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We analyze fermion mixing in the framework of field quantization in curved spacetime. We compute the
expectation value of the energy-momentum tensor of mixed fermions on the flavor vacuum. We consider
spatially flat Friedmann-Lemaître-Robertson-Walker metrics, and we show that the energy-momentum
tensor of the flavor vacuum is diagonal and conserved. Therefore, it can be interpreted as the effective
energy-momentum tensor of a perfect fluid. In particular, assuming a fixed de Sitter background, the
equation of state of the fluid is consistent with that of dust and cold dark matter. Our results establish a new
link between quantum effects and classical fluids, and indicate that the flavor vacuum of mixed fermions
may represent a new component of dark matter.
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I. INTRODUCTION

Among the open issues of modern cosmology is the
understanding of the dark components of the universe.
Most of the total energy density is shared between “dark
energy” that drives the accelerated expansion of the
universe [1–7] and “dark matter,” the nonbaryonic matter
that is responsible for holding galaxies and clusters together
[8–25]. A conclusive explanation for this “dark universe” is
still lacking. Several proposals, often very different in
nature and perspective, have been put forward to account
for dark matter. New particles such as axions, axionlike
particles [26–36], and supersymmetric partners [37], aris-
ing from extensions of the standard model, might explain
the missing matter. Another possible dark matter compo-
nent is represented by massive compact objects such as
primordial black holes [38]. Other proposals rely on pure
quantum field theoretical effects and the nontrivial structure
of the vacuum of flavor fermion mixing [39–43]. The
relevance of fermion fields in astrophysical and cosmo-
logical contexts is well represented by the role of neutrinos.
These particles are a valuable source of information as they
are expected to play an important role in investigating
astrophysical processes. They can be used as a test of the
standard cosmological model [44,45] even at early time
[44,46] and have been recognized as a possible component
of dark energy [47]. Moreover, the corresponding vacuum

has been identified as a possible dark matter component in
flat space [39,40]. Neutrinos are known to oscillate among
their three flavors, and their general oscillation formulas in
curved spacetime have been derived in Refs. [48–52]
together with a number of other aspects of this phenome-
non. We remark that flavor mixing and massive neutrino
oscillations are phenomena beyond the standard model.
In the following, starting from the analysis of the

possible contribution of the flavor vacuum to the dark
matter, previously studied in Minkowski spacetime [39,40],
we study the behavior of the flavor vacuum in the case of a
curved background. We compute, in the context of an
homogeneous and isotropic spacetime, represented by a
spatially flat Friedmann-Lemaître-Robertson-Walker met-
ric, the expectation value of the energy-momentum tensor
of neutrinos on the flavor (mixed) vacuum. We show that
this expectation value is a diagonal tensor and satisfies the
Bianchi identities. Consequently, it behaves as an effective
stress energy tensor akin to that of a perfect fluid and can
enter the Einstein equations as a regular source term. In
particular, assuming a fixed de Sitter background, the
equation of state of such a fluid is that of dust or cold
dark matter (w ¼ 0).
These results are not a mere generalization of the

studies conducted in flat space [39–43], since the under-
lying quantum field theory (QFT) of fermion mixing is
much more involved, with respect to flat space, and the
properties of the flavor vacuum depend critically on the
curved background considered. The computation per-
formed on the de Sitter background already gives an
indication that the flavor vacuum may play a role within
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the dark sector of the universe. Indeed, the flavor vacuum
brings along an additional energy density, and, being
pressureless, may be associated with a dark matter
component. According to our results, a possible constitu-
ent of dark matter is then represented by the energy of the
vacuum of mixed fields. In future works we will analyze
the energy-momentum tensor associated with the fermion
flavor vacuum in spacetimes that describe large scale
structures, such as spiral galaxies. In that context the fluid
related to the flavor vacuum can be more properly
identified with a dark matter component.
The paper is organized as follows. Section II contains a

summary of the properties of the quantum Dirac equation
in curved spacetime. Section III contains the field quan-
tization of the flavor fields and the introduction of the
oscillation components. In Sec. IV the component of
the expectation value of the quantum stress energy
tensor is derived. Section V contains the application to
a specific background metric, i.e., the de Sitter spacetime
and the derivation of the corresponding exact solution
for the component of the stress energy tensor, together
with some consideration on its regularization. Finally
Sec. VI is dedicated to the conclusions. In the following,
we will use theþ − −− signature, and we will assume that
greek indices run from 0;…; 3; lowercase Latin indices
from 1;…; 3; and uppercase Latin indices from 1;…; 4.
These last indices will represent tetrad indices. The
symbol ½; � denotes the matrix commutator so that,
e.g., ½γA; γB� ¼ γAγB − γBγA.

II. THE DIRAC EQUATION AND ITS SOLUTIONS
IN FLAT FLRW SPACETIME

For the reader’s convenience we start this section by
setting the notation and introducing the metric of interest.
We then elaborate on the Dirac equation and discuss the
general form of the solution. We will focus on the spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW)
spacetime (we use the þ − −− signature) described by
the metric gμν ¼ diagð1;−C2ðtÞ;−C2ðtÞ;−C2ðtÞÞ. where
CðtÞ is the scale factor. For our purposes it will be useful to
express this metric in terms of the conformal time τ defined
as dτ ¼ dt

CðtÞ with range τ ∈ ð−∞;∞Þ corresponding to

t ∈ ð−∞;∞Þ. Using τ, the line element reads

ds2 ¼ C2ðτÞ½dτ2 − dx2 − dy2 − dz2� ð1Þ

when expressed in Cartesian spatial coordinates and in
conformal time τ.
In order to write the Dirac equation, we need to choose a

tetrad field eAμ with the property gμν ¼ eAμeBν ηAB. Given the
metric of Eq. (1), a convenient choice of tetrads is

eAμ ¼ CðτÞδAμ ; ð2Þ

where the Kronecker symbol δAμ signals that the only
nonzero component of eA is the one for which the
Lorentz index A and the spacetime index μ coincide.
Using the tetrads above one can define the generalization

of gamma matrices γA to the case of curved spacetime
γ̃μ ¼ eμAγ

A.
Finally, in order to write the Dirac equation, we also

need the spin connections ωAB
μ ¼ eAνΓν

σμeσB þ eAν ∂μeνB.
The spinorial covariant derivative is defined with the
aid of the spin connections as Dμψ ¼ ∂μψ þ Γμψ and
Γμ ¼ 1

8
ωAB
μ ½γA; γB�. We can now write down the Dirac

equation

iγ̃μðxÞDμψ −mψ ¼ 0: ð3Þ

The above equation can be generated by the Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p �
i
2
½ψ̄ γ̃μðxÞDμψ −Dμψ̄ γ̃

μðxÞψ � −mψ̄ψ

�
; ð4Þ

and we can define the energy-momentum tensor of the
spinor field as the variation of the above Lagrangian with
respect to ψ and ψ̄

Tμν ¼
i
2
fψ̄ γ̃μðxÞDνψ þ ψ̄ γ̃νðxÞDμψ

−Dμψ̄ γ̃νðxÞψ −Dνψ̄ γ̃μðxÞψg: ð5Þ

In the metric (1) the Dirac equation reads

�
iγ0∂τ þ

3i
2

∂τC
C

γ0 þ iγj∂j −mC

�
ψ ¼ 0: ð6Þ

We remark that the Dirac equation (6) holds for the
quantum field theoretic free Dirac field of mass m. At
odds with the classical Dirac field, we cannot drop the
spatial derivatives by arguing that space-dependent quan-
tities cannot enter the right-hand side of the Einstein
equation if the metric depends only on time. Indeed, all
the solutions to Eq. (6) must be considered for the field
expansion, including those which depend explicitly on
the spatial coordinates. Consistency with the (time-
dependent only) metric is then achieved for the expect-
ation value of the physical observables, including the
energy-momentum tensor, which turn out to depend only
upon time.
The spatial dependence of this equation suggests that we

look for plane wave solutions ψ ∝ eip·x, where the mode
label p is a 3-vector that can be thought of as the would-be
plane wave momentum when CðτÞ reduces to a constant,
and “a · b” is a shorthand notation for

P
j¼1;2;3 ajbj.

We remark that the actual momentum that is
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instantaneously carried by the mode with label p is the
comoving momentum1 p

CðτÞ.
Using the helicity eigenbispinors ξλ defined as

σ · p
p

ξλ ¼ λξλ; ð7Þ

the solution of (6) can be written as the combination of the
positive and negative energy solutions in the form

up;λðτ; xÞ ¼ eip·x
�

fpðτÞξλðp̂Þ
gpðτÞλξλðp̂Þ

�
;

vp;λðτ; xÞ ¼ eip·x
�

g�pðτÞξλðp̂Þ
−f�pðτÞλξλðp̂Þ

�
: ð8Þ

Here p̂ ¼ p
p denotes the unit vector in the direction of p, σ is

the vector of Pauli matrices, and λ ¼ �1. Notice that for
each λ ¼ �1, the quantity ξ†λðp̂Þσiξλðp̂Þ is an odd function
of pi, for i ¼ 1, 2, 3. In particular, ξ†λðp̂Þσiξλðp̂Þ changes
sign when the momentum is reversed p → −p. The state-
ment can be proven by direct calculation, as shown in
Appendix B. Inserting Eq. (8) in Eq. (6), and using the
defining property of the helicity bispinors, we can write (6)
as the system

i∂τfp ¼
�
mC −

3i
2

∂τC
C

�
fp þ pgp;

i∂τgp ¼
�
−mC −

3i
2

∂τC
C

�
gp þ pfp;

i∂τf�p ¼
�
−mC −

3i
2

∂τC
C

�
f�p − pg�p;

i∂τg�p ¼
�
mC −

3i
2

∂τC
C

�
g�p − pf�p: ð9Þ

The above equations show that the functions f, g depend
only on the modulus p of the 3-momentum. Thus, from
now on, we will drop the vector index p in favor of the
scalar index p.
The scalar product between two solutions of the Dirac

equation A, B is defined as

ðA;BÞτ ¼
Z
Στ

d3x
ffiffiffiffiffiffi
−g

p
Āγ̃τðxÞB; ð10Þ

where the integration is to be carried over a hypersurface Στ

of constant conformal time τ. If A and B are solutions of the
same Dirac equation, the scalar product ðA;BÞτ is inde-
pendent of τ. This is no longer true if A and B are solutions
of distinct Dirac equations. Taking into account that the
determinant is g ¼ −C8 and adopting the normalization

jfpj2 þ jgpj2 ¼
1

ð2πCÞ3 ; ð11Þ

we obtain the following orthonormality and completeness
relations, respectively (for details, see Appendix A):

ðup;λ; uq;λ0 Þτ ¼ δ3ðp − qÞδλ;λ0 ;
ðup;λ; vq;λ0 Þτ ¼ ðvp;λ; uq;λ0 Þτ ¼ 0;

ðvp;λ; vq;λ0 Þτ ¼ δ3ðp − qÞδλ;λ0 ; ð12Þ

X
λ

ðup;λu†p;λ þ vp;λv
†
p;λÞ ¼

1

ð2πCÞ3
�
I 0

0 I

�
: ð13Þ

Equation (13) shows that the set of solutions (8) provides a
basis not only for the solution space of the Dirac equation
but also for the space of 4-spinors.
The system of equations (9) can be further simplified by

introducing the functions

ϕp ¼ C
3
2fp; γp ¼ C

3
2gp ð14Þ

since then the system becomes

∂τϕp ¼ −imCϕp − ipγp;

∂τγp ¼ imCγp − ipϕp;

∂τϕ
�
p ¼ imCϕ�

p þ ipγ�p;

∂τγ
�
p ¼ −imCγ�p þ ipϕ�

p;

and the normalization condition (11) becomes

jϕpj2 þ jγpj2 ¼
1

ð2πÞ3 : ð15Þ

The first two of Eqs. (15) can be combined to give two
second-order equations for ϕp,

∂2
τϕp þ ðim∂τCþ p2 þm2C2Þϕp ¼ 0: ð16Þ

In the same way, we can obtain a second-order equation
for ϕ�

p.
We conclude the section by introducing a bilinear form

of the solutions of the Dirac equation, which is convenient

1This is most conveniently seen by inserting the plane wave
ansatz in Eq. (6) and reverting to the coordinate time t:

�
iγ0

�
∂t þ

3i
2

∂tC
C

�
−
γjpj

C
−m

�
ψp ¼ 0:

In this form the equation resembles the Dirac equation in flat
space, with a time-dependent potential 3i

2
∂tC
C and with the quantity

pj

C playing the role of an instantaneous momentum.

QUANTUM FLAVOR VACUUM IN THE EXPANDING UNIVERSE: … PHYS. REV. D 105, 105013 (2022)

105013-3



for the study of the energy-momentum tensor. Given two
solutions A, B of the Dirac equation, we define the auxiliary
tensor as

LμνðA; BÞ ¼ Āγ̃μðxÞDνBþ Āγ̃νðxÞDμB −DμĀγ̃νðxÞB
−DνĀγ̃μðxÞB: ð17Þ

The properties of the auxiliary tensor are analyzed in
Appendix C.

III. QUANTIZATION OF FLAVOR FIELDS

In the following, we start by quantizing a single Dirac
field of definite mass, and then we report the analysis of the
main properties of two flavor mixed fields. It is important to
stress that here we adopt the flavor Fock space quantization
of the flavor fields in a curved background [48]. In such a
setting, the representations in terms of annihilators with
definite mass (mass representation) and the representation
in terms of annihilators with definite flavor (flavor repre-
sentation) are unitarily inequivalent, regardless of the
background metric considered (Minkowski, FLRW, etc.).
The flavor vacuum, annihilated by all the destruction
operators with definite flavor, has the structure of a
condensate of particle-antiparticle pairs with definite
masses. Such a structure characterizes the mixing phe-
nomenon. The analysis of the flavor mixing in QFT and the
unitary inequivalence between flavor and mass representa-
tions in the Minkowski metric are reported in [53] and in
references therein. The current paper specifically pertains
to the flavor vacuum on a curved background. In addition to
the particle creation phenomena related to the expansion of
the universe, we also need to consider the condensate
structure of the flavor vacuum that we remark is to be taken
into account regardless of the background metric.
Our approach to the quantization of the flavor fields is

different from the quantization employed in previous
works, as [54]. There the authors work within a unique
representation (the mass representation) and the creation
operators for fields with definite masses and fields with
definite flavor, at a fixed time, act upon the same Fock
space and define a unique vacuum state (the mass vacuum).
Inequivalent representations only come into play for dis-
tinct times, due to the expansion-related particle creation.
In our case, two inequivalent representations (the mass

and the flavor ones) are present even at the same time. This
point can be understood by considering the flat spacetime
limit of the energy density. Indeed, in Refs. [39–43], it has
been shown that the expectation value of the Hamiltonian
density computed on the flavor vacuum is nonvanishing
even in the flat spacetime limit (where there is no particle
creation due to expansion). This result is due to the
condensate structure of the flavor vacuum. On the contrary,
on the mass vacuum that the authors of Ref. [54] use, the
expectation value of the (normal-ordered) Hamiltonian

density vanishes in the flat spacetime limit. Such a circum-
stance is an obvious consequence of the absence of particle
creation. Here, we generalize the results of [39] to the case
of a curved background.
Finally, in order to avoid any confusion, we remark the

Bogoliubov coefficients discussed in Sec. IVare the mixing
coefficients, provided by the inner products of modes with
different masses at the same, given time [48]. These are not
to be confused with the Bogoliubov coefficients, as those
appearing in [54], that relate the field expansions at
distinct times.

A. Dirac field

Since the set of solutions (8) fup;λ; vp;λgp;λ is complete,
any solution of the (linear) Dirac equation can be written
as a linear combination of these modes. In particular, this
is true for the Dirac field: ψðxÞ ¼ P

λ

R
d3pðAp;λup;λ þ

B�
−p;λvp;λÞ. In this equation, the notation B�

−p;λ is chosen to
remark that vp;λ describes an antiparticle with momentum
−p. Notice that all the spacetime dependence is in the
modes, while the coefficients are independent of both space
and time coordinates.
Quantization is achieved, as usual, by promoting the

field, and thus the expansion coefficients to operators

ψðxÞ ¼
X
λ

Z
d3pðAp;λup;λ þ B†

−p;λvp;λÞ: ð18Þ

and imposing the canonical anticommutation relations. The
momentum conjugate to ψðxÞ, according to the Lagrangian
(4), is πψðxÞ ¼ iC3ψ†ðxÞ, so that the canonical anticom-
mutation relations to be imposed are

fψAðτ; xÞ; πψBðτ; x0Þg ¼ iC3fψAðτ; xÞ;ψ†
Bðτ; x0Þg

¼ iδABδ3ðx − x0Þ: ð19Þ

Here the indices A and B are referred to as the spinor
components A;B ¼ 1, 2, 3, 4. It is easy to show that the
relations (19) are satisfied if one imposes the following
anticommutation relations on the coefficients:

fAp;λ; A
†
q;λ0 g ¼ fBp;λ; B

†
q;λ0g ¼ δλλ0δ

3ðp − qÞ ð20Þ

with all the other anticommutators vanishing (see
Appendix D …). The field expansion (18) defines the
vacuum state j0i as the state annihilated by all the
annihilation operators Ap;λj0i ¼ Bp;λj0i ¼ 0; ∀ p; λ. It
is important to stress that the definition of the vacuum
state depends critically on the choice of the field modes.
Specifically, its particle interpretation is tied to the
boundary conditions specified on the solutions (8).
Another kind of field expansion is possible if one
assumes a specific time evolution of the modes, as is

CAPOLUPO, CARLONI, and QUARANTA PHYS. REV. D 105, 105013 (2022)

105013-4



done within the adiabatic approximation (see, e.g.,
Refs. [55–58]). Contrary to our field expansion (18),
the annihilation operators (and thus the vacuum)
are thereby endowed with a specific time dependence.
The expansion (18), instead, does not assume any

particular time dependence and is, therefore, more gen-
eral. The two expansions can be made to coincide
at a given time. The quantized energy-momentum tensor
is obtained by inserting the field expansion in the
definition (5):

Tμν ¼
i
2

X
λ;λ0

Z
d3p

Z
d3qfA†

p;λAq;λ0Lμνðup;λ; uq;λ0 Þ þ A†
p;λB

†
−q;λ0Lμνðup;λ; vq;λ0 Þ

þ B−p;λAq;λ0Lμνðvp;λ; uq;λ0 Þ þ B−p;λB
†
−q;λ0Lμνðvp;λ; vq;λ0 Þg; ð21Þ

where we have used the definition (17) of Lμν. The
Hamiltonian density, defined with respect to ∂τ corre-
sponds to the component Tτ

τ of the above equation. It
follows immediately that the vacuum is not an eigenstate
of the Hamiltonian unless Lτ

τðvp;λ; uq;λ0 Þ ¼ 0, due to the
A†
p;λB

†
−q;λ0 term. In particular, the vacuum is unstable under

the creation of particle-antiparticle pairs with opposite
momenta, a result known from the previous analyses. This
is a reflection of the noninvariance under time translations.
On the other hand, from the relation Lτiðup;λ; vp;λÞ ¼ 0,
derived in Appendix C [cf. Eq. (C14)], it is clear that the
vacuum respects the residual translational symmetry in the
spatial coordinates, i.e., Pj0i ¼ 0.

B. The flavor fields

Up to now, our considerations have been restricted to a
single Dirac field of definite mass. To introduce the flavor
fields, we follow [48] and start by introducing two Dirac
fields with distinct massesm1,m2. We consider two flavors
for simplicity but the analysis can easily be generalized
to three flavors. The theory of two free massive Dirac
fields is just the product of two copies of the theory for a
single Dirac field. All the relations discussed above remain
valid, provided we assign a new index j ¼ 1, 2 to all the
quantities involved, ψ j; mj; Ap;λ;j; up;λ;j, and so on. All the
previous relations are index-wise valid for j ¼ 1, 2.
The mass vacuum that we now denote explicitly as j0Mi
is annihilated by all the annihilators for each index j. The
total energy-momentum tensor is simply the sum of two
copies of Eq. (21), one for each j. We also require that each
mode of field 1 is related to the corresponding mode of
field 2, with the same labels p, λ by the substitution
m1 → m2, and vice versa.
The flavor fields are then introduced via the rotation

ψeðxÞ ¼ cosðθÞψ1ðxÞ þ sinðθÞψ2ðxÞ;
ψμðxÞ ¼ cosðθÞψ2ðxÞ − sinðθÞψ1ðxÞ; ð22Þ

where θ is the two-flavor mixing angle. At the quantum
level, the rotation is employed by the mixing generator

IθðτÞ ¼ exp fθ½ðψ1;ψ2Þτ − ðψ2;ψ1Þτ�g: ð23Þ

Here ðψ2;ψ1Þτ stands for the scalar product at the τ
hypersurface (recall that for fields of distinct masses the
product does depend on τ). The flavor fields are then

ψeðxÞ ¼ I−1
θ ψ1ðxÞIθ;

ψμðxÞ ¼ I−1
θ ψ2ðxÞIθ: ð24Þ

The action of the generator also defines the flavor anni-
hilators (Ap;λ;e ¼ I−1

θ Ap;λ;1Iθ and similar) and the flavor
vacuum as

j0Fi ¼ I−1
θ j0Mi: ð25Þ

Notice that, contrary to the mass vacuum, the flavor
vacuum has an explicit τ dependence. The terminology
“flavor vacuum” is justified in that this state is annihilated
by all the flavor annihilators.

IV. VACUUM EXPECTATION VALUE OF THE
ENERGY-MOMENTUM

TENSOR ON THE FLAVOR VACUUM

We are specifically interested in the contributions that
flavor mixing induces on the energy-momentum tensor.
More precisely, we ask what is the expectation value of the
energy-momentum tensor on the state corresponding to
the absence of flavor neutrinos at a given time jOFðτ0Þi.
We stress that in this calculation, we assume a fixed but
arbitrary expansion of the mass fields, and therefore a fixed
but arbitrary choice of the mass vacuum. The effect of a
change in the mass representation on the flavor fields is
known [48], and once the result is computed for a given
representation, one can implement the adequate trans-
formations to get the result in other mass representations.
Likewise, we keep the time τ0 arbitrary and distinct from
the time argument τ of the energy-momentum tensor. The
quantity we wish to compute is then

Tμν ¼ h0Fðτ0ÞjTμνj0Fðτ0Þi; ð26Þ
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where Tμν is given by Eq. (21). We remark that the only sensible definition for the energy-momentum tensor is the one (21)
in terms of the fields with definite mass. Let us analyze the typical term in Eq. (26). It has the form

h0Fðτ0ÞjA†
p;λ;1Aq;λ0;1j0Fðτ0Þi: ð27Þ

Using the definition of the flavor vacuum, this equals

h0MjIθðτ0ÞA†
p;λ;1Aq;λ0;1I−1

θ ðτ0Þj0Mi ¼ h0MjIθðτ0ÞA†
p;λ;1I

−1
θ ðτ0ÞIθðτ0ÞAq;λ0;1I−1

θ ðτ0Þj0Mi
¼ h0MjI−1

−θðτ0ÞA†
p;λ;1I−θðτ0ÞI−1

−θðτ0ÞAq;λ0;1I−θðτ0Þj0Mi; ð28Þ

where we have used that [Eq. (23)] I−1
θ ¼ I−θ. Now the operator I−1

−θðτ0ÞAp;λ;1I−θðτ0Þ is just the mass annihilator
transformed according to a mixing transformation with angle −θ. Knowing the transformation rule in terms of θ [48], we
can easily write down the transformed operators:

I−1
−θðτ0ÞAp;λ;1I−θðτ0Þ ¼ cosðθÞAp;λ;1 − sinðθÞðΛ�

pðτ0ÞAp;λ;2 þ Ξpðτ0ÞB†
−p;λ;2Þ;

I−1
−θðτ0ÞAp;λ;2I−θðτ0Þ ¼ cosðθÞAp;λ;2 þ sinðθÞðΛpðτ0ÞAp;λ;1 − Ξpðτ0ÞB†

−p;λ;1Þ;
I−1
−θðτ0ÞB−p;λ;1I−θðτ0Þ ¼ cosðθÞB−p;λ;1 − sinðθÞðΛ�

pðτ0ÞB−p;λ;2 − Ξpðτ0ÞA†
p;λ;2Þ;

I−1
−θðτ0ÞB−p;λ;2I−θðτ0Þ ¼ cosðθÞB−p;λ;2 þ sinðθÞðΛpðτ0ÞB−p;λ;1 þ Ξpðτ0ÞA†

p;λ;1Þ; ð29Þ

while the transformation rule for the adjoint operators can be obtained by considering the adjoint equations. The
Bogoliubov coefficients are defined as the inner products

δ3ð0ÞΛpðτÞ ¼ ðup;λ;2; up;λ;1Þτ ¼ ðvp;λ;1; vp;λ;2Þτ;
δ3ð0ÞΞpðτÞ ¼ ðup;λ;1; vp;λ;2Þτ ¼ −ðup;λ;2; vp;λ;1Þτ; ð30Þ

where the notation anticipates that they do not depend on λ (we will see that they actually depend only on the modulus of the
momentum p). The δ3ð0Þ factor is a reminiscence of the more general expressions involving distinct momenta Λp;q ∝
δ3ðp − qÞ [48]. The delta factor is absorbed by a corresponding momentum integration in Eqs. (29), leaving only the finite
coefficients defined via Eq. (30). These coefficients satisfy jΛpj2 þ jΞpj2 ¼ 1 for all p, τ. With the aid of Eqs. (29), we can
evaluate all the expectation values appearing in Eq. (26):

h0Fðτ0ÞjA†
p;λ;jAq;λ0;jj0Fðτ0Þi ¼ sin2θjΞpðτ0Þj2δλλ0δ3ðp − qÞ; ∀ j;

h0Fðτ0ÞjB†
−p;λ;jB−q;λ0;jj0Fðτ0Þi ¼ sin2θjΞpðτ0Þj2δλλ0δ3ðp − qÞ; ∀ j;

h0Fðτ0ÞjA†
p;λ;1B

†
−q;λ0;1j0Fðτ0Þi ¼ sin2θΞ�

pðτ0ÞΛpðτ0Þδλλ0δ3ðp − qÞ;
h0Fðτ0ÞjA†

p;λ;2B
†
−q;λ0;2j0Fðτ0Þi ¼ −sin2θΞ�

pðτ0ÞΛ�
pðτ0Þδλλ0δ3ðp − qÞ;

h0Fðτ0ÞjB−p;λ;1Aq;λ0;1j0Fðτ0Þi ¼ sin2θΞpðτ0ÞΛ�
pðτ0Þδλλ0δ3ðp − qÞ;

h0Fðτ0ÞjB−p;λ;2Aq;λ0;2j0Fðτ0Þi ¼ −sin2θΞpðτ0ÞΛpðτ0Þδλλ0δ3ðp − qÞ: ð31Þ

It is convenient to give the result by splitting out the pure mixing component:

Tμν ¼ T ðMIXÞ
μν þ T ðNÞ

μν ; ð32Þ

T ðMIXÞ
μν ¼ i

2
sin2 θ

X
λ

Z
d3pfjΞpðτ0Þj2

X
j¼1;2

ðLμνðup;λ;j; up;λ;jÞ − Lμνðvp;λ;j; vp;λ;jÞÞ

þ Ξ�
pðτ0ÞΛpðτ0ÞLμνðup;λ;1; vp;λ;1Þ þ Ξpðτ0ÞΛ�

pðτ0ÞLμνðvp;λ;1; up;λ;1Þ
− Ξ�

pðτ0ÞΛ�
pðτ0ÞLμνðup;λ;2; vp;λ;2Þ − Ξpðτ0ÞΛpðτ0ÞLμνðvp;λ;2; up;λ;2Þg; ð33Þ
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T ðNÞ
μν ¼ i

2

X
λ

X
j¼1;2

Z
d3pLμνðvp;λ;j; vp;λ;jÞ: ð34Þ

The last term comes from applying the anticommutator
relation fB†

−p;λ;j; B−q;λ0;jg ¼ δλλ0δ
3ðp − qÞ to the BB† term.

While the remaining terms, regrouped under the symbol

T ðMIXÞ
μν , show an explicit dependence on sin2 θ, and are

therefore zero in the absence of mixing, the last term is
present independently of mixing. Indeed, it is easy to check

that T ðNÞ
μν represents the expectation value of the energy-

momentum tensor on the mass vacuum:

T ðNÞ
μν ¼ h0MjTμνj0Mi: ð35Þ

The origin of this term is an ordering ambiguity in the
energy-momentum tensor of the quantized fields. To
understand its significance, let us consider the flat space

limit, where vp;λ;j ∝ eiωp;jt with ωp;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

j

q
. The

auxiliary tensor becomes

LμνðA;BÞ¼ Āγμ∂νBþ Āγν∂μB−∂μĀγνB−∂νĀγμB; ð36Þ

where both the Dirac matrices and the derivatives are the
ordinary flat space ones. In particular, one has

L00ðvp;λ;j; vp;λ;jÞ ¼ 2ðv†p;λ;j∂tvp;λ;j − ∂tv
†
p;λ;jvp;λ;jÞ

¼ 4iωp;jv
†
p;λ;jvp;λ;j ¼ 4iωp;j; ð37Þ

where we have made use of the normalization
v†p;λ;jvp;λ;j ¼ 1. Then

T ðNÞ
00 ¼ −2

X
λ

X
j¼1;2

Z
d3pωp;j ð< 0Þ: ð38Þ

We can see that T ðNÞ
00 corresponds to the diverging negative

energy that is removed by the normal ordering prescription
in flat space. In order that the energy-momentum tensor Tμν

approaches the normal-ordered flat-space expression in the

limit, one must subtract T ðNÞ
μν . Then we define a renormal-

ized energy-momentum tensor by

Tr
μν ¼ Tμν − T ðNÞ

μν ; ð39Þ

whose expectation value is

h0Fðτ0ÞjTr
μνj0Fðτ0Þi ¼ T ðMIXÞ

μν : ð40Þ

We now derive the general properties of the Bogoliubov

coefficients, we show that T ðMIXÞ
μν behaves as a perfect fluid,

and we determine the functional expression of T ττ and Tμ
μ.

A. General properties of the Bogoliubov coefficients

Much can still be said without specifying the precise
metric, i.e., without providing an explicit form for the scale
factor C. Plugging the solutions (8) into the definition (30),
we have

ΛpðτÞ ¼ ð2πCÞ3ðf�p;2fp;1 þ g�p;2gp;1Þ; ð41Þ

where we have switched to the notation Λp to highlight that
it depends only upon the modulus p. In a similar way

ΞpðτÞ ¼ ð2πCÞ3ðf�p;1g�p;2 − g�p;1f
�
p;2Þ: ð42Þ

From Eqs. (41) and (42) we can verify that

jΛpðτÞj2 þ jΞpðτÞj2 ¼ 1; ð43Þ

where in the last step we have made use of the normali-
zation condition (A3). We conclude this subsection by
expressing the Bogoliubov coefficients in terms of the
reduced functions ϕp; γp:

ΛpðτÞ ¼ ð2πÞ3ðϕ�
p;2ϕp;1 þ γ�p;2γp;1Þ;

ΞpðτÞ ¼ ð2πÞ3ðϕ�
p;1γ

�
p;2 − γ�p;1ϕ

�
p;2Þ: ð44Þ

B. Diagonality of the energy-momentum tensor

Using the result [Eq. (44)], we can prove that Tμν is
nonzero only when μ ¼ ν. This result has the important
consequence that Tμ

ν can be interpreted as the energy-
momentum tensor of a perfect fluid.
We start by proving that T τi ¼ 0 for i ¼ 1, 2, 3. Since we

can always write Lτiða; bÞ ¼ piha;bðpÞ (see Appendix C
for details), each of the terms in the integrand of Eq. (32) is
of the form piF ðpÞ, with F ðpÞ a function of p only. We
therefore have an odd function of pi integrated over an even
domain pi ∈ ð−∞;þ∞Þ and the integral vanishes:

T τi ¼ 0: ð45Þ

The situation is similar for T ij with i ≠ j and i, j ¼ 1, 2, 3.
In this case [see Eq. (C15) of Appendix C], namely
Lijða; bÞ ¼ pipjla;bðpÞ implies that each term under the
integral sign is of the formpipjGðpÞwith GðpÞ a function of
p alone. It is clear that also in this case, the integral over the
even domain ðpi; pjÞ ∈ ð−∞;þ∞Þ × ð−∞;þ∞Þ vanishes,
yielding T ij ¼ 0 for i ≠ j. Notice that the same conclusion
does not apply to T ii, since in this case the integrand is an
even function p2

iAðpÞ of pi. It is easy to verify that T ii is the
same for each i ¼ 1, 2, 3, consistently with the isotropy of
the underlying metric. Because of the manifest diagonality
and isotropy of the energy-momentum tensor, there are
really only two independent components of Tμν, i.e., T ττ and
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T ii for a given i. Alternatively one can consider the T ττ

component and the trace Tμ
μ, as by definition

Tμ
μ ¼ gμνTμν ¼ C−2T ττ − 3C−2T ii;

and then

T ii ¼
T ττ − C2Tμ

μ

3
; ð46Þ

where no sum is intended over the index i and we have used
the isotropy of Tμν.
It is worth stressing that, as evident from the definition

and the expression of the auxiliary tensor, Tμν depends only
on the time coordinate τ and parametrically on the arbitrary
fixed time τ0.
We conclude the section by giving the explicit functional

form of T ττ and Tμ
μ. From Eqs. (32) and (44) we have

T ττ½ϕp;j; γp;j� ¼ 2iC−2 sin2 θ
X
λ

Z
d3pfjΞpðτ0Þj2

X
j¼1;2

ðϕ�
p;j∂τϕp;j þ γ�p;j∂τγp;j − ∂τϕ

�
p;jϕp;j − ∂τγ

�
p;jγp;jÞ

þ 2iℑ½Ξ�
pðτ0ÞΛpðτ0Þðϕ�

p;1∂τγ
�
p;1 − γ�p;1∂τϕ

�
p;1Þ − Ξ�

pðτ0ÞΛ�
pðτ0Þðϕ�

p;2∂τγ
�
p;2 − γ�p;2∂τϕ

�
p;2Þ�g

− iC−2
X
λ

X
j¼1;2

Z
d3p½ϕ�

p;j∂τϕp;j þ γ�p;j∂τγp;j − ∂τϕ
�
p;jϕp;j − ∂τγ

�
p;jγp;j� ð47Þ

and

Tμ
μ½ϕp;j; γp;j� ¼ 4iC−3sin2θ

X
λ

Z
d3p

�
−ijΞpðτ0Þj2

X
j¼1;2

mjðjϕp;jj2 − jγp;jj2Þ

þ 2iℑ½im2Ξ�
pðτ0ÞΛ�

pðτ0Þϕ�
p;2γ

�
p;2 − im1Ξ�

pðτ0ÞΛpðτ0Þϕ�
p;1γ

�
p;1�

�

− 2C−3
X
λ

X
j¼1;2

mj

Z
d3pðjϕp;jj2 − jγp;jj2Þ: ð48Þ

Note that both the ττ component (47) and the trace (48) can
also be seen as functionals of fϕp; ∂τϕpg. In fact, from
Eqs. (15) we have

γpðηÞ ¼
i
p
ð∂ηϕpðηÞ þ imCðηÞϕpðηÞÞ;

∂ηγpðηÞ ¼
i
p
ð∂2

ηϕpðηÞ þ im∂ηCðηÞϕpðηÞ

þ imCðηÞ∂ηϕpðηÞÞ; ð49Þ

which can be substituted in the expressions above for Tμν.
From the diagonality of the expectation value it is also
straightforward to prove its covariant conservation
∇μTμν ¼ 0 (see Appendix E for the details).

V. APPLICATIONS: EXPONENTIAL EXPANSION

We have shown that independent of the specific scale
factor C, the energy-momentum tensor associated with

the flavor vacuum T ðMIXÞ
μν satisfies a number of important

properties: (i) it is diagonal, (ii) it is covariantly conserved,

and (iii) it depends only on time τ. Then T ðMIXÞ
μν for the

metric (1) corresponds to the energy-momentum tensor of a
perfect fluid with time-dependent energy density and

pressure. In this section, in order to better understand

the properties of T ðMIXÞ
μν , we assume a specific evolution of

the scale factor C and compute the corresponding expect-
ation value of the energy-momentum tensor on the flavor
vacuum. In doing so, we are neglecting the backreaction
due to the flavor fields, i.e., the modifications induced on
the metric by the energy-momentum tensor of Eq. (26).
The computation based on a fixed background metric is
undoubtedly an approximation, but it is useful to get an
insight into the kind of contribution that emerges from the
flavor vacuum. The self-consistent way to deal with Tμν is
to insert Eq. (26), together with all the relevant matter
terms, on the right-hand side of the Einstein equations and
then solve simultaneously for the scale factor C and the
Dirac modes. This kind of calculation will be performed
elsewhere.

A. Positive energy solutions

Here, in particular, we study the energy-momentum
tensor corresponding to an exponential evolution of the
scale factor CðtÞ ¼ eH0t, with H0 a constant with dimen-
sions of mass. The great advantage of the so-picked scale
factor is that the corresponding Dirac equation can be
solved analytically without resorting to any approximation,
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allowing for an in-depth analysis of T ðMIXÞ
μν . Transforming

to conformal time we have

τ ¼ −
1

H0

e−H0t; C ¼ −
1

H0τ
: ð50Þ

Notice that the conformal time τ is always negative.
Inserting Eq. (50) into Eq. (16) we obtain

τ2∂2
τϕp þ

�
p2τ2 þ im

H0

þ m2

H2
0

�
ϕp ¼ 0; ð51Þ

or, introducing the positive variable s ¼ −pτ,

s2∂2
sϕp þ

�
s2 þ im

H0

þ m2

H2
0

�
ϕp ¼ 0: ð52Þ

This is a Bessel-like equation, whose general solution can
be written as

ϕpðsÞ¼ s
1
2ðC1JνðsÞþC2J−νðsÞÞ; ν¼1

2

�
1−

2im
H0

�
ð53Þ

with JνðsÞ denoting the Bessel function of order ν and C1,
C2 arbitrary complex constants. In order to specify the
solution we need to impose some kind of boundary
conditions, which in turn determine the positive energy
solutions. We require that the modes of Eq. (53) be positive
energy with respect to ∂τ at early times, i.e., for τ → −∞
(where C → 0). With this choice the mass vacuum corre-
sponds to the absence of massive neutrinos at early times.
As τ → −∞ the mass terms can be neglected, and Eq. (51)
becomes

∂2
τϕp þ p2ϕp ¼ 0: ð54Þ

The positive energy solution with respect to ∂τ is evidently
ϕþ
p ∝ e−ipτ or, in terms of the s variable, ϕþ

p ðsÞ ∝ eis.
We then impose the requirement lims→þ∞ ϕpðsÞ ∝ eis.
Recalling that s is a positive real variable, we can
employ the large argument expansion of the Bessel
functions [59]

JνðsÞ ≃
ffiffiffiffiffi
2

πs

r
cos

�
s −

νπ

2
−
π

4

�
for s → þ∞: ð55Þ

In this way, we show that the combination satisfying the
requirement is given by

ϕpðsÞ ¼ Nps
1
2

	
JνðsÞ − ie

πm
H0J−νðsÞ




≃ Np

ffiffiffi
2

π

r 	
−ie

πm
2H0



cosh

�
πm
H0

�
eis; ð56Þ

where Np is a normalization constant and the last equiv-
alence holds in the limit s → þ∞. Inserting Eq. (56) in the
first of Eqs. (49), we deduce

γpðsÞ ¼ Nps
1
2

	
−iJν−1ðsÞ þ e

πm
H0J1−νðsÞ



; ð57Þ

where we have made use of the differential relations
satisfied by the Bessel functions [59]. In order to fix Np

we impose the normalization condition (15) in the s → þ∞
limit. Using the large argument expansion once again, we
obtain jNpj2 ¼ 1

32π2 cosh2ðπmH0
Þ e

−πm
H0 . Finally, choosing Np real,

we can write the positive energy solutions as

ϕpðsÞ ¼
1

4π

e−
πm
2H0

coshðπmH0
Þ

ffiffiffi
s
2

r 	
JνðsÞ − ie

πm
H0J−νðsÞ



;

γpðsÞ ¼
1

4π

e−
πm
2H0

coshðπmH0
Þ

ffiffiffi
s
2

r 	
−iJν−1ðsÞ þ e

πm
H0J1−νðsÞ



ð58Þ

with ν ¼ 1
2
ð1 − 2im

H0
Þ and s ¼ −pτ.

B. Bogoliubov coefficients

We have two sets of solutions ϕp;j; γp;j, one for each
value of the mass mj, with j ¼ 1, 2 from Eqs. (58). The
compatibility requirement then implies that each of the
ϕp;j; γp;j has the same form for j ¼ 1, 2, except that one has
mj wherever the mass appears, including the function index

νj ¼ 1
2
ð1 − 2imj

H0
Þ. We can compute the Bogoliubov coef-

ficients [ΛpðτÞ;ΞpðτÞ] straight away from Eqs. (44):

0 5 10 15 20
0.00

0.01

0.02

0.03

0.04

0.05

s

FIG. 1. Squared modulus of the Bogoliubov coefficient jΞpj2 as
a function of s for sample values of the masses (all in units ofH0):
(black dotted line) m1 ¼ 0.7, m2 ¼ 1.4; (red dashed line)
m1 ¼ 1, m2 ¼ 2; (blue dot-dashed line) m1 ¼ 10, m2 ¼ 20;
and (dark orange solid line), m1 ¼ 100, m2 ¼ 300. The momen-
tum dependence is implicit in s ¼ −pτ.
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ΛpðτÞ ¼
πs
4

e−
π

2H0
ðm1þm2Þ

coshðπm1

H0
Þ coshðπm2

H0
Þ
n
J�ν2ðsÞJν1ðsÞ þ J�ν2−1ðsÞJν1−1ðsÞ þ ie

πm1
H0 ½J�ν2−1ðsÞJ1−ν1ðsÞ − J�ν2ðsÞJ−ν1ðsÞ�

þ ie
πm2
H0 ½J�−ν2ðsÞJν1ðsÞ − J�1−ν2ðsÞJν1−1ðsÞ� þ e

π
H0
ðm1þm2Þ½J�−ν2ðsÞJ−ν1ðsÞ þ J�1−ν2ðsÞJ1−ν1ðsÞ�

o
;

ΞpðτÞ ¼
πs
4

e−
π

2H0
ðm1þm2Þ

coshðπm1

H0
Þ coshðπm2

H0
Þ
n
i½J�ν1ðsÞJ�ν2−1ðsÞ − J�ν1−1ðsÞJ�ν2ðsÞ� þ e

πm2
H0 ½J�ν1ðsÞJ�1−ν2ðsÞ þ J�ν1−1ðsÞJ�−ν2ðsÞ�

− e
πm1
H0 ½J�−ν1ðsÞJ�ν2−1ðsÞ þ J�1−ν1ðsÞJ�ν2ðsÞ� þ ie

π
H0
ðm1þm2Þ½J�−ν1ðsÞJ�1−ν2ðsÞ − J�1−ν1ðsÞJ�−ν2ðsÞ�

o
: ð59Þ

To give a flavor of the behavior of the Bogoliubov coefficients we have plotted jΞpðsÞj2 as a function of s for sample values
of m1, m2 in Fig. 1.
We shall be particularly interested in the late time expression of the Bogoliubov coefficients, namely for

s → 0þ (the corresponding limit is τ → 0−, or t → þ∞). For its determination we make use of the small argument
expansion of the Bessel functions JνðsÞ ≃ ðs

2
Þν 1

Γð1þνÞwith Γ denoting the Euler gamma function. From Eqs. (59), it is easy to

find that at the leading order for s → 0þ one has

ΛpðsÞ ≃
π

2

e−
π

2H0
ðm1þm2Þ

coshðπm1

H0
Þ coshðπm2

H0
Þ

"
eið

m2−m1
H0

Þ logðs
2
Þ

Γ�ðν2ÞΓðν1Þ
þ e

π
H0
ðm1þm2Þ e−ið

m2−m1
H0

Þ logðs
2
Þ

Γ�ð1 − ν2ÞΓð1 − ν1Þ

#
;

ΞpðsÞ ≃
π

2

e−
π

2H0
ðm1þm2Þ

coshðπm1

H0
Þ coshðπm2

H0
Þ

"
e
πm2
H0 e−ið

m2−m1
H0

Þ logðs
2
Þ

Γ�ðν1ÞΓ�ð1 − ν2Þ
−

e
πm1
H0 eið

m2−m1
H0

Þ logðs
2
Þ

Γ�ð1 − ν1ÞΓ�ðν2Þ

#
: ð60Þ

C. Explicit form of the energy-momentum tensor

For the explicit calculation it is convenient to refer to the splitting of Eq. (32) and compute T ðMIXÞ
μν and T ðNÞ

μν separately.
Moreover, keeping in mind the results of the previous sections, it is sufficient to compute the ττ component and the trace in
order to fully determine Tμν. Inserting the solutions (58) in Eq. (47) we find, after a lengthy but straightforward calculation,

T ðMIXÞ
ττ ðτÞ ¼ isin2θ

X
λ

Z
d3pjΞpðτ0Þj2

�
H2

0p
2τ3

16π2

�X
j¼1;2

e−
πmj
H0

cosh2ðπmj

H0
Þ
��

2ðJ�νjJνj−1 − J�νj−1JνÞ þ
ν�j − νj

s
jJνj j2

þ νj − ν�j
s

jJνj−1j2
�
þ ie

πmj
H0

�
2ðJ�νjJ1−νj þ J�−νjJνj−1 þ J�νj−1J−νj þ J�1−νjJνjÞ þ

νj − ν�j
s

J�νjJ−νj

þ ν�j − νj
s

J�−νjJνj þ
νj − ν�j

s
J�νj−1J1−νj þ

ν�j − νj
s

J�1−νjJνj−1

�
þ e

2πmj
H0

�
2ðJ�1−νjJ−νj − J�−νjJ1−νjÞ

þ ν�j − νj
s

jJ−νj j2 þ
νj − ν�j

s
jJ1−νj j2

��

þ i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛpðτ0Þ

�
H2

0p
2τ3e−

πm1
H0

8π2cosh2ðπm1

H0
Þ
���

−iðJ�ν1Þ2 − iðJ�ν1−1Þ2 þ i
2ν�1 − 1

s
J�ν1J

�
ν1−1

�

þ e
πm1
H0

�
2ðJ�ν1J�−ν1 − J�ν1−1J

�
1−ν1Þ þ

2ν�1 − 1

s
J�ν1J

�
1−ν1 þ

1 − 2ν�1
s

J�−ν1J
�
ν1−1

�

þ ie
2πm1
H0

�
ðJ�−ν1Þ2 þ ðJ�1−ν1Þ2 þ

2ν�1 − 1

s
J�−ν1J

�
1−ν1

��
− c:c:

�

−
i
2
sin2θ

X
λ

Z
d3pfΞ�

pðτ0ÞΛ�
pðτ0Þ

�
H2

0p
2τ3e−

πm2
H0

8π2cosh2ðπm2

H0
Þ
���

−iðJ�ν2Þ2 − iðJ�ν2−1Þ2 þ i
2ν�2 − 1

s
J�ν2J

�
ν2−1

�

þ e
πm2
H0

�
2ðJ�ν2J�−ν2 − J�ν2−1J

�
1−ν2Þ þ

2ν�2 − 1

s
J�ν2J

�
1−ν2 þ

1 − 2ν�2
s

J�−ν2J
�
ν2−1

�

þ ie
2πm2
H0

�
ðJ�−ν2Þ2 þ ðJ�1−ν2Þ2 þ

2ν�2 − 1

s
J�−ν2J

�
1−ν2

��
− c:c:

�
: ð61Þ
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In the above equation we have left the Bogoliubov coefficients implicit and the argument of the Bessel functions s ¼ −pτ
has been omitted for a better visualization. We recall that the helicity sum is over λ ¼ �1 and that in general τ ≠ τ0. An
analogous calculation can be performed for the trace:

TμðMIXÞ
μ ¼ isin2θ

X
λ

Z
d3pjΞpðτ0Þj2

�
iH3

0τ
3s

8π2

�X
j¼1;2

�
mje

−πmj
H0

cosh2ðπmj

H0
Þ
�n

jJνj j2 − jJνj−1j2

þ ie
πmj
H0 ðJ�−νjJνj − J�νjJ−νj þ J�1−νjJνj−1 − J�νj−1J1−νjÞ þ e

2πmj
H0 ðjJ−νj j2 − jJ1−νj j2Þ

o

þ i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛpðτ0Þ

�
im1sH3

0τ
3e−

πm1
H0

4π2cosh2ðπm1

H0
Þ
�h

iJ�ν1J
�
ν1−1 þ e

πm1
H0 J�ν1J

�
1−ν1

− e
πm1
H0 J�−ν1J

�
ν1−1 þ ie

2πm1
H0 J�−ν1J

�
1−ν1

i
− c:c:

�

−
i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛ�

pðτ0Þ
�
im2sH3

0τ
3e−

πm2
H0

4π2cosh2ðπm2

H0
Þ
�h

iJ�ν2J
�
ν2−1 þ e

πm2
H0 J�ν2J

�
1−ν2

− e
πm2
H0 J�−ν2J

�
ν2−1 þ ie

2πm2
H0 J�−ν2J

�
1−ν2

i
− c:c:

�
: ð62Þ

We are particularly interested in the late time (τ → 0−) expression of the above equations. According to the definition (26),
these represent the contribution of the flavor vacuum state, defined at an earlier time τ0 < τ, to the energy-momentum tensor
at late times. We then perform the small argument expansion Jνð−pτÞ ≃ ð−pτ

2
Þν 1

Γð1þνÞ for all the Bessel functions appearing
in Eqs. (61) and (62), and keep only the terms of lowest order in the variable τ. At order τ, the ττ component is found to be

T ðMIXÞð1Þ
ττ ðτÞ ≃ isin2θ

X
λ

Z
d3pjΞpðτ0Þj2

�
i
H0τ

2π3

�X
j¼1;2

mj tanh

�
πmj

H0

�

þ i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛpðτ0Þ

�
−im1H0τ

2π3 coshðπm1

H0
Þ
�
− c:c:

�

−
i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛ�

pðτ0Þ
�

−im2H0τ

2π3 coshðπm2

H0
Þ
�
− c:c:

�
: ð63Þ

The corresponding lowest order in the trace is ∝ τ3. To see why this is the case, recall that by definition

Tμ
μ ¼ C−2T ττ − C−2

X3
l¼1

T ll ¼ H2
0τ

2T ττ −H2
0τ

2
X3
l¼1

T ll; ð64Þ

so that in correspondence with T ττ ∝ τ one has Tμ
μ ∝ τ3. To this order the trace is

TμðMIXÞð1Þ
μ ≃ isin2θ

X
λ

Z
d3pjΞpðτ0Þj2

�
iH3

0τ
3

2π3

�X
j¼1;2

mj tanh

�
πmj

H0

�

þ i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛpðτ0Þ

�
−im1H3

0τ
3

2π3 coshðπm1

H0
Þ
�
− c:c:

�

−
i
2
sin2θ

X
λ

Z
d3p

�
Ξ�
pðτ0ÞΛ�

pðτ0Þ
�

−im2H3
0τ

3

2π3 coshðπm2

H0
Þ
�
− c:c:

�
: ð65Þ

Inserting Eqs. (63) and (65) in Eq. (46), we can deduce the important result T ðMIXÞð1Þ
ii ¼ 0; ∀ i. In other words,

at first order in τ, the spatial components of the energy-momentum tensor vanish. Then the equation of state reads, at lowest
order in τ,
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wð1Þ ¼ T iðMIXÞð1Þ
i

T τðMIXÞð1Þ
τ

¼ 0; ð66Þ

i.e., the energy-momentum tensor associated with the
flavor vacuum satisfies, at late times (τ → 0−), the equation
of state of a pressureless perfect fluid. It is important to
stress that this result does not depend on the value of the
momentum integrals, and therefore is independent of any
regularization. Moreover, as it is evident from (66), it holds
for any choice of the reference time τ0.

D. Regularization

All the momentum integrals in the expression for the
energy-momentum tensor, both for the general case and the
for the late time approximation, are to be performed over
the whole of R3 and are formally divergent. To extract a
finite result, we need some form of regularization. The most
immediate way to regularize the momentum integrations is
to introduce an ultraviolet momentum cutoff K. Usually,
the cutoff is chosen in correspondence with a “new
physics” energy scale, beyond which the “low energy”
quantum field theory description breaks down. In our case,
K ought to be related to the scale at which the semiclassical
approximation breaks down, i.e., at the quantum gravity
scale K ≃Mpl which is of the order of the Planck mass
Mpl. However, we can expect the cutoff to be at a much

lower scale for what concerns the proper mixing term.
Indeed, at very high energies, the mass difference between
the neutrino states becomes negligible, and the oscillation
frequency ∝ 1

p approaches zero, implying that there is no
oscillation. The same result also holds in quantum field
theory, where the mixing Bogoliubov coefficient Ξp gen-
erally approaches zero at high energies (therefore yielding
no contribution to the energy-momentum tensor). The
heuristic argument above provides a physical reason to
adopt the cutoff regularization and also justifies the
adoption of a cutoff scale K ≪ Mpl, at least for what
concerns the mixing.
Before proceeding we need to clarify that the cutoff must

be imposed upon the comoving momentum pPHYS ¼ p
C

rather than the mode label p.
The imposition of a cutoff K0 on pPHYS then translates

into a sort of “comoving” cutoff for the mode label p

pCUTOFF ¼ K0C ¼ −K0

H0τ
¼ KðτÞ; ð67Þ

which is strictly positive (recall that τ < 0). For the late
time energy-momentum tensor, in the approximation in
which τ0 < τ is also at late times τ0 → 0−, we can give a
simple analytical form of the regularized integrals.
Performing the integrals in Eqs. (63) and (65), with the
comoving cutoff of Eq. (67), we obtain

T ðMIXÞð1Þ
ττ ¼ −sin2θH0τK3ðτÞ

3π2

�
e
πðm2−m1Þ

H0 þ e−
πðm2−m1Þ

H0

coshðπm1

H0
Þ coshðπm2

H0
Þ
�
m1 tanh

�
πm1

H0

�
þm2 tanh

�
πm2

H0

��

− 2
m1 tanhðπm2

H0
Þ

cosh2ðπm1

H0
Þ − 2

m2 tanhðπm1

H0
Þ

cosh2ðπm2

H0
Þ
�
þ sin2θH0τK3ðτÞ

��m1 tanhðπm1

H0
Þ þm2 tanhðπm2

H0
Þ

cosh2ðπm1

H0
Þcosh2ðπm2

H0
Þ

�

×

�
1

Γðν1ÞΓ�ðν2Þ
�

2
�

1

3þ 2i m2−m1

H0

��
−KðτÞτ0

2

�2iðm2−m1Þ
H0 þ c:c:

�

þ isin2θK3ðτÞ
���

−im1H0τe
−πm1
H0

2cosh3ðπm1

H0
Þcosh2ðπm2

H0
Þ
��

1

Γðν1ÞΓ�ðν2Þ
�

2
�

1

3þ 2i m2−m1

H0

��
−KðτÞτ0

2

�2iðm2−m1Þ
H0

−
�

−im1H0τe
−πm1
H0

2cosh3ðπm1

H0
Þcosh2ðπm2

H0
Þ
��

1

Γ�ðν1ÞΓðν2Þ
�

2
�

1

3 − 2i m2−m1

H0

��
−KðτÞτ0

2

�−2iðm2−m1Þ
H0

�
− c:c:

�

− isin2θK3ðτÞ
���

−im2H0τe
−πm2
H0

2cosh3ðπm2

H0
Þcosh2ðπm1

H0
Þ
��

1

Γðν1ÞΓ�ðν2Þ
�

2
�

1

3þ 2i m2−m1

H0

��
−KðτÞτ0

2

�2iðm2−m1Þ
H0

−
�

−im2H0τe
−πm2
H0

2cosh3ðπm2

H0
Þcosh2ðπm1

H0
Þ
��

1

Γ�ðν1ÞΓðν2Þ
�

2
�

1

3 − 2i m2−m1

H0

��
−KðτÞτ0

2

�−2iðm2−m1Þ
H0

�
− c:c:

�
: ð68Þ

The trace can be deduced immediately from Eq. (68) by simply multiplying by the factor C−2, since the pressure is zero for
the late time energy-momentum tensor [see Eq. (66)].

Avisual indication of the physical content of Eq. (68) is provided in Fig. 2, where the mixing energy density T τðMIXÞ
τ from

Eq. (68) is plotted against conformal time τ for sample values of the parameters. We notice that ρMIX, for the parameters and
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the range considered in Fig. 2, is nearly constant, except for
tiny oscillations of relative magnitude δρMIX=ρMIX ≃ 10−9.
The oscillations come from the imaginary exponentials in
Eq. (68). Such a simple evolution pattern can be expected to
disappear when other time ranges are considered, and the full
expression from Eq. (61) is employed, entailing a much
more intricate time evolution. The results obtained in this
work indicate that the vacuum energy associates with
neutrino mixing in curved space and might represent a dark
matter component. Notice that for a momentum cutoff of the
order of the electroweak scale K0 ¼ 246 GeV, for neutrino
masses m1, m2 such that Δm2

12 ≃ 10−5 eV2 and for a value

of H0 ≃ 10−3 eV, we obtain an energy density T τðMIXÞ
τ

which is compatible with the upper bound on the dark
matter content of the universe. A value of H0 ≃ 10−3 eV
might have been reached during the very early phases of the
universe, i.e., during the first second after the big bang.
Two important points need to be noted. First, the results

obtained do provide only an indication of the possible role
of the flavor vacuum as a dark matter component. By no
means do they suffice to identify a dark matter component
with the flavor vacuum. Such a claim obviously requires
that the analysis be conducted on other metrics. Second,
the contribution to the energy density of Eq. (68) is due to
the flavor vacuum of neutrinos. Such a vacuum has the
structure of a condensate of particle-antiparticle pairs of
neutrinos with definite masses. Therefore this state has the
same number of leptons and antileptons, and no lepton
asymmetry is involved in this state.
The contribution due to the flavor vacuum is clearly

distinct from the one that neutrinos themselves bring along,
which certainly corresponds to states with a finite number
of particles, and not to the vacuum.
We remark, in addition, that we have computed the

expectation value of the energy-momentum tensor on the

flavor vacuum state. Such a contribution, being associated
with the vacuum state, is independent of the annihilation
of fermion-antifermion pairs with definite flavor
(νe − ν̄e; νμ − ν̄μ), since the flavor vacuum is in itself a
condensate of particle-antiparticle pairs with definite
masses (ν1; ν̄1; ν2; ν̄2). Note also that the rate of the
fermion-antifermion annihilation f þ f̄ → 2γ is extremely
suppressed for flavor neutrinos (see, e.g., [60]), which are
to date the only elementary fermions known to oscillate.
Moreover, as the energy density (68) is associated with

the vacuum state, it represents an additional contribution to
the energy density of any neutrino state, for any distribution
of neutrinos and antineutrinos with definite flavor.
Therefore this additional contribution is present regardless
of the thermodynamics of neutrinos, and in particular, is
independent of the chemical potential μ.

VI. CONCLUSIONS

In this paper we have considered the quantum field
theory of fermion mixing on curved spacetime, and we

have computed the expectation value T ðMIXÞ
μν of the energy-

momentum tensor of fermion fields on the flavor vacuum in

a flat FLRW background. T ðMIXÞ
μν behaves as an effective

energy-momentum tensor that satisfies the Bianchi iden-
tities (i.e., its divergence with respect to one of the two
indices vanishes) and therefore can be employed as a
regular source for the Einstein equations. In particular, it

turns out that T ðMIXÞ
μν can be interpreted as the energy-

momentum tensor of a barotropic fluid.
In this picture, therefore, quantum effects of the fermion

fields can be associated, at classical level, with additional
barotropic fluids whose thermodynamical properties depend
on the geometry of the spacetime other than the specific
features of the fermion field itself. In light of the matter field
interpretation of the dark components of the universe this
result seems quite encouraging, as it links directly quantum
effects to effective classical fluids. Thus our results show
explicitly that there can be a bridge between quantum
properties of matter and dark matter/energy. However, the
presence of a connection between classical fluids and
quantum effect is not automatically sufficient alone to
conclude that quantum effects are the prime cause of dark
matter/energy. In any case, our findings provide an indica-
tion that the vacuum energy associated with neutrino mixing
can represent a component of dark matter.
Here we are specifically interested in determining the

form that the energy-momentum tensor, associated with
flavor vacuum, assumes in cosmological FLRW metrics. In
order to grasp the behavior of the energy-momentum tensor
of the flavor vacuum, we have then assumed a specific form
of the metric. In doing so, we have clearly considered that the
term due to the flavor vacuum is not the dominant source of
the Einstein equations, which are instead determined by
some other source that forces the specific form of the metric.
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4
)
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FIG. 2. Logarithmic scale plot of the energy density ρMIX ¼
T τðMIXÞ
τ from Eq. (68) as a function of conformal time τ for

sample values of the parameters. The corresponding coordinate
time t is reported above. We have used a cutoff K0 ¼ 246 GeV
of the order of the electroweak scale, neutrino masses m1 ¼
15.25H0; m2 ¼ 22.25H0, and the expansion rate H0 ¼ 10−3 eV.
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In particular, considering a de Sitter underlyingmetric,we

have derived the components of T ðMIXÞ
μν exactly using Bessel

functions. It turns out that at first order in the time parameter

only T ðMIXÞ
ττ is different from zero. Hence, in this case the

mixing of fermion fields can be associated with a zero
pressure (dust or cold dark matter) fluid. We remark that the
choice of the de Sitter metric is dictated, primarily, by the
fact that exact analytical solutions of the Dirac equation can
be found in this context. The actual identification of such a
contribution as a dark matter component requires that the
study be conducted on metrics that are adequate to the
description of galaxies. Such an analysis will be performed
in a forthcoming paper, where we will also consider the
contribution due to the flavor vacuum as the dominant
source in the Einstein equations. Nevertheless, the results
presented here clearly hint at a dark-matter-like behavior of
the flavor vacuum in a curved background.
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APPENDIX A: ORTHONORMALITY AND
COMPLETENESS OF THE SOLUTION

OF DIRAC EQUATION

Knowing that the determinant is g ¼ −C8, we can easily
compute the scalar product between the solutions (8):

ðup;λ;uq;λ0 Þτ ¼
Z
Στ

d3xC3u†p;λuq;λ0

¼
Z
Στ

d3xC3e−iðp−qÞ·xξ†λξλ0 ðf�pfqþλλ0g�pgqÞ

¼ ð2πÞ3C3δ3ðp−qÞδλ;λ0 ðjfpj2þjgpj2Þ: ðA1Þ
In the last step we have used the definition of the Dirac
delta function and the orthonormality of the helicity
bispinors. In a similar way it is easy to show that
ðup;λ; vq;λ0 Þτ ¼ 0, ðvp;λ; uq;λ0 Þτ ¼ 0, and

ðvp;λ; vq;λ0 Þτ ¼ ð2πÞ3C3δ3ðp − qÞδλ;λ0 ðjfpj2 þ jgpj2Þ: ðA2Þ
Equations (A1) and (A2) suggest that we adopt the
following normalization:

jfpj2 þ jgpj2 ¼
1

ð2πCÞ3 ðA3Þ

in order that the orthonormality of the solutions is satisfied.
The set of solutions (8) is complete:

X
λ

ðup;λu†p;λ þ vp;λv
†
p;λÞ ¼

X
λ

��
fpξλ
gpλξλ

��
f�pξ

†
λ g�pλξ

†
λ

�
þ
�

g�pξλ
−f�pλξλ

��
gpξ

†
λ −fpλξ

†
λ

��

¼
X
λ

ξλξ
†
λ

� jfpj2 þ jgpj2 0

0 jfpj2 þ jgpj2
�

¼ 1

ð2πCÞ3
�
I 0

0 I

�
: ðA4Þ

In the last step we have used the completeness of the helicity basis
P

λ ξλξ
†
λ ¼ I, with I the 2 × 2 identity matrix, and the

normalization condition (A3).

APPENDIX B: PROPERTIES OF HELICITY EIGENBISPINORS

We prove that for each λ ¼ �1 the quantity ξ†λðp̂Þσiξλðp̂Þ is an odd function of pi, for i ¼ 1, 2, 3. In particular,
ξ†λðp̂Þσiξλðp̂Þ changes sign when the momentum is reversed p → −p.
Proof: The statement can be proven by direct calculation. For the λ ¼ þ1 case, we have

ξ†þσ1ξþ ¼
	
ei

ϕp
2 cos

	
θp
2



e−i

ϕp
2 sin

	
θp
2



� 0 1

1 0

�0BB@ e−i
ϕp
2 cos

	
θp
2



ei

ϕp
2 sin

	
θp
2



1
CCA

¼ cos

�
θp
2

�
sin

�
θp
2

�
ðeiϕp þ e−iϕpÞ ¼ sinðθpÞ cosðϕpÞ ¼

p1

p
; ðB1Þ
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ξ†þσ2ξþ ¼
	
ei

ϕp
2 cos

	
θp
2



e−i

ϕp
2 sin

	
θp
2



� 0 −i
i 0

�0B@ e−i
ϕp
2 cos

	
θp
2



ei

ϕp
2 sin

	
θp
2



1
CA

¼ cos

�
θp
2

�
sin

�
θp
2

�
ðie−iϕp − ieiϕpÞ ¼ sinðθpÞ sinðϕpÞ ¼

p2

p
; ðB2Þ

ξ†þσ3ξþ ¼
	
ei

ϕp
2 cos

	
θp
2



e−i

ϕp
2 sin

	
θp
2



� 1 0

0 −1

�0B@ e−i
ϕp
2 cos

	
θp
2



ei

ϕp
2 sin

	
θp
2



1
CA

¼ cos2
�
θp
2

�
− sin2

�
θp
2

�
¼ cosðθpÞ ¼

p3

p
; ðB3Þ

and similarly, for the λ ¼ −1 case we have

ξ†−σ1ξ− ¼
	
ei

ϕp
2 sin

	
θp
2



−e−i

ϕp
2 cos

	
θp
2



� 0 1

1 0

�0B@ e−i
ϕp
2 sin

	
θp
2



−ei

ϕp
2 cos

	
θp
2



1
CA

¼ − cos

�
θp
2

�
sin

�
θp
2

�
ðeiϕp þ e−iϕpÞ ¼ − sinðθpÞ cosðϕpÞ ¼

−p1

p
; ðB4Þ

ξ†−σ2ξ− ¼
	
ei

ϕp
2 sin

	
θp
2



−e−i

ϕp
2 cos

	
θp
2



� 0 −i
i 0

�0B@ e−i
ϕp
2 sin

	
θp
2



−ei

ϕp
2 cos

	
θp
2



1
CA

¼ − cos

�
θp
2

�
sin

�
θp
2

�
ðie−iϕp − ieiϕpÞ ¼ − sinðθpÞ sinðϕpÞ ¼

−p2

p
; ðB5Þ

ξ†−σ3ξ− ¼
	
ei

ϕp
2 sin

	
θp
2



−e−i

ϕp
2 cos

	
θp
2



� 1 0

0 −1

�0B@ e−i
ϕp
2 sin

	
θp
2



−ei

ϕp
2 cos

	
θp
2



1
CA

¼ −cos2
�
θp
2

�
þ sin2

�
θp
2

�
¼ − cosðθpÞ ¼

−p3

p
: ðB6Þ

This result can be summarized in the equation

ξ†λσξλ ¼
λp
p
: ðB7Þ

APPENDIX C: THE AUXILIARY TENSOR

This appendix is devoted to exploring the properties of the auxiliary tensor

LμνðA;BÞ ¼ Āγ̃μðxÞDνBþ Āγ̃νðxÞDμB −DμĀγ̃νðxÞB −DνĀγ̃μðxÞB: ðC1Þ

The first property is obvious from the definition LμνðA;BÞ ¼ LνμðA; BÞ for any A, B. The second property can be seen at
once by comparing the definition (C1) with the form of the energy-momentum tensor (5). Since Tμν is real, we immediately
deduce that LμνðA; AÞ is pure imaginary for each solution A. The third property can easily be deduced by tracing the
definition

Lμ
μðA;BÞ ¼ gμνLμνðA;BÞ ¼ 2ðĀγ̃μðxÞDμB −DμĀγ̃μðxÞBÞ ¼ −4imĀB; ðC2Þ
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where we have used the Dirac equation and its adjoint in the last step. Next we give a more explicit form for LττðA;BÞ.
Given the expression of the γ̃μ matrices, we have

LττðA; BÞ ¼ 2ðĀγ̃τðxÞDτB −DτĀγ̃τðxÞBÞ ¼ 2CðĀγ0∂τB − ∂τĀγ0BÞ ¼ 2CðA†∂τB − ∂τA†BÞ: ðC3Þ

In particular, we are interested in the auxiliary tensors LττðuðvÞ; uðvÞÞ and the traces Lμ
μðuðvÞ; uðvÞÞ computed on the

solutions (8). For the traces we have

Lμ
μðup;λ; up;λÞ ¼ −4imūp;λup;λ ¼ −4imu†p;λγ

0up;λ

¼ −4im
�
f�pξ

†
λ g�pλξ

†
λ

��
I 0

0 −I

��
fpξλ
gpλξλ

�

¼ −4imðjfpj2 − jgpj2Þ ¼ −4imC−3ðjϕpj2 − jγpj2Þ; ðC4Þ

Lμ
μðup;λ; vp;λÞ ¼ −4imūp;λvp;λ ¼ −4imu†p;λγ

0vp;λ

¼ −4im
�
f�pξ

†
λ g�pλξ

†
λ

��
I 0

0 −I

��
g�pξλ

−f�pλξλ

�

¼ −8imf�pg�p ¼ −8imC−3ϕ�
pγ

�
p; ðC5Þ

Lμ
μðvp;λ; up;λÞ ¼ −4imv̄p;λup;λ ¼ −4imv†p;λγ

0up;λ

¼ −4im
�
gpξ

†
λ −fpλξ

†
λ

��
I 0

0 −I

��
fpξλ
gpλξλ

�

¼ −8imfpgp ¼ −8imC−3ϕpγp ¼ −ðLμ
μðup;λ; vp;λÞÞ�; ðC6Þ

Lμ
μðvp;λ; vp;λÞ ¼ −4imv̄p;λvp;λ ¼ −4imv†p;λγ

0vp;λ

¼ −4im
�
gpξ

†
λ −fpλξ

†
λ

��
I 0

0 −I

��
g�pξλ

−f�pλξλ

�

¼ −4imðjgpj2 − jfpj2Þ ¼ −4imC−3ðjγpj2 − jϕpj2Þ
¼ −Lμ

μðup;λ; up;λÞ: ðC7Þ

We then compute the ττ components

Lττðup;λ; up;λÞ ¼ 2C½u†p;λ∂τup;λ − ∂τu
†
p;λup;λ�

¼ 2C

��
f�pξ

†
λ g�pλξ

†
λ

�� ∂τfpξλ
∂τgpλξλ

�
−
�
∂τf�pξ

†
λ ∂τg�pλξ

†
λ

��
fpξλ
gpλξλ

��

¼ 2C½f�p∂τfp − ∂τf�pfp þ g�p∂τgp − ∂τg�pgp�
¼ 2C−2½ϕ�

p∂τϕp − ∂τϕ
�
pϕp þ γ�p∂τγp − ∂τγ

�
pγp�; ðC8Þ

Lττðup;λ; vp;λÞ ¼ 2C½u†p;λ∂τvp;λ − ∂τu
†
p;λvp;λ�

¼ 2C

��
f�pξ

†
λ g�pλξ

†
λ

�� ∂τg�pξλ
−∂τf�pλξλ

�
−
�
∂τf�pξ

†
λ ∂τg�pλξ

†
λ

��
g�pξλ

−f�pλξλ

��

¼ 2C½f�p∂τg�p − ∂τf�pg�p − g�p∂τf�p þ ∂τg�pf�p�
¼ 4C−2½ϕ�

p∂τγ
�
p − γ�p∂τϕ

�
p�; ðC9Þ

Lττðvp;λ; up;λÞ ¼ −ðLττðup;λ; vp;λÞÞ�; ðC10Þ
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Lττðvp;λ; vp;λÞ ¼ −Lττðup;λ; up;λÞ: ðC11Þ

Notice that as a consequence Lττðup;λ; vp;λÞ ¼ 0 if and only
if γp ∝ ϕp. This is the case, for instance, in Minkowski
spacetime, where ϕp ∝ γp ∝ e−iωpt. For a general C, the
proportionality does not hold, and this has dramatic

consequences on the vacuum of the theory (eventually
leading to particle creation).
In addition, one can show that LτiðuðvÞ; uðvÞÞ is an odd

function of the momentum p and that LijðuðvÞ; uðvÞÞ is an
odd function with respect to both pi and pj. The proof
requires a lengthy but straightforward calculation:

Lτiðup;λ;up;λÞ¼ ūp;λγ̃τDiup;λþ ūp;λγ̃iDτup;λ−Diūp;λγ̃τup;λ−Dτūp;λγ̃iup;λ

¼Cu†p;λ

�
∂iþ

1

8
ωA;B
i ½γA;γB�

�
up;λ−Cu†p;λγ

0γi∂τup;λ−C

�
∂iu

†
p;λγ

0−u†p;λ
γ0

8
ωA;B
i ½γA;γB�

�
γ0up;λþC∂τu

†
p;λγ

0γiup;λ

¼Cu†p;λ

�
ipiþ

∂τC
2C

�
0 σi

σi 0

��
up;λ−Cu†p;λ

�
0 σi

σi 0

�
∂τup;λ

−Cu†p;λ

�
−ipiþ

∂τC
2C

�
0 σi

σi 0

��
up;λþC∂τu

†
p;λ

�
0 σi

σi 0

�
up;λ

¼2ipiCu
†
p;λup;λþC

�
∂τu

†
p;λ

�
0 σi

σi 0

�
up;λ−u†p;λ

�
0 σi

σi 0

�
∂τup;λ

�

¼2ipiC½jfpj2þjgpj2�þCλ½∂τf�pgpþ∂τg�pfp−f�p∂τgp−g�p∂τfp�ξ†λσiξλ
¼pi

�
i

π3C2
þ λ

p
½Cð∂τf�pgpþ∂τg�pfp−c:c:Þ�

�
: ðC12Þ

In the last step, we have made use of the normalization
condition (A3) and the property (B7). As it is evident from
Eq. (C12), each γ̃i factor and each spatial derivative ∂i brings
along a factor pi. Then for each a; b ¼ up;λ; vp;λ one has

Lτiða; bÞ ¼ piha;bðpÞ; ðC13Þ

with ha;bðpÞ a function of the modulus p alone. In particular,

Lτiðup;λ; vp;λÞ ¼ 0: ðC14Þ

Similarly, for each a; b ¼ up;λ; vp;λ

Lijða; bÞ ¼ pipjla;bðpÞ; ðC15Þ

with la;bðpÞ a function of the modulus p alone.

APPENDIX D: CANONICAL
ANTICOMMUTATION RELATIONS

Demonstration of the canonical anticommutation rela-
tions (19):

fψAðτ; xÞ; πψBðτ; x0Þg ¼ iC3
X
λ;λ0

Z
d3p

Z
d3q½fAp;λ; A

†
q;λ0gðup;λu†q;λ0 ÞAB þ fB†

−p;λ; B−q;λ0gðvp;λv†q;λ0 ÞAB�

¼ iC3
X
λ

Z
d3p½ðup;λðτ; xÞu†p;λðτ; x0ÞÞAB þ ðvp;λðτ; xÞv†p;λðτ; x0ÞÞAB�

¼ iC3
X
λ

Z
d3peip·ðx−x0Þ½ðup;λðτ; 0Þu†p;λðτ; 0ÞÞAB þ ðvp;λðτ; 0Þv†p;λðτ; 0ÞÞAB�

¼ iC3
1

ð2πÞ3C3
δAB

Z
d3peip·ðx−x0Þ

¼ iδABδ3ðx − x0Þ: ðD1Þ

In the fourth step we have made use of the completeness relation [Eq. (A4)], writing the 4 × 4 identity matrix explicitly
as δAB.
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APPENDIX E: CONSERVATION OF THE
ENERGY-MOMENTUM TENSOR

In this appendix we prove explicitly the covariant
conservation of the energy-momentum tensor associated
with the flavor vacuum. We show that

∇μTμν ¼ 0 ðE1Þ

with ∇μ denoting the covariant derivative. There is no need

here to distinguish between T ðMIXÞ
μν and T ðNÞ

μν , since both
satisfy Eq. (E1), and so does the full energy-momentum
tensor. Preliminarily we derive the connection coefficients
for the metric of Eq. (1). It is easy to see from the definition
that the only nonvanishing coefficients are

Γτ
ττ ¼ Γτ

ii ¼ Γi
τi ¼ Γi

iτ ¼
_C
C
: ðE2Þ

Here the dot denotes the derivative with respect to con-
formal time τ, and no sum is intended over repeated indices.
Notice that the coefficients depend only on τ. In terms of
the connection coefficients, the covariant divergence reads

∇μTμν ¼ ∂μTμν þ Γμ
μσTσν þ Γν

μσTμσ: ðE3Þ

(i) (ν ¼ i) For ν ¼ i, with i ¼ 1, 2, 3, Eq. (E3) becomes

∇μTμi ¼ ∂μTμi þ Γμ
μσTσi þ Γi

μσTμσ: ðE4Þ

From the diagonality of Tμν proved above, we can
write

∇μTμi ¼ ∂iT ii þ
X
μ

Γμ
μiT

ii þ
X
μ

Γi
μμTμμ; ðE5Þ

where no sum is intended over repeated indices and
the summations are written out explicitly to avoid
confusion. The first term on the right-hand side of
Eq. (E5) is zero, since Tμν depends only on τ.
Similarly, from Eq. (E2) we know that Γμ

μi ¼ 0 ¼
Γi
μμ for each μ ¼ 0, 1, 2, 3, and each i ¼ 1, 2, 3, so

that also the second and the third terms on the right-
hand side of Eq. (E5) vanish. Then

∇μTμi ¼ 0 ∀ i: ðE6Þ

(ii) (ν ¼ τ) Only a slightly longer calculation is needed
to prove the statement for ν ¼ τ. Starting from
Eq. (E3) we have

∇μTμτ ¼ ∂μTμτ þ Γμ
μσΓστ þ Γτ

μσTμσ

¼ ∂τT ττ þ
	
Γτ
ττ þ

X
i

Γi
iτ



T ττ þ Γτ

ττT ττ

þ
X
i

Γτ
iiT

ii

¼ ∂τT ττ þ 5Γτ
ττT ττ þ 3Γτ

ττT ii; ðE7Þ

where we have used the diagonality of Tμν and
Eqs. (E2). For our purposes it is convenient to
rewrite Eq. (E7) in terms of T ττ and the trace Tμ

μ.
To this end we employ Eqs. (46) and (E2) and lower
the indices through the metric of Eq. (1), obtaining

∇μTμτ¼∂τðC−4T ττÞþ6C−5 _CT ττ−C−3 _CTμ
μ: ðE8Þ

From Eq. (32), we know that each of the terms above
is the integral of the auxiliary tensor components
Lττ; L

μ
μ weighted by τ-independent coefficients (re-

call that the Bogoliubov coefficients are evaluated at
a fixed time τ0). It is therefore sufficient to prove that

∂τðC−4Lττða; bÞÞ þ 6C−5 _CLττða; bÞ
− C−3 _CLμ

μða; bÞ ¼ 0 ðE9Þ

for each a; b ¼ up;λ;j; vp;λ;j, to show that the diver-
gence (E8) vanishes. To this end we need the
second-order equations

∂2
τϕp;j ¼ −ðimj

_Cþ p2 þm2
jC

2Þϕp;j;

∂2
τ γp;j ¼ −ð−imj

_Cþ p2 þm2
jC

2Þγp;j: ðE10Þ

The first of these equations is simply Eq. (16),
and the second can likewise be deduced from the
system (15). For Lμνðup;λ;j; up;λ;jÞ we have, using the
properties of the auxiliary tensor,
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∂τðC−4Lττðup;λ;j; up;λ;jÞÞ þ 6C−5 _CLττðup;λ;j; up;λ;jÞ − C−3 _CLμ
μðup;λ;j; up;λ;jÞ

¼ 2∂τ½C−6ðϕ�
p;j∂

↔

τϕp;j þ γ�p;j∂
↔

τγp;jÞ� þ 12C−7 _Cðϕ�
p;j∂

↔

τϕp;j þ γ�p;j∂
↔

τγp;jÞ þ 4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ

¼ 2C−6∂τðϕ�
p;j∂

↔

τϕp;j þ γ�p;j∂
↔

τγp;jÞ þ 4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ
¼ 2C−6ðϕ�

p;j∂2
τϕp;j − ϕp;j∂2

τϕ
�
p;j þ γ�p;j∂2

τ γp;j − γp;j∂2
τ γ

�
p;jÞ þ 4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ

¼ 2C−6fϕ�
p;j½−ðimj

_Cþ p2 þm2C2Þ�ϕp;j − ϕ�
p;j½−ð−imj

_Cþ p2 þm2C2Þ�ϕp;j

þ γ�p;j½−ð−imj
_Cþ p2 þm2C2Þ�γp;j − ϕ�

p;j½−ðimj
_Cþ p2 þm2C2Þ�γp;jg þ 4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ

¼ 2C−6fjϕp;jj2ð−2imj
_CÞ þ jγp;jj2ð2imj

_CÞg4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ
¼ −4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ þ 4imjC−6 _Cðjϕp;jj2 − jγp;jj2Þ ¼ 0:

In the fourth step we have used Eqs. (E10) and their complex conjugates, and the τ argument of the functions has
been suppressed for notational simplicity. Note that from the properties Lττðvp;λ;j; vp;λ;jÞ ¼ −Lττðup;λ;j; up;λ;jÞ and
Lμ
μðvp;λ;j; vp;λ;jÞ ¼ −Lμ

μðup;λ;j; up;λ;jÞ the same relation is satisfied by the components of Lμνðvp;λ;j; vp;λ;jÞ. Similarly
one has

∂τðC−4Lττðup;λ;j; vp;λ;jÞÞ þ 6C−5 _CLττðup;λ;j; vp;λ;jÞ − C−3 _CLμ
μðup;λ;j; vp;λ;jÞ

¼ ∂τð4C−6ϕ�
p;j∂

↔

τγ
�
p;jÞ þ 24C−7 _Cð4C−6ϕ�

p;j∂
↔

τγ
�
p;jÞ þ 8imjC−6 _Cϕ�

p;jγ
�
p;j

¼ 4C−6∂τðC−6ϕ�
p;j∂

↔

τγ
�
p;jÞ þ 8imjC−6 _Cϕ�

p;jγ
�
p;j

¼ 4½ϕ�
p;j∂2

τ γ
�
p;j − γ�p;j∂2

τϕ
�
p;j� þ 8imjC−6 _Cϕ�

p;jγ
�
p;j

¼ 4C−6fϕ�
p;j½−ðimj

_Cþ p2 þm2C2Þ�γ�p;j − ϕ�
p;j½−ð−imj

_Cþ p2 þm2C2Þ�γ�p;jg þ 8imjC−6 _Cϕ�
p;jγ

�
p;j

¼ −8imjC−6 _Cϕ�
p;jγ

�
p;j þþ8imjC−6 _Cϕ�

p;jγ
�
p;j ¼ 0:

In the fourth step we have used the complex conjugates of Eqs. (E10). Finally, because of the properties
Lττðvp;λ;j; up;λ;jÞ ¼ −L�

ττðup;λ;j; vp;λ;jÞ and Lμ
μðvp;λ;j; up;λ;jÞ ¼ −Lμ�

μ ðup;λ;j; vp;λ;jÞ, the same relation is satisfied by the
components of Lμνðvp;λ;j; up;λ;jÞ. This is sufficient to prove the statement for ν ¼ τ.
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