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We consider a real Klein-Gordon field in the Poincaré patch of (dþ 1)-dimensional anti–de Sitter
spacetime, PAdSdþ1, and impose a dynamical boundary condition on the asymptotic boundary of PAdSdþ1

that depends explicitly on the second time derivative of the field at the boundary. This boundary condition
is of generalized Wentzell type. We construct the Wightman two-point function for the ground state of the
Klein-Gordon theory whenever the parameters of the theory (the field mass, curvature coupling, and
boundary condition parameters) render such a ground state admissible. In the cases in which the mass of the
Klein-Gordon field and the curvature coupling term yield an effectively massless theory, we can define a
boundary field whose dynamics are ruled by the dynamical boundary condition and construct, in addition
to the Wightman function for the Klein-Gordon field, boundary-to-boundary, boundary-to-bulk, and bulk-
to-boundary propagators.
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I. INTRODUCTION

Interest in studying classical and quantum field theory
in (asymptotically) anti–de Sitter spacetimes (AdS) has
steadily increased in the last decades for several reasons.
On the one hand, the remarkable AdS=CFT conjecture [1],
together with statements on more general holographic
dualities, has added interest to analyzing physical situations
in (asymptotically) AdS and other spacetimes with (asymp-
totic) timelike boundaries. On the other hand, while our
understanding of classical and quantum field theory in
globally hyperbolic spacetimes has advanced remarkably in
the past decades, the situation is less developed for space-
times with (asymptotic) timelike boundaries.
One of the reasons for this is that global well-posedness

in spacetimes with timelike boundaries or asymptotic
timelike boundaries [2], such as AdS, requires prescribing
boundary conditions in addition to Cauchy data. Moreover,
infinitely many boundary conditions will give rise to

reasonable (classical and quantum) field theories. For
example, quantum field theory in AdS spacetimes with
Robin boundary conditions has been studied in [3–5], and
the analogous problem for Lifshitz spacetimes has been
addressed in [6].
The purpose of this paper is to study quantum field theory

in AdS spacetimes with dynamical Wentzell boundary
conditions (WBC), thus extending the analysis that has
been carried out in [7] where the classical mode solutions
were obtained for a real Klein-Gordon equation in this case.
These dynamical boundary conditions are such that a
condition is imposed on the second time derivative of the
field at the boundary. In other words, the ensuing system, on
the one hand, codifies the bulk dynamics, while, on the other
hand, it reads boundary observables as suitable traces of bulk
fields, subject to an evolution dictated by the boundary
conditions.
There are a number of motivations for studying Wentzell

boundary conditions in AdS, especially from the quantum
field theoretic viewpoint. First of all, it is clear that a system
where bulk and boundary observables can be naturally
defined in AdS is attractive as a simple model reminiscent
of AdS=CFT but in which all mathematical subtleties are
under control. In addition, these boundary conditions are
also closely related to the ones appearing in so-called
holographic renormalization [8]. As mentioned in the
introductions of [7,9,10], good motivations to introduce
these boundary conditions stem from the study of
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condensed matter systems and isolated horizons in gravi-
tation. Perhaps one of the most important instances in
which this boundary conditions are relevant are in the
experimental verification of the dynamical Casimir effect
[11]; see [12] for an overview.
Additionally, as explained in [7], WBC are also distin-

guished mathematically in that they generalize Robin
boundary conditions and are compatible with the spacetime
isometries, thus providing good candidate systems for
constructing ground states in quantum field theory.
Additionally, they provide a generalization to the classical
work of Ishibashi and Wald [13] in which the boundary
conditions in AdS are seen as self-adjoint extensions of
certain elliptic operators on L2ðΣÞ, the space of square
integrable functions on a Cauchy surface, identified with
respect to the standard AdS time coordinate. Indeed, it turns
out that the natural Hilbert space for systems with dynami-
cal boundary conditions has to be extended to be able to
also account for dynamical boundary degrees of freedom
(see [14], but also [15,16]). In these papers the analysis is
inspired by the so-called boundary eigenvalue problems
(see e.g., [17]). Moreover, it has been shown in [16] that
there are systems with WBC that are F-local quantum field
theories in the sense of Kay [18].
With these motivations, the concrete goal of the present

paper is to construct the ground-state Wightman two-point
function for a class of real Klein-Gordon theories in the
Poincaré patch of anti–de Sitter spacetime. From the point
of view of algebraic quantum field theory, this completely
characterizes the Klein-Gordon theory in the spacetime of
interest via the GNS theorem, whereby a concrete repre-
sentation of operators on a Hilbert space can be con-
structed. A major point of interest is that, as we shall see,
in the case in which the scalar field combined with the
AdS curvature coupling yields an effectively massless
theory, it is also possible to assign a two-point function for
the boundary theory confined to the AdS timelike boun-
dary, as well as bulk-to-boundary and boundary-to-bulk
propagators, in addition to the bulk Wightman function.
An important aspect of Wightman two-point functions is
that their antisymmetric part coincides, up to a multipli-
cative constant, with the advanced-minus-retarded funda-
mental solution of the Klein-Gordon operator. On a
globally hyperbolic spacetime without a boundary, this
feature is known to carry two bits of information. On the
one hand, it codifies the canonical commutation relations
on any constant-time Cauchy hypersurface. On the other
hand, the axiom of causality, proper of relativistic quan-
tum field theories, is translated by the property that the
image of the advanced and of the retarded fundamental
solutions is supported, respectively, in the past and in the
future light cone of the test function. This second
statement is no longer automatically true in the presence

of a timelike boundary such as when we consider
asymptotically AdS spacetimes as background. In this
case the role of the boundary conditions entails that all
support properties must be verified from scratch; to the
best of our knowledge, a general proof does not exist. Yet,
using energy estimates, in this paper we are able to prove
the support properties for the fundamental solutions of a
massless Klein-Gordon field on the Poincaré patch of an
AdS spacetime of arbitrary dimension, endowed with
Wentzell boundary conditions.
The organization of the paper is as follows. In Sec. II we

introduce the basic geometric ideas of the Poincaré patch of
AdS (PAdS) and the Klein-Gordon equation in this
spacetime. This will also serve the purpose of fixing the
notation of the subsequent sections. The Wightman func-
tion for the bulk Klein-Gordon field in PAdS is constructed
in Sec. III. The key point is to use the symmetry of
spacetime to rewrite the underlying equation of motion as a
one-dimensional Sturm-Liouville problem. The question of
obtaining the Wightman function then reduces to obtaining
the resolvent operator of the relevant Sturm-Liouville
operator. In Sec. IV we investigate the possible definition
of bulk-to-bulk, bulk-to-boundary and boundary-to-boun-
dary propagators for the Klein-Gordon field with WBC in
PAdS. We include a discussion on the support properties of
the causal propagator of the theory in Sec. V. In particular,
for an effectively massless theory we can show that the
support properties are as expected, but a result for more
general theories remains elusive and is indeed an important
open question. Our final remarks appear in Sec. VI.

II. PRELIMINARY DATA

In this section we introduce the basic geometric and
analytic data that will be useful in the following sections.

A. Geometry of AdS spacetimes

We consider the (dþ 1)-dimensional anti–de Sitter
spacetime AdSdþ1, which is the maximally symmetric
solution of Einstein equations with a negative cosmological
constant Λ. As a manifold AdSdþ1 is diffeomorphic to
S1 ×Rd, and it can be realized as an embedded submani-
fold in the pseudo-Riemannian manifold ðRdþ2; gdþ2Þ,
where, considering the standard Cartesian coordinates
fXjgj¼0;…;dþ1, the line element associated with gdþ2

reads ds2gdþ2
¼ −dX2

0 − dX2
1 þ

Pdþ1
j¼2 dX

2
j . In this context

AdSdþ1 can be obtained by imposing the constraint

−X2
0 − X2

1 þ
Pdþ1

j¼2 X
2
j ¼ −l2, where l2 ≐ − dðd−1Þ

Λ is
known as the radius of curvature of AdSdþ1.
In this work we consider the Poincaré fundamental

domain/patch of AdSdþ1, denoted as PAdSdþ1, which
can be represented in terms of the coordinates
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ðz; t; x1;…; xd−1Þ, with t; xi ∈ R, i ¼ 1;…; d − 1 while
z ∈ Rþ, by means of the transformation

X0 ¼ l
z t

X1 ¼ z
2

�
1þ 1

z2 ð−t2 þ δijxixj þ l2Þ
�

Xi ¼ l
z xi−1; i ¼ 2;…; d

Xdþ1 ¼ z
2

�
1þ 1

z2 ð−t2 þ δijxixj − l2Þ
�
. ð1Þ

One can realize, by direct inspection, that X1 þ Xdþ1 ¼
l
z > 0, and hence the Poincaré patch covers only a
portion of the whole AdSdþ1 spacetime. As a consequence
of Eq. (1), as a manifold, PAdSdþ1 is isometric to
ðRþ × Rd; gPAdSdþ1

Þ, while the metric gPAdSdþ1
has the

following line element:

ds2PAdSdþ1
¼ l2

z2

�
−dt2 þ dz2 þ

Xd−1
i¼1

dx2i

�
: ð2Þ

As one can observe directly from Eq. (2), ðPAdSdþ1;

gPAdSdþ1
Þ is conformal to H

∘ dþ1
, the interior of the upper

half space Hdþ1 realized as the subset of coordinates z ≥ 0
of the (dþ 1)-dimensional Minkowski spacetime
ðRdþ1; ηÞ. Hence, PAdSdþ1 is a globally hyperbolic space-
time with a timelike boundary (see [2]), and the locus
z ¼ 0, i.e., ∂Hdþ1, represents its conformal boundary. For
convenience and without loss of generality, henceforth we
set l ¼ 1.

B. The Klein-Gordon equation

On top of PAdSdþ1, we consider a real scalar field
ϕ∶ PAdSdþ1 → R satisfying the Klein-Gordon equation

Pϕ ≔ ð□g −m2
0 − ξRÞϕ ¼ 0; ð3Þ

where □g is the d’Alembert wave operator built out of the
metric as per Eq. (2), m0 is the mass parameter, and ξ ∈ R
is the coupling to the scalar curvature R ¼ −dðdþ 1Þ. For
later convenience we introduce an effective mass parameter

m2 ≐ m2
0 þ

�
ξ −

d − 1

4d

�
R; ð4Þ

which we require to abide to the Breitenlohner-Freedman
bound m2 ≥ − 1

4
[19].

Since PAdSdþ1 is a globally hyperbolic spacetime with a
timelike boundary in the sense formalized in [2], once
smooth and compactly supported initial data are assigned
on a Cauchy surface, a unique solution of Eq. (3) exists in
their domain of dependence provided that this does not
intersect the conformal boundary. On the contrary, if one is

interested in global solutions, it is necessary to assign, in
addition, boundary conditions at z ¼ 0. This problem has
been thoroughly investigated in the past few years starting
from the early work of Ishibashi and Wald [13] (see also
[3–5,20,21]).
In these papers, a great deal of attention has been

reserved to studying the role of Robin-type boundary
conditions, although they do not exhaust the set of all
possible choices. As mentioned in the Introduction, a
particularly interesting, alternative option is represented
by the so-called generalized Wentzell, dynamical boundary
conditions (see e.g., [7,9,10,14–16]). In the following we
introduce them, succinctly summarizing the analysis of [7].
We consider Eq. (3) with m2 ≥ 0. If we introduce the

conformally rescaled field Φ ¼ Ω1−d
2 ϕ∶ H

∘ dþ1
→ R with

Ω ¼ z, the Klein-Gordon equation with Wentzell boundary
conditions reads

8>>><
>>>:
PηΦ≔

�
□η−m2

z2

�
Φ¼0;

ð□ðdÞ
η −m2

bÞF¼−ρ
c;

γ0ðΦÞ≔ lim
z→0

Wz½Φ;Φ1�¼F; γ1ðΦÞ¼ lim
z→0

Wz½Φ;Φ2�¼ρ;

ð5Þ

where □η (respectively, □
ðdÞ
η ) is the D’Alembert wave

operator built out of the Minkowski metric on Hdþ1

(respectively, Rd), and mb ≥ 0 can be interpreted as the
mass of the boundary field F. In addition, given two

arbitrary, differentiable functions u and v on H
∘ dþ1

,
Wz½u; v� ¼ u∂zv − v∂zu is theWronskian between u and v.
Still focusing on Eq. (5), one needs a rationale to select

the functions Φ1 and Φ2. To this end, observe that we can
take the Fourier transform of all bulk and boundary fields
along the directions tangent to ∂Hdþ1, rewriting Eq. (5) as
the following Sturm-Liouville problem:

�
−∂2

z þ
m2

z2

�
Φ̂ðz; kÞ ¼ q2Φ̂ðz; kÞ; z ∈ Rþ; ð6aÞ

m2
bF̂ðkÞ −

1

c
ρ̂ðkÞ ¼ q2F̂ðkÞ; ð6bÞ

lim
z→0

Wz½Φ̂ðz; kÞ; Φ̂1ðz; kÞ� ¼ F̂ðkÞ;
lim
z→0

Wz½Φ̂ðz; kÞ; Φ̂2ðz; kÞ� ¼ ρ̂ðkÞ; ð6cÞ

where k ¼ ðω; k1;…; kd−1Þ, while q2 ¼ ω2 −
P

d−1
i¼1 k

2
i .

Using the standard nomenclature of Sturm-Liouville
problems (see [22] or [3] for a short survey), we call
Φ̂1ðz; kÞ the principal solution, namely, the unique solution
of Eq. (6a)—up to scalar multiples—such that
limz→0Φ̂1ðk; zÞ=Ψ̂ðk; zÞ ¼ 0 for every solution Ψ̂ which
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is not a multiple of Φ̂1. On the contrary, Φ̂2ðz; kÞ is any
other, arbitrary but fixed, solution of Eq. (6a) which is
linearly independent from Φ̂1ðz; kÞ.
In [7], the mode solutions associated with Eq. (6a),

subject to the boundary condition as per Eq. (6b), have
been studied in detail. We consider only the regime
c < −ννðm2

b=ð1 − νÞÞν−1, where ν ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
=2, which

guarantees that the operator Âm possesses, for all m > 0,
only a continuous spectrum, q2 > 0, and no bound state
occurs [7]. More precisely, it turns out that Eq. (6a) can be
solved as

Φ̂ðk; zÞ ¼ ρ̂ðkÞΦ̂1ðk; zÞ − F̂ðkÞΦ̂2ðk; zÞ; ð7Þ

where

Φ̂1ðk; zÞ ¼
ffiffiffi
π

2

r
q−ν

ffiffiffi
z

p
JνðqzÞ; ð8aÞ

while

Φ̂2ðk; zÞ ¼
8<
:

−
ffiffiffiffi
πz
2

p
qνJ−νðqzÞ ν > 0;

−
ffiffiffiffi
πz
2

p h
Y0ðqzÞ − 2

π logðqÞ
i

ν ¼ 0;
ð8bÞ

where Jν and Yν represent the Bessel function of
order ν, respectively, of the first and of the second
kind. For later convenience, we stress that, given any
z0 ∈ ð0;∞Þ, Φ̂1ðk; zÞ ∈ L2ðð0; z0Þ; dzÞ, while Φ̂2ðk; zÞ ∈
L2ðð0; z0Þ; dzÞ if and only if ν < 1.
Remark 1. For the reader who is not familiar with the

language of Sturm-Liouville equations and of the associ-
ated boundary value problems, it is instructive to have a
quick and closer look at the scenario where the bulk mass of
the field vanishes, i.e., m ¼ 0 or equivalently ν ¼ 1

2
. In this

instance, Eq. (5) becomes an eigenvalue problem for the
kinetic operator, namely,

−∂2
zΦ̂ðzÞ ¼ q2Φ̂ðzÞ; z ∈ Rþ:

While Eq. (6b) is left unchanged, the principal and the
secondary solutions as per Eqs. (8a) and (8b) become

Φ̂1ðk; zÞ ¼
sinðqzÞ

q
Φ̂2ðk; zÞ ¼ cosðqzÞ:

This entails that one can give a more transparent inter-
pretation of Eq. (6c); namely, a direct calculation shows
that

Φ̂ð0; kÞ ¼ F̂ðkÞ; ð∂zΦ̂Þð0; kÞ ¼ ρ̂ðkÞ;

which in turn entails that

γ0ðΦÞ ¼ Φjz¼0; γ1ðΦÞ ¼ ∂zΦjz¼0:

To summarize, if m ¼ 0, we are dealing with a
so-called regular Sturm-Liouville problem, and the boun-
dary fields F and ρ can be read as the restriction to
∂Hdþ1, respectively, of the bulk field and of its derivative
along the direction normal to the boundary.

III. GROUND STATE WITH WENTZELL
BOUNDARY CONDITIONS

In this section we discuss the existence of the
Wightmann bulk-to-bulk two-point correlation function
for a real massive scalar field on PAdSdþ1 with Wentzell
boundary conditions. In other words, we seek a bi-
distribution λ2 ∈ D0ðPAdSdþ1 × PAdSdþ1Þ such that the
following three conditions are met:

Dynamics: ðP ⊗ IÞλ2 ¼ ðI ⊗ PÞλ2 ¼ 0, where P is the
Klein-Gordon operator as per Eq. (3).

Positivity: λ2ðf; fÞ ≥ 0 for any f ∈ C∞
0 ðPAdSdþ1Þ.

CCR: for any f; f0 ∈ C∞
0 ðPAdSdþ1Þ,λ2ðf; f0Þ−

λ2ðf0; fÞ ¼ iGðf; f0Þ,
where G ¼ Gþ − G−, dubbed the causal propagator, is the
difference between the retarded (þ) and the advanced (−)
fundamental solutions of P on PAdSdþ1, once a choice of
boundary conditions has been made. In addition, among the
plethora of existing two-point functions, we require that λ2
is of Hadamard form. This is a constraint on the singular
structure of λ2 which codifies, on the one hand, that the
ultraviolet behavior of the underlying quantum state
mimics that of the Poincaré-invariant Minkowski vacuum,
while, on the other hand, it entails the finiteness of the
quantum fluctuations of all observables. First introduced
and developed under the assumption that the underlying
spacetime is globally hyperbolic (see [23] for a review), the
Hadamard condition has recently been adapted to asymp-
totically AdS spacetimes [4,24,25]. While the existence of
Hadamard states is a well-established result on globally
hyperbolic spacetimes thanks to a deformation argument
[26], the same conclusion cannot be drawn if the back-
ground possesses a timelike boundary unless the under-
lying boundary condition is time independent [27]. On the
contrary, when boundary conditions of Wentzell type are
imposed, the question of the existence of Hadamard states
is still open. Here we address it under the assumption that
the underlying background is the Poincaré patch of a
(dþ 1)-dimensional AdS spacetime. In this endeavor, we
must start by constructing a ground state. We divide the
analysis into several steps.

Step 1: Reduction to H
∘ dþ1

.—Following the rationale of
Sec. II, it is convenient to consider a conformally related

problem; namely, we look for λH2 ∈ D0ðH∘ dþ1
× H

∘ dþ1Þ such
that, working at the level of the integral kernel,
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λ2ðx; x0Þ ¼ ðzz0Þd−12 λH2 ðx; x0Þ:

In addition, the three defining conditions for a two-point
correlation function translate to

ðPη ⊗ IÞλH2 ¼ ðI ⊗ PηÞλH2 ¼ 0; ð9aÞ

where Pη is defined in Eq. (5),

λH2 ðf; fÞ ≥ 0; ∀ f ∈ C∞
0 ðH

∘ dþ1Þ; ð9bÞ

λH2 ðf;f0Þ−λH2 ðf0;fÞ¼ iGHðf;f0Þ; ∀ f;f0∈C∞
0 ðH

∘ dþ1Þ;
ð9cÞ

where GH is the causal propagator associated with the
operator Pη with Wentzell boundary conditions.

Step 2: Construction of the causal propagatorGH.—The
next step consists in focusing on GH, constructing it
explicitly starting from the mode solutions discussed in
Sec. II. Observe that, a priori, the existence of advanced
and retarded fundamental solutions for a normally hyper-
bolic operator is guaranteed if the underlying spacetime is
globally hyperbolic. On the contrary, in the presence of a
timelike boundary such as in the case at hand, a separate
analysis is necessary. In [20] it has been shown by means of
purely functional analytic tools that the existence is
guaranteed when considering Wentzell boundary condi-
tions, though only in the regular case.
Hence, in the following we exploit the mode solutions

introduced in Sec. II to explicitly construct the causal
propagator GH associated with Eq. (5). Following the same
rationale adopted in [3,5] and working at the level of the
integral kernel, GHðx; x0Þ is a solution of the initial value
problem

8>>><
>>>:

ðPη ⊗ IÞGH ¼ ðI ⊗ PηÞGH ¼ 0;

GHðx; x0Þjt¼t0 ¼ 0;

∂tGHðx; x0Þjt¼t0 ¼ −∂t0GHðx; x0Þjt¼t0 ¼ δðz − z0ÞQd−1
i¼1

δðxi − x0iÞ
; ð10Þ

supplemented with the Wentzell boundary conditions. In
view of translation invariance along all directions, barring
the one orthogonal to the boundary ∂Hdþ1, we can use the
Fourier-Bessel transform to write

GHðx; x0Þ ¼ lim
ε→0þ

Z
R

dω

ffiffiffi
2

π

r
sinðωðt − t0 − iεÞÞ

ω

×
Z

∞

0

dkk
�
k
r

�d−3
2

Jd−3
2
ðkrÞĜH

k ðz; z0Þ; ð11Þ

where we set r2 ≐
P

d−1
i¼1 ðxi − x0iÞ2 while k2 ¼ P

d−1
i¼1 k

2
i ,

with ki being the Fourier parameter associated with xi.
Equation (10) entails that the only unknown ĜH

k ðz; z0Þ is a
solution of the eigenvalue problem

ðL ⊗ IÞĜH
k ðz; z0Þ ¼ ðI ⊗ LÞĜH

k ðz; z0Þ ¼ λĜH
k ðz; z0Þ;

L ¼ −∂2
z þ

m2

z2
; ð12Þ

where the role of the spectral parameter is played by
λ ¼ q2 ¼ ω2 − k2. The initial conditions yield the con-
straint

ð2πÞd2Γ
�

d−1
2

�
ffiffiffi
π

p
Γ
�

d
2

� Z
∞

0

dq qĜH
k ðz; z0Þ ¼ δðz − z0Þ; ð13Þ

where we have implicitly assumed that ĜH
k ðz; z0Þ depends

on the momenta only via q and where we used the identity

Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ ¼

ð2πÞd2Γ
�

d−1
2

�
ffiffiffi
2

p
Γ
�

d
2

� Yd−1
i¼1

δðxi − x0iÞ:

ð14Þ

Equation (13), in combination with Eq. (12), entails that
we can construct ĜHðz; z0Þ starting from a resolution of the
identity operator in terms of eigenfunctions of L. These are
nothing but the mode solutions introduced in Sec. II. This is
a procedure which has already been followed in [3,5] when
constructing the ground state for a massive real scalar field
on an AdS spacetime with Robin boundary conditions.
The first step consists of constructing the so-called radial
Green function R which obeys the following defining
equation:

ðL ⊗ IÞR ¼ ðI ⊗ LÞR ¼ δðz; z0Þ:
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Here we work once more at the level of integral kernels, and
we implicitly assume Wentzell boundary conditions as
per Eq. (6c).
Standard results on Sturm-Lioville problems [22] yield

Rðz; z0; λÞ ¼ Nλ½Θðz − z0Þuðz; λÞvðz0; λÞ
þ Θðz0 − zÞuðz0; λÞvðz; λÞ�; ð15Þ

where uðz; λÞ is a solution of Lu ¼ λu, λ ∈ C, such that
there exists z0 > 0 for which u ∈ L2ðð0; z0Þ;dzÞ, while
vðz; λÞ is a solution of Lv ¼ λv such that there exists z1 > 0

for which L2ððz1;∞Þ;dzÞ. The normalization in Eq. (15) is

Nλ ¼ −
1

Wz½uð·; λÞ; vð·; λÞ�
; ð16Þ

where Wz is the Wronskian between uðz; λÞ and vðz; λÞ.
Starting from uðz; λÞ, the analysis of Sec. II and Eq. (7), in
particular, entails that its role is played by

uðz; λÞ ¼ ϵΦ̂1ðλ; zÞ þ ζΦ̂2ðλ; zÞ; ð17Þ

where the role of λ is played by q2 while ϵ ¼ ρ̂ and
ζ ¼ ρ̂

c½q2−m2
b�
. Focusing on vðz; λÞ, its role is played by

8<
: Φ̂↑ðz; λÞ ¼ ffiffiffi

z
p

Hð1Þ
ν ð ffiffiffi

λ
p

zÞ if ImðλÞ > 0

Φ̂↓ðz; λÞ ¼ ffiffiffi
z

p
Hð2Þ

ν ð ffiffiffi
λ

p
zÞ if ImðλÞ < 0;

ð18Þ

where HðiÞ
μ ð ffiffiffi

λ
p

zÞ, i ¼ 1, 2, is the Hankel function of the
first or second kind. In order to evaluate Eq. (16) and
assuming ν ≠ 0 (i.e., m2 > −1=4), using Eqs. 10.4.7 and
10.4.8 of [28], it holds that

Φ̂↑ðλ; zÞ ¼ αΦ̂1ðλ; zÞ þ βΦ̂2ðλ; zÞ ð19Þ

and

Φ̂↓ðλ; zÞ ¼ ᾱΦ̂1ðλ; zÞ þ β̄Φ̂2ðλ; zÞ; ð20Þ

where

α ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sinðπνÞ

s
qνeiπν; β ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π sinðπνÞ

s
q−ν: ð21Þ

Since Wz½Φ̂1ðλ; zÞ; Φ̂2ðλ; zÞ� ¼ sinðπνÞ, we get

Wz½uðz; λÞ; Φ̂↑
k ðzÞ� ¼ ðϵβ − ζαÞ sinðπνÞ; ð22aÞ

Wz½uðz; λÞ; Φ̂↓
k ðzÞ� ¼ ðϵβ̄ − ζᾱÞ sinðπνÞ: ð22bÞ

Inserting these results into Eq. (15), we can write the
following integral representation of the Dirac delta distri-
bution (see [29] or Appendix C1 of [3]):

−
1

2πi

I
C∞

dλRðz; z0; λÞ ¼ δðz − z0Þ; ð23Þ

where C∞ is an infinitely large keyhole contour in the λ
complex plane with a counterclockwise orientation (see
Fig. 1). We stress the existence of a branch cut on
the positive part of the real axis which reflects that all
λ ∈ Rþ lie in the continuous spectrum of the operator L
[see Eq. (12)].
In order to evaluate Eq. (23), we apply Jordan’s lemma to

conclude that the contribution coming from the larger circle
vanishes. As a consequence,

−
1

2πi

Z
∞

0

dλRðz; z0; λÞ ¼ −
1

2πi

Z
∞

0

djλj lim
ε→0þ

½Rðz; z0; λþ iεÞ −Rðz; z0; λ − iεÞ� ¼ −
1

2πi

Z
∞

0

djλjΔR; ð24Þ

where

FIG. 1. Keyhole contourC∞ and branch cut corresponding to σc.
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ΔR ¼ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinðπνÞ

π

r
½cðλ −m2

bÞΦ̂1ðz; λÞ þ Φ̂2ðz; λÞ�½cðλ −m2
bÞΦ̂1ðz0; λÞ þ Φ̂2ðz0; λÞ�

c2ðλ −m2
bÞ2λ−ν þ λν þ 2cðλ −m2

bÞ cosðπνÞ
: ð25Þ

A direct inspection of Eq. (23) yields

δðz; z0Þ ¼ −
1

2πi

Z
∞

0

dq 2qΔR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinðπνÞ

π

r Z
∞

0

dq q
½cðq2 −m2

bÞΦ̂1ðzqÞ þ Φ̂2ðzqÞ�½cðq2 −m2
bÞΦ̂1ðz0qÞ þ Φ̂2ðz0qÞ�

c2ðq2 −m2
bÞ2q−2ν þ q2ν þ 2cðq2 −m2

bÞ cosðπνÞ
; ð26Þ

where we reinstated q via the defining relation λ ¼ q2. To conclude, using this last expression in Eq. (13), we end up with

ĜH
k ðz; z0Þ ¼

ffiffiffi
π

p
Γ
�
d
2

�
ð2πÞd2Γ

�
d−1
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinðπνÞ

π

r
½cðq2 −m2

bÞΦ̂1ðz; qÞ þ Φ̂2ðz; qÞ�½cðq2 −m2
bÞΦ̂1ðz0; qÞ þ Φ̂2ðz0; qÞ�

c2ðq2 −m2
bÞ2q−2ν þ q2ν þ 2cðq2 −m2

bÞ cosðπνÞ
: ð27Þ

Putting all the elements together, we have that the causal propagator with Wentzell boundary conditions takes the form

GHðx; x0Þ ¼ lim
ε→0þ

ffiffiffi
2

π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

Z
∞

0

dqq
sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2

p
ðt − t0 − iεÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p ĜH

k ðz; z0Þ

¼ lim
ε→0þ

ffiffiffi
2

π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

Z
∞

k
dω sinðωðt − t0 − iεÞÞĜH

k ðz; z0Þ: ð28Þ

We remark that the initial conditions in Eq. (10) are
automatically implemented.
Step 3: Construction of the bulk ground state λ2.—We

are now in a position to directly write down the ground state
in Minkowski half-space in terms of (27) as

λH2 ðx; x0Þ ¼ lim
ε→0þ

ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk
�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p ĜH

k ðz; z0Þ; ð29Þ

where we have selected only positive frequencies.
Hence, in PAdSdþ1 the ground-state Wightman function
in the bulk is

λ2ðx; x0Þ ¼ lim
ε→0þ

ðzz0Þd−12
ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p ĜH

k ðz; z0Þ: ð30Þ

Having constructed the two-point correlation function for
the ground state in Eq. (30) combined with Eq. (27), we
are now in the position to infer a notable consequence.
As a matter of fact, in view of the general analysis in [30]
and of the results on the propagation of singularities on

asymptotically AdS spacetimes proven in [31], we can
conclude that λ2 is a bi-distribution of Hadamard form in
PAdSdþ1, both locally and globally, in the sense of [4].

IV. BULK-BOUNDARY AND BOUNDARY-
BOUNDARY PROPAGATORS

As a next step we observe that, without entering into the
technical details, far from the scope of this work, the
singular structure of the bi-distribution λH2 is such that it is
always possible to extend it to ∂Hdþ1. As a consequence,
we can restrict one or both of its entries to lie on ∂Hdþ1,
hence giving rise to what is known in the literature as the
bulk-to-boundary λH

2B∂ 0 or boundary-to-boundary λH2∂∂ 0 two-
point function. While giving an explicit expression of these
propagators is elusive in the general scenario, it is instruc-
tive to focus on the casem ¼ 0 since concrete formulas can
be written. More precisely, in this scenario all expressions
derived in the previous section can be straightforwardly
continued to ∂Hdþ1. To make this statement more precise,
and thus following the results of Sec. III, we set

ψqðzÞ ¼ cðq2 −m2
bÞΦ̂1

�
z;

ffiffiffiffiffi
q2

q �
þ Φ̂2

�
z;

ffiffiffiffiffi
q2

q �
ð31Þ

and
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N q2 ≐
�

Γðd
2
Þð2 sinðπνÞÞ1=2

ð2πÞd2Γðd−1
2
Þðc2ðq2 −m2

bÞ2q−2ν þ q2ν þ 2cðq2 −m2
bÞ cosðπνÞÞ

�1=2

: ð32Þ

We start from the bulk-to-bulk two-point function as per
Eq. (27), reported here for convenience:

λH2 ðx; x0Þ ¼ lim
ε→0þ

ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p ĜH

k ðz; z0Þ: ð33Þ

A direct inspection of Eq. (31) shows that, since m ¼ 0,
it holds that

ψqð0Þ ¼ Φ̂2ð0;
ffiffiffiffiffi
q2

q
Þ;

which, in combination with Eq. (27), entails that we can
construct the boundary-to-boundary two-point correlation
function simply by setting z ¼ z0 ¼ 0. Denoting it hence-
forth by λH

2∂∂ 0, it reads

λH
2∂∂ 0 ¼ lim

ε→0þ

ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p jN q2Φ̂2ð0; qÞj2: ð34Þ

Similarly, one can wonder what happens if only one of the
two legs of λH2 is restricted to the boundary. This gives rise
to the bulk-to-boundary two-point correlation function,
which we denote by λH

2B∂ 0. Setting z0 ¼ 0 it reads

λH
2B∂ 0 ¼ lim

ε→0þ

ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ k2
p jN q2 j2ψqðzÞΦ̂2ð0; qÞ:

ð35Þ

To conclude the section, we remark that a natural
question is whether the singular structure of λH

2∂∂ 0 is related
to that of λH2 . Since answering this question would require a
detailed and lengthy mathematical analysis, we content
ourselves to commenting on this issue. First of all, we recall
that there exists a global and a local version of the so-called
Hadamard condition for a bi-distribution, say ω2 (see [23]).
These are equivalent provided that ω2 is a weak bi-solution
of a linear, second-order, hyperbolic partial differential
equation, such that its antisymmetric part is proportional
to the associated retarded-minus-advanced fundamental

solution. In the case at hand, one can employ techniques
of microlocal analysis to prove that the global singular
structure of λH

2∂∂ 0 is consistent with the Hadamard con-
dition on Rd ≃ ∂Hdþ1. Yet it is not of the local Hadamard
form since—even though this bi-distribution is, by con-
struction, a bi-solution of the Klein-Gordon equation on
the boundary—its antisymmetric part is not proportional
to the retarded-minus-advanced fundamental solution of

□
ðdÞ
η −m2

b, as one can infer from direct inspection.

V. SUPPORT PROPERTIES OF THE GREEN
FUNCTIONS

The construction outlined in the main body of this
work guarantees that GH is a bi-solution of the equation
of motion ruled by Pη [see Eq. (5)] supplemented by
boundary conditions of Wentzell type. Yet, there is no
a priori guarantee that GH codifies the standard
causal properties of the advanced and retarded fundamental
solutions of a wavelike operator on a globally hyperbolic

spacetime, namely that, for every f ∈ C∞
0 ðH

∘ dþ1Þ,
suppðGHðfÞÞ ⊆ JþðsuppðfÞÞ ∪ J−ðsuppðfÞÞ, where J�
indicate the causal future (þ) and past (−) of a subset of
Hdþ1 endowed with the Minkowski metric. In the following
we use a so-called energy estimate to prove that such a
structural property holds true in the case at hand for a bulk
massless scalar field [see Eq. (5) withm ¼ 0]. Observe that,
since PAdSdþ1 is conformally related to ðHdþ1; ηÞ and thus
since they share the same causal structure, the support
properties of GH are inherited automatically by the causal
propagator G associated with the operator P [see Eq. (3)],
via the defining relation G ¼ ðzz0Þd−12 GH. In order to use
energy estimates, it is convenient to reformulate the
problem at hand in terms of an extended Hilbert space.
More precisely, let us consider

H ¼ L2ðH∘ dÞ ⊕ L2ðRd−1Þ; ð36Þ

with inner product

ðu; vÞH ≔ ðu1; v1ÞL2ðH∘ dÞ þ ðu2; v2ÞL2ðRd−1Þ; ð37Þ

for u ¼ ðu1u2Þ; v ¼ ðv1v2Þ ∈ H. Here H
∘ d

and Rd−1 have to be

interpreted, respectively, as slices of H
∘ dþ1

and of ∂Hdþ1 at
constant time t.
Let G ≔ GH ⊕ G∂H be the direct sum of the bulk-to-bulk

and the boundary-to-boundary advanced-minus-retarded
propagators for the massless Klein-Gordon operator with
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Wentzell boundary conditions, the latter being the pullback
of the former to the boundary. Let uðtÞ ¼ ½GðhÞ�ðtÞ ¼
ðΦðtÞ; FðtÞÞ, with h ∈ C∞0 ðH

∘ dþ1Þ × C∞0 ðRdÞ, be a solution
of the problem at hand, where we highlight the dependence

from the time coordinate t. Furthermore, let K ⊂ f0g × H
∘ d

be a compact set in Hdþ1. We assume f to be chosen so as
to have vanishing initial data:

uð0ÞjK ¼ 0; _uð0ÞjK ¼ 0;

Fð0ÞjK∩∂Hdþ1 ¼ 0; _Fð0ÞjK∩∂Hdþ1 ¼ 0:

Consider a time slice Mt ¼ ftg × Hd, t ∈ R, and let
Kt ¼ Mt ∩ JðKÞ, where JðKÞ ≔ JþðKÞ ∪ J−ðKÞ. To sim-
plify the notation, we use ∂bKt ≐ ∂Hdþ1 ∩ ∂Kt,

∂∘Kt ≐ H
∘ dþ1

∩ ∂Kt. We consider the energy functional
E½u�ðtÞ ¼ E∘½Φ�ðtÞ þ E∂ ½F�ðtÞ with

E∘½Φ�ðtÞ ¼ 1

2
½kΦk2L2ðKtÞ þ k _Φk2L2ðKtÞ þ k∇Φk2L2ðKtÞ�; ð38Þ

E∂ ½F�ðtÞ¼
1

2
½kFk2L2ð∂bKtÞ þk _Fk2L2ð∂bKtÞ þk∇∂Fk2L2ð∂bKtÞ�;

ð39Þ

where ∇∂ indicates the covariant derivative pulled back to
∂bKt. Observe that, for any solutionu of the problem at hand,
onecan show that bothEqs. (38) and (39) are finite [20]. To fix
the notation, in the following, by (,) we denote the inner
product of L2ðKtÞ. The time variation of Eq. (38) reads

d
dt

E∘½Φ�ðtÞ ¼ ðΦ; _ΦÞ þ ð _Φ; Φ̈Þ þ ð∇Φ;∇ _ΦÞ − 1

2
½kγΦk2L2ð∂∘KtÞ þ kγ _Φk2L2ð∂∘KtÞ þ kγ∇∂Φk2L2ð∂∘KtÞ�;

−
1

2
½kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ þ kγ∇∂Φk2L2ð∂bKtÞ�; ð40Þ

where, with a slight abuse of notation, we indicate with γ
the restriction map to ∂∘Kt as well as to ∂bKt. In both cases
one can show that γ is well defined [20,31]. The time
derivative of E∂ ½Φ�ðtÞ in Eq. (39) is

d
dt

E∂ ½Φ�ðtÞ ¼ ðF; _FÞL2ð∂bKtÞ þ ð _F; F̈ÞL2ð∂∘KtÞ

þ ð∇∂F;∇∂ _FÞL2ð∂bKtÞ: ð41Þ

Focusing first on Eq. (40) and integrating by parts, we
obtain

ð∇Φ;∇ _ΦÞ ¼ −ð△Φ; _ΦÞ þ
Z
∂bKt

γ _Φ γ∇⊥Φ dμ∂bKt

þ
Z
∂bKt

γ _Φ γ∇⊥Φ dμ∂∘Kt
; ð42Þ

where ∇⊥ is the covariant derivative along the direction
normal to the boundary. Using Eq. (3) and the inequality
ðv; wÞ ≤ 1

2
ðkvk2 þ kwk2Þ valid for any v, w lying in a real

vector space endowed with a scalar product (,), we get the
following chain of inequalities:

d
dt

E∘½Φ�ðtÞ ¼ ðΦ; _ΦÞ þ ðγ _Φ; γ∇⊥ΦÞL2ð∂∘KtÞ þ ðγ _Φ; ρÞL2ð∂bKtÞ −
1

2
½kγΦk2L2ð∂∘KtÞ þ kγ _Φk2L2ð∂∘KtÞ þ kγ∇∂Φk2L2ð∂∘KtÞ�

−
1

2
½kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ þ kγ∇∂Φk2L2ð∂bKtÞ�

≤
kΦk2L2ðKtÞ

2
þ
k _Φk2L2ðKtÞ

2
þ 1

2
½kγ _Φk2L2ð∂∘KtÞ þ kγ∇⊥Φk2L2ð∂∘KtÞ� þ

1

2
½k _Fk2L2ð∂bKtÞ þ kρk2L2ð∂bKtÞ�þ

−
1

2
½kγΦk2L2ð∂∘KtÞ þ kγ _Φk2L2ð∂∘KtÞ þ kγ∇∂Φk2L2ð∂∘KtÞ� −

1

2
½kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ þ kρk2L2ð∂bKtÞ�

≤
1

2
kΦk2L2ðKtÞ þ

1

2
k _Φk2L2ðKtÞ ≤ E∘½u�ðtÞ; ð43Þ

where we have implicitly taken into account the equation of
motion and the possibility to choose Kt in such a way that
the restriction of Φ and of its derivatives on ∂∘Kt vanishes

identically. Focusing now on Eq. (39) and proceeding as for
the previous term, we can bound the time variation of
E∂ ½F�ðtÞ as follows:

GROUND STATE FOR THE KLEIN-GORDON FIELD IN … PHYS. REV. D 105, 105017 (2022)

105017-9



d
dt

E∂ ½F�ðtÞ ≤ kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ − ðmbF; _FÞL2ð∂bKtÞ þ
1

2c
kρk2L2ð∂bKtÞ

þ 1

2c
k _Fk2L2ð∂bKtÞ −

1

2
½kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ þ k∇∂Fk2L2ð∂bKtÞ�

≤ C½kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ� þ
1

2c
kρk2L2ð∂bKtÞ; ð44Þ

with C ¼ 1þ 1
2jcj þ mb

2
. Since c < 0 per the hypothesis, we

can estimate the last expression from above as

E∂ ½F�ðtÞ ≤ C
h
kFk2L2ð∂bKtÞ þ k _Fk2L2ð∂bKtÞ

i
≤ 2CE∂ ½F�ðtÞ:

ð45Þ

Combining Eqs. (45) and (43) yields

d
dt

E½u�ðtÞ ≤ 2CE½u�ðtÞ: ð46Þ

Therefore, applying Gronwall’s lemma, we obtain that
E½u�ðtÞ ≤ e2CtE½u�ð0Þ. Since E½u�ðtÞ is positive, the
vanishing of u and, therefore, of E½u� on K yields the
sought result. Indeed, if E½u�ð0Þ ¼ 0 Eq. (46) entails that
E½u�ðtÞ ¼ 0 in Kt. Hence, we conclude that the solution
uðtÞ ¼ ðΦðtÞ; FðtÞÞ vanishes onKt and therefore thatG has
the desired support property.

VI. FINAL REMARKS

In this paper we have studied a class of real Klein-
Gordon field theories in the Poincaré fundamental domain
of anti–de Sitter spacetime in dþ 1 dimensions with
dynamical Wentzell boundary conditions, which admit
the definition of a ground state. This implies that the
boundary conditions at conformal infinity depend explicitly
on second-order time derivatives of the field, and indeed
take the form of nonhomogeneous wave equations for a

boundary field, where the source term is given by the trace
γ1Φ ¼ ð∂zΦÞjz¼0 of the bulk field.
The main task has been to obtain explicit expressions for

the ground-state Wightman two-point functions as mode
expansions, which we achieve in Eq. (30) by exploiting the
symmetry of spacetime and reducing the problem to finding
the Green operator of an associated Sturm-Liouville prob-
lem [see Eq. (27)]. As a by-product of [27,31] we can also
infer that the Wightman two-point function has the
Hadamard property.
As expected, the antisymmetric part of the two-point

function is proportional to what is expected to be the causal
propagator of the theory, and we verify that this antisym-
metric part satisfies the desired boundary conditions at
t ¼ 0 and the Wentzell boundary conditions at the con-
formal boundary. Furthermore, in the massless (m2 ¼ 0)
Klein-Gordon case, we can show that the support properties
of the advanced-minus-retarded propagator are the standard
ones. However, proving an analogous result for the massive
case remains elusive.
In themassless case it is also possible to naturallydefine, by

restriction, a boundary state for the boundary quantum field
theory, which appears naturally as the boundary-to-boundary
propagator of amatrix-valued two-point functionwith further
bulk-to-bulk and bulk-to-boundary propagators.
As a final comment, we should mention that, with the

ground-state expression (30) we have obtained, it is an easy
task to obtain a KMS two-point function at positive
temperatures. Indeed, it is easy to see that if (30) defines
a ground state for the theory, then

λβ2ðx; x0Þ ¼ lim
ε→0þ

ðzz0Þd−12
ffiffiffiffiffiffi
1

2π

r Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq

�
1 − e−β

ffiffiffiffiffiffiffiffiffi
q2þk2

p �−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2

p ĜH
k ðz; z0Þ

�
e−i

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞ þ e−β

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ei

ffiffiffiffiffiffiffiffiffi
q2þk2

p
ðt−t0−iεÞ

�
ð47Þ

defines, correspondingly, a KMS state in equilibrium at temperature T ¼ 1=β > 0.
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