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Critical fluctuations of some order parameters describing a fluid generate long-range forces between
boundaries. Here, we discuss fluctuation-induced forces associated with a disordered Landau-Ginzburg
model defined in a d-dimensional slab geometry Rd−1 × ½0; L�. In the model the strength of the disordered
field is defined by a nonthermal control parameter. We study a nearly critical scenario, using the distributional
zeta-function method, where the quenched free energy is written as a series of moments of the partition
function. In the Gaussian approximation, we show that for each moment of the partition function, and for
some specific strength of the disorder, the nonthermal fluctuations, associated with an order parameterlike
quantity, become long ranged. We demonstrate that the sign of the fluctuation-induced force between
boundaries depends in a nontrivial way on the strength of the aforementioned nonthermal control parameter.
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I. INTRODUCTION

Fluctuation-induced forces are a strikingly universal
phenomena since macroscopic boundaries that change the
spectrum of a fluctuating medium may present such type of
associated forces. Examples of this phenomena are the
Casimir forces generated by quantum fluctuations [1–6].
Situations such as a bounded medium-experiencing thermal
fluctuations near to a critical regime with long-range
correlations, or Goldstone modes of a broken continuous
symmetry, may lead to the appearance of fluctuation-induced
forces [7–13].
Critical regimes are also achieved in fluids and magnetic

systems with quenched disordered fields [14,15].
Considering this scenario, and inspired by the critical
Casimir effect, in this work we study the associated induced
force that appears in a system described by the disordered
Landau-Ginzburg model defined in a d-dimensional slab
geometry, which is driven to the criticality by nonthermal
fluctuations. In a confined system approaching a second-
order phase transition, when the length scale of the fluctua-
tions are very large, an influence from the boundaries may
appear. The fluctuation spectrum associated with the order
parameterlike quantities becomes highly sensitive to the
geometry of the boundaries. The terminology for order
parameterlike quantities will be discussed later.
In order to deal with critical regimes driven by quenched

disorder fields, we employ the distributional zeta-function

method. This methods leads to a representation of the
quenched free energy where the main contribution is given
by a series. Each term of this series is a moment of the
partition function with its own ground state. Therefore the
multivalley free energy landscape of some disordered
systems can be easily obtained [16–23].
Our purpose is to discuss the sign of the force between the

boundaries, for the case of Dirichlet boundary conditions in
the nearly critical scenario. To proceed, in each moment of
the partition function we compute the saddle-point contri-
bution and discuss Gaussian fluctuations around such saddle
points. Next, we deal with the series of the eigenvalues of
Laplace operators. Using generalized zeta-functions, and an
analytic regularization procedure, we develop a global
approach following Ref. [24]. This procedure shows that
there are specific moments of the partition function which are
contributing to the force between the boundaries, induced by
geometric restrictions, i.e., the constraints in the fluctuation
spectra of each specific moment. Although this global
approach does not show the connection between the structure
of the divergences and the geometry of the boundaries, its
simplicity reveals the relation between the intensity of the
effect and the correlation lengths of the fluctuations asso-
ciated with the order parameterlike quantities in some
moments of the partition function. Also, it shows the link
among the dimension of the space, the boundary conditions,
and the structure of the divergences in the associated spectral
zeta-functions.
Repulsive and attractive critical Casimir forces depending

on the boundary conditions were discussed in Ref. [25].
In Ref. [26], for systems described by anOðNÞφ4 model in a
d-dimensional film geomery, it was proved that there is a
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crossover from attractive to repulsive induced forces, as a
function of the distance between the boundaries. For
quantum fields, a similar result can be found in Ref. [27],
which discussed the sign of the Casimir force between two
plates, a perfectly conducting one and an infinite permeable
plate. In Ref. [28] it was proved that a repulsive Casimir
force appears when the boundaries are dielectric materials
with nontrivial magnetic susceptibility. Finally, Refs. [29,30]
discussed the dependence of the sign of the Casimir energy
on the dimensionality of space, type of boundary condition,
and other variables. Our main result is a connection between
the sign of the fluctuation-induced force and the strength of
the nonthermal control parameter. This result, which shows
the behavior of the sign change of the fluctuation-induced
forces (i.e., the variation between their attractive and
repulsive nature) and its explicit dependence on the strength
of the disorder, as far as we know, is new in the literature.
Note that although we are in the statistical field theory

framework, we are not using an ultraviolet cutoff in the
model. Using the argument of universality in the critical
behavior, where the results of macroscopic measurements
must be independent of the cutoff parameter, we can remove
a natural physical cutoff and use an analytic regularization
procedure to obtain finite results. Although these two
methods, the cutoff method and analytic regularization
procedure, are quite different, it is possible to compare them
and prove the analytic equivalence between them in some
specific situations [31–34]. One comment is in order. To
implement the renormalization program in systems where
translational invariance is broken, it is a requirement to
introduce counterterms which are surface interactions
[35–39]. Since in this work we adopt a global approach,
we are not introducing these boundary contributions in
the model.
This paper is organized as follows. In section IIwe discuss

theLandau-Ginzburgmodel defined in the continuum, in the
presence of a quenched disorder, and the distributional zeta-
function method. In section III, in this scenario of confined
fluctuations near the critical regime, the spectral zeta-
function method and an analytic regularization procedure
are discussed. Conclusions are given in section IV.
Henceforth we work with units such that ℏ ¼ c ¼ kB ¼ 1.

II. LANDAU-GINZBURG MODEL WITH
DISORDERED FIELDS

We discuss a confined random field fluid system
assuming a Landau-Ginzburg model with Z2 symmetry
in a d-dimensional slab geometry Rd−1 × ½0; L�. The
quenched disorder field is linearly coupled with a scalar
field. The cases of the Dirichlet, Neumann Laplacian, and
periodic boundary conditions are discussed. The case of
periodic boundary conditions for Bose fields is closely
related to a finite temperature field theory [40]. In the
statistical field theory scenario, the action functional SðφÞ
for the one component scalar field is given by

S ¼
Z

ddx

�
1

2
φðxÞ

�
−Δþm2

0

�
φðxÞ þ λ0

4!
φ4ðxÞ

�
: ð1Þ

The symbol Δ denotes the Laplacian in Rd, and λ0 and
m2

0 are respectively the coupling constant and a parameter
that give the distance of the model from the critical point.
We call it the square mass of the model. Note that we are
using the action SðφÞ ¼ βHðφÞ, where HðφÞ is the
Hamiltonian of the model. The action is the energy
measured in units of temperature. The generating func-
tional of correlation functions for one disorder realization
in the presence of an external source jðxÞ is defined as

Zðj; hÞ ¼
Z

½dφ� exp
�
−Sðφ; hÞ þ

Z
ddxjðxÞφðxÞ

�
; ð2Þ

where ½dφ� is a formal Lebesgue measure, given by ½dφ� ¼Q
x dφðxÞ and the action functional in the presence of the

disorder is

Sðφ; hÞ ¼ SðφÞ þ
Z

ddxhðxÞφðxÞ ð3Þ

for hðxÞ ∈ L2ðRnÞ. In the above equation, SðφÞ is the pure
Landau-Ginzburg action functional and hðxÞ is a quenched
random field. This is the simplest scalar model with a
disorder field linearly coupled with the scalar field of the
theory. We would like to point out that one can discuss also
the quenched random mass model given by

Sðφ; ηÞ ¼ SðφÞ þ ρ

4

Z
ddxηðxÞφ2ðxÞ: ð4Þ

This model is known as the random-temperature disorder,
where a small density of impurities lead to randomness in the
local transition temperature. In this work we will discuss
only the quenched random field model. Measured in units of
temperature, the disordered free energy for one disorder
realization is Wðj; hÞ ¼ − lnZðj; hÞ. Performing the aver-
age over the ensemble of all realizations of the disorder
we have

E½Wðj; hÞ� ¼
Z

½dh�PðhÞ lnZðj; hÞ; ð5Þ

where ½dh� ¼ Q
x dhðxÞ is a functional measure. The

probability distribution of the disorder is written as
½dh�PðhÞ, being

PðhÞ ¼ p0 exp

�
−

1

2σ2

Z
ddxðhðxÞÞ2

�
: ð6Þ

The quantity σ is a positive parameter associated with the
disorder and p0 is a normalization constant. This defines a
delta correlated process as
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E½hðxÞhðyÞ� ¼ σ2δdðx − yÞ: ð7Þ

For a given probability distribution of the disorder, one is
mainly interested in obtaining the average free energy. For a
general disorder probability distribution, using the disor-
dered functional integral Zðj; hÞ given by Eq. (2), the
distributional zeta-function, Φðs; jÞ, is defined as

Φðs; jÞ ¼
Z

½dh�PðhÞ 1

Zðj; hÞs ; ð8Þ

for s ∈ C, with this function being defined in the region
where the above integral converges. As was proved in
[16,17], ΦðsÞ function is defined for ReðsÞ ≥ 0. Therefore
the integral is defined in the half-complex plane, and an
analytic continuation is not necessary. The average generat-
ing functional can be written as

E½Wðj; hÞ� ¼ −ðd=dsÞΦðs; jÞjs¼0þ ; ℜðsÞ ≥ 0; ð9Þ

where one defines the complex exponential n−s ¼
expð−s log nÞ with log n ∈ R. Using analytic tools,
again in units of temperature, the quenched free energy
of a system in the presence of an external field is
FqðjÞ ¼ −E½Wðj; hÞ�, where

E½Wðj; hÞ� ¼
X∞
k¼1

ð−1Þkþ1ak

kk!
E½ðZðj; hÞÞk�

− lnðaÞ − γ þ Rða; jÞ: ð10Þ

The quantity a is a dimensionless arbitrary constant, γ is
the Euler-Mascheroni constant, and RðaÞ is given by

Rða; jÞ ¼ −
Z

½dh�PðhÞ
Z

∞

a

dt
t
expð−Zðj; hÞtÞ: ð11Þ

Integrating over the disorder, each moment of the partition
function can be written as

E½ðZðj; hÞÞk� ¼
Z Yk

i¼1

½dφi� expð−Seffðφi; jiÞÞ; ð12Þ

where the effective action SeffðφiÞ describes a k-field
component field theory.

SeffðφðkÞ
i ;jðkÞi Þ¼

Z
ddx

"Xk
i¼1

�
1

2
φðkÞ
i ðxÞð−Δþm2

0ÞφðkÞ
i ðxÞ

þλ0
4!
ðφðkÞ

i ðxÞÞ4
�
−
σ2

2

Xk
i;j¼1

φðkÞ
i ðxÞφðkÞ

j ðxÞ

−
Xk
i¼1

φðkÞ
i ðxÞjðkÞi ðxÞ

#
: ð13Þ

In order to avoid unnecessary complications, and for
practical purposes, we assume the following configuration

of the scalar fields φðkÞ
i ðxÞ¼φðkÞ

j ðxÞ¼φðkÞðxÞ in the func-

tion space and also jðkÞi ðxÞ ¼ jðkÞl ðxÞ ¼ jðxÞ. Although it
can be shown that under the assumption of different fields,
the theory is invariant under the permutation group of (k)
elements, and the generic scale invariance is obtained (for
free theories and their generalizations). The aforemen-
tioned configuration has proved its validity when the
multivalley free energy landscape in systems with multi-
plicative quenched disorder is obtained (see i.e., Ref [23]).
Therefore, all the terms of the series have the same
structure. The next step will be to assume the Gaussian
approximation, expand each functional integral around
the minimum up to the lowest-order quadratic term, and
integrate out the fluctuations. Assuming that in each
moment of the partition function the fields are equal,
we have that the kth moment of the partition function is
written as

E½ðZðj; hÞÞk� ¼
�Z

½dφ� exp
�
−SðkÞðφðkÞ; jÞ

��
k
: ð14Þ

In this case, the new effective action is written as

SðkÞðφðkÞ;jÞ¼
Z

ddx

�
1

2
φðkÞðxÞ

�
−Δþm2

0−kσ2
�
φðkÞðxÞ

þλ0
4!
ðφðkÞðxÞÞ4−φðkÞðxÞjðxÞ

�
: ð15Þ

In what follows we define each contribution WðkÞðjÞ as

WðkÞðjÞ≡ ckE½ðZðj; hÞÞk� ð16Þ

being ckðaÞ ¼ ð−1Þkþ1ak=kk!. For simplicity we shall
adopt the convention ckðaÞ ¼ ck.
In this situation, we have three different contributions of

the terms of the series depending on the sign ofm2
0 − kσ2 for

m2
0 > σ2: (i) the case where m2

0 − kσ2 > 0, (ii) the case
where m2

0 ≅ kσ2 is a situation similar to a second-order
phase transition and defines kc, and (iii) the case where
this quantity is negative and one has to shift the field to a
new minimum, i.e., ϕðkÞðxÞ ¼ φðkÞðxÞ � ϑðkÞ, with ϑðkÞ ¼
ð6ðkσ2 −m2

0Þ=λ0Þ1=2. This case is similar to the spontaneous
symmetry breaking in statistical field theory and the behav-
ior of each term of the series is described by the (þ) or (−)
cases. From now on, we choose the minus sign above. In this
case, we find a positive squared mass with self-interaction
terms ðϕðkÞðxÞÞ3 and ðϕðkÞðxÞÞ4.
Here, we consider the three level approximation. In each

moment of the partition function order parameterlike quan-
tities are defined, i.e., φðkÞ

0 ðxÞ. In this way, for any moment
of the partition function, this three level contribution is
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−ΔφðkÞ
0 ðxÞ þ ðm2

0 − kσ2ÞφðkÞ
0 ðxÞ þ λ0

3!
ðφðkÞ

0 ðxÞÞ3 ¼ jðxÞ:
ð17Þ

The Fourier transform of the susceptibility-like quantity is

χðkÞðqÞ ¼ 1

q2 þm2
0 − kσ2 þ 1

2
λ0ðφðkÞ

0 Þ2
: ð18Þ

When we have the terms in the series where k < kc, we

obtain that φðkÞ
0 ðxÞ ¼ 0 and

χðkÞðqÞ ¼ 1

q2 þm2
0 − kσ2

: ð19Þ

The correlation length for k < kc is therefore

ξðkÞ< ðσ; m0Þ ¼ ðm2
0 − kσ2Þ−1

2: ð20Þ

The Fourier transform of the susceptibility-like quantity is

χðkÞðqÞ ¼ 1

q2 þ 2ðkσ2 −m2
0Þ
: ð21Þ

Then the correlation length, when k > kc, reads as

ξðkÞ> ¼ ð2ðkσ2 −m2
0ÞÞ−

1
2: ð22Þ

Note that we are computing the saddle-point contribution
and we will take into account Gaussian fluctuations around
said saddle point. Although the critical exponents using
this approximation are not correct for dimensions below the
critical dimension, here we are interested in computing the
fluctuation-induced force between the boundaries. Radiative
corrections are negligible in this scenario.

III. FLUCTUATION-INDUCED FORCE IN
SYSTEMS WITH DISORDER

In this section we will discuss the nearly critical
scenario of the system, in order to present the fluc-
tuation-induced force between the boundaries. The next
step is to assume the Gaussian approximation. For kσ2 >
m2

0 we expand each functional integral around the mini-
mum up to the lowest-order quadratic term and integrate
out the fluctuations.
Starting from the elliptic operator −Δþ 2ðkσ2 −m2

0Þ we
define,

Dðx; y; kÞ≡ ð−Δþ 2ðkσ2 −m2
0ÞÞδdðx − yÞ: ð23Þ

Within (23) we define the inverse kernel Kðx; z; kÞ asZ
ddzKðx; z; kÞDðz; y; kÞ ¼ δdðx − yÞ: ð24Þ

Therefore up to the Gaussian approximation we can
write

E½Wðj;hÞ�¼
X∞
k¼1

ck
ðdetDðkÞÞk=2

×

�
exp

�
−
Z

ddx
Z

ddyjðxÞKðx;y;kÞjðyÞ
��

k
:

ð25Þ

With the theory in finite-size geometry in one dimension,
we have the spatial coordinate xd ¼ z compactified, and a
slab defined as

Ω ¼ ½x≡ ðx1; x2;…; xd−1; zÞ∶0 ≤ z ≤ L� ⊂ Rd:

To implement the renormalization procedure in
Euclidean field theory, where the field depends on d − 1
unbounded coordinates and one bounded coordinate in the
interval ½0; L�, one has to work in a mixed representation for
the Schwinger functions. One can show that the amputated
one-loop two-point Schwinger function can be decom-
posed in a translational invariant contribution and another
one that breaks the translational invariance. Since we are
interested in discussing a global approach using the spectral
zeta-function of the Laplacian, the formalism used for
periodic or antiperiodic boundary conditions is the same
used for Dirichlet boundary conditions.
The Fourier transform of the susceptibility-like quantity

χðkÞððx − yÞjj; z; z0Þ reads

χðkÞðqjj; nÞ ¼
1

ðqjjÞ2 þ ð2nπL Þ2 þ 2ðkσ2 −m2
0Þ
: ð26Þ

Each of moment of the partition function contributes to the
quenched free energy by means of a functional determinant.
To evaluate each of these functional determinants, the
formalism of spectral zeta-function is a standard procedure
[41–44]. Suppose an infinite sequence of non-zero real or
complex numbers λn. If the sequence of numbers is zeta
regularizable, we define the regularized product

Q
n λn. The

zeta regularized product of these numbers is defined as
expð−ζ0ð0ÞÞ, where this generalized zeta-function is given by

ζðsÞ ¼
X
n

λ−sn ; ℜðsÞ > s0 ð27Þ

for s ∈ C. This function is being defined in the region
of the complex plane where the sum converges and
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ζ0ð0Þ ¼ d
ds ζðsÞjs→0þ , by analytic extension. In this frame-

work, one can write

½detDðkÞ�−k
2 ¼ exp

�
k
2
ðζ0ð0; kÞÞ

�
: ð28Þ

Due to the fact that we are assuming flat boundaries, here
we will discuss each contribution for the free energy using
an analytic regularization procedure, calculating ζð− 1

2
; kÞ

instead of ζ0ð0; kÞ [45]. One comment is in order. There is a
relationship between the Casimir energy and the one-loop
effective action. These two quantities differ by a contri-
bution proportional to the second fundamental form, which
is zero for a d-dimensional slab geometry.
Let us assume a thermodynamic limit with respect

to the surface area, i.e., L1; L2;…; Ld−1 ≫ Ld, and
2ðkσ2 −m2

0Þ > 0. To proceed, one defines the spectral
zeta-function ζdðs; kÞ as

ζdðs; kÞ ¼
1

ð2πÞd−1
�Yd−1

i¼1

Li

�Z Yd−1
i¼1

dqi

×
X
n∈Z

�
q21 þ � � � þ q2d−1 þ

�
2πn
Ld

�
2

þ 2ðkσ2 −m2
0Þ
�

−s
ð29Þ

for s ∈ C. We like to point out that in order to be rigorous
we should have included the term μ2sþ1, where μ has
dimension of mass, in the above expression, to keep
dimensionality consistence. But in order to avoid unnec-
essary nomenclature and given that we are only looking at
the situation where s ¼ 1=2, we can omit this term and
stick to our notation.
With the finite length Ld ¼ L and by performing the

angular part of the integral over the continuous mode
spectrum of the (d − 1) non-compact dimensions, we get
that

Z
dΩd−1 ¼

2ðπÞd−12
Γðd−1

2
Þ : ð30Þ

Note that we are assuming d ≥ 2. We would like to stress
that one can show that the second-order phase transition in
d ¼ 2 is suppressed, since the two-point correlation func-
tions belong to the space of locally integrable functions, in
the sense of generalized functions, and therefore must have
integrable singularities only at coinciding points. Since
G0ðx − y; m2

0Þ ¼ − 1
2π lnðm0jx − yjÞ in d ¼ 2 dimensions,

the theory violates the regularity condition, that is one
condition to define a field theory. Therefore the nearly
critical scenario is reached when the correlation lengths of
the fluctuations of the order parameterlike quantities

satisfies ξðkÞ> > L.

Let us define bκc as the largest integer ≤ κ for any κ ∈ R.
In other words, bκc is the integer r for which r ≤ κ < rþ 1.
Within this notation, we notice that we have a set of
moments such that

�
m2

0

σ2

�
≤ k ≤

�
1

σ2

�
1

2L2
þm2

0

��
: ð31Þ

We are interested in discussing the contribution of the

moments of the partition function where k ≥ bm2
0

σ2
c, i.e.,

where each of the order parameterlike quantities does not
vanish.
At this point we introduce the spectral zeta-function per

unit area

Zdðs; kÞ ¼
ζdðs; kÞ

AðdÞðQd−1
i¼1 LiÞ

ð32Þ

where the factor AðdÞ is defined as

AðdÞ ¼ 1

2d−2π
d−1
2 Γðd−1

2
Þ : ð33Þ

The expression for Zdðs; kÞ is written as

Zdðs;kÞ¼
�

Lffiffiffiffiffiffi
4π

p
�

2s
Z

∞

0

dppd−2

×
X
n∈Z

�
πn2þL2

4π

�
p2þ2ðkσ2−m2

0Þ
��

−s
: ð34Þ

To proceed, let us rewrite Zdðs; kÞ in a way that is suitable
for our analysis. After a Mellin transform, and renaming
some quantities, we can rewrite the spectral zeta-function
per unit area as

Zdðs; kÞ ¼
Bðs; dÞ
2Γðd−1

2
Þ

1

Ld−2s−1

Z
∞

0

drrd−2

×
Z

∞

0

dtts−1 exp ð−ðm2ðkÞ þ r2ÞtÞΘðtÞ; ð35Þ

with the dimensionless quantities m2ðkÞ ¼ L2

2π ðkσ2 −m2
0Þ

and r2 ¼ L2

4π p
2. Also Bðs; dÞ is defined as

Bðs; dÞ ¼ 2ð
ffiffiffiffiffiffi
4π

p
Þd−2s−1 Γð

d−1
2
Þ

ΓðsÞ ð36Þ

and the theta function ΘðvÞ defined as

ΘðvÞ ¼
X
n∈Z

expð−πn2vÞ; ð37Þ

an example of a modular form, appears. The quantity
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m2ðkÞ ¼ L2

4πðξðkÞ> Þ2
ð38Þ

defines the finite-size scaling, i.e., close to the critical point.

Finite-size effects are controlled by the ratio L=ξðkÞ> .
Splitting the integral in the t variable from Eq. (35) into
two contributions and performing the integral in the r
variable, we can recast the spectral zeta-function per unit

area as Zdðs; kÞ ¼ Zð1Þ
d ðs; kÞ þ Zð2Þ

d ðs; kÞ, where

Zð1Þ
d ðs; kÞ ¼ Cðs; dÞ

Z
1

0

dtts−
d
2
−1
2 exp ð−m2ðkÞtÞΘðtÞ; ð39Þ

and

Zð2Þ
d ðs; kÞ ¼ Cðs; dÞ

Z
∞

1

dtts−
d
2
−1
2 exp ð−m2ðkÞtÞΘðtÞ ð40Þ

and where Cðs; dÞ ¼ ð1=Ld−2s−1ÞBðs; dÞ. Changing vari-

ables in the integral Zð1Þ
d ðs; kÞ and using the symmetry of

the theta function we have

Zð1Þ
d ðs; kÞ ¼ Cðs; dÞ

Z
∞

1

dtt−sþd
2
−1 exp

�
−
m2ðkÞ

t

�
ΘðtÞ:

ð41Þ

From the definition of the psi-function ψðvÞ ¼P∞
n¼1 exp ð−πn2vÞ, such that ψðvÞ ¼ 1

2
ðΘðvÞ − 1Þ, we

can rewrite Zdðs; kÞ as having four contributions,

IðiÞd ðs; kÞ; i ¼ 1;…; 4. Therefore

Zdðs; kÞ ¼ Cðs; dÞð2Ið1Þd ðs; kÞ þ 2Ið2Þd ðs; kÞ
þ Ið3Þd ðs; kÞ þ Ið4Þd ðs; kÞÞ: ð42Þ

In order to be more explicit, let us evidence these
integrals:

Ið1Þd ðs; kÞ ¼
Z

∞

1

dtts−
d
2
−1
2 exp ð−m2ðkÞtÞψðtÞ; ð43Þ

Ið2Þd ðs; kÞ ¼
Z

∞

1

dtt−sþd
2
−1 exp

�
−
m2ðkÞ

t

�
ψðtÞ; ð44Þ

Ið3Þd ðs; kÞ ¼
Z

∞

1

dtts−
d
2
−1
2 exp ð−m2ðkÞtÞ; ð45Þ

and finally

Ið4Þd ðs; kÞ ¼
Z

∞

1

dtt−sþd
2
−1 exp

�
−
m2ðkÞ

t

�
: ð46Þ

For the case of the Dirichlet Laplacian where only the

integrals Ið1Þd ðs; kÞ and Ið2Þd ðs; kÞ appear, and using the fact

that ψðtÞ ¼ Oðe−πtÞ as t → ∞, the integrals Ið1Þd ðs; kÞ and
Ið2Þd ðs; kÞ represent an everywhere regular function of s for
m2ðkÞ ∈ Rþ. The upper bound ensures uniform conver-
gence of the integrals on every bounded domain in C. As in
the standard quantum field theory scenario, the contribution
to the average free energy from each moment of the
partition function of the system can be evaluated
for s ¼ − 1

2
.

In Fig. (1) we depict the behavior of the integral given by

Ið1Þd ðs; kÞ for an arbitrary dimensionality of space and
dimensionless quantity mðkÞ. For completeness we discuss
the d ¼ 2 case. We can see that the integral vanishes when
the value of the dimensionless quantity mðkÞ satisfies
mðkÞ > 2. On the other hand the contribution of the integral

Ið2Þd ðs; kÞ is depicted in Fig. (2). The contribution of the

integral Ið2Þd ðs; kÞ for s ¼ −1=2 vanishes for mðkÞ > 2.5.
For the case of the Neumann Laplacian and also the

periodic boundary conditions, not only the integrals

Ið1Þd ðs; kÞ and Ið2Þd ðs; kÞ but also the integrals Ið3Þd ðs; kÞ

FIG. 1. Behavior of Ið1Þd ðs; kÞ for s ¼ −1=2, for arbitrary
dimensionality of the space and also dimensionless quantity
mðkÞ ¼ m.

FIG. 2. Behavior of Ið2Þd ðs; kÞ for s ¼ −1=2, for arbitrary
dimensionality of the space and dimensionless quantity
mðkÞ ¼ m.
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and Ið4Þd ðs; kÞ appear. In the absence of the exponential
decay of the ψðvÞ function and for m2ðkÞ ∈ Rþ we have to

discuss the polar structure of the integrals Ið3Þd ðs; kÞ and

Ið4Þd ðs; kÞ. Note that we are assuming that m2ðkÞ is small,
but different from zero. One can show that the contribution

of Ið3Þd ðs; kÞ is finite for odd dimensional space. Also the

contribution of Ið4Þd ðs; kÞ is finite only for even dimensional
space. Thus, it is not possible to define the Casimir-like
energy per unit area associated with the Neumann
Laplacian using an analytic regularization procedure in
the Gaussian approximation [46]. This obstruction is
related to the presence of the zero mode [47].
With this in mind, we present the main result of this

paper. For Dirichlet boundary conditions we can write
FdðLÞ as

FdðLÞ ¼ −
X∞
k¼1

ckðaÞ exp
�
k
2
ζd

�
−
1

2
; k

��
: ð47Þ

Examining the leading contribution of the series repre-
sentation for the quenched free energy, where the correlation
length of the fluctuations attains its maximum value, and
with a suitable choice a ¼ exp ðjζdð− 1

2
; k1ÞjÞ, we can write

that the force per unit area is given by

fdðLÞ ¼
ð−1Þk1þ1

2k1!
1�Q

d−1
i¼1 Li

� ∂
∂L ζd

�
−
1

2
; k1

�
; ð48Þ

where k1 ¼ bm2
0

σ2
c. Using the definition of Zdðs; kÞ we can

rewrite (48) as follows:

fdðLÞ ¼
ð−1Þk1þ1

2k1!
AðdÞ ∂

∂LZd

�
−
1

2
; k1

�
: ð49Þ

In order to explore the behavior of the force (49)
obtained by the distributional zeta-function method, in
Fig. 3 we depict the ratio fdðLÞ=AðdÞ in function of
disorder strength σ for a fixed L. A clear dependence of
the fluctuation of induced forces, from attractive to repul-
sive, is observed with respect to the parameter σ which
characterizes the strength of disorder. We can observe how
the fluctuations increase their amplitude, as the system
becomes more disordered. The inset of Fig. 3 is showing
that the change from attractive to repulsive forces is present
even with a small amount of disorder. A similar behavior is
expected for other dimensions.
For completeness, in Fig. 4 we depict these sign-fluctua-

tions of induced forces for different values of the parameter
L. We can observe, as an expected behavior, the magnitude
decreasing the amplitude of fluctuations, as the geometric-
slab parameter is getting larger. However, we are obtaining
an interesting result for how the form of the change between
the repulsive to attractive nature of the induced forces is
being affected by the parameter L. We are going from a type
of rectangular-shape fluctuation to another smoother type.
We finally remark that this result of the fluctuation-

induced forces, attractive or repulsive, depends on the
strength of the disorder and is, as far as we know, new in the
literature. This sign changing of the fluctuation-induced
force should be testable in experiments [48–50].

IV. CONCLUSIONS

Using the distributional zeta-function method, we dis-
cussed fluctuation-induced forces associated with a disor-
dered Landau-Ginzburg model defined in a d-dimensional
slab geometry. Assuming the Gaussian approximation in
each moment of the partition function, we obtain a nearly
critical scenario. For some specific strength of the disorder,
the fluctuations associated with an order parameterlike
quantity in a specific moment of the partition function
become long ranged. The induced-force per unit area in the
case of the Dirichlet boundary condition depends on the
contribution coming from the leading term, with the largest
correlation length of the fluctuations. The sign of the induced

force depends on
j
m2

0

σ2

k
being odd or even. A similar situation

is obtained for a case with a dielectric surface and a
permeable one, with large dielectric constant ϵ and large
permeability μ respectively. The transition between the
attractive or repulsive behavior depends on the ratio

ffiffiμ
ϵ

p
.

Our result that the fluctuation-induced forces, attractive or
repulsive, depend on the strength of the disorder is new in
literature.
To conclude wewould like to point out that the quenched

disorder generates fluctuations, which differ significantly
from the thermal fluctuations. For pure, translational

FIG. 3. Ratio fdðLÞ=AðdÞ in function of disorder strength
σ for L ¼ 10.
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invariant systems, with dimension of the order parameter
being one, driven by thermal fluctuations, there is a unique
temperature where the system becomes critical. For sys-
tems with quenched disorder, the correlation function
associated with the order parameter remains long ranged
for an enumerable set of values of the disorder.
This led to the question of the analytic structure of this

disordered Landau-Ginzburg model. From the series rep-
resentation of the average generating functional of con-
nected correlation functions, one can obtain a series
representation for the average generating functional of
vertex functions. For a fixed disorder, i.e., σ fixed, there
is always a term in the series with m2

0 − kσ2 ¼ 0. The
argument is as follows: we define a sequence of critical σ
points, which has an accumulation point at σ ¼ 0. Notice
that this occurs for any m2

0. Therefore, we have infinitely
many terms in the series that contribute a divergent
susceptibility, an infinite correlation length with the power
law decay of the correlation functions. The average gen-
erating functional of vertex functions has an infinite
number of singularities. In the complex σ plane, this
accumulation of singularities defines a natural boundary
of analyticity, where there is no possibility of analytic
extension [51,52]. Actually, the limit σ → 0 can not be
achieved. The appearance of a natural boundary of a similar
nature is studied in the prime number spectra in quantum
field theory [53].
A natural continuation of this work is to discuss fluc-

tuation-induced forces in finite-size critical systems, defined
on a slab Rd−1 × ½0; L�, with quenched disorder at the
surfaces [54,55]. Finally, let us note that the case where
quantum and disorder-induced fluctuations are present in a
system with randomness must be investigated. Therefore, we
have plans to discuss in a succeeding work the effects of
disorder, in a system at low temperatures described by
quantum field theory, prepared in the spontaneously broken
phase. Being more specific, the idea is to investigate the low-
temperature behavior of a system in a spontaneously broken
symmetry phase described by a Euclidean quantum λφ4

dþ1

model with quenched disorder in one-loop approximation.
To study the low-temperature behavior of the system, since
the disorder is strongly correlated in imaginary time [56–59],
one can use the equivalence between a disorder Euclidean
quantum λφ4

dþ1 model with a classical model defined on a
space Rd × S1, with anisotropic quenched disorder. Such a
model with spatially non-uniform disorder has some simi-
larities to the McCoy-Wu random Ising model, an aniso-
tropic two-dimensional classical Ising model with random
exchange along one direction but uniform along the other
[60,61]. These subjects are under investigation by the
authors.

(a)

(b)

(c)

FIG. 4. Ratio fdðLÞ=AðdÞ in function of disorder strength σ for:
a) L ¼ 0.3, b) L ¼ 3, and c) L ¼ 15.
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