branch (from +oo to —o0). We denote
the field operator on the forward and backward branches of
the contour as ¢ and ¢, correspondingly. Then, one can
construct four types of propagators, but only three of
them are linearly independent. To transform to these
three linearly independent propagators, one performs the
Keldysh rotation:

GK

FIG. 1.

Then, the three propagators are the Keldysh, retarded, and
advanced two-point functions correspondingly:

GE(n. x| . x') = (@ (n. x)p (. ¥'))

= UB0.x). 901 X))
GR(n. x|, x') = (¢ (n. x)p? (i . ¥'))

=0 —n)pmnx), dp(n'. x")],
G (n, ") = (p(n. x)p (. X))

=0(n' —n)[p(n, x), p(', x)].  (16)

Graphically, these propagators are denoted as shown
in Fig. 1

For a generic state the following mode expansion is valid
for the Keldysh propagator:

K(n, x|, x") //dkdq{( Orq + (aqak))

X [u (. 2)ug™ (' .X) + ud (' 5 )ug™ (. )]
+{agag)uip (n.x)ug (' .x')

Hlalah ol |7
and for the commutator:
G(n.xn' . x")=[¢p(x),¢(x")]
— [kt ) ) = i .2,
(18)

via which one can express the retarded and advanced
propagators, as in (16). Note that while the tree-level
retarded and advanced propagators (and the field commu-
tator) are state independent, the Keldysh propagator does
depend on the state of theory.

Graphical notation for the Keldysh, retarded, and advanced propagators respectively.
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Because the metric under consideration is spatially homo-
geneous we consider only spatially homogeneous initial
states in which the following relations necessarily hold:

{agar) = Tr(pafa,) = m5(k - q),

(agar) =xid(k +q).  {agay) =xdlk+q). (19)
where n; is the occupation (or level population) number and
Ky 1s the anomalous quantum expectation value (or anomalous

average). For such states the Keldysh propagator, which is
sensitive to the state of the theory, simplifies to

[ 1 . .
GX(n. x| . x') = / dk{ (5 + nk> [ (1, )™ (', x')

+u (0. X )u (. x)]

+ kgl (1, x)u™ (1, x')
+K’£u?*(n,X)uTZ(n’,X’)}- (20)

Using (4), one can define the Fourier components of the
propagators as

GX(n, x|, x') = / " dkeit=¥) GK (k

—0o0

). (21)
The Fourier components of (20) and (18) are explicitly given by

G (k

1 . . . .
n.n')= <§+ ”k) (g5 (g™ (') + g () g (n'))
+iegd () gf (') + g™ (m) g (),
and G(kln.n') = g (m)gi (') = g (m)gi? (), (22)
where we have restricted ourselves to the case in which
occupation number is symmetric under the inversion of the
spatial momentum: 1y = ny.
Alternatively, one can quantize the field using out-modes
(11), i.e., decompose the field operator as

pn.3) = / ™ Akl (n, 7) + bl (n, 7)), (23)

(5]

and consider spatially homogeneous initial states in which

(byby) = sk —q).  (byb) = &5(k + q).
(byby) = R;5(k + q). (24)

In such a case, the Keldysh propagator has the same form as
(22), but with ¢i(17), ny, ;. replaced by g (), iy, and &y
correspondingly. At the same time the commutator function
is equal to

nn') = gt (g (') = g (Mg (). (25)

One can show that this commutator function is the same
as in (22), because the transformation from the basis

G(k

FIG. 2. Vertices for the quartic self-interaction.

of in-modes to the out-modes is the canonical (simplectic)
one.

Of course one can consider more generic states, which are
belonging to Fock spaces constructed with the uses of modes
that are related to the in- and out-harmonics via generic
canonical transformations. One just has to pay attention to the
Hadamard properties of the propagators, because singularities
of the propagators are measurable, e.g., in the running of
coupling constants. To keep tasks small in this paper we
restrict our considerations only to the in- and out- Fock spaces.

III. INFRARED LOOP CORRECTIONS

In this section we compute loop corrections to the
occupation number and anomalous quantum expectation
value in self-interacting scalar field theory. We consider
quartic self-interaction, A¢*, and show that for the in-modes
the occupation number and anomalous quantum average
are secularly growing with the average time of #; and 7, of
the Keldysh propagator GX (5, x, |15, x,). We also show
that for the out-modes there are no growing with average
time contributions to occupation number and anomalous
quantum average. But we will see that for the out-modes
there are secular divergences, i.e., for the out-state one
cannot take the initial Cauchy surface to past infinity:
otherwise loop correction will be infinite even after the
implementation of the UV cutoff [5].

Consider now the theory with A¢* self-interaction:

A
Sint = “an dzx\/—_g(qﬁ - Clﬁ)

= [ a7 0, + b0 (20

One can see that there are two types of vertices in this case,
which are depicted on the Fig. 2. In the next two
subsections we will separately consider contributions of
diagrams of two types. We are mainly interested in the loop
corrections to the Keldysh propagator, because it is this
two-point correlation function that is sensitive to the
evolution of the state of the theory1 [3,20].

'Relevant loop corrections to the retarded and advanced propa-
gators, unlike those to the Keldysh propagator, do not grow as both
of their arguments are taken to the future infinity. We discuss this
point in greater details in the section on the sunset diagrams.
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FIG. 3.
propagators.

A. Tadpole diagrams

We start with the consideration of the one and two loop
tadpole diagrams. Then we resum the leading tadpole
contributions from all loops.
|

il

—Q Q.

A few leading tadpole diagrams. There are also diagrams of the same type with different placings of retarded and advanced

Some of the tadpole diagrams that contribute to the loop
corrections of the Keldysh propagator are depicted on the
Fig. 3. The sum of tadpole diagrams up to the two-loop
level yields the following contribution:

Gé—tadpole)<’71, xi|n2.x%2) = Gy = 5/ dn3dx;C(n3)(G1G5G5, + G13G53G5,

Mo

12 o o
vy dn3dx3C(n3) / dnadx,C(14) (2G5, G5,G4, G, G, + 2G, G5, G, G GY,
Mo o
+ Gl GHG4,G Gy, + GRGR GGG, + GGG G GY). (27)

where we have introduced notations of the form G, =
GX(n1,x|172, x,) for the tree-level Keldysh propagator
and similarly for the tree-level retarded and advanced
propagators; 7, here is the position of the initial Cauchy
surface—the time after which the self-interaction is adia-
batically turned on.

At the same time the one-loop contributions to the
retarded and advanced propagators are

Gfeo“) (1, x1 |12, x2)

il [
=GN -— dnydx;C(n;) GRGK,GX,,
Mo
G?0+1)(7717x1 12, %2)
iA [
= G?z - 5/ dn3dx3C(;13)G{‘3G§3G§‘2. (28)
Mo

Here we restrict our attention to the second order in A
corrections to the Keldysh propagator and to the first order
in A to the retarded and advanced propagators. That is
necessary to close the Dyson-Schwinger equation for the
resumed Keldysh propagator.

Let us investigate how the tadpole diagrams depend on
the time coordinates of the endpoints. We would like to
single out the leading contributions in a certain limit. In
particular, we are interested in the limit when both
coordinates of the two-point function are taken to the
future infinity:

m o+
12 2= - (29)

|
The consideration of this limit allows one to trace the
destiny of the state of the theory as the time goes by.

Let us start from the diagrams of the first type depicted
on the Fig. 3. Denoting their contribution to the Keldysh
propagator as GX, one finds

il ) +o00
GX(ny.x1|m. x2) = 5/ d’h/ dx3C(n3)(GH,G5,G5,
Mo -
+ GR.GEGK). (30)

Plugging here the expressions for the propagators (18) and
(20), in the limit (29) after the integration over x; one
obtains®:

) n
Gf(’h,xﬂ’?z,xz) ~ —27”/1/ dnzC(n3)
Mo

‘ 1
X // dpdre’?1—)GK,, (E + np>

X { gy (m) g5 (n3) g5 (13) g5 (12)
— g3 (m) gy (n3) g5 (n3) g (m2) }. (31)

Let us consider the integrals over 73 and 74 in (31). For
now scientists do not known how to calculate such integrals
exactly. To evaluate them approximately we divide the
integration domain into three regions: remote past (7, 7),
intermediate expansion (7, 7' ), and the remote future (7', 7).
This division into three regions is done so that we could

"Here we have denoted the Fourier transformed Keldysh
propagator G* (g3, 14) as G§34~
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use asymptotic behavior (8) of the in-modes in the past and
future infinities (see Fig. 4). From the latter regions of
space-time growing contributions can potentially come.

We can omit contributions from the remote past and
intermediate regions, if the contribution from the future
region grows with time in the limit (29), while the
contribution from the remote past region does not grow
as 17y — —oo. This omission is justified if one keeps only
the leading contribution to the integral in the limit (29),
while the contribution from the remote past and intermedi-
ate regions remain finite. It is not very hard to check that the
latter is true for the initial in-state.

To evaluate the contribution from the future region it is
convenient to make the following change of variables in the
double integral

n n n n—i'
/ dr/3/ dny... —/ dt/ dr..., (32)
i i i i'=n

where we have introduced the new variables

_ Mt

t
2

T =13 —1Ns. (33)

Then, in the limit (29) one can approximate one of the
integrals in (31) as

n . .
/ dnsC(113) GE3 95 (n3) g (n3)

Mo

n : ;
~ / dnyC(113) GEs g (n3) g (13)
ii

M l n. la* * alr 2 r 2
e (S ) () ) )P+ )P,

(34)
!

2

FIG. 4. Plot of the hypergeometric function F(1 —2i, —2i;
1+, (1 +tanh(x))/2) against x: the blue line depicts the real
part of the function, while the red line depicts the imaginary part.
Vertical dotted lines characterize approximate positions of 77 and 77’

where in the last step we have plugged the asymptotics of
the in-modes at the future infinity (8) and neglected 7’ in
comparison with # — oo. In all, as one can see,

Gi (1, x|y, x2) ~ A, as = 400, (35)
i.e., the contribution under consideration does grow with
time and it comes from the future region of integration
OVer 73 4.

We continue with the consideration of the diagrams of
the second type depicted in Fig. 3. Denoting their con-
tribution as G¥, one finds that

A ) )
Gy (. x1|m.xp) = —3/ d;13dx3C(113)/ dnsdx,C(ns) (G GY,GE,GL, GS, + G, G5, G4, GL GYy)

o Mo

. 1 1 1
~ —87212 / " dnsClns) / " dnyCna) / dpdgdse?™ =2 (S tn, || S+ng ) {5+
Mo Mo 2 2 2

X (9,(m) gy (n3) 95 13)9,(12) = G5 (1) 9, (13) 9, (13) 95 (12) ) (94 (13)> 95 (1a)* = G5 (13)* 94 (14)*) | 95 (m4) |-

(36)

Calculating the integrals over 75 and 74 in the same manner as in the (34), one obtains that

G{‘z{(r]l » X1 |’12’ x2) ~ ]“277’

as 17 — +oo. (37)

For the third type of diagrams that are depicted on the Fig. 3 (again, denoting their contribution as GX) in the limit (29) one

finds:

22 [
Gf(’71,x1|772,x2) = _Z/ dn3dx3C(n3)
Mo

0

+ GHhGHGYGLGY, + GRGH GGG ~ 22,

dnydx,C(ny) (G, G,G4, G, Gy,

0

as n — +oo. (38)
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Thus, from (35), (37), and (38), one can see that even if A is
very small the loop corrections to the Keldysh propagator
can become large after a long enough time of evolution. It
means that to understand the physics one has to resum at
least the leading contributions from all loops. We will see in
a moment that growing as 7 = (17, +1,)/2 — oo contri-
butions from tadpoles can be absorbed into the mass and
mode renormalization, because products of the modes
9,(n1)g; () contain y dependent terms in the future
infinity region.

At this moment note that the second type of diagrams
from the Fig. 3 is suppressed by the additional power
of 1. Hence, to resum the leading contributions one just
needs to take into account the chains of bubbles and
ignore the “cactus” type of diagrams. These observations
enable us to write the Dyson-Schwinger equation for the
resummation of the tadpole corrections to the Keldysh
propagator. Denoting the “exact” (resummed) Keldysh
propagator as GX, we find that it obeys the equation as
follows:

~ iA [ ~ ~
Gl =Gl [ dnsds Cluy (GEGE G, + GHGEGE).

o

(39)

Here G4, is the advanced Green function with the
resummed bubble diagrams, which is obtained with the
use of (28).

Applying the differential operator (C] + m?) to the both
sides of this equation, one obtains

A N
<D+m2+§G{ﬂ)G{<2:O. (40)

The equations for the exact retarded and advanced propa-
gators have the same form with the delta functions on the
right-hand side. Thus, one can take into account the leading
tadpole diagrams as a sort of a “mass renormalization”

2 :m2+%Gfl. (41)
There are certain comments, which are in order at this point
because the “mass renormalization” seem to depend here
on space-time coordinates.
In fact, let us consider the tree-level Keldysh propagator
GX at the coinciding points. For simplicity we consider in
detail the propagator for the Fock space ground state:

Gl = / kg () g™ (). (42)

3The situation with other states with zero anomalous averages
is not much different.

Obviously, GX does not depend on the coordinates in the
remote past, 77, — —oo, as the modes ¢i"(17;) in this region
of space-time are given by simple exponents (8), and the
integral over k just gives the standard UV divergence due to
zero-point fluctuations:

/ dkgf (m) g (m) — / o (43)

m--co | dxwi,

Now let us concentrate on the opposite limit #; — +oo.
Plugging asymptotic behavior of the in-modes (8) into (42),
one obtains:

/ dkgif (m) g (m)
dk ' |
- [|C{|2 + |/}|2 + a/}*e_le"“‘m + a*/}QZIwout’?l]
7 —+oo 47[a)in

dk
o [ ol + 18P

_/ dk sinh?(zw. /p) + sinh?(zw_/p)
) 4awoy sinh(zwi,/p) sinh(zwgu/p)

, (44)

where we have dropped the rapidly oscillating terms as
their contribution to the integral is negligible in comparison
with the contribution of the terms that are independent of
time, 7;.

Now, using (40), we can write down the equation for the
tadpole corrected modes (1) as:

L;ﬁnz + k2 +C(n) <m2 +% / dqgy (n)gy" (n)) } Gi(n) = 0.

(45)

The term in this expression which is proportional to A
contains the standard UV divergence which can be
absorbed in to the renormalization of m. But also this
term contains finite # dependent contributions. To treat
them we consider the changes in the modes. In fact, using
the asymptotic forms (43) and (44), one can find that the
in-modes have the following renormalized asymptotic
behavior:

1~ —i@ynn as _
g ()~ Vs € N " T
ke [C1 (K)e ™ 4 Cy (k) @], a5y — +oo,

(40)

where to find the coefficients C; ,(k) one needs to calculate
the integral [ dqgif(n)gi* (n) explicitly to know the poten-
tial in the equation under consideration. To the best of our
knowledge this integral is not a table one, but below we will

not use the explicit form of Cy, (k).
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At the same time, @;, and @, are given by

a0+ (=8 [

2

dr Wiy

dk>

dk sinh?(zw, /p) + sinh*(zew_/p)

(k)zk2+(A+B)<m2+/

W5yt

Then, using the tadpole corrected in-modes §"(r7) one can
construct the Keldysh propagator GX according to the
Eq. (20). For example, in the Fock space ground state for
the in-modes one has

- © 1 ~in ~ink
G nabt o) = [ ak a2y o)
+ (' ) (n. x)),
where i} (7, x) = e** g} (). (48)

In the same manner, we can obtain the asymptotic behavior
of the out-modes

—L_1C5(k)e @ 4+ Cy(k)e'@in'l], —

g § 7 AT G, e oo
ﬁe—m}omn’ as 1 — 400,
(49)

and construct the tadpole corrected propagator using
these modes.

In all, we obtain that the sum of the leading tadpole
diagrams in the limit (29) results in the change of modes
|

2 [
i dﬂ3 d)C3 C
24 [
2 [

24 /.

GR

(2)(’717~x1|’729 x2) =

Mo

o

X (6G13G34(GX,)?Gyy + G13(G34)*G ).

In the limit (29), this two-loop contribution contains
the multiplier, which is approximately equal to
O(n —n3)0(n3 — n4)0(n4 —n) = 0. The multiplier appears
due to the causal nature of the retarded Green function
[20]. Because of this fact there are no growing with
average time 7 two-loop contributions to the retarded
propagator. That is the usual story in the limit that we
consider [4]. Similarly one can show that for the same
reason advanced propagator does not receive secularly
growing contributions in the same limit. Meanwhile, as

47Ta)out Sinh(”win/p) Sinh(”a)out/p)

(47)

)

from g, (1) [with the asymptotic behavior of which is given
in (8) and (12)] to g,(n) (with the asymptotic behavior of
which is given in (46) and (49). And all three propagators
change accordingly in the same way. In the following we
assume that the modes (and propagator which are con-
structed from these modes) are tadpole corrected, i.e., are
given by (46) and (49). However, to reduce notations, we
will omit the tilde symbol for these modes and propagators.

Also, we assume that the UV divergence of the form [ 4%

is absorbed into the renormalization of the bare mass m,
and the tadpole corrected frequencies @;, and @, in (47)
are finite.

B. Sunset diagrams

Let us continue with the consideration of the two-loop
sunset diagrams which lead to more physically interesting
contributions to the two-point functions. Namely one
cannot absorb their contribution into the mass and wave
function renormalization.

Let us start with the consideration of the sunset con-
tribution to the retarded propagator. The sunset diagrams
lead to the following corrections of the retarded propagator:

(’73)/ d’74dx4c(’74)(6G1163G§4(G§4>2G§2 + Gile3(G§4)2G§2)

sy C) / dnadxsClng)0(1, — 13)0(ns — 1)0(ns — 1)

(50)

|
we will see in a moment, Keldysh propagator does receive
growing with time contributions from the sunset dia-
grams. This is the key difference of the sunset contribu-
tions as compared to the tadpole ones. Because of that
sunset corrections cannot be attributed to the mass
renormalization. Their growth in time is due to the change
of the state of the theory.

For the Keldysh propagator the sunset diagrams are
depicted on the Fig. 5. Then, the two loop correction to the
Keldysh propagator has the following form:
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Sunset diagrams providing the two loop correction to the Keldysh propagator.

FIG. 5.

2

A o 0
G{é)(m,xllnz,Xz) = —g/ d113dx3C(;13)/ dnadx,C(14)

o Mo

3
+7G1 (G, GLG +4G

We start with the consideration of the in-modes (46) and
want to investigate how do the two-loop corrections to the
Keldysh propagator (51) affect the initial occupation
number and anomalous quantum average. Namely, we
consider a spatially homogeneous initial state with the
planckian occupation number and with the zero anomalous
quantum average:

1

m, and <aqak>:0.

<a2ak> =mdk—q), n=
(52)

Here T is some temperature.

From the expression (51) we can extract loop corrections
to the occupation number and anomalous quantum average
by comparing it with eq. (17) in the limit (29). Then for the
occupation number one obtains the expression as follows:
|

(G§,)°GE, +

~
~

\

[3G{<3(G C)2GA,GA, + GR,(GK,)3G4, + 3GR,G~,(GK,)2GX,

1 3
GX,(G4,)°G%, + =GR

Z 0 (G)GG] (51)

A2 [n "
ng) z—(2”)2/ d’73C(’73)/ dnyC(ns)

6 Mo Mo

X /dqdrdsé(p —q—r—:5)gy"(13)g5 (ns)

1 o 1
X 1\5 + 1, (364346134634 + 2 G 34G 134G

K K K
- Gq34 Gr34G534

3
~1 Gq34Gr34GAI~(34:| ) (53)

where we have neglected in the leading approximation the
difference between 7, 7, and n = (1, +1,)/2 in the limit
under consideration.

Expanding propagators in mode functions, one obtains
that

A2 [ n A
ny) z(2fr)2g / dnsC(n3) / dnsC(ny) / dqdrdss(p —q —r—s)g2" (n3) g5 (n4)
Mo Mo

x [gq(n3) gy (m)gb“* (13)9:" (n4) 95" (n
+ 394" (n3) 9y (n4) 97"
+ 395 (13) 95 (14) 93" (113) 9™ (n4) 93 (n

+ 90 (13) 95" (12) 97 (13) 9™ (14) 9 (13) 3"

inx (

3) 93 (1) (
“(13) 9™ (na) 9™ (n3) 9™ (14
3)95

*(a) (1 +ny)ngn,ng —

(14+n,)(14+n,)(1 +n,)(1 4+ ny) —n,n,n,ny)
(( +np)< +nq)( ) s_npn ( S))
(( +np)( +nq)nrns_npnq(1 +n )( S))

(14 ng) (1 + 1) (1 4 ny))]. (54)
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To estimate the time integrals in this expression we
perform the same operations as in the previous sec-
tion, i.e., we divide the integration interval over
temporal coordinates 73, into the same three regions
as in the previous section and use the asymptotic
behavior of the modes (46) in the remote past and
future. Intermediate region cannot lead to growing
contributions due to its fixed length even if
and 5 are taken to the past and future infinities,
correspondingly.

n(z)zAZ(A—i—B)zn/ dqdrdsé(p—q—r—ys)

! 647 ®in(P)@in(q) 0in (1) win (5)
x{(IC1(p)C1(q)Ca(r)Ca(s
+2(IC1(p)C1(q)Ca(r)Ci (s
+(1C1(P)Ca(q) Cor) Ca(s)? +1Ca(p)Ci (g
+(IC1(p)C1()Ci (r)Ci(5) ] +Ca(p)Calg
+2(|C1(p)Ca(q)Ci(r)Ca(5) P +[Ca(p)C
+(IC1(p)Ca(q)C1 (1)1 (5)]* +Ca(p) Ci(q)C

2+ 1Cy(p)Ca(q
2

)
P +1C(p)Cy

(
s Cof

In writing this expression we have neglected 77/ with respect
to n = oo.

However, one should note that the presence of the delta
functions 6(p—qg—r—s) and S(@Wou(P) + ®ou(q) —
@oui (1) — woy(s)) restricts the momenta to satisfy the
following system of equations

=qg+r+s,
{pqrs (56)

wout(p) + wout(‘]) = a)out<r) + wout(s)'

This system has the following solutions

r)Ca(s
(@)Co(r)Ci ()P +n,)ngn, (14 n5) = ny (14 n,)(1 +n,)n,]
(r)CZ(S>|2)[( + np)nanns —n,

In (54) there are three virtual momenta, and if the delta
function has two frequencies with one sign and other two
with the opposite sign [e.g., (@ou(p) + @our(q) —
@oui (1) — Wy (5))], then the argument of the delta function
can be zero. In such a case we have a growing with time 7
contribution to (54). Evaluating integrals over x5 and 77, and
keeping only those terms, which in the limit (29) give
the delta functions of the form &(wyu(p) + ®ou(q) —
Do (1) — Woy(s)) (i.e., the terms that are independent of
t = (n3 + n4)/2 under the integral), one obtains

(1 +n,)(14+n,)(1+n,)(1+n,) —n,ngn,n

)
)1 +n,)(1+n,) (14 n,)n, —nyngn, (14 ny)
) +ny)ng(14+n,)(1+ng) —n, (14 ng)n,n]
)OI +n,) (14 ng)nng —nyng(1+n,)(1+n,)]

(1+ny)(1+n)(1+n)}. (55)

L=
s=-—q

which is the specifics of the 2D kinematics.

Plugging these solutions into (55), one can see that the
term proportional to [(1+4n,)(1 4 n,)n,n; —n,n,(1+
n,)(1+ ny)] vanishes identically. In 2D space-time this
happens for any distribution, while in higher dimensions
only for the thermal (Planckian) one. Finally, the expres-
sion for the two-loop correction to the occupation number
has the following form

r=-—gq
and , (57)
s=p

p 64

(
+N3(p.q.r.s)[(1 4+ n,)n,(1+
+N4(p.q.r.5)
+Ns(p.q.7.5)]

o) A+ B)Zn/ dqdrdsé(p—q —r—s)
@in(P)@in (@) @in (1) @i (s

x{N1(p.q.7r.s)[(1 +n,)(1 4+ n,)(1 +n,)(1 + ny) = nynn,.ng
+N2(p.q.r.s)[(1 4+ n,) (1 + ny)(1 4 n,)ng —nyngn,(1+ ny)
[ n)(l+ng)—n

(I +ny)nn,.(14ng) -

(1+

n,)ngn,ng —

) 5(wout(p) + wout(‘]) - wout(r) - wout(s))

] (58)
n,(1+ng)n,n
n,(1+n,)(1+n,)n]
ny(14n,)(1+n.)(1+ny)l},

where the quantities 'y ,345(p. ¢.r,s) are given by:

105019-10



LOOP CORRECTIONS TO COSMOLOGICAL PARTICLE ... PHYS. REV. D 105, 105019 (2022)

Ni(p.q.r.5) = |Ci(p)Ci(q)Ca(r)Ca(5) ] + |Ca(p)Calq)Ci () Cy (5) ],

Na(p. g r.s) = 2(IC1(p)Ci(q)Ca(r)Ci (5)]* + |Co(p) Ca(q) Ci () Ca(s) ),

Ni(p. g, r.5) = |Ci(p)Ca(q)Ca(r)Ca(s) P + |Ca(p)Ci(q)Ci (r)Cy (5) ],

Na(p.q.r.5) = 2(|C(p)C2(q) C1(r)Ca(s) P + |Ca(p)Ci () Ca(r) Ci (5)]?),

Ns(p.q.r.5) = C1(p)Ca(q)Ci (1) Ci (s)]> + [Co(p)C1(q) Ca(r)Ca(s) . (59)

Let us continue now with the corrections to the anomalous quantum average:

)“2
Ky ~ (2ﬂ)2€/” dn;C(n3) /” dﬂ4C(f74)/dqdrds5(p —q—r—=15)g5"(13)9p" (1)

o o

1 1 3
X {29(’74 —13) (2 + ”p> <3G(I]<34G;{(34Gs34 3 Gq34Gr34Gs34) - Gl ,GR,GE, - 1 Gq34Gr34G§34}' (60)

Expanding in this expression the propagators in the modes and making the exchange 773 <> 74 in some of the integrals, one
can rewrite the last expression as

o m =t [ ancln) [ inicn) [ dgarassip - g - r = sigg )iy 0
x {9 (13) 9 (na) 9™ (13) 9 (14) 9 (13) 98 (na) [(1 + 21, ) (1 + 1) (1 + 1, ) (1 + ) = nyn,m)
X (O(ns —n3) = 0013 = na)) + (1 4+ ng) (1 + n,) (1 + ng) + ngn,ny)|
+ 395" (13) 94 (na) 9™ (13) 9 (14) 95 (13) 98 (na) [(1 + 2, ) (1 + 1y ) (1 + n, )y = ngn, (1 4 ny))
X (O(ns —n3) — O(nz —na)) + (1 + ny)(1 + n,.)ng +ngn.(1+ny))]} (61)

Here the terms that do not contain theta functions give delta functions after integrating over #; and 7,. In this case the
situation is similar to the one with the occupation number (58). The terms that do contain theta functions give contributions
in which the internal momenta are not restricted by the energy conservation:

/’1/:]_1/ dre™(0(—7) — 0(1)) = —%(1 —cos(w(n—1'))) = —g, n— . (62)

Then, the two-loop contribution to the anomalous quantum average can be written as

k) = COEBED [ daddsdlpamiet) (1 (g, r,s)[(1+ng)(1+n,)(1+ ) + ngn,n,]
+ 1o (p.q.r.s)[(1 4+ ny)(1 4+ n,)ng + nyn, (14 ng)] + Ks(p.q.r.s)[n,(1 +n,)(1 4+ ng) + (1 4+ n,)n,ng (63)
+ Ka(p.q.r.s)(1+2n,)[(1+ny) (1 + n,)(1 + ng) = ngn,n
+ Ks(p.g.ros)(1+2n,)[(1 +ny) (1 + n.)ng = ngn, (14 ny)]},

where the quantities /Cy 545(p. g, r.s) are given by:

Ki(p.g.r.s) = (Ci(p)Ci(q)C5(r)C5(5)C3(P)C1(q) Ca(r)Ca(s)

+C (p)C;(q)CT(r)CT(S)CT( ) ( ) ( ) (S)) (wout(p) + wout(‘]) - a)oul(r) - wout(s))’
Ka(p.q.r.s) = 2(Ci(p)Ci(q)C5(r)Ci (s)C5(p)Ci(9) Ca(r) Ci(s)
+C*(P)C§(CI)CT(7)C2(S)CT( ) ( )Cl(r)c*(s)) (a)out(p> +w0ut(q) _woul(r) _wout(s))7

Ks(p,q.r.s) = (Ci(p)C2(q)C5(r)C5(s)C5(p)C3(q) Ca(r) Ca(s)
+ C5(p)C1(q)Ci(r)Ci(s)Ci(p)Ci(q)Ci(r)C1(5)))8(@ou(P) + @ou(q) = @ou(r) — @ou(s)).
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and
Ka(p.q.r.s) :_i<CT(P)CT(Q)CT(r)CT(S)CZ(P)Cl(Q)Cl(r)cl(S)—CE( P)C3(q)C5(r)C5(s)Ci(p)Ca(q) Ca(r)Cals)
3r Wout(P) + @ou(q) + o (1) + @ou ()
43 GiPICI@CI(NCG()C(P)C (@) (1) Cals) — G5 (p)C(g) G (r) Cils) Ci(p) C2(9) Ca(r) Ci 5)
wou(P) + wout(‘]) + Wou (1) = Dou($)
L3 GP)CI@ GG C(p)Ci(9)Car)Cals) = G (p) G (g) i) Cils) Ci(p) Ca(g) €1 (1) Ci ()
Wou (P )+wout(Q) @oui () = Dou(5)
L GiP)G(9) G (N G ()G (P)Ca(9) Ca(r) Cals) = C3(p)Ci(g) Ci (r) Ci(5) Ci(p) €1 (9) €1 (r) € 5)
Wout(P) = Dout(q) = Dout(7) = Douc(s) ’
Ks(pog,r.s) = —- Ci(p)Ci(q)Ci(r)Ca(s)C5(p)Ci(q)Ci(r)C5(s) — C5(p)C5(9)C5(r)Ci(s)Ci(p)Ca(q) Ca(r)Ci(s)

Wout(P) + @oui(q) + @ou (1) + @ou(s)
n Ci(p)Ci(q)Ci(r)Ci(s)C5(p)Ci(q)Ci(r)Ci(s) —

C3(P)C5(q) C5(r) Ca(5)C(p) Ca(9) Ca(r) G5 (5)

Oout(P) + Oout(q) + Oou(7)
Ci(p)C5(q)Ci(r)Ca(s)C5(p)Ca(g)Ci(r)C5(s) —

- a)out(s)
C5(p)Ci(q)C5(r)Ci(5)Ci(p)Ci () Co(r)Ci(s)

+2

+2

wout(p) - wout(q) + a)out(r) + wout(s)
Ci(p)Ci(9)C5(r)Ci(s)C5(p)C1(q) Ca(r)Cils) = C5(p)C5(9) Ci(r) Ca(s) Ci(p) Ca(q) Ci (1) G5 (5)
wout(p) + wout(‘]) - wout( ) - 6Oout(s)

L GiP)G(9) G () Ca(5) G5 (P) Ca(9) Ca(r) €5 (s) =

C5(p)Ci(q)Ci(r)Ci(s)Ci(p)Ci(q)Ci(r)Ci(s)

a)out( ) out(q) out( ) + wout(s)
4 GGG (NG G(P)C(9G(NCs) = G(p)Cilg)Cilr )Cz(S)CT(p)Cl(Q)Cl(r)CE(S)>
wout( ) a)out(q) Doy ( ) wout(s) .

In all, due to the space-time expansion, the in-modes
(that are single waves in the remote past) behave as linear
superpositions of plane waves in the remote future. It is the
interference between these plane waves at the future
infinity which causes the appearance of the growing with
time contributions in the occupation number and anoma-
lous average. This growth is signaling in a change of the
initial state of the interacting theory. As we see, in the
present case that is caused by the expansion of the space-
time. But here we see only the leading effect in the second
loop order.

Namely we see that even if A is very small, loop
corrections to the occupation number and anomalous
average (to the two-point functions) is becoming strong
after a long enough evolution time. This means the
breakdown of the perturbation theory. Then to understand
the physics one has at least to resum the leading growing
contributions from all loops. That is the problem for the
future work. It is a much harder problem than the
resummation of the bubble diagrams because it involves
kinetic processes both in occupation number and anoma-
lous average.

Let us stress here the secular growth in n,, and x,, is not
solely due to the expansion of the geometry. In fact, for the
same scalar theory in the background of the usual (d + 1)-
dimensional flat space-time one encounters a similar

phenomenon. If the initial state is not the Fock space
ground state, but rather contains some non-zero occupation
number n,, which is different from the Planckian spectrum,
then the two-loop correction to the Keldysh propagator
yields the following contribution to the occupation number:

n$? ~ 22(t - t,) / diqdrd?sé(w, + w, — ©, — w,)

X [(14n,)(1 4 n,)n,n, n,(1+4n,)(1 +ny)],

(64)

where w, =/ p* -+ m? and ¢, is the position of the initial
Cauchy surface. See, e.g., [3] and references therein.
Note that the r.h.s of this relation vanishes only for the
Planckian distribution n, = (exp(fw,) —1)~!, which
includes the Fock space ground state n, = 0. Otherwise
we encounter simultaneously the secular growth and
secular divergence. The latter is the dependence on 1,
which cannot be taken to the past infinity, because other-
wise the loop correction will be infinite. Unlike the
stationary situation, now we find the explicit dependence
on the initial Cauchy surface. Thus, in the situation under
consideration the secular growth in the occupation number
comes from the fact that due to the self-interaction, /1(1)4, the
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occupation numbers start to change in time—we see their
redistribution due to particle scattering processes.

Somewhat similar phenomenon we encounter in the
expanding universe. In fact, the initial state that we take is
not a ground state of the time dependent Hamiltonian of the
theory that we consider. Furthermore, due to the time
dependence of the background we also encounter the
generation of the anomalous averages, even if they have
been zero initially. And we of course see many more
different kinetic processes, which are forbidden in the flat
space-time due to the energy conservation.

C. A comment about out-modes

Now let us consider the loop corrections for the out-
modes (for the initial state constructed over the Fock space
out-state). In fact, the space-time expansion could have
started from any quantum state rather than from the thermal
in-state.

Performing similar operations as for the in-modes, one
obtains that in the limit (29) the loop corrections to the
occupation number and anomalous quantum average for
the out-modes are given by the same expressions (54) and
(61), correspondingly, but with the in-modes ¢ (y)
replaced by the out-modes g9 (7).

To continue we again divide the region of integration
over 13 and 7, into three time intervals and consider the
contribution only from the distant future region, which
potentially can provide the leading contribution in the limit
n — +o0, if 7 is kept finite. We will see in a moment that it
is very important to keep #, finite for out-states.

Plugging asymptotic form of the out-modes (49) in the
future region into the expression for the occupation
number, one obtains that

@) A(A+ B)Zn/ dqdrdsé(p —q—r—ys)

" 647 ) 0o (P)Dout(@) Do (N0 (5)
X 8(0ou(P) + Oou(q) = Oou (1) = @ou(s))
< [(1+7,)(1 4+ n,)n,n, —i,n, (1 +n,)(1 4+ 7).
(65)

However, as it was pointed out in (56) and (57), due to
the presence of the delta functions §(p —g —r—s) and
5<wout(p) + wout(Q) - wout(r) - wout(s)) the expression
(1 +7,)(1 +ng)n.n, —n,n,(1+n,)(1+0,)] is equal
to zero. Therefore, the loop corrections to the occupation
number for the out-modes are not growing as # — +oo. For
the same reason we have neglected contribution from the
remote past region for the in-modes, because the latter
contribution was not growing as 7, — —oo. Furthermore,
plugging (49) into the expression for the anomalous
quantum average, one also obtains that the loop corrections
to the anomalous quantum average for the out-modes does
not grow in the limit (29).

However, let us stress here that for the out-modes one
obtains the infrared catastrophe. In fact, if 7, — —o0, then
the contribution from the remote past region, (19,7), is
growing as 17, — —oo. That happens for the same reason as
why there is the secular growth for the in-modes in the
limit 7 - +o0. Due to this divergence the initial Cauchy
surface, 77y, cannot be taken to the past infinity. Otherwise
the loop correction to the propagator will be infinite even
after the implementation of the UV cutoff. Similar situation
one encounters in global de Sitter space-time [3] (see
also [4,21]).

But let us stress that if 7, is taken long before the
beginning of expansion we essentially encounter a situation
with a coherent initial state in flat space-time. Namely, we
encounter a situation with such a state that leads to a non-
zero initial anomalous average. This situation was consid-
ered in [22]. If 5y — —o0, one can expect that the system
will get thermalized before the beginning of the expansion.

IV. CONCLUSIONS AND DISCUSSION

So far we have essentially considered corrections to the
two-point functions: as one can see from (22) the Keldysh
propagator encodes the occupation numbers and the
anomalous averages. We have seen that in A¢* theory
the occupation numbers and anomalous averages for the in-
modes grow with the increase of the average time of the
two-point function. To see what physical consequences this
effect leads to in this section we calculate the corrections to
the expectation value of the stress energy tensor.

To calculate the expectation value we use the standard
technique of [2]. For simplicity we assume that the initial
occupation number is zero, as in classic texts. But we have to
take into account that now due to the self-interactions the
state in the asymptotic region # — oo acquires non-zero
occupation number and anomalous quantum average. We
also need to take into account the mass renormalization
coming from the summation of the leading tadpole diagrams.

We use the Pauli-Villars regularization scheme, i.e., we
introduce the regulator fields. Then, after the resummation
of the tadpole diagrams, one obtains the following effective
Lagrangian:

1 .
Leff = Eglw(aygbaud’ + 8,4W0ull/ =+ 28;4)({ 81/)()

1
=5 (242 + (2M2 — in?)y? + 2M% ')

¢4 + Z(m?, M?), (66)

where 7 is the renormalized mass [defined in (41)], w is a
commuting field, while y and " are anticommuting fields,
and Z(im?, M?) is a counterterm (cosmological constant
renormalization). We do not take into account here the
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A¢* term, because its contribution does not affect our
conclusions substantially.

Varying the action with the Lagrangian (66) with respect
to the metric tensor, one obtains that the stress-energy
tensor is given by

B 2 oS
vV _gég/w

1
= —5(9"”9”” —97g° = ¢"9")
X (a/)¢86¢ + a/)Waﬁl// + Zap)ﬁa(r)()

1
PP + QM = iy + 2M )

™ =

- P = 2 ), (67)

Now we consider the time evolution of the Fock space
ground state for the in-modes from # — —oo0 to  — +o0.
We assume that the interaction term is turned on adiabati-
cally, so that in the distant past region we have the free
theory. Then the role of the interaction term is to create
nonzero occupation number and anomalous quantum
average during the expansion of the space-time.

Because at past infinity we start with the empty space,
we can fix the counterterm Z (7%, M?) by requiring that the
stress-energy tensor at past infinity, # — —oo, is zero.
Evaluating the expectation value of the stress energy tensor
at past infinity 7 — —oo for such an in-state |in) that
(injaja;|in) =0, (inja,a;lin)=0, asn——co,  (68)
one finds that the counterterm should have the following
form (see [1,2] for the details of the calculation):

1
Z(m*,M?) = —8—(m2 log? 4 (2M? — i) log(2M? — in?)
T

—2M?log M?). (69)

However, as it was shown in the previous sections, the same
in-ground-state |in) after the evolution transforms into a
state with a nonzero occupation number and anomalous
quantum average in the future infinity, 7 - +oo0, i.e.,

(in|S* afaS[in)yeny = 1 8(q — k),

2)

(in|S* agaS[in)ieep = KC'8(k +q), asn— +oo,  (70)

where the explicit expressions for n,(f) and K‘](Cz) can be

derived from (58) and (63) by putting initial occupation
number to be zero, i.e., n, =0, as we start here from the
Fock space ground state for the in-modes. Note that in this
paper we have expanded the evolution operator S to the
second loop order only.

Then, computing the expectation value of the stress-
energy tensor in the distant future and taking the regulator
field masses to infinity (M — o0), one obtains that:

(in|T*in) = (in|T%’[in) + (in|T% |in),

loop
o dk
(in|T§"|in) — -
=t oo AWy

X kHkY (@ﬂcﬂ2 +Co]?) - 1>’
Win
) . dk e
<1n|T{‘Oop|1n>n:>00 > Ktk [n;(c )(|C1|2 + |G, )
+ K1(<2)C1 G+ Kf)*CTCZL (71)
where
@ k
it — out , . 72
(A +B A+ B) 72)

Here the term (in| 7%’ |in) is the contribution of the Gaussian
theory (given by the Lagrangian (66) with self-interaction

switched off), while the term (in|77, i) arises from the

loop corrections to the occupation number and anomalous
quantum average, and @;, and &,, are defined in (47).
While (in|7%"|in) is due to amplification of the zero-point

fluctuations, (in|Tj,,[in) is due to the excitation of the

higher levels—due to the change of the state of the theory.
Note, at the same time, that the term (in|T{‘O”0p|in> is
proportional to A%;. Hence, even for small 1 this term is
comparable to the tree level result (in|7%’|in) as 7 — oo.

Thus, the well-known textbook tree-level contribution to
the expectation value of the stress energy tensor is strongly
corrected by the quantum loop effects in self-interacting
theories. That signals a violation of the perturbation theory
expansion, because higher loops deliver corrections of the
same order (1°7)" ~ 1. Hence, to understand the physical
consequences of the effects that we consider here one has to
resum at least the leading contributions from all loops. Let
us stress that the result of the resummation may depend on
the initial conditions. See, e.g., [12,13,23-25] for a similar
resummation which was performed in analogous situations.
We will do the loop resummation in the situation under
consideration in the future work.
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APPENDIX: GENERALIZATION
TO HIGHER DIMENSIONS

In this Appendix, we briefly discuss the situation in
higher dimensional space-times. We want to show that the
phenomenon that we are discussing here is not specific only
to the two dimensional case. Namely, we consider (d + 1)-
dimensional space-time with the metric:

ds* = C(n)(dn* — dx?),

f:(xl,...,xd), (Al)
with the same conformal factor C() = A + Btanh(py) as

in two-dimensional case. Separating the variables as

we(n,3) = e*¥g, (), (A2)

and plugging these mode functions into the equation of
motion, for the temporal part of the modes one obtains the
equation as follows

1
up(n 3~ )

d-1

1 C(n)—T ikx [C =iyl + C‘zeiwouln]’

Varwy,

with some coefficients C; and C,. The mode decomposi-
tion of the field operator as usual has the form:

#07) = [ aklap %) + i 0.7 (A6)

As in the two-dimensional case, the sum of the leading
tadpole diagrams contributes to the mass and mode
renormalization. Here we imply that the mass is already
renormalized and we aim to demonstrate that the loop
|

C(’,I) —Telk X— za)mn

dgi(n) 44! C'(17) Ogi(n)
dn? 2 C(n) On

+ [k + m>C(n)]gi(n) = 0.
(A3)
Here one can get rid of the first order derivative and rewrite

this equation in the form of the oscillator with a time-
dependent frequency:

d&*  (d-1)(d-5)(C (n))z_d—lc”(n)
d? 16 C*(n) 4 Cn)

+k*+m*C(n)
(A4)

Exact solutions of this equation are given by the Heun

functions. Their explicit from is not necessary for our

purposes. In fact, we may distinguish solution, which
behaves in the asymptotic regions as:

N — —oo

n— +oo,

corrections to occupation number and anomalous quantum
average contain growing with time contributions.

From here it is tedious but straightforward to deduce that
the expressions for the occupation number and anomalous
quantum averages are essentially the same as in the two-
dimensional case, but with the different numerical factors
and small modifications.

E.g., for the occupation number one obtains the follow-
ing expression

A2 [ 41 -
) e [l [ i€l [ dladtrdtsos - G- -9 n)gpn)

X [ (13) 982 (1) 9 (1) 9 (na) 9 (13) 98 (1) ((1 + ) (1 4+ mg) (1 + ) (14 my) = npngnny)
3 () () g (1) 1) 015) 2 (1) (1 + ) (1 -+ mg) (14 ), = i 140)

¥ (
+ 395 (13) 95 (12) 97" (113) 9™ (14) g3 (

’73> ln*( )
+ g (13) g (n4) g™ (13) G (n2) 9 (13) 92 () (1 + ) mgn,mg

( )
( )( + nq)nrns - npnq(l +n )( S))
1 np(1+ng)(1+n,)(1 +ny))].

Evaluating integrals over 73 and 5,4 as in the two-dimensional case, it is straightforward to find that:
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2 3d d d . jd - " I
) e g [ =T i)+ o (4) = (1) = 5]

X LR (9o o (1 ) (1 mg) (14 m,)(1+ ) = mpgnyn]

Koo )14 my) (1 1) (1 4+ ), = gy, (14 )]

 Ra(poq ) my)ng(1 4+ m)(1 4+ ) = my(1 4 n)n,

+ Ra(pa g7 )L+ ) (1 g gy = (1 ) (1% )

+Ns(p.q.r.9)[(1+n,)nn r(1+ns)—np(1+n )(1+n,)n,]

+N6<p,q,r,s>[<1+np>nnns mp(1 ng)(1 4+ m)(1 4+ )], (A8)

.....

/(/1(177(]7 r,s) = Ci(p)C1(q)Ca(r)Ca(s) > +[Cap)Ca(q) Cy (1) Cy ()%,
Na(p.g.r.5) = 2(1C1(p)Ci() Ca(r) i ()P + 1C2(p) Ca(9) Cr () Ca(5) ),
/(/3(177617 r.s) = |C1(p)Ca(q)Ca(r)Ca(s)]* + 1Co(p)Ci(q)Ci (r)Ci ()],
/V4(p,q, r,s) = |Ci(p)C1(q)Cy (1) Cy (5)* +[Ca(p)Ca(q) Ca(r) Ca(s)]%,
Ns(p.q.r.s) = 2(1C1(p)Ca(q)C1 (r) Cals) 2 + 1Ca(p)C1 () Ca(r) Ci (5)),
No(p.a.r.5) = |C1(p)Ca(q)C1 (1) C1 (s)]* + | Ca(p) C1i(9) Ca(r) Cas) P

One should note here that the only difference in higher
dimensions, as compared to the two-dimensional case, is
that the internal momenta now are d-dimensional, and also
the numerical prefactor of the r.h.s. is different. However,
the character of the secular growth is linear in any number

|

of dimensions, and the form of the “collision integral” is
also the same. The same fact holds for the anomalous
quantum average—the expression for it is similar to (63).

At the same time, for the out-modes the correction
coming from the future region is as follows:

@) AA+BP ™y [ dqd’rd’ss(p — g —T7=5) N w o (P — o (s
P | i) )+ ()= ) = 5
x [(1+n,)(1 4 a,)n,n, —i,n,(1+7,)(1+ ay)]. (A9)

Here we keep 7, finite and neglect the contribution from the past region. Otherwise, if 17, — —oo we obtain the infrared

catastrophe, as was discussed above.

In all, the situation in higher dimensions is not conceptually different from the two-dimensional case, if one considers
first few corrections to the stress energy tensor in the massive scalar theory.
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