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We study the influence of the relativistic redshift on Hong-Ou-Mandel (HOM) interference and present a
genuine quantum test of general relativity. We use Glauber’s theory of quantum coherence to predict the
coincidence probability of realistic broadband photons in HOM experiments in a nonrelativistic setting. We
extend the quantum field theoretical framework previously developed to describe the deformation of the
spectral profile of single photons in curved spacetimes to a multiphoton framework, which is exact for
inertial observers in a flat spacetime and an approximation when observers are located in a curved
spacetime. We find that, in case of frequency entangled photons, a mutual redshift between the sender and
the receiver can change the coincidence statistics from photon bunching to photon antibunching and vice
versa. This implies that the (anti)symmetry of the photonic spectral wave function is an observer dependent
notion and that this can be probed via HOM experiments in a relativistic setting.
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I. INTRODUCTION

Exploring the interplay between general relativity and
quantum mechanics is one of the major goals of modern
physics [1]. A central problem in the development of a
theory that describes the behavior of quantum particles in
curved spacetimes is the lack of experimental evidence
providing guidance. This is mostly rooted in the huge
discrepancy of the parameter regimes where the two
theories become relevant. While relativistic effects typi-
cally occur at macroscopic scales and large energies,
quantum effects usually manifest at the microscopic scale,
where few elementary objects interact. However, in quan-
tum theory, there is no length scale that restricts its
applicability. Moreover, in recent decades, fueled by
advances in experimental capabilities and control, several
experiments have been conducted to reveal the effects of
gravity on quantum systems. For example, the nonrelativ-
istic gravitational phase of neutrons was measured in the
famous Colella, Overhauser and Werner (COW) experi-
ment [2], and the general relativistic redshift on the
frequency of single photons [3,4] or of clocks located on
Earth or moving [5] was detected. These early successes
indicate that it is possible to investigate the overlap of
relativity and quantum mechanics within accessible energy
scales and environments and that the limit is mostly
technological.

The rapid technological progress experienced in the past
decades offers the opportunity to propose experiments that
operate in parameter regimes where both general relativity
and quantum mechanics play a non-negligible role [6]. For
example, the recent demonstration of entanglement distri-
bution over more than 1200 km [7] opened the way for
many long-distance quantum applications, such as the first
satellite-to-ground quantum key distribution (QKD) imple-
mentation by the Micius satellite of the Chinese Academy
of Sciences [8–10] and intercontinental quantum-secured
data transfer [11,12]. Proposed quantum technologies often
rely on the use of genuine quantum features, such as
entanglement, shared between several distant systems or
particles. Quantum mechanics has so far been successfully
employed as the only formal framework to describe these
scenarios. However, it is reasonable to assume that rela-
tivistic effects cannot be neglected anymore when corre-
lated quantum systems are distributed over large distances
through the inhomogeneous gravitational field of the Earth.
Relativistic and quantum information aims at under-

standing how gravity affects quantum information tasks
and protocols [13]. One avenue has demonstrated that
gravity affects the quantum state of realistic broadband
photons propagating in curved spacetime [14–16]. It was
shown that the effects can also be employed for sensing
[15]. Furthermore, quantum correlations, such as squeezing
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and entanglement, have been shown to potentially enhance
the sensitivity of interferometers in this context [17] and to
improve the accuracy in clock synchronization [18,19]. The
latter is needed in the global positioning system (GPS) or
high precision metrology in general. It has become evident
that the development of modern technologies to be
deployed in contexts where gravity plays a significant role,
such as a GPS with quantum systems as atomic clocks,
requires a full characterization of the properties of quantum
systems in curved spacetime.
Indistinguishability of physical systems is one of the

important defining features of quantum systems without
classical analogue. In the case of bosons, indistinguish-
ability leads to intriguing phenomena, such as photon
bunching within interference experiments, first witnessed
in the pioneering Hong-Ou-Mandel (HOM) experiment
[20]. Only recently it was shown that HOM interference
bears the potential to enhance the accuracy of clock
synchronization [21,22], as already predicted theoretically
[18]. Consequently, HOM-like schemes are candidates for
space-based implementations where indistinguishable cor-
related photons are exchanged over intercontinental dis-
tances. Relativistic redshift, which plays a role already in
ordinary GPS, is expected to play an important role in these
scenarios as well. We conclude that HOM interference can
constitute one of the most promising routes to design
genuine quantum tests of general relativity. It is therefore
important to understand the effect of relativity on HOM-
interference-based implementations.
In the present paper, we investigate the influence of

relativistic redshift on HOM-interference experiments. This
has a fundamental and a practical aspect. On the funda-
mental side, it is of interest to reveal which scenarios
witness signatures of general relativistic effects that can be
observed in HOM experiments. On the practical side, it is
important to find the regimes where relativity affects
quantum technological applications and to quantify the
magnitude of the effects. In particular, we want to quantify
the signatures of general relativistic effects on observable
HOM-interference patterns, which in turn, will inform us
on potential new challenges to be faced in the development
of novel quantum technological applications. We employ
the quantum field theoretical framework developed to
quantify the influence of the relativistic redshift on single
photons [14,15] and extend this body of work to the case of
two (or more) photons. This, in turn, allows us to quantify
relativistic effects on two-photon HOM interference. Our
approach can be applied to the case of inertial observers in a
flat spacetime, as well as the case of scalar optics in
(weakly) curved spacetime, which is the regime considered
in our analysis. We also provide a comparison between the
effects obtained when employing pairs of frequency
uncorrelated photons, frequency detuned photons, and
frequency-entangled photons. Finally, we derive the exper-
imental conditions necessary to detect the effects of

relativistic redshift on the HOM-interference pattern with
frequency entangled photons.
This work is organized as follows. In Sec. II, we briefly

review our results on HOM interference from previous
work [23]. In Sec. III, we provide the tools to compute the
relativistic deformation of the spectral wave function. In
Sec. IV, we compute the effects using the newly developed
methods. In Secs. V and VI, we provide outlook and
conclusions for our work.

II. HONG-OU-MANDEL INTERFERENCE

In this section, we briefly review a theoretical framework
previously developed to predict the detection statistics of
HOM experiments with realistic broadband photons. We
leave details to the interested reader [23]. In this section, we
work in a nonrelativistic context; i.e., all temporal quan-
tities are functions of a universal background time and not
of the proper time of the observers. The basic scheme of
HOM interference is shown in Fig. 1.

A. Detection statistics

A general two-photon state jψðτ1; τ2Þi in the context of
HOM interference is given by

jψðτ1; τ2Þi ¼
Z

dω1dω2Φðω1;ω2Þeiω1τ1eiω2τ2 â†ω1
â†ω2

j0i;

ð1Þ

where the bold font ω denotes the set of parameters
that characterize all degrees of freedom (DOFs) of a
single photon, and the â†ω are bosonic creation operators.
We treat the frequency DOF ω separately from the other
photonic DOF σ and write ω ¼ fω; σg, thereby defining
the alternative notation of the photonic wave func-
tion Φðω1;ω2Þ ¼ Φðω1; σ1;ω2; σ2Þ ¼ Φσ1σ2ðω1;ω2Þ.
The (unnormalized) probabilities Pσ1σ2ðτ1; τ2Þ to detect

one photon in a quantum state, which is characterized by σ1
and another photon in a quantum state, which is charac-
terized by σ2 in the two-photon quantum state (1), have
been obtained previously [23] and read

FIG. 1. Scheme of Hong-Ou-Mandel interference. Two photons
are subject to optical delays τ1;2 and interfere on a common beam
splitter to produce a joint detection statistic at the detectors U and
L, which may be evaluated with a coincidence count (CC) logic.
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Pσ1σ2ðτ1; τ2Þ ¼
Z

dω1dω2½jΦσ1σ2ðω1;ω2Þj2

þ jΦσ2σ1ðω2;ω1Þj2� þ 2ℜ

�Z
dω1dω2

×Φσ1σ2ðω1;ω2ÞΦ�
σ2σ1ðω2;ω1Þ

× e−iðω1−ω2Þðτ1−τ2Þ
�
: ð2Þ

We also call the probabilities Pσ1σ2ðτ1; τ2Þ in (2) the
detection statistics of a HOM experiment. Here, τ1 and
τ2 are optical delays that can be applied independently to
wave packets in HOM interferometry [24]. Note that the
probabilities are always a function of the difference Δτ ≔
τ1 − τ2 as can be seen from (2). Nevertheless, we keep track
of both delays τ1 and τ2 in our work since this will be
necessary when considering relativistic effects on the
detection statistics in Sec. IV.

B. Two-photon sources

In this section, apart from the frequency DOF, we con-
sider the spatial DOF of the photons [i.e., σ ¼ ðU;LÞ] as
the only left photonic DOF and do not consider, for
instance, the polarization of the photons and so forth.
We consider two-photon sources, which possess photonic
wave functions that can be written in matrix form (see [23]
for details) as

Φσ1σ2ðω1;ω2Þ ¼ ϕðω1;ω2Þ
�
eiθ þ1

−1 −e−iθ

�
; ð3Þ

where θ is the phase associated with BS reflection. The row
and column numbering of the matrix in (3) is U, L, and
ϕðω1;ω2Þ is the joint photonic spectral wave function, for
which we may impose w.l.o.g., the normalization condi-
tion

R
dω1dω2jϕðω1;ω2Þj2 ¼ 1.

Inserting (3) into (2) and computing the coincidence
detection probability Pc ¼ PUL þ PLU; i.e., the probability
to detect one photon at one detector U or L and the other
photon at the other detector L or U yields after subsequent
normalization (such that PUU þ PLL þ PUL þ PLU ¼ 1)
the result

Pcðτ1; τ2Þ ¼
1

2
½1 − dϕðτ1; τ2Þ�; ð4Þ

where

dϕðτ1;τ2Þ¼2ℜ

�Z
dω1dω2ϕðω1;ω2Þϕ�ðω2;ω1Þe−iΔωΔτ

�
;

ð5Þ
with Δω ¼ ω1 − ω2 and Δτ ¼ τ1 − τ2 containing the
dependence on the optical delays τ1 and τ2 and depending
on the spectral profile ϕðω1;ω2Þ of the two photons.

In Sec. IV, we investigate the influence of relativistic
effects on HOM experiments that are operated with three
different types of two-photon sources each owning a
different two-photon spectral profile. We investigate a
source of spectrally indistinguishable frequency uncorre-
lated photons (employed in the original work of Hong, Ou,
and Mandel [20]) which features a spectral profile,

ϕHOMðω1;ω2Þ ¼ fμðω1Þfμðω2Þ; ð6Þ

with

fμðωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

p
ξ

p e
−ðω−μÞ2

4ξ2 : ð7Þ

Further, we investigate parametric down converting
photon sources generating spectrally distinguishable fre-
quency detuned photons with a spectral profile of

ϕf:d:ðω1;ω2Þ ¼
ffiffiffiffiffi
2

πξ

s
δðωp − ω1 − ω2Þsinc

�
ω1 − ω2 − μ

ξ

�
;

ð8Þ

where ωp is the pump frequency of the down converting
process, and μ is the frequency separation (or detuning) of
the photons.
Lastly, we investigate sources of spectrally indistinguish-

able frequency entangled photons owning the spectral
profile,

ϕf:e:ðω1;ω2Þ ¼ N ½ϕf:d:ðω1;ω2Þ þ eiφϕf:d:ðω2;ω1Þ�; ð9Þ

with N −2 ¼ 2μð1þ cosðφÞsincð2μ=ξÞÞ. In all expressions
(6), (8), and (9), ξ is the single-photon bandwidth. Inserting
(6), (8), and (9) into (5) yields

dϕHOM
ðτ1; τ2Þ ¼ e−ξ

2Δτ2 : ð10aÞ

dϕf:d:
ðτ1; τ2Þ ¼ Sμξðτ1; τ2Þ ð10bÞ

dϕf:e:
ðτ1; τ2Þ ¼ 2μN 2½Rμξðτ1; τ2Þ þ Sμξðτ1; τ2Þ�; ð10cÞ

with

Sμξðτ1; τ2Þ ¼
sin ð2μξ triðξΔτ2 ÞÞ

2μ
ξ

ð11aÞ

Rφ
μξðτ1; τ2Þ ¼ cosðμΔτ − φÞtri

�
ξΔτ
2

�
; ð11bÞ

where
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triðxÞ ¼
�
1 − jxj if jxj ≤ 1

0 if jxj > 1
ð12Þ

is the triangular function.
We want to briefly discuss some of the most important

features of the interference patterns (10a)–(10c) of the three
light sources. In the absence of spectral entanglement,
photon antibunching (i.e., Pc > 1=2) cannot occur [25]. In
particular, this holds true for the frequency uncorrelated
photon source of the original HOM experiment [20] as seen
from (10a). This contrasts with the other two interference
pattern, which both show a periodic change between
photon bunching and photon antibunching in the delay
Δτ with oscillation frequency μ. This phenomenon is
termed quantum beating [26] and is characteristic in the
presence of spectral entanglement. Indeed both spectra (8)
and (9) contain spectral entanglement as they do not
factorize into single-particle spectral [27]. However, there
is a striking difference between frequency detuned and fre-
quency entangled photons, namely that the interference
term (10b) of frequency detuned photons vanishes for
increasing frequency separations μ where the one of fre-
quency entangled photons (10c) does not. As extensively
discussed in [23], the physical reason for this is the increa-
sing spectral distinguishability of frequency detuned
photons, which grows for larger values of μ and thus, sup-
presses both photon bunching and photon antibunching.
Mathematically perfect spectral distinguishability is expres-
sed through a vanishing overlap of the spectral wave function
with itself under exchange of the function arguments,
i.e., limμ→∞

R
dω1dω2ϕf:d:ðω1;ω2Þϕ�

f:d:ðω2;ω1Þ ¼ 0, which
forces the interference term (5) to vanish. This is different in
the case of frequency entangled photons, which preserve
their spectral indistinguishability, also for larger values of μ.
Therefore, in contrast to the other two cases with frequency
entangled photons, we can achieve the following: In the limit
μ → ∞, the occurrence of photon bunching or photon
antibunching is highly sensitive to a change in the optical
delay Δτ ¼ τ1 − τ2. This fact will become important
when we consider relativistic effects on HOM interference
in Sec. IV.

III. RELATIVISTIC DEFORMATION OF
SPECTRAL WAVE FUNCTION

We now include relativistic effects. More concretely,
we show that different observers would assign different
spectral wave functions to the same (multi)photon quantum
state. A more detailed view on the topic in the single-
particle sector is left to the literature [14,15,28].

A. Quantum fields in curved spacetime

The starting point is to describe the light field as an
uncharged massless real scalar field ϕ for the sake of
simplicity and without loss of generality. The field ϕ obeys
the massless Klein-Gordon equation,

ð ffiffiffiffiffiffi
−g

p Þ−1∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0; ð13Þ

where gμν is the metric tensor of the underlying spacetime,
and g is its determinant [28].1 If the spacetime is stationary,
it possess a timelike Killing vector field, which is ∂ξ, and
elements of the metric tensor are independent of the time ξ.
In our case, we consider that the time parameter coincides
with the coordinate time t, and therefore, invariance of the
metric under translations induced by the Killing vector field
∂t implies energy conservation. In turn, this allows one to
decompose any solution of the Klein-Gordon equation into
energy eigenstates ϕk as ϕ ¼ R

d3k½αkϕk þ α�kϕ
�
k�. Here,

k collects the relevant quantum numbers, fαkg are Foruier
coefficients for the classical field expansion, and i∂tϕk ¼
ωkϕk is the eigenvector equation for the modes ϕk, where
ωk is the (positive) eigenvalue. Canonical quantization
promotes the expansion coefficients α�k and αk of this
decomposition into creation and annihilation operators â†k
and âk, respectively. These operators satisfy the canonical
commutation relations ½âk; â†k0 � ¼ δ3ðk − k0Þ.

B. Single-photon wave packet deformation

Full characterization of a realistic photon would require
the use of electrodymanics in curved spacetime, which can
be extremely cumbersome and might obfuscate the final
results. Here, we choose to follow another route.
In the past decade, a new body of work has developed the

theory of photons propagating in (weakly) curved space-
time from different perspectives [14,15,29,30]. We assume
that a photon can be indeed modeled by using a massless
scalar field, and that it is effectively strongly confined to
the direction of propagation in a (weakly curved) static
spacetime. In this way, we can effectively assume that the
photon is localized along a lightlike path, and therefore,
we can ignore the deformation effects that occur in the
perpendicular directions [29,30]. Nevertheless, we expect
that the gravitational redshift will still affect the photon, and
this effect in the context of a localized wavepacket has been
pioneered in the literature [14,15].
We therefore characterize a single photon generated by a

photon source through the spectral emission profile ΦðωÞ
by the creation operator,

Â†ðtÞ ¼ N ψ1

Z
dωΦðωÞeiωtâ†ω; ð14Þ

where t is the coordinate time, and N ψ1
is a normalization

constant specified further below. The corresponding single-
photon quantum state is

jψ1ðtÞi ¼ Â†ðtÞj0i: ð15Þ

1We employ Einstein summation convention. The metric has
signature ð−;þ;þ;þÞ.
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The same photon as seen from a moving observer K
exploring the proper time τK would be described by the
creation operator Â†

KðτKÞ, which has been computed in the
literature [14,15], and reads

Â†
KðτKÞ ¼

Z∞
0

dωKΦKðωKÞeiωKτK â†ωK : ð16Þ

Thus, different observers K will assign different spectral
distributions ΦKðωKÞ to the very same photon. In particu-
lar, they will define the single photon quantum states
jψ1ðτKÞi as

jψ1ðτKÞi ¼ Â†
KðτKÞj0i; ð17Þ

where the relation between the spectra ΦKðωKÞ of two
observers Alice and Bob, with K ¼ A,B respectively, has
been computed in the literature [14], and is given by

ϕBðωBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ zAB

s
ΦAðωAÞ: ð18Þ

Here, we have used the defining relation between the
frequencies as measured locally by Alice and Bob, which
reads

ωA ¼ ωB

1þ zAB
; ð19Þ

where zAB is the mutual redshift between observer A and B
as defined in [31]. The relations (18) and (19) follow from
requiring Eq. (17) to yield proportional results for K ¼ A
and K ¼ B [i.e., jψ1ðτBÞi ∝ jψ1ðτAðτBÞÞi] together with
the normalization condition,

ðN ψ1
Þ−2 ¼

Z
dωKjΦKðωKÞj2; ð20Þ

which ensures hψ1ðτKÞjψ1ðτKÞi ¼ 1 in all frames. Note
that Eqs. (16)–(19) are only valid approximations in a
weakly curved spacetime [14,15]. They become exact in
the case that K ¼ A; B are inertial observers in flat a
spacetime [32].
As mentioned above, we here only consider the spectral

aspects of the light field since we use the Klein-Gordon
equation, which is a good approximation to the longitudinal
(or transverse) modes of the electromagnetic field in scalar
optics. A description of the observer dependent trans-
formation properties of other DOFs of the light field, such
as the helicity or the light’s orbital momentum, would
amount for a more elaborated treatment of the electromag-
netic field. For this, one would have to quantize Maxwell’s
equations on a curved spacetime background.

However, we proceed with a description within scalar
optics and (artificially) incorporate the other photonic
DOFs by describing single photon states using a general-
ized version of the creation operator (16), which reads

Â†
KðτKÞ ¼

Z∞
0

dωKΦKðωKÞeiωKτK â†ωK ; ð21Þ

where we defined the entire set of photonic DOFs as
ωK ≔ fωK; σg, and σ is the set of photonic DOFs exclud-
ing for the photons frequency ωK. Clearly, these DOFs are
those potentially measured by from an observer K. The
observer dependent photonic wave function is ΦKðωKÞ,
which we alternatively write as ΦK

σ ðωKÞ ¼ ΦKðωKÞ.

C. Two-photon wave packet deformation

We now turn to the description of two photons. In
analogy to (15), we can write a general two-photon state,
which is a solution of the Klein-Gordon equation (with a
stationary metric), as

jψ2ðtÞi ¼ N ψ2

Z
dω1dω2Φðω1;ω2Þeiω1teiω2tj1ω1

1ω2
i;

ð22Þ

where j1ω1
1ω2

i ≔ â†ω1
â†ω2

j0i, and N ψ2
is a normalization

constant, which we specify further below.
Now we work out how this quantum state is charac-

terized by two observers K1 and K2 both moving in a
curved spacetime. Our aim is to find a generalization of the
transformation (18) and (19) for the two-photon spectral
wave function ΦK1K2ðωK1

;ωK2
Þ as seen by the observer

pair K1, K2. However, a straightforward generalization to
the single particle case here is not possible as quantum
fields (and, in particular, those of several distant particles)
in quantum field theory are inherently nonlocal objects
where the notion of an observer from general relativity is
strictly local [14].
In a first attempt, we follow a simplified approach and

consider inertial observers moving in a flat spacetime
geometry, which is the extreme case of considering a
weakly curved spacetime and small accelerations. This
has the advantage that all observers in this scenario share a
common vacuum state, and therefore, a common notion of
particles, and thus circumvents the conceptional problems
related to nonlocality in curved spacetimes. Nevertheless,
also in this simplified approach, the mutual redshift
between all considered observers among each other and
with respect to the photon source enters in a nontrivial way,
such that one can study the most basic spectral aspects of
HOM interferometry under relativistic influences. Once we
have worked out how the measurement outcome of a HOM
experiment is influenced by a mutual redshift between the

OBSERVER DEPENDENCE OF PHOTON BUNCHING: THE … PHYS. REV. D 105, 105016 (2022)

105016-5



observers among each other and with respect to the photon
source, we can replace the redshift in the resulting formulas
by the gravitational redshift to get an estimate of general
relativistic influences on the measurement outcome of
HOM experiments under the assumption of weakly curved
spacetimes and small accelerations. It is crucial to note that
from now on, since we consider two photons, all measure-
ments have to be considered with respect to two observers
or an observer pair. This also includes the special case
where the two considered observers in a pair coincide.
In analogy to (21), we make the ansatz to characterize

two-photon states as seen from two observers K1 and K2

(the corresponding observer pair is denoted as K1, K2) as

jψ2ðτK1
; τK2

Þi ¼ N ψ2

Z∞
0

dωK1
dωK2

ΦK1K2ðωK1
;ωK2

Þ

× eiωK1
τK1eiωK2

τK2a†ωK1
a†ωK2

j0i; ð23Þ

where now ΦK1K2ðωK1
;ωK2

Þ≡ΦK1K2
σ1σ2 ðωK1

;ωK2
Þ ¼

ΦK1K2ðωK1
;ωK2

Þ is the joint two-photon wave function
as seen from the observers K1 and K2, and N ψ2

is a
normalization constant in order to fulfill hψ2jψ2i ¼ 1 in all
frames, which is determined by

ðN 2
ψ2
Þ−2 ¼

Z
dωK1

dωK2
jΦK1K2

S ðωK1
;ωK2

Þj2; ð24Þ

where we defined the symmetrized two-photon wave
function ΦK1K2

S ðωK1
;ωK2

Þ¼ ðΦK1K2ðωK1
;ωK2

ÞþΦK1K2 ×

ðωK2
;ωK1

ÞÞ= ffiffiffi
2

p
. The normalization constant (24) reflects

the fact that only the symmetric part of the photonic wave
function is of physical relevance as photons are bosons.
Indeed, one can use the canonical commutator relations to
rewrite the two-photon state (23) solely in terms of the
symmetrized wave function ΦK1K2

S ðωK1
;ωK2

Þ. Also, if one
does not use symmetrized photonic wave functions, the
second quantization formalism automatically accounts only
for the symmetric part of the photonic wave function.
In Eq. (23), the parameters τK1

and τK2
are the lapse that

the respective observers associate to the separate phase in
their local time. The ansatz (23) is exact in case of inertial
observers K1 and K2 in a flat spacetime [32]. Now we want
to analyze how the joint spectral profile of two photons as
seen from a given pair of inertial observers, say K1 ¼ A1

and K2 ¼ A2, changes when seen from a different pair of
inertial observers, say K1 ¼ B1 and K2 ¼ B2. In analogy to
the single photon case, we require

jψ2ðτB1
; τB2

Þi ∝ jψ2ðτA1
ðτB1

Þ; τA2
ðτB2

ÞÞi; ð25Þ

under the normalization condition (24). This yields the
relation,

ΦB1B2
σ1σ2 ðωB1

;ωB2
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ zA1B1
Þð1þ zA2B2

Þ

s

×ΦA1A2
σ1σ2 ðωA1

;ωA2
Þ; ð26Þ

where we have

ωAi
¼ ωBj

1þ zAiBj

; i; j ¼ 1; 2; ð27Þ

and zAiBj
as before being the mutual redshift between the

two observers Ai and Bj. One can check that photonic wave
functions obeying the transformation behavior of Eqs. (26)
and (27) fulfill the requirements defined by (24) and (25).
Note that Eq. (26) only depends on the mutual red-

shifts zA1B1
and zA2B2

of the first and second observer in an
observer pair respectively but not on the redshifts zA1B2

and
zA2B1

. It might therefore appear that our formalism is able to
extract the which-path information and that our results may
vary if one exchanges the two observers of an observer pair.
However, this is not the case. To see this, we first note that
the prefactor of (26) is invariant under the exchange of the
observers of one observer pair, because ð1þzA1B1

Þ×
ð1þzA2B2

Þ¼ð1þzA1B2
Þð1þzA2B1

Þ¼ð1þzA1B1
Þð1þzA2B1

Þ,
which follows from the transitivity property of the redshift
[33] and can be inferred from (27). Secondly, as only
the symmetrized (transformed) photonic wave function
ðΦB1B2

σ1σ2 ðωB1
ωB2

Þ þΦB1B2
σ2σ1 ðωB2

;ωB1
ÞÞ ffiffiffi

2
p

enters the calcula-
tions, it follows that the expression (26) is fully invariant
under the exchange of A1 with A2 and B1 with B2.
The relations (26) and (27) quantify the deformation of

the joint spectral distribution of the two-photon state (23)
when seen from different pairs of inertial observers in a flat
spacetime. Note that the here presented framework is also
capable to describe the spectral aspects of moving inter-
ference experiments like the Sagnac-interferometer [34,35].
Also simple phenomena like the change in frequency of a
light beam when it is reflected on a moving mirror can be
described with this framework. Moreover, the generaliza-
tion to three, four, and more photons is straightforward.

IV. RELATIVISTIC INFLUENCE
ON HOM INTERFERENCE

We are now equipped with the tools necessary to
quantify the changes of the interference pattern of a
HOM experiment subject to the relativistic frequency
shift. The validity of Eq. (2) in a local inertial frame is
well confirmed by many experiments [20,26,36–38]. Thus,
we assume that Eq. (2) locally holds true; that is, we replace
the optical delays τ1 and τ2 in (2) by optical delays τK1

and
τK2

as measured in the proper time of the respective
observer K1 and K2, applying the respective optical delay.
Furthermore, we replace the two-photon wave function
Φσ1σ2ðω1;ω2Þ, which enters Eq. (2) by the corresponding
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two-photon wave function ΦK1K2
σ1σ2 ðω1;ω2Þ as seen by the

observer pair K1;K2. Accordingly, we can write the
relativistic version of (2) as

P̃K1K2
σ1σ2 ðτK1

; τK2
Þ ¼

Z
dω1dω2½jΦK1K2

σ1σ2 ðω1;ω2Þj2

þ jΦK1K2
σ2σ1 ðω2;ω1Þj2�

þ 2ℜ

�Z
dω1dω2Φ

K1K2
σ1σ2 ðω1;ω2Þ

×ΦK1K2
σ2σ1

� ðω2;ω1Þe−iðω1−ω2ÞðτK1−τK2 Þ
�
:

ð28Þ

To obtain the normalized probabilities of a certain detection
event, which is characterized by σ1 and σ2, one has to
compute

PK1K2
σ1σ2 ðτK1

; τK2
Þ ¼ P̃K1K2

σ1σ2 ðτK1
; τK2

ÞR
dσ1dσ2P̃

K1K2
σ1σ2 ðτK1

; τK2
Þ : ð29Þ

Note that Eq. (28) is invariant under the exchange of τK1

and τK2
. This means that our formalism does not depend on

the information of which observer of an observer pair
applies which optical delay.
Equations (28) and (29) are central results of the present

paper as they capture the observer dependence of the
spectral aspects of HOM interference. The dependence
of the proper times τK1

and τK2
describes how the inter-

ference pattern changes when recorded by different obser-
ver pairs, and the dependence on the wave function
ΦK1K2

σ1σ2 ðω1;ω2Þ as seen by the respective observer pair
reflects the influence of a redshift between the light source
and the observers on the interference pattern.
We employ Eqs. (26), (28), and (29) to obtain the relation

between the interference patterns obtained by two distinct
observer pairs,

PB1B2
σ1σ2 ðτB1

; τB2
Þ ¼ PA1A2

σ1σ2 ðτA1
; τA2

Þ; ð30Þ

where the relation between the delays τAi
and τBi

reads

τAi
¼ ð1þ zAiBi

ÞτBi
; i ¼ 1; 2: ð31Þ

Note that Eq. (31) is precisely the relation that tells how
much the (proper) time τAi

has evolved on the world line of
observer Ai, when a (proper) time of τBi

has evolved on the
world line of observer Bi [39]. Equations (30) and (31)
relate the interference patterns of two HOM experiments,
which are done by two different observer pairs A1; A2 and
B1; B2 featuring a mutual redshift to each other.
In the following, we always assume that Alice operates

the two-photon source and distributes the photons.

However, also Alice can measure the HOM-interference
pattern of the photon source. If the photon source, all
reflecting elements and detectors rest in the local inertial
frame of Alice, she defines an observer pair A1, A2.
Therefore PA1A2

σ1σ2 ðτA1
; τA2

Þ is the corresponding interference
pattern of the photon source in the local rest frame of the
same, i.e., the source specific interference pattern of the
considered photon source without relativistic effects.
However, Alice can also send the photons to another
observer pair B1, B2 (Bob), who, in this case, would record
the interference pattern PB1B2

σ1σ2 ðτB1
; τB2

Þ, which is related to

interference pattern PA1A2
σ1σ2 ðτA1

; τA2
Þ via Eqs. (30) and (31).

Alice might provide the photons to yet another observer
pair C1, C2 (Charlie), who would record the interference
pattern PC1C2

σ1σ2 ðτC1
; τC2

Þ, which is related to interference

pattern PA1A2
σ1σ2 ðτA1

; τA2
Þ by replacing B1 and B2 in Eqs. (30)

and (31) by C1 and C2. From the transitivity property of the
redshift [which we discussed below Eq. (27)], we can
obtain the relations between the interference pattern
recorded by Bob’s and Charlie’s observer pairs, and they
are given by simply replacing A1 and A2 in Eqs. (30) and
(31) by C1 and C2. Interestingly, this implies that the
relation between the interference patterns respectively
recorded by Bob’s and Charlie’s observer pair does not
depend on the mutual redshift w.r.t. the photon source (i.e.,
to Alice’ observer pair) but only on the mutual redshift
between Bob’s and Charlies’s observer pairs. This might be
interesting for Geodesy, where Bob and Charlie are
provided with photons from a common light source and
can infer information about the geometry of spacetime,
solely by comparing their HOM-interference patterns with
each other, without knowledge about the actual state of
motion and the position of the light source. However, each
of the interference pattern recorded by Bob and Charlie
depend on the mutual redshift with respect to the photon
source, which can be quantified by considering the
observer pairs B1; B2 or C1, C2 on one side and the pair
A1; A2 on the other side of Eqs. (30) and (31).
Note that Eq. (30) also accounts for the situation in

which the two photons explore different redshifts (i.e.,
zA1B1

≠ zA2B2
) when propagating between the photon

source and the two different receivers. Such scenario would
be of interest for the study of the spectral aspects of the
Sagnac-effect in HOM interference [34], where the emis-
sion direction of the two photons from the photon source
can have different angles with respect to the velocity vector
of the photon source, thereby leading to different Doppler
shifts between the photons.
For the rest of this work, we consider a simplified

situation, in which the two photons are received by the
receiving observers with the same total redshift with respect
to the emitter. This would occur, for instance, in the case
when the two photons are generated by a source that rests
on Earth and are sent to a moving satellite where they are
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received from a similar direction (to avoid additional
Dopper shifts between the photons). Onboard the satellite,
optical delays are employed (in units of the proper time of
the satellite). This situation is illustrated in Fig. 2. There it
is seen that we consider a photon source held by Alice who
is situated on Earth and who sends photon pairs to Bob,
who is situated on Earth as well. The mutual redshift
between Alice and Bob is zero, i.e., zA1B1

¼ zA2B2
¼ 0. In

other words, Bob is located in the same local rest frame as
the photon source. In a second scenario, Alice sends the
photon pair to Charlie, who is situated on a satellite and has
a nonvanishing redshift with respect to Alice, i.e.,
zA1C1

¼ zA2C2
≕ z. Both Bob and Charlie make a coinci-

dence measurement and record the interference profile by
tuning their optical delays (in units of their own proper
times). The effects of the redshift between the photon
source (dotted circle) and Charlie’s detection instance
(dashed circle) will lead to a difference (purple curve in
Fig. 2) of his interference pattern (red curve) with respect to
the one recorded by Bob (blue curve). We now quantify this
difference.
We are interested in the difference ΔPσ1σ2ðτ1; τ2Þ

between the interference patterns of Bob and Charlie
defined by

ΔPσ1σ2ðτ1; τ2Þ ¼ PC1C2
σ1σ2 ðτ1; τ2Þ − PB1B2

σ1σ2 ðτ1; τ2Þ: ð32Þ

Notice that, as we have mentioned before, this difference is
obtained operationally by recording the interference pattern
with respect to the proper time and then exchanging the
pattern to be compared.
Bob is located at the same height as Alice in the

gravitational potential, and therefore has a vanishing
redshift with respect to the photon source; i.e., we have
PB1B2
σ1σ2 ðτ1; τ2Þ ¼ PA1A2

σ1σ2 ðτ1; τ2Þ. Assuming a common mutual
redshift between the input ports of Charlie’s measurement
apparatus with respect to the photon source, i.e., zA1C1

¼
zA2C2

¼ z, we know that PC1C2
σ1σ2 ðτ1; τ2Þ ¼ PA1A2

σ1σ2 ðð1þ zÞτ1;
ð1þ zÞτ2Þ, and Eq. (32) simplifies to

ΔPσ1σ2ðτ1;τ2Þ ¼PA1A2
σ1σ2 ðð1þ zÞτ1; ð1þ zÞτ2Þ−PA1A2

σ1σ2 ðτ1;τ2Þ:
ð33Þ

It is clear from (33) that Bob’s results act as a reference, and
therefore, ΔPσ1σ2ðτ1; τ2Þ ¼ 0 when z ¼ 0.
We then let Pcðτ1; τ2Þ be the coincidence detection

probability of the two-photon source in the local inertial
frame of the photon source. From Eq. (33), we can compute
the difference ΔPcðτ1; τ2Þ between the coincidence prob-
abilities of two HOM experiments with and without
relativistic influence, which reads

ΔPcðτ1; τ2Þ ¼ Pcðð1þ zÞτ1; ð1þ zÞτ2Þ − Pcðτ1; τ2Þ: ð34Þ

To see this, note that the coincidence probability Pcðτ1; τ2Þ
is just a linear combination of the probabilities Pσ1σ2ðτ1; τ2Þ
of specific detection events (with respect to any obser-
ver pair).
In case of all three light source types, which were

considered in Sec. II, the coincidence probabilities were
always functions of the delay Δτ ¼ τ1 − τ2, and they were
all of the form,

PcðΔτÞ ¼ 1

2
ð1 − dðΔτÞÞ; ð35Þ

where dðΔτÞ depends on the joint spectral distribution of
the respectively employed light source [cf. Eqs (5)]. Then,
the difference between the coincidence detection proba-
bilities as a function of the redshift and the delay reads

ΔPcðΔτÞ ¼ 1

2
ðdðð1þ zÞΔτÞ − dðΔτÞÞ: ð36Þ

In case of the traditional HOM experiment employing
polarization entangled photons with the joint spectral
distribution (6), the difference of the coincidence detection
probability reads

FIG. 2. Top: HOM experiment without relativistic influence
(i.e., vanishing redshift z ¼ 0). Bottom: HOM experiment with
relativistic influence (i.e., nonvanishing redshift z ≠ 0). The
dotted circles indicate the location, where the photons are
generated (in both cases by Alice on Earth). The location where
the coincidence statistics are recorded (by Bob on Earth in the
upper plot and on a moving satellite by Charlie in the lower plot)
are indicated by dashed circles, which we term detection instance.
The graphs on the right side represent the coincidence interfer-
ence pattern, which is recorded at the respective detection
instance Bob and Charlie. Bob on Earth records the blue curve
and Charlie on a satellite records the red one. Both Bob and
Charlie apply optical delays τ1 and τ2 in units of their local proper
times respectively. Due to the different redshifts between the
photon source and the respective detection instance, slightly
different coincidence interference patterns are recorded, and their
difference is displayed by the purple curve.
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ΔPcðΔτÞ ¼ 1

2
ðe−ξ2ð1þzÞ2Δτ2 − e−ξ

2Δτ2Þ; ð37Þ

which reaches its maximum at a delay of

Δτmax ¼
1

ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
lnð1þ zÞ
zð2þ zÞ

s
: ð38Þ

The maximum value of the difference is independent of the
bandwidth ξ of the photon source, since there is only one
timescale 1=ξ that can be absorbed in the definition of time,
and it reads

ΔPcðΔτmaxÞ ¼
1

2

�
ð1þ zÞ−2ð1þzÞ2

zð2þzÞ − ð1þ zÞ− 2
zð2þzÞ

�
: ð39Þ

This result shows that it would be extremely difficult to
measure the influence of the redshift using the scheme
described here in a practical scenario. In fact, a discrepancy
of only 1% (i.e., ΔPcðΔτmaxÞ ¼ 0.01) would require the
experimenter to achieve a redshift of the order of z ≈ 0.01,
which is about three orders of magnitude higher than the
strongest redshifts (mainly caused by the Doppler-effect)
between two satellites counter orbiting around the Earth
(z ≈ 10−5). Since Eq. (39) is independent of the bandwidth
ξ, achieving lower bandwidths will not amplify the influ-
ence of relativistic effects.
This is however different if one employs a source of

frequency entangled photons with a joint frequency profile
of (9), which leads to the difference of the coincidence
probability (36), where one has to use the function dðΔτÞ
from Eq. (10c). Figure 4 shows the difference between the
coincidence detection probabilities of two HOM experi-
ments with and without the influence of a redshift of z ¼
10−10 for different frequency separations ν ¼ μ=2π as a
function of the delay Δτ ¼ τ1 − τ2. It can be seen that the
maximum discrepancy is achieved for a delay,

Δτmax ≈
1

ξ
: ð40Þ

The reason therefore is explained below. Furthermore, it
can be seen that the absolute value of the maximum
discrepancy jΔPcðΔτmaxÞj increases with increasing fre-
quency separation ν ¼ μ=2π (also explained below).
Figures 3(a) and 3(b) show the result of the absolute

value of the maximum (maximized over the delay Δτ)
difference jΔPcðΔτmaxÞj as a function of the experimental
parameters ξ and μ under the influence of a redshift z ¼
10−10 [Fig. 3(a)] and z ¼ 10−5 [Fig. 3(b)]. It can be seen
that the influence of the relativistic redshift on the coinci-
dence probability increases for higher frequency separa-
tions μ and for lower single photon bandwidths ξ and for
larger redshifts z. Therefore, the most interesting parameter
regime is the limit μ=ξ → ∞, where the function (10c) is
well approximated by dðΔτÞ ≈ Rφ

μξðΔτÞ with Rφ
μξðΔτÞ

taken from (11b). Thus, the difference of the joint detection
probabilities is approximately

ΔPcðΔτÞ ≈ 1

2
ðRφ

μξðð1þ zÞΔτÞ − Rφ
μξðΔτÞÞ: ð41Þ

Our numeric calculations yield that there is no quali-
tative difference between the results shown in Fig. 3 for
different values of φ in the parameter region of interest
μ ≫ ξ. This is why from here on we proceed our discussion
for φ ¼ 0.
We see from (41) for φ ¼ 0 that the (absolute value of

the) difference of the cosine functions cosðμð1þ zÞΔτÞ −
cosðμΔτÞ increases for larger delays Δτ, but the increase
of this difference is suppressed due to the triangular
function appearing in (11b) such that Eq. (40) is a
good approximation for the delay time at which the
discrepancy (41) is maximized. Inserting (40) in (41)
and making a power series expansion around z ¼ 0 yields
to first order in z

FIG. 3. All plots show the absolute value of the maximum discrepancy jPcðΔτmaxÞj (i.e., the impact of the relativistic redshift on HOM
interference) as a function of the frequency separation ν and the single photon band width ξ. The upper plots show the influence of a
redshift of (a) z ¼ 10−10 and (b) z ¼ 10−5 on a HOM experiment employing frequency entangled photons. The lower plots show the
influence of a redshift of (c) z ¼ 10−10 and (d) z ¼ 10−5 on a HOM experiment employing frequency-detuned polarization-entangled
photons. It can be seen that in the case of frequency entangled photons adjusting the experimental parameters ν to higher values and ξ to
lower values amplifies the relativistic influence on the HOM-interference pattern. In case of frequency-detuned polarization-entangled
photons, the maximum discrepancy of jPcðΔτmaxÞj ≈ z=2 cannot be exceeded by a parameter adjustment. The plots (a) and (b) are
computed with Eq. (10c) for φ ¼ 0 and the plots (c) and (d) are computed with Eq. (10b).
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ΔPcðΔτmaxÞ ¼
μ

4ξ
sin

�
μ

2ξ

�
zþOðz2Þ: ð42Þ

The occurrence of the sine function in (42) is rooted in the
oscillating behavior of ΔPcðΔτÞ as seen in Fig. 4. We are
only interested in the envelope of the differenceΔPcðΔτÞ in
Fig. 4 and therefore set the value of the sine-function in (42)
equal to one; i.e., we get

ΔPcðΔτmaxÞ ≈
μ

4ξ
z: ð43Þ

We confirmed the validity of the approximation (43)
numerically within an accuracy of less than 1% for the
parameter values for μ and ξ shown in Figs. 3(a) and 3(b)
under the condition μ=ξ > 1 and ΔPcðΔτmaxÞ < 0.9.
Equation (43) is a rough error estimation for technolo-

gies based on HOM interference with frequency entangled
photons, such as remote clock synchronization [21], since it
quantifies the influence of the redshift between the photon
source and the measurement laboratory on the coincidence
statistics.
From (43), we obtain an estimate for the ratio of the

frequency separation to the single photon bandwidth μ=ξ,
which must be achieved in an experiment with a given
detector resolutionΔPc

res in order to resolve the influence of
a given redshift z. We find

μ

ξ
¼ 4ΔPc

res

z
: ð44Þ

Equation (44) is a benchmark for future experiments, which
intend to reveal the influence of the relativistic redshift on
the coincidence probability of a HOM experiment employ-
ing frequency entangled photons. For instance, assuming a
quite moderate detector resolution of ΔPc

res ¼ 0.1 and a
redshift between two counter rotating Earth satellites of

z ¼ 10−5 would amount for a frequency separation to
single photon bandwidth ratio of μ=ξ ¼ 4 × 104. To our
knowledge, the highest frequency separation μ ≈ 100 THz
of frequency entangled photons has been already demon-
strated [40]. There, a single photon bandwidth of ξ ≈
0.253 THz was achieved leading to a value μ=ξ ≈ 4 × 102,
which could reveal the influence of the relativistic Doppler-
shift between counter propagating satellites provided by a
detector resolution of 1%, i.e., ΔPc

res ¼ 0.01. No sub-GHz
narrow band generation of frequency entangled photon
pairs has been reported to date. In the case of cavity
enhanced spontaneous parametric down conversion of
frequency degenerated photons, ultra-narrow-band emis-
sion with ξ ≈ 265 kHz has also already been demon-
strated [38]. In combination with a frequency separation
μ ≈ 100 THz, this would suffice to even resolve the
influence of the general relativistic redshift of z−10 between
a geostation on Earth and a satellite since these parameters
satisfy Eq. (44) to a good approximation for a detector
resolution of ΔPc

res ¼ 0.01.
We want to place particular emphasis on the fact that the

maximum difference between two HOM-interference
experiments employing frequency entangled photons with
and without relativistic aspects can reach unity in the
limit μ=ξ → ∞ as can be seen in Figs. 3(a) and 3(b). This
means that, in the case of identical locally adjusted optical
delays, the outcome of a coincidence measurement of
frequency entangled photons can change between ideal
photon bunching (Pc ¼ 0) to ideal photon antibunching
(Pc ¼ 1) and vice versa as a function of relativistic redshift.
It has been shown that the necessary and sufficient criterion
for the occurrence of ideal photon bunching of two photons
is that their joint spectral wave function is symmetric, i.e.,
ϕðω1;ω2Þ ¼ ϕðω2;ω1Þ, see [25]. In that case, it was also
shown that the necessary and sufficient criterion for the
occurrence of ideal photon antibunching of two photons is
that their joint spectral wave function is antisymmetric, i.e.,
ϕðω1;ω2Þ ¼ −ϕðω2;ω1Þ. In the case of quantum beating,
i.e., a periodic change between photon bunching and
antibunching in the delay, the authors made the interesting
argument that due to the adjustment of different optical
delays, the parity of the spectral wave function changes
from being symmetric to antisymmetric and vice versa.
This means that one observer might observe photon
bunching thereby exploring a symmetric spectral wave
function with a certain adjustment of the local optical
delays, while another observer with mutual redshift with
respect to the first one might explore an antisymmetric
wave function through the measurement of photon anti-
bunching with the same setting of the (local) optical delays
in his local laboratory. From this, we infer that the parity of
the joint spectral wave function is observer dependent. The
peculiarity of our results is that, the parity of the joint
spectral wave function does not only depend on the
observer’s delay settings but also on his state of motion.

-3 -2 -1 0 1 2 3
Delay  [s] 10-12

-6

-4
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2
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c (

)
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=17 THz
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=1.7 THz
=0.17 THz

z=10-10

=1.356 THz

max
 1/

FIG. 4. Difference ΔPcðΔτÞ [see Eq. (36)] between the
coincidence detection probabilities of two HOM experiments
with frequency entangled photons [see Eq. (9) for spectral profile]
under the influence of a redshift z ¼ 10−10 for different frequency
separations ν. The plot is shown for φ ¼ π.
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This is a central result of our paper. This observer
dependence becomes especially important in the case of
spectrally indistinguishable frequency entangled photons in
the limit of large frequency separations. However, accord-
ing to Eq. (30), the coincidence detection probability at the
zero delay setting (i.e., Δτ ¼ τ1 − τ2 ¼ 0) is independent
of the redshift between the photon source and the meas-
urement laboratory and thus, can yield some information
about the optical paths through which the photons propa-
gated before they interfere at the common BS of the
detection instance (see Fig. 2).
Finally, we discuss the behavior of frequency-detuned

quantum states [see Eq. (8) for spectral profile]. This case is
less interesting than the one of frequency entangled
photons. Here, the discrepancy between the coincidence
detection probabilities reads

ΔPcðΔτÞ ¼ 1

2
ðSμξðð1þ zÞΔτÞ − SμξðΔτÞÞ; ð45Þ

with SμξðτÞ from (11a). Figures 3(c) and 3(d) show the
absolute value of the maximum discrepancy of a HOM
experiment, which uses frequency detuned photons under
the influence of a redshift of z ¼ 10−10 and z ¼ 10−5 with
respect to a HOM experiment without relativistic influence.
It can be seen that in the limit μ=ξ → 0 the maximum
discrepancy is jΔPcðΔτmaxÞj ≈ z=2, which cannot be
resolved in a HOM experiment for realistic redshifts
z ⪅ 10−5. Taking the limit μ=ξ → ∞ even suppresses the
effect further. This is originated in the fact that in this limit
SμξðτÞ, and thus, ΔPcðΔτÞ approaches zero, which by itself
is rooted in the increasing spectral distinguishability of the
frequency detuned photons. Since spectrally indistinguish-
able frequency entangled photons do not suffer from this
effect, it makes them more attractive to study the impact of
general relativity on quantum mechanics.

V. OUTLOOK

There are several possible extensions to this work. The
presented framework can be used to study the spectral
aspects of Sagnac-interferometry [35], where photons
impact from different directions on moving BSs to inter-
fere. While the present work is concerned with theoretical
and fundamental aspects of relativistic and quantum pho-
tonic science, it is also of great interest to study relativistic
effects in HOM-interference-based quantum technologies.
For example, one can quantify the change in accuracy
within HOM-based space-based clock synchronization
[18]. Furthermore, a greater understanding of the effects
described here and in previous work [14–16,41] would be
achieved by considering different initial states, such as
coherent states, squeezed states, cat states and, more
realistically, mixed states. Mixed states in particular are
expected to provide a benchmark for the effects witnessed
by pure states as it was already shown in the context of

gravitational redshift effects on quantum states [41].
Particular attention can also be given to optimizing spectral
wave functions and the initial quantum states to obtain
to greatest (or the least) gravitational effects on HOM
interference.
Another aspect to be investigated is gravity-induced

entanglement dynamics of photons that propagate through
different (possibly correlated) paths in spacetime. Intri-
guingly, recent works showed that gravitational effects give
rise to change the entanglement between different light
field modes, which can be envisaged in two-photon
interference experiments such as the HOM experiment
[16]. Other work claims that gravitational time dilation
induces entanglement between external and internal DOFs
of quantum particles [42]. We think that HOM experiments
can be interpreted precisely in this way. The occurrence of
quantum beating would correspond to a periodic creation
and depletion of entanglement between the internal and
external DOFs, complementary to the depletion and cre-
ation of frequency entanglement among the photons. We
believe that our formalism can be extended to study both of
these aspects and yield a more comprehensive understand-
ing on the influence of general relativity on genuine
quantum features of physical systems.

VI. CONCLUSIONS

We have employed Glauber’s theory of optical coher-
ence, together with a quantum field theoretical framework
previously developed to describe the deformation of the
frequency profile of photons propagating through curved
spacetime [14,15], to develop a formalism that describes
large-scale HOM experiments where quantum and relativ-
istic effects are both non-negligible.
In HOM experiments, the particle nature of photons

plays a special role. Such experiments can only be
explained by means of quantum mechanical principles
such as the indistinguishability and quantum entanglement
of the involved systems. These lead to phenomena like
photon bunching and photon antibunching, both without
classical analog. Therefore, our predictions of the effects of
the gravitational frequency shift on these inherently quan-
tum mechanical experiments can be interpreted as a
genuine quantum test of gravity. Apart from the funda-
mental aspects of our work, the results presented here are
also of practical relevance since they provide methods to
estimate how strongly quantum technological applications
based on HOM interference might be distorted from an
ideal operation [see Eq. (44)].
We focused our methods on three cases with different

photon sources, each one generating photons with a
different spectral profile: the case analogous to the one
found in the original HOM experiment [20], which
employs spectrally indistinguishable frequency uncorre-
lated photons; the case of spectrally distinguishable fre-
quency detuned photons [37]; and the case of spectrally
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indistinguishable frequency entangled photons [36]. We
found that in the original HOM experiment, no adjust-
ment of the experimental parameters (which consisted in
the photon’s bandwidth alone) yields an amplification
of the relativistic impact on HOM interferometry. This has
the interesting implication that in case of frequency
uncorrelated photons, the impact of the redshift in HOM
interference is universal. Concretely, this means that it
depends only on the redshift between the photon source and
the detectors, and not on the photon’s bandwidth [as can
be seen from Eq. (39)]. This contrasts with the case of
frequency entangled photons. In this case, we have shown
that, due to the increase of the photon frequency separation
μ and decrease of the single photon bandwidth ξ, the effect
of the relativistic frequency shift becomes more important
since higher frequency separations lead to an increasing
sensitivity of the occurrence of photon bunching or anti-
bunching on the delay. A particularly interesting property
of frequency entangled photons is that the relativistic
frequency shift between the photon source and the detectors
can change the detection statistics from ideal photon
bunching to ideal photon antibunching, and vice versa.
This is reflected in the fact that Eq. (41) can reach unity.
Since photon bunching in quantum mechanics is equivalent
to the symmetry of the joint spectral wave function, and
photon antibunching is equivalent to the antisymmetry of
the joint spectral wave function [25], this leads to conclude
that the parity of the joint photonic spectral wave function
is an observer dependent quantity, which is one of the
central results of this work. We conclude from this that the

outcomes of HOM experiments rely not only on the optical
path difference between the measured photons before
detection, but also on the state of motion of the photon
source and the observers.
The main contribution of the present work consists in a

formalism that can be used to describe the impact of the
relativistic redshift on the spectral aspects of quantum
entanglement and quantum indistinguishability of photons
within the context of HOM interference. Our work, there-
fore, adds to the ongoing effort of understanding the
interplay between gravity and quantum coherence and
entanglement [1,41], and constitutes another step toward
the development of relativistic and quantum technologies.
Experimental verification of the effects presented here, as
well as in this body of work more broadly, can serve as a
demonstration of quantum field theory in (weakly) curved
spacetime, and provide new insights in the quest for a
unified theory of Nature.
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