
All two-loop, color-dressed, six-point amplitude integrands
in supersymmetric Yang-Mills theory

Jacob L. Bourjaily ,1,2 Cameron Langer,1 and Yaqi Zhang 1

1Institute for Gravitation and the Cosmos, Department of Physics, Pennsylvania State University,
University Park, Pennsylvania 16802, USA

2Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

(Received 3 January 2022; accepted 28 April 2022; published 18 May 2022)

We construct all NkMHV six-particle amplitude integrands in color-dressed, maximally supersymmetric
Yang-Mills theory at two loops in a single prescriptive basis of master integrands.

DOI: 10.1103/PhysRevD.105.105015

I. INTRODUCTION

Much has been learned about the nature of perturbative
scattering amplitudes in quantum field theory using
unitarity-based methods to construct representations of
loop integrands in terms of some prechosen basis of
Feynman-like integrands—specifically, integrals involving
some graph of scalar Feynman propagators with particular
loop-dependent numerators. At one loop and in the planar
limit, such investigations have led to enormous advances in
our understanding: to the discovery of tree-level recursion
relations [1,2] and their all-loop generalization [3]; the
discovery of dual-conformal (and, ultimately Yangian)
symmetry of planar, maximally supersymmetric Yang-
Mills theory [4–7]; to the connection between on-shell
functions and Grassmannian integrals [8–12], positroid
varieties [13,14], and the amplituhedron [15–17].
Much of this progress flowed out of the investigation of

particular amplitudes—often at or just beyond the reach
of previous methods. Even for processes with as few as six
particles, specific calculations of observable-like quantities
such as the ratio of two helicity amplitudes [18,19] or the
finite remainders of exponentiated amplitudes [20–23] led
to powerful new tools and remarkable insights into the
mathematical structure underlying quantum field theory
(see e.g. [24–32]).
Even for the simplest quantum field theories, however,

much less is understood beyond the planar limit. This is
in part due to the complexities of color-dressing and in
part due to the nonexistence of any preferred “routing”
of the loop momentum variables. In the planar limit,

(symmetrized) dual-momentum coordinates defined by
the planar dual-graphs of Feynman diagrams not only
provide a natural and universal choice of loop variables,
but also suggest a natural organization of loop-dependent
numerators according to essentially naive power-
counting—the scaling of an integrand as any loop momen-
tum is taken to infinity. For example, it is well known that
amplitude integrands in planar sYM are dual-conformally
invariant, and the space of dual-conformal integrands
provides a natural basis in which any multiplicity amplitude
can be expressed (see e.g. [4–7,33–36]).
Beyond the planar limit, however, although there is

considerable evidence that amplitudes in sYM have “good”
ultraviolet behavior (see e.g. [37,38]), the precise meaning
of this statement at the integrand level remains to be fully
clarified. Roughly speaking, all amplitudes in this theory
are expected to be expressible in a basis of integrands
which scale like a “box” or better at infinity; but defining
this behavior for nonplanar integrands is far from obvious.
Recently, a graph-theoretic definition of power-counting

suitable for nonplanar loop integrands was described in
[39]. For any bounded multiplicity or fixed spacetime
dimension, the authors of [39] described how to define
and enumerate a concrete set of loop integrands in which
all amplitudes of any theory should be represented using
the methods of unitarity. Roughly speaking, a nonplanar
integrand with p-gon power-counting is one which scales
at infinite loop momentum like any one of a set of
Feynman integrands defined as p-gon “scalars” (with
loop-independent numerators). (As defined by [39], a
“scalar p-gon” is any Feynman graph with girth p for
which any edge-collapse would lower its girth.) For our
purposes, it is worth noting that integrands with triangle
power-counting include all those with box or better power-
counting, and form a strict subset of those needed to
represent amplitudes in the Standard Model; moreover, at
two loops, they include all integrands which integrate to
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functions with maximal transcendental weight in four
dimensions, and therefore represent a space of master
integrands in which all amplitudes in maximally super-
symmetric (N ¼ 4) Yang-Mills theory (“sYM”) may be
represented.
The process of diagonalizing such a basis with respect to

cuts (rendering it prescriptive [36]) was recently described
in detail in [40], where we provided a complete, prescrip-
tive basis of triangle power-counting integrands at two
loops for six external particles. In this basis, all six-particle
helicity amplitudes in color-dressed, sYM or maximal
(N ¼ 8) supergravity (“SUGRA”) should be expressible.
In this work, we use unitarity to determine the coefficients
of all six-particle NkMHV amplitudes in this basis—
namely, the MHV, NMHV, and N2MHV (MHV) ampli-
tudes, of which the NMHVamplitude is entirely new. These
coefficients are each simple leading singularities, express-
ible as (fully color-dressed) on-shell functions, valid for
any choice of gauge group.

II. PRESCRIPTIVE BASES FOR SCATTERING
AMPLITUDES

The essential idea of generalized unitarity [41–43] is that
any amplitude integrand A can be represented in a basis of
prechosen, Feynman-like integrands fIJg,

A ¼
X

J

aJIJ; ð1Þ

with coefficients determined by cut conditions and given
in terms of on-shell functions built from lower-loop
(ultimately tree-level) scattering amplitudes. Any basis of
loop integrands (viewed as differential forms on the space
of internal loop momenta) is called prescriptive if it is the
cohomological dual of a spanning set of compact, maxi-
mum-dimensional integration contours [36,40,44,45]. That
is, a basis is prescriptive if there exists a set of cycles fΩKg
such that the period matrix of fIJg,

I

ΩK

IJ ¼ δKJ ð2Þ

is diagonal. This is called the prescriptivity condition.
Provided this is the case, the coefficients ai appearing in
the representation of amplitudes (1) are simply individual
leading singularities—on-shell functions defined as

aJ ≔
I

ΩJ

A: ð3Þ

In the above discussion, the index “J” is a collective
index encoding all distinct integrands or contours. We
clarify the precise meaning of this summation in the
following section.

Importantly, nothing about this construction depends
on how the internal loop momenta are parametrized as all
these degrees of freedom are fully integrated out in both (2)
and (3). Thus, this story applies equally well to planar as
well as nonplanar amplitudes without reference to any
particular rational function of loop momenta to be called
“the” loop integrand.
Recently, we constructed a complete and prescriptive

basis of two-loop, nonplanar integrands for six external
particles with triangle power-counting [40]. Because this
basis contains all integrands which integrate to functions
with maximal transcendental weight, and all integrands
with box (or better) power-counting, all helicity amplitudes
in sYM should be expressible in this basis. Thus, to
represent the six-particle MHV (≃MHV) or NMHVampli-
tude in this basis, it suffices to compute all of the
coefficients (3) for either amplitude in the summand (1).

III. SUMMING TERMS FOR AMPLITUDES

The basis of integrands constructed in [40] involved 87
integrand topologies corresponding to specific Feynman-
propagator graphs which encode their loop-dependent
denominators; each of these topologies was then provided
with a collection of specific triangle power-counting, loop-
dependent numerators—the number of which is determined
by the integrand’s propagator graph according to [39]; their
precise form of these numerators was determined by the
requirement of prescriptivity (2) with respect to a corre-
sponding choice of contours.
We may denote the integrand with the ith topology

(i ∈ f1;…; 87g) and the jth loop-dependent numerator by
I j
i ≔ I in

j
i , where I i consists of all loop-dependent denom-

inators corresponding to some Feynman graph and nj
i

denotes a particular, loop-dependent numerator for this
integrand topology. In all, the basis described in [40]
consists of 373 integrands, each written with a particular
choice of external momenta flowing into the graph.
Consider for example the integrand topology numbered

35, with the denominator encoded by the Feynman propa-
gators given by

ð4Þ

For this integrand, there are 10 distinct loop-dependent
numerators nj

35. For example, the 6th such numerator is
defined to be [40]

n6
35 ≔ −s12ð⟦a; e; d; c⟧ − a2d2 þ c2e2Þ; ð5Þ
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in terms of the bracket ⟦ � � � ⟧ ≔ trþð� � �Þ and momenta
flowing through the various edges of the graph (4). This
numerator has been fixed by the requirement thatH
Ω6

35
I6
35 ¼ 1, where the contour Ω6

35 can be represented

according to

ð6Þ

In (6), the particular choice of contour is encoded graphi-
cally as described in [40]—to which we refer the reader for
complete details. [The apparent “contact terms” appearing
in (5) are fixed by prescriptivity (2).]
The reader will notice that a particular choice of external

legs has been used to encode the representative basis
integrand I j

i . Naturally, permutations of the external legs
must be included as well in the summation (1). We may use
“I j

i ½σ�” to denote the integrand with topology I i and
numerator nj

i for which the external legs have been
relabeled relative to the reference integrand according to
½1;…; 6� ↦ ½σð1Þ;…; σð6Þ� for any permutation σ ∈ S6.
We may use similar notation Ωj

i ½σ� to denote contours
involving permuted leg labels relative to the seeds defined
in [40] and aji ½σ� for leading singularities. For example,

ð7Þ

Clearly, not all relabelings are inequivalent. For example,
the integrand I6

35 has only 45 ¼ 6!=ð24Þ inequivalent
permutations of the external legs, as permuting the pairs
of legs ð3 ↔ 4Þ or ð5 ↔ 6Þ, and swapping the sets
ð3; 4Þ ↔ ð5; 6Þ or flipping the graph vertically each leave
the integrand invariant after relabeling the (arbitrary) edge
labels.
In general, the number of inequivalent relabelings of a

given integrand depends not only on the integrand topology
(which may have nontrivial graph automorphisms), but also
on the symmetries of its numerator—or, equivalently, the
symmetries enjoyed by its defining contour of integration.
Letting Sj

i ⊂ S6 denote the subset of inequivalent relabel-
ings of the external legs, the complete form of the summand
in (1) can be written as

A ¼
X

i;j

X

σ∈Sj
i

aji ½σ�I j
i ½σ�: ð8Þ

Actually, there is one final subtlety to mention. Although
for any given distribution of external legs I j

i ½σ� encodes a
distinct integrand for each j, it may be that the jth contour/
integrand for one permutation of legs corresponds to the
k ≠ jth integrand/contour for a different permutation of
legs. For example, consider two of the eight contours
defining the integrands I j

10:

ð9Þ

It is easy to see that Ω4
10½214356� ≃Ω7

10½123456�; as such,
including both terms in the summand (8) would double-
count such contributions. For all cases where this occurs,
we choose to sum over all the leg-permuted images of only
one choice of the relevant seeds.
Among the 373 contours used to define the basis given in

[40], a large fraction of these have manifestly no support for
amplitudes in sYM. Specifically, the basis contours include
96 involving poles at infinity, 23 involving double poles
(associated with transcendental weight drops), and 137
which have support on collinear but not soft regions of loop
momenta; all these integrands have vanishing leading
singularities. In all, there are only 139 (of the 373) contours
which define the basis that have support for amplitudes of
some NkMHV degree.
As most of the contours defining the integrand basis do

not have support of amplitudes, relatively few are required
to express each NkMHV amplitude. In particular, we find
that the MHV (or MHV ≃ N2MHV) amplitude requires
only 38 permutation seeds, and the NMHV amplitude
requires only 80. Summing over all relevant relabelings
of external legs, these amplitudes involve a total of 7,680
and 21,135 terms, respectively. The required seed terms and
code to generate the complete summands are included in
the Supplemental Material [46].

IV. SIX-PARTICLE LEADING SINGULARITIES
AT TWO LOOPS

For either the MHV (or MHV) or the NMHVamplitude,
the leading singularities correspond to residues of ampli-
tudes which involve some number of on-shell (and possibly
soft) internal degrees of freedom. These are color-dressed
on-shell functions which are fully Bose symmetric in the
legs entering each vertex tree amplitude. The MHV degree
of a leading singularity is computed by the degrees of each
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of the amplitudes at its vertices. In particular, a leading
singularity graph involving nI internal edges (after remov-
ing any soft edges) will have an overall NkMHV degree of
k ¼ P

vðkv þ 2Þ − ðnI þ 2Þ—with MHV (MHV) three-
point vertices having degree kv ¼ 0;−1, respectively.
For any vertex in a cut diagram involving some number
nv > 3 legs, kv can take any value kv ∈ f0;…; nv − 4g,
allowing for some contours to support leading singularities
of multiple degrees. We encode the NkMHV degree of a
vertex amplitude by color, with kv ¼ −1, 0, 1 represented
by white, blue, and red, respectively (the only cases
relevant for six-particle amplitudes).
To compute each color-dressed leading singularity

relevant for an amplitude, we decompose each vertex
amplitude into color times kinematic factors with
precise ordering of the momenta involved according to
DDM [47]. Graphically, we can denote this decomposition
by the following: for any subset of two legs labeled
fα; βg, of each vertex amplitude of an on-shell diagram,
we write

ð10Þ

where the “spherical” vertex denotes a Bose-symmetric,
color-dressed tree amplitude of some NkMHV degree
(indicated by its color) while the flat circle appearing on
the right-hand side represents the kinematic part of
an “(color-)ordered” amplitude involving a specific order-
ing of incoming states. In (10), the sum is taken over all
ðn − 2Þ! permutations a⃗≕ ða1;…; a−1Þ of the unordered
set A ≔ ½n�nfα; βg and with color factors defined as

ð11Þ

with fabc being the structure constants of the relevant gauge
group. Applying this expansion at every vertex of a two-
loop leading singularity results in an expansion in terms of
kinematic-dependent on-shell functions built with ampli-
tudes involving locally ordered legs times general color
factors of the form

ð12Þ

This is similar to the decomposition described in [48].
For examples of how this works for color-dressed leading
singularities in sYM, see e.g. [49,50]. In the ancillary files
for this work, code is given which can convert these color
factors into the color-trace basis for SUðNcÞ gauge theory.
To illustrate how this decomposition works, consider

the case of contour Ω1
11½123456�, encoded graphically

according to

ð13Þ

As the only NkMHV degree allowed for the four-point
vertex (involving leg “5”) is kv ¼ 0, this contour only has
support for the NMHV amplitude. Using the DDM expan-
sion described above, we would express a111½123456�—the
coefficient of I1

11½123456�—in (8) as

ð14Þ

where the color factors have been defined in (12) and the
kinematic functions are on-shell functions involving spe-
cific orderings of the legs involved at each vertex ampli-
tude. These factors can be readily computed in terms of
products of ordered amplitudes evaluated for the particular
on-shell, internal momenta; but such functions were clas-
sified in [51], and we have chosen to use their conventions
here. Thus, we may identify the relevant kinematic-
dependent pieces as being given by

ð15Þ

(with signs dictated by the oriented contour of integration
and the condition that

H
Ωj

i
I j
i ¼ 1). We refer the reader to

[51] for details on the definitions of these six-point NMHV
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on-shell functions; but we have included the definitions of
those required for the two-loop NMHV amplitude in the
ancillary files for this work.

A. The six-particle MHV amplitude

The relevant kinematic parts of on-shell functions for
MHV amplitudes (at any loop order or multiplicity) were
classified in [12] and can be represented at two loops
concretely in terms of a function

Γ½ða1;…; a−1Þ; ðb1;…; b−1Þ; ðc1;…; c−1Þ� ð16Þ

defined in [49,50] (see also [38]). This function is invariant
under permutations of the ordering of its arguments and
under cyclic rotations of each argument separately.
All nonvanishing leading singularities of the six-particle

MHVamplitude were given in [49]; these correspond to 38
particular contours for (3). As these 38 contours were
among those used in the prescriptive basis of Ref. [40],
each of these coefficients are essentially the same (while the
integrands are rather different). Beyond permuting the leg
labels for the permutation seeds of each basis integrand of
Ref. [40] (used here) relative to those used in Ref. [49],
these coefficients are identical. In our ancillary files, we
have merely relabeled these permutation-seed coefficients
(and modified the sum of inequivalent terms accordingly).

B. The six-particle NMHV amplitude

For the six-particle NMHVamplitude, the kinematic part
of all leading singularities (for arbitrary loop order) were
classified in Ref. [51]. For each of the defining contours of
the triangle power-counting basis, identifying the correct
kinematic function from among those classified in [51] was
done by explicit calculation—by computing the products of
on-shell (cyclically ordered, tree) amplitudes evaluated on
the corresponding maximal cut in loop-integrand space,
and summing over all the states that could be exchanged
between them.
In all, we find 80 nonvanishing leading singularities for

the contours fΩj
ig defining the basis in [40]. Explicit

formulas for each—expressed in terms of the functions
classified in [51]—are given in the ancillary files of
this work.
Interestingly, of the 10 classes of leading singularities

enumerated in [51], the only ones that are needed at
two loops are f1, f2, fc2, f3, f4, f5, and f8—with various
permutations of the external legs as arguments. Actually,
for f8, the authors of [51] considered only the sum of
particular solutions to the cut equations: feven8 ≔ fþ8 þ f−8 ,
where the superscript indicates the sign of the square root in
the solution to the final quadratic cut equation; for us, both
feven8 and fodd8 ≔ fþ8 − f−8 are required. The set of kinematic
factors appearing are not all functionally independent; they
satisfy the relations also classified in [51].

V. INTEGRATION, INFRARED STRUCTURE,
AND REGULARIZATION

The particular basis described in Ref. [40] has several
features that make it promising for loop integration and for
exposing critical information about IR structure of ampli-
tudes. In particular, it is empirically true that prescriptive
integrands are often maximally transcendental and pure
[33,52] and thus satisfy canonical, nilpotent differential
equations [53–55]. This should make them comparatively
easy to integrate—for example, according to the methods
outlined in [53,56–58], but perhaps also more directly as
illustrated in [22,23,59].
Another aspect of the basis which may prove valuable is

that it was fully divided into infrared-finite and divergent
subspaces. This was achieved by choosing as many
contours fΩJg as possible in the diagonalization (2) to
encompass regions responsible for infrared divergences.
Moreover, the coefficients of each IR-divergent integral are
manifestly given by lower-loop expressions; thus, the
universal behavior of divergences should be manifested,
making it easier to cancel them prior to loop integration.
Ideally, we are optimistic that the ratio of different helicity
amplitudes could be rendered locally finite in the sense of
[60] in this basis, but we must leave such questions to future
work (see e.g. [61,62]).
In particular, the MHV amplitude involves 17 and 21

integrands (seed terms for leg-permutation sums) which
are manifestly infrared-finite and divergent, respectively;
the NMHV amplitude involves 36 finite integrands and 44
divergent integrands.
One final comment is in order regarding regularization.

Because the basis of integrands in Ref. [40] was defined in
strictly four spacetime dimensions and the coefficients aJ
were computed using four-dimensional contours, our
integrands are not ensured to give the correct regulated
expressions if integrated using dimensional regularization:
OðϵÞ corrections to coefficients can lead to finite correc-
tions to divergent integrals. Nevertheless, we strongly
suspect that all regulator dependence will cancel for any
finite observable.
Although dimensional regularization is unquestionably

the most familiar and most widely used regulator, it is
important to note that infrared divergences can be regulated
faithfully using massive propagators—by going to the
Higgs branch of the theory as in [63,64]. Importantly,
Oðm2Þ corrections to integrand coefficients always lead to
Oðm2Þ contributions to regulated expressions (never can-
celing a divergence as in ϵ=ϵ in dimensional regulariza-
tion); as such, our unregulated expressions will yield the
correct, regulated results on the Higgs branch.

VI. CONSISTENCY CHECKS

For both the MHV and NMHV amplitudes, the planar
parts—the leading (in 1=Nc) coefficient of tr(123456) in
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the expansion of the color factors—were compared directly
against the known results [33,35]. For the sake of the
reader, the ancillary files include the loop-momentum
routing for each of the nonvanishing contributions in terms
of a universal choice for dual-momentum coordinates. As
these formulas are novel (and nonmanifestly dual-con-
formal) representations of these amplitudes, this is a highly
nontrivial check on the correctness of our result.
Beyond the planar limit, it is worth noting that relatively

few leading singularities appear among the contours chosen
for the basis. All other leading singularities of the ampli-
tude must get matched indirectly in the basis via global
residue theorems. Such identities were used to fix all
relative signs of terms appearing in these expressions.
We have checked that all such residue theorems for both the
MHV and NMHV amplitudes are satisfied by our expres-
sions—ensuring that all leading singularities of each
amplitude are matched.

VII. CONCLUSIONS AND DISCUSSION

The integration of nonplanar Feynman integrands
involving six particles is at or arguably just beyond our
present state of the art. Indeed, it was only recently that the

first nonplanar amplitudes (in maximally supersymmetric
theories) were computed for five particles [65–68]. In this
work we have provided explicit representations of both the
NMHV and MHV six-particle amplitude in precisely the
same prescriptive basis of integrands—engineered to sim-
plify the work of loop integration and to maximally expose
the infrared structure of each amplitude. We suspect that
there exists some nonplanar analogue of the IR-finite ratio
function of planar theories, and the first nontrivial instance
of such should appear for six particles. Once the integrated
expressions are found for these integrands, we anticipate
the discovery of simplifications as dramatic as in the case
of planar amplitudes (see e.g. [20,24])—and we hope that
these will lead to similarly powerful new insights for
amplitudes beyond the planar limit.
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