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Correlation functions of the anharmonic oscillator:
Numerical verification of two-loop corrections to the large-order behavior
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Recently, the large-order behavior of correlation functions of the O(N)-anharmonic oscillator has been
analyzed by us [L. T. Giorgini ef al., Phys. Rev. D 101, 125001 (2020)]. Two-loop corrections about the
instanton configurations were obtained for the partition function, the two-point and four-point functions,
and the derivative of the two-point function at zero momentum transfer. Here, we attempt to verify the
obtained analytic results against numerical calculations of higher-order coefficients for the O(1), O(2), and
O(3) oscillators, and we demonstrate the drastic improvement of the agreement of the large-order
asymptotic estimates and perturbation theory upon the inclusion of the two-loop corrections to the large-

order behavior.
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I. INTRODUCTION

For a long time, it has been a dream of physics research
to overcome the predictive limits of perturbative quantum
field theory. Typically, Feynman diagram -calculations
become more computationally expensive in large loop
orders, to the point where diminishing returns [1] upon
the addition of yet another loop limit the predictive power
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of perturbation theory and of Feynman diagram calcula-
tions. In order to overcome these limits, analytic techniques
have been developed over the past decades to analyze the
large-order behavior from the complementary limit of
“infinite-loop-order” Feynman diagrams [2,3]. These tech-
niques are based on various nontrivial observations. The
first is that, upon an analytic continuation of the coupling
constant of a theory into a physically “unstable” domain [4]
where partition functions acquire an imaginary part, one
can write dispersion relations that relate the behavior of the
theory for a coupling constant small in absolute magnitude,
within in the unstable domain, to the large-order behavior
of perturbation theory (equivalent to the “infinite-order
Feynman diagrams”). The imaginary part of the partition
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functions, and of the correlation functions, is related to
so-called instanton configurations [5—7]. The second obser-
vation is that perturbations about the instanton configura-
tions can be mapped onto corrections to the large-order
behavior of perturbation theory, thus making the theory
amenable to a more accurate analysis in the domain of
large loop orders. The latter perturbative calculations in the
instanton sector are related to an expansion of perturbative
coefficients in powers of inverse loop orders 1/K, where K
denotes the loop order. The leading term, of course, as is
well known, describes the factorial divergence of pertur-
bation theory in large orders of the coupling constant
[2,8-12].

Previously, the calculation of corrections about the large-
order behavior was reported for the partition function of
anharmonic oscillators [13,14]. Recently [15], corrections
to the large-order behavior of perturbation theory have been
obtained for the two-point and four-point functions of the
O(N) quartic anharmonic oscillator. Also, the partition
function of the O(N) oscillator was studied, and results
were obtained for the derivative of the two-point function at
zero momentum transfer [15]. These results, however, have
not been compared yet to an explicit calculation of
perturbative coefficients for the respective functions in
large orders. In this work, in order to make the comparison
possible, we derive general expressions for the perturbative
coefficients of the correlation functions at zero momentum
transfer of the one-, two-, and three-dimensional isotropic
anharmonic oscillator.

In this context, it is extremely interesting to investigate
the “rate of convergence of the expansion about infinite
loop order,” i.e., to investigate to which extent the calcu-
lation of the corrections of order 1/K to the leading
factorial asymptotics improves the agreement of low-order
perturbation theory (corresponding to the successive per-
turbative evaluation of loops). In this paper, we thus
analyze the perturbation series of the one-dimensional
O(N) isotropic quantum harmonic oscillator with a quartic
perturbation, which is otherwise referred to as the N-vector
model. Higher orders of perturbation theory are calculated
for the two-point function, the four-point function, and the
correlator with a wigglet insertion, and compared to the
results recently reported in Ref. [15]. Our Hamiltonian is
therefore

16 1
H=—-—+-

207 72
where ¢ is the coupling constant. The rest of the paper is
organized as follows. In Sec. II, we start by analyzing the
simple N =1 case, whereas in Sec. IIl, we discuss the
general N-dimensional case. Our results are compared with

those of Ref. [15] and Sec. IV. Conclusions are reserved
for Sec. V.

II. ONE-DIMENSIONAL QUANTUM
ANHARMONIC OSCILLATOR

We start with a discussion of the method of calculation
for the perturbative corrections to the correlation functions
exposed in the previous section. The case with a trivial
internal symmetry group is the easiest (N = 1). Since when
N =1 the unperturbed Hamiltonian is nondegenerate, we
can use standard nondegenerate Rayleigh-Schrédinger
perturbative theory techniques. We can write the perturba-
tive expansions as follows:

19> 1 g
HO = ———_ 4 4 6H =Z4* 2

207 2T 24 ()
E,) = |EY)) + [ES) + [EX) + -, (2b)
) = )+ )+ ) - (2¢)

The unperturbed problem, with the unperturbed
Hamiltonian H(*), is solved by the unperturbed states

)

HO) = B ). 3)
leading to the unperturbed energy eigenvalues E,(qo). The
(K=123,...)

perturbative corrections E, 7 are each proportional
to gX and describe a perturbation series in g. On the basis of
a well-known recursive scheme, we can calculate higher-
order (in K) perturbations to the wave functions, as follows:

¢ (HO —EP) )y =0, (4a)
g (HO — EMyiy = (B = sH)|wl) =0,  (4b)

71 (HO = EDi?) = (B = st} + By,
(40)
g (HO =By = (B~ 6H) )
+E W) + B ), (44)

g (HO = EP i) = (B = oMy ™)

+ B i) + BV i)
+o+ EN ). (4e)

This recursive algorithm allows us to calculate the Kth-

order perturbation |l//£,K)> to the wave function. Note that the

calculation of the Kth-order energy perturbation EELK)

requires the wave function to order K — 1,

only
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ES = sy Yy, (5)

The wave function perturbations |l//£,K)> are orthogonal to

the unperturbed state |l//£;0>>,
—0. (6)

In order to solve the recursive scheme given by Eq. (4),

Wil = i) = il = -

for a given unperturbed reference state |1//,(10) ), we can define
the reduced Green function of the unperturbed problem,

N 1 /
= <H<0> _ E£,°)> ’

where the inverse is taken over the Hilbert space of
unperturbed states orthogonal to the reference state

(7)

|1//510)>. The reduced Green function is sometimes denoted
as G’ in the literature, but we avoid the notation here
because the symbol G is already used extensively in other
parts of our considerations, in order to denote perturbative
coefficients. 7 has the following matrix elements in the
basis of unperturbed eigenstates,

(0 1 ho©y_ 9
Tm,m/ - <l//m | <H(O) _ ESIO)> |l//m/ > - E(O) B E(Q) s

m n

assuming that m # n and m’ # n. Furthermore, we have
T,,,,, =0 for m = m’ = n. We can write the perturbation
S6H = gq*/4 in the unperturbed basis simply by using
the representation of the position operator in terms of the
creation and annihilation operators a and a of the

unperturbed Hamiltonian,
1
R

We recall that the lowering and raising operators a and a'

(a+a'). (9)

act on the unperturbed state |1//510)> as follows:

alyly = '), (10a)
a'lyly =V + 1jl))). (10b)

From now on, we will switch to a notation where

(11)

denotes the (perturbed) eigenstate of the full problem,
which includes the quartic term. Averages of a one-dimen-
sional scalar theory can be interpreted as path-integral
expressions which in turn can be written as summations
over eigenvalues of the corresponding quantum
Hamiltonian. The two-point function has the translational
invariance property

) = [wa)

C(2)<t1,t2) :C(z)(o,tz—t1>EC(2)(I2—I1), (12)
where the latter expression defines the correlation function
C?)(t, — t,) of a single argument. The correlation function

can be expressed as follows:

= _(0lg|n)Pe=Efall,

n>0

(1) = (g(0)q(1) (13)

where E| is the perturbed energy of the ground state (the
“vacuum”) and E,, is the perturbed energy of the state |n).
We have for its integrals

L
I
(15)

Here, the perturbative coefficients [G? (N = 1,D = 1)],
and G® (N = 1, D = 1) define an asymptotic series in the
coupling g which exhibits well-known factorial growth for
higher order in K. We denote an asymptotic relationship by
the symbol ~. In the notation, we follow the conventions of
Ref. [15]; some low-order coefficients [G?)(1,1)]; and
[GPP)(1,1)]x are summarized in Table I. A remark is in
order. The expression for the integral [+ C?)(¢)dt decep-
tively looks like the second-order expression for the energy
shift due to a perturbative Hamiltonian proportional to q.
We should recall, though, that the virtual-state eigenfunc-
tion |n) and the ground-state eigenfunction |0), as well as
the energies E, and E,, are the exact eigenfunctions and
eigenenergies of the perturbed anharmonic oscillator and
thus contain contributions of arbitrarily higher orders of
perturbations proportional to gX.

[Se]

_22| O|CI|”l NZ

n>0 " =0

dr c® 1] g%,

(14)

0|61|n N
2 d
dt>C? (1) = 42 (E, e~ E P)(1,1)]

n>0 n =0

TABLE I. Sample values are collected for low-order perturba-
tive coefficients of correlation function for the scalar theory
(N = 1). Results are given as rational numbers when expressible
in compact form.

K 6200l (60 D]x [6W(. D] [G*V( D,
0 1 2 0 0
. p B o
2 5 o > 11
3 _ 1683 _ 1391 _ 663 _ 8805
128 96 2 128

4 13825 9641561 277245 55183

256 28800 128 128
5 —258.264 —1635.174 —% —2829.612
10 3540 x 10°  2.115x 107 5.003 x 108 9.473 x 10’
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As a side remark, let us briefly consider the limit g — O,
which describes the transition to the unperturbed harmonic
oscillator. In this limit, one has

(2> t) — Z|<0|q|n>|ze_(En_E0)M

n>0
0)
= 51w gl e I
n>0
1
0 0 - —
= o lghy") Pel = S e, (16)

which is the well-known two-point correlation function for
the unperturbed one-dimensional theory [16].
The connected four-point function is defined as

(q(1)q(12)q(13)q(14))
~ €O (1, ~ 1)CO(

— CO (13— 1)CA (1) — 1)
- CO(1) = 13)CH (1, — 1). (17)

C(th L, 13, t4) =

For 0 =1t <1, < t3 < t4, we can write

C(12, 12, 12) = (q(0)q(12)q(13)(14))
= <()|qe—(H—Eo)A3 ge~(H=Fo)b ge=(H-Eo)A1 410)
B (a)C(43)
@(A; 4 Ay + A3)CP(A)
(A1 +4,)C (A, + As), (18)

where A; =t;,; —t;. We have chosen | = 0. For f,, we
have two equivalent regions (¢, can be either positive or
negative), while for 73, we have three equivalent regions.
Finally, for #,, one encounters four equivalent regions,
bringing the number of equivalent integration regions to
4 x 3 x 2 = 24. The selected integration region 0 = #; <
1, < t3 < 1, gives rise to the integration measure

/oodtz/oodt3/oodt4:/mdAl/mdAz/oodA3.
0 f f 0 0 0
(

The final result is

+0o0
/ dt2/ dt3/ dt,CH (1, 3, 1)

=24 (Olg|n)(nlg|n") (n'|g|n"){n"|q|0)
nn' 0" >0 (E” - EO)(EH' - EO)(En” - EO)
~uY |(Olg|m)[*[{0lg|n) P (E\ + Ew = 2Ey)
n,n'>0 Z(E”/ - EU)Z(En - EO)Z
=24 (Olg|n)(nlg|n") (n'|g|n"){n"|q|0)
nn' 1" >0 (En - EO)(En’ - EO)(E}’[” - Eo)
[(0lgm)[*[{Olg|n") |
—24 Z (20)
nn>0E/_E0 (E _EO)

A remark is in order here. The sums over intermediate
states in Eq. (20) exclude the ground state (which has
n = 0). One might wonder, for example, why the presence
of the term —C®(A;)C?(A;) in Eq. (18) does not
lead to divergences, when the connected four-point func-
tion is integrated over A,. The term cancels, though,
against the term derived from the expression
(0|ge=(H=Eo)8s ge=(H=Eo)A2 ge=(H=Eo)A1 4|0} upon insertion
of the ground state as the intermediate state in the
exponential e~("~£0)%2 The term with the virtual ground
state is thus excluded from the sums over intermediate
states in the representation (20).

Results for the perturbative coefficients obtained from
the four-point integral

+0o0 +0o0 +0o0

/ dfz/ df3/ d1yCW (1, 13, 14)

~ > [GH(1 1)]kg® (21)
K=0

are summarized in Table I.

The last correlation function studied here concerns the
two-point function with a wigglet insertion (see Ref. [15]).
We have

CU (1, 13) = (q(0)q(12)g*(13)) = (q(0)g(12)) g’ (13))

—2(q(0)q(13)){q(12)q(3))), (22)

with the integral finding the perturbative expansion (for
some concrete sample values, see Table I)

/ dtz/ df3 t2,t3 NZ 12 1 1) K (23)
K=0

We obtain in terms of the perturbed oscillator eigenstates
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(nlq|n"){n'|4|0)

(Olg|n)(nlq?|n’)(n'|40)

(0]¢?|n)
dtz/ dt;C12) (1,,15) =4
/ n;O En EO E n _EO)
2z| (Olg|n) 0|q 0)
n>0 E EO

The structures encountered for higher-dimensional internal
symmetry groups are more complicated and will be
discussed in the following section.

III. TWO- AND THREE-DIMENSIONAL
QUANTUM ANHARMONIC OSCILLATOR

A. Overview

When N > 1, since both the unperturbed Hamiltonian
and the perturbation term are radially symmetric, we can
use hyperspherical coordinates in order to describe the
internal O(N) space of the theory. The Hamiltonian is
therefore

1/0* N-10 L*\ 2 g
He— (L 29 BNV D90 (4
2<6r2+ r Or r2>+ 24

where L? is the angular momentum in N dimensions. The
eigenfunctions of the Hamiltonian can be written in terms
of radial and angular parts, as follows:

> £1reel iy
l//(r):Rnf(r)Yfl' N_(Hl"”’eN—l)’ (25)
where Y;‘ """ On-2 (04, ...,05_1) are the generalization of the
spherical harmonics in N dimensions and the eigenfunc-
tions of the angular momentum operator

L2y, (0, ... 0y)
= (6 +N=2)Y""2(6,,....0y_1), (26)
with the quantum numbers ¢,...,¢y_, satisfying

11| <165 < ... <
On_, range over [0, z], whereas 6y_, ranges over [0, 27)
(for a more thorough discussion, see Ref. [17]). In N =2
dimensions, the unperturbed normalized radial functions

RO(r) and Y0"%2(0,, ..., 0y_,) are defined as [18]

Ye(6,) = —=e"", (27)

0 N=2 4
R (1) = N1 >exp< 2> PILG () (28)

while in three dimensions, the expressions are as follows
(¢, = m takes the role of the magnetic projection):

nn>0(

+2>°

n,n'>0

(E, —Eo)(Ey — Ey)

(0lg|n)[*|{0lg|n") [(0lg[n)[*\?
v —Eo)(Ey +E,—2E,) <Z”>0 En_E()) .

Y?(Ql,ez) = Yfm(e =0,,¢= 92)

WA (E—m) .,
= (—l)m (£+—Wl;'e HZPI (COS 91), (293.)
= r2 /4L
O CA NI

Here, the L (r ) are the generalized Laguerre polyno-
mials of order k, and the P} are the associated Legendre
polynomials. For three dimensions (N = 3), we indicate
the relation of the Y’/ (6, 6,) to the more common notation
Y/n(0=06,,90=0,) of the spherical harmonics [19],
where 6 is the polar angle and ¢ is the azimuth angle.
The normalization factors are obtained as follows:

=2 _ V2 —12))/2]!

" [+ 12072

sy _ (2O V2 TESE + DI+ 1) 12
Moo <\/5> { T(n+¢+2) - (30)

Note that the generalized Laguerre polynomials satisfy the
following orthogonality relation [20]:

/ et L (LY (de = s, (1)
0 .

It follows that the eigenfunctions are orthogonal,

© N(N))ZF(11+K+N)
d N—IR(O) R<0) — ( nt 2 S , 32
A rr nf(r) st (r) 2F(%f + 1) ns ( )
with N = 2, 3. The perturbed Schrodinger equation reduces
to an equation for the radial part which reads

g
e e e R

= _2Eanl(r)' (33)

{d2 N-1d 4(+N-2)

The matrix elements of the perturbation SH = gr*/4 can be
written in the unperturbed basis evaluating the following
integral:

105012-5
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RVARY) =37, [T ar SRR ). (34

To evaluate analytically the integral of two Laguerre
polynomials which appears in Eq. (34), we derived the
following relation:
/oo dre=*"r’Ly,(br) L (cr)

0

ey D+ DT+ 4+ T +p +1)
I'm+ DHC(n+1)(p+1)C(p+1)

b
xF2<y+1,—n,—m,u+1,p+1,,C>, (35)
s s

where R(y) >0 ANR(s) >0AneNAmeNand F, is
the Appell F, function [see Eq. (16.13.2) on page 413 of
Ref. [21]]

5 (@) (01)n(b)
F(a,b,b,c,c’x,y): m+n m n myn
2 e m,;() m!n!(cl)m(CZ)n

(36)

where (a), =I'(a + n)/I'(a) is the Pochhammer symbol.
Using Eq. (35), we can write the nonzero matrix elements
from Eq. (34) as

(nf|r*nf) == (4-¢>+3n(n+2), (37a)

0| —

(n+2)¢|r*In) = —(n +2)\/(n —4+2)(n+7+2),
(37b)

((n+4)2|r*|nt)

A T | e [ CEr )
(37¢)

for the case N = 2. For N = 3 they are

(nf)r*|nf) = —(15=2¢(¢ + 1) + 6n(n +3)), (38a)

B —

(1 +2)2) |nt) = —%(2n+5)\/(n—f+2)(n T 713),
(38b)

((n+4)¢|r*|nt)

:%¢@—£+®m—£+mm+f+®m+f+ﬁ_
(38¢)

The results for N = 3 agree with those given in Ref. [22],
while the ones for N = 2 have not appeared in the literature
up to this point, to the best of our knowledge.

The eigenvalue relation given in Eq. (33) can be written
in the space of radial functions only,

(Ho + SH)(RY) + 6R,z) = (EX) + 6E,/)(RY) + 6R,,).

(39)

The perturbation does not change the angular part, but only
the radial one. So, if we know the unperturbed radial part
Rflof) (r), then we can compute the perturbation to the energy
OE,, and to the eigenfunction OR,,,, for a fixed value of Z.
In fact, for fixed 7, the spectrum is not degenerate, and we
can apply standard perturbation theory, as we did in the
previous section for the case N = 1.

A number of useful formulas for the treatment of the
O(N) problem, in terms of both the angular algebra as well
as the perturbative treatment of the radial part, are given in
the Appendixes A and B.

From the knowledge of the eigenfunctions and eigen-
values of the Hamiltonian, we can determine the M-point
correlation functions of our theory given by [23]

Ciriyoiy, (15 12 -

tu) = (@i, (1) i, (82) -~ iy, (tr))
= Ti1i2~~iMc<M>(t2 - tlv ooy tM - tl)’
(40)

where in the Ilatter form, the expression C<M)(t2 -
tiy....ty —t;) has M —1 arguments and is defined in
analogy to the four-point correlation function from
Eq. (18). For example, we have M = 2 for the two-point
function and one argument in C<2)(tz—tl), while, of
course, we have M =4 for the four-point function
and three arguments in CW(t, — 1,15 —t;, 14 — 1;).
Furthermore, the indices i; with j =1, ..., M can obtain
values 1 < ;i < N, consistent with the structure of the
internal symmetry group. The designation C indicates that
we are considering the connected part of the correlation
function, and T ;, ; is the average value of the product
of unit vector components U, U, and so on, taken over the
N-dimensional unit sphere,

T;i,..i, = <ui1ui2 cee ”iM>sN_]’ (41)

with Sy_; being the N — 1-dimensional unit sphere
embedded in N dimensions; so, Sy_; has a (generalized)
surface volume Qy = 27V/2/T'(N/2). We can write an
M-point correlation function with arbitrary indices
i, I, ..., Iy in terms of the same correlation function with
fixed indices iy, 1,, ..., 1), by multiplying and dividing the
previous expression by T5 ; ;.

HORERRTY)
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Tll 1
Coriyiy (113 120 oo 1) = 7 Gy (N1 12 ).
11, Iy
(42)
Here, we write the indices of the fixed element

Ci 4.4, (1, 1, ..., 1)) with a hat. Our convention is that
indices with hats are not being summed over, even when
they are repeated (in other words, we use the convention
that the Einstein summation convention does not apply on
indices with hats).

Comparing Eq. (40) to Eq. (42), we can write

Ci,iz...iM(th t, ...
T

oy

cn(r, ).

— ety — 1) = (43)

This formula allows us to pick one single nonvanishing
element of the correlation function, say, one where all
indices are equal,

|

<y, (44)

:)
I
S
I

and to derive a valid expression for any combination of the
1, with j =1,..., M. It is useful to recall the well-known
results [23]

5 .
Tiliz = <uilui2>SN_1 = ;{;2 (45)
and
Ti]i2i3i4 = <”i1 ui2“i3”i4>SN_1
_ 940,00, t 8iiy iy + 0iyiy Biniy (46)
N(N +2) ’

In this way, the four-point function written only in terms of
the element with all indices fixed to 7; becomes

Ciriginiy (1 as 13, 1) = PiiOhia + 5i1i3§i2’i4 + iy Ciin, (1, 13, 14)
_ 0iiy0iiy 1 83,01, + 40,00y [N(N +2) Corno (11, 1o 130 13)
N(N +2) 3 e
= Oivir Oy +]\’5(I']Gilzl£)+ OiisOiis C(4)<t2 —t, 13—, 14— 1y). (47)
So, we have
CO(ty—t), 13—t 1y — 1)) = Mcmlml (t1 tas 13, 1)
EM&<4)(¢2—I1J3—f17t4—f1)7 (48)
I
where the latter expression defines the quantity So, 7; can assume one of the N possible values. We can

CO(ty—t) 5=t 1, — 1)) = Ciia, (. 1. 13, 14).

B. Two-point correlator and second derivative

We start the discussion from the two-point correlation
function and its second derivative with respect to the
momenta. Changing coordinates and picking up one of
the possible components (because they all give the same
contribution) we get

5i i
12 c)(y), (49)

Cii, (1) = N

with
CA(1) = N{g;, (0)q;, (1)) = NCyy, (1) = NCP (1), (50)

where C?) () = Cflzfl (t) is equal to any nonvanishing
element within the internal group structure.

therefore choose, for example, 7; = 1 and write

(q1,21(0)qy, =1 (1)) = <0’r005916_(H_E°MFCOS@l 0)
= |(0]rcosd;|n.ij)[Pe~EEI - (51)
T

We have defined |77) = |£,7, ..., €n_2) as a vector repre-
senting all the angular quantum numbers of the state. The
state |n,7j) is characterized by the principal quantum
number n, and the set of angular quantum numbers 7.
For the cases N =2 and N = 3 under investigation here,
the angular integrations lead to the following picture. First,
one observes that the summation over all possible quantum
numbers summarized in 7 selects those states that are
coupled to the ground state by a dipole transition. We
define the coordinate system so that (in N = 3) the
quantization axis is aligned with the coordinate i; = 1,
so that r cos 6, is the coordinate along the quantization axis.
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In N =2, there exists no quantum number £;; we only
have one angular momentum quantum number, £, which
can take either positive or negative integer values. By
contrast, for N =3, one has two quantum numbers,
namely, the angular momentum ¢ and the magnetic
projection ¢ = m.

For N = 2, there are two nonvanishing contributions to
the sum over intermediate states in Eq. (51), namely, those
with # = £1. The contributions from £ = —1 and £ = +1
are equal to each other and can be taken into account on the
basis of an additional multiplicity factor. For N = 3,
instead, the only nonvanishing contribution to the sum
over intermediate states in Eq. (51) is given by states with
¢ = 1. States with £ = 1 are commonly referred to as P
states in atomic physics [24], and these can have three
angular momentum projections, namely £, = m = —1, 0,
1. Of these, under an appropriate identification of the
quantization axis, only the state with | = m = 0 contrib-
utes, being coupled by the operator r cos 8,. However, as is
well known from atomic physics [24], the final result is
independent of the choice of the quantization axis, provided
one sums over m, Viz., sums over 7.

The two-point correlation function at zero momentum
transfer is obtained by integrating Eq. (50) with respect to

time,
/+oo C‘(z)

Similarly, we get its second derivative at zero momentum
transfer as

+o0
/ 2C?

As discussed, each matrix element (0|rcos(0)|n,)
can be computed using Eq. (Al), in terms of a radial

transition matrix element Sy ,,, and an angular element
aﬁf?, which depends on the dimension N. After the

summation over the angular quantum numbers, one obtains
the result

>_lol

En_EO

>\ (2
dt:22|<o|rcosel|n’ﬂ>| . (52)

|O|rcos€\17|
dz_42 E—EF (53)

P =3 S @ll?. (54)

42

where i\; is a sum over a single term £ = 1 for N = 3 and
over £ = £1 for N = 2.
It is convenient to define the quantity

(V) { 4(af) )4 for N =2,
(XO =
( for N = 3.

TABLE II. Same as Table I, but for the N = 2 theory.

K [GP02, 1) [6972,1)]¢ [GD(2,1)]¢ [G*V(2,1)]g
0 1 2 0 0

1 -2 -8 -6 —%

: 22_3(())41 92:_7?1% 63?51 %

3 — 2041 -3 -3l —108.435
4 142.078 904.550 4179.733 824.861

5 —809.263 —5318.618  —33562.531 —6433.962
10 1.993x 107 1267 x 108  2.114x10°  3.906 x 108

Calculating the square root of a(() ), the previously men-

tioned multiplicity factor two for N = 2 is obtained; it takes
care of the two equivalent contributions from £ = +1. We
therefore have for the two-point correlation function
computed at zero momentum

/_; f)de = 2¢/a ZEOO"EO
~ GO ek, (56

Perturbative coefficients [G*)(N,1)]; for N =2 and
N =3 are given in Tables II and III, respectively. The
second derivative of the two-point correlator is given as

follows:
+o0
£)dr = 4/ OOnl
/—oo Z E EO
~ GO D]t (57)
K

Again, low-order perturbative coefficients [G9P)(N, 1),
for N=2 and N =3 are given in Tables II and III,
respectively. At this point, all matrix elements have
been reduced to radial integrals of unperturbed O(N)

TABLEIII. Same as Tables I and II, but for the N = 3 theory in
D =1 spatial dimensions.

K G936 1) [699(3,1)]¢ [GY(3, 1)) [G*D(3,1)]

0 1 2 0 0

1 —% -10 -6 —%

2 25 1445 153 305
éonrs s iss3 5

3 1152 ~ 864 76 —157.199

4 309.971 2007.796 7184.900 1409.880

5 —2058.802  —13870.761 —67294.482 —12793.097

10 8948 x 107 5986 x 108 7.588 x10° 1.374 x 10°
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oscillator eigenstates. In the evaluation of perturbative
coefficients of the energy levels of a number of anharmonic
oscillators, recursion relations have been found [25,26].
For the quartic O(N) oscillator, we refer to Egs. (22) and
(23) of Ref. [25], for the double-well potential to Egs. (69)
and (70) of Ref. [25], and for more general potentials
to Egs. (12)-(25) of Ref. [26]. We do not attempt to
generalize the treatment outlined in Refs. [25,26] to the
correlation functions investigated here, because the number
of higher-order perturbative coefficients obtained using
the methods delineated here is fully sufficient for detec-
ting the two-loop corrections to the large-order behavior
of the perturbative coefficients [15]. For possible future
investigations, we note that it would be interesting to
|

N(N +2)
3
N(N +2)
3
—CO (-

CHW(ty, 15, 14) = CH(1y.15,14)

fs)C(z)(tz — )]

[(@:,(0)qs, (t2) a3, (13) @i, (24)) —

explore recursion relations for the perturbative correlation
functions.

C. Four-point correlation function

Similar to the previous subsection, we apply the same
ideas to the connected four-point function,

1
- N(N+2)
X (8,0

Ci1i2i3i4 (t1, 1,13, t4>

+6; .06, +06 51213)

i3iy i1i3Y5iy iy

x CO(ty =11, 65— 11,14 — 11), (58)
where, according to Eq. (48),
CO (=) C0(13 ~ 1) = € 1y = 1) 0 (~1,)
(59)

In our derivation leading to Eq. (48), we had stressed that the formula is valid for every value that 7; can assume. We now
select, for convenience, one particular component with 7; = 1, which, as we assume, is aligned with the quantization axis
for the states in the internal O(N) symmetry group. Hence, we write the relation

(@1,=1(0) @5, =1 (12) g3, =1 (t3) @3, =1 (14))
- C(A

=(0|r cos @;e=H=Eo)2s p cos 9, e~ (H=Eo)2 p cos 9, e~ =E0)A1  cos 6, |0)

DCP(A3) —

CO(A] + A)CI (A, + A5)

—CO(A| + Ay + A3)C(Ay).

where A; =t;., —t;. We then have, with x; = rcos @,

+o0 +0o0 +00 ~
/ dr, / dz; / A1, CH (13,13, 14)

7242 0|x1|;1 loe ') o' ey ") (" |10
i —;/ E, - EO En’ - E0)<En” - EO)

[(0Lx1 i) POl x1 i) [* (E,y + E
Z(En’ - E0)2(En - EO)2

~2E)

—24y°

=

Using Eq. (A1), we have

+oo +oo +oo ~
/ dlz/ dl3/ d1,C W (15, 13, 1)

S N
=24 — ! )a; ), 200t Snt e
n,f,n’.f’E A E En - EO
(N2 2 )
24 (O’O,t”) SOO.nfSOOnf’ 1
- Z E,—E))*E,—E (61)
n,f,n’.f’( n = 0) ( n 0)

The multiplicities are different if we choose N = 2
or N =3. We can insert them in the definition of the
quantity

a

4 2
v A S0+ 200 a6, forN=2,
¢ = ( (62)

3)\4 (3) _(3)
a(()l)) 5f0+( l)a(l ) 5{2 for N =3,
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which depend on the factors given in Egs. (A2) and (A3).
Using the angular selection rules, we finally obtain

+o0 +o0
/ dtz/ dt3/ dt,CH (15, 15, 1)

af’ S()Onlsnl n’f':|2

n

=24

— 244 )Z SG0.n15501 (En + Ew = 2Ep)
" o 2y~ EoP (B~ Eo)
3
~— GW(N,1 K 63
N(N+2)§K:[ (N. Dlkg (63)

Results for low-order perturbative coefficients for the four-
point correlation function (N = 2 and N = 3) are given in
Tables II and III.

D. Correlation function with a wigglet insertion

The last quantity we want to look at, within the context
of the O(N) theory, is the two-point correlation function
with a wigglet insertion,

C(1.2)

bii
i (h,13) = #C(l’z)(h, 13), (64)

where we have defined
CU(ty, 13) = ch.z, )(fz,h) =NCUI(1y,13).  (65)

Here, C'?)(1,,1;) = Cfll>(t2,t3) is equal to any non-
vanishing element within the internal group structure;
nonvanishing elements have their first index equal to their

second index. One finds

CU(ty,13) = (a3, (O)Qil(fz)%zl (13)) = (g, (O)Qfl(f2)><61;2](f3)> = 2(q;,(0)g;, (1)) (g3, (t2) @3, (3)))- (66)

Setting 7; = 1 for simplicity and introducing the quantity x; = r cos 6, for the coordinate along the quantization axis, as
before, we can perform the integrals with respect to the time variables, obtaining

/ dtz/ A, C0D 1y, 13) — 4 ZQ (01(x1)? i) (s dflxc | 37 (' 7 | x4, 0)

(E, — Eo)(Ey — Eq)

{ i7) (n, 1] ()2 |n' 37’ ) (', 771 10)
* 2,”-7';,7/ (En EOI)(En’ - EO) 1
*(0](x1)*[0) I( P\ ?
22 (E, —Eo> 1 ‘4<Z"ﬁ (E, - Eo) >

2|{0|rcos 0, |n’,if') |?

8§
E/—EO Y(Ey + E, — 2E,)
n,ij.n i

(67)

Using the radial S matrix elements defined in Eq. (A1) and the radial Q matrix elements defined in Eq. (AS), we obtain

+o0
/ dtz/ dl3 t2,t3

42-5 Zzﬂw flaloQOOnme”nlSn’lOO
N3)
nn' =02 E EO)(En’_EO)

(N)y2
a S n nl,n Sn’
+2(3_25N3)Zﬁ11( 10) 00,21 1150100

S50.010
- (N))2 g(N) 200.01 200,00
(E,—Eo)(E, —Ep) 22 5N3)Z(a0’1) Pog 2

n (En _EO)

n,n'

))2( (N))zs(z)o 1550 g1 (N)\2 S%o 1 :
—8(2— 2 n nl_ 42— 2 o
8(2=0w3) Z(E,—E())(E,, +E,—2E,) (2=0ns) {Zn(“o’l) En—EO] (68)

We define the angular factors

(69)
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Using the expressions given in Eqgs. (A2), (A3), (A6), and (A7) for the angular factors, we finally get

(70)

=4y > B

) Q00.neSnen1Sn1,00

N§ : SOOlenlnlsn’IOO

+o0 +o0 ~
/ dt2 / dl‘3 t2, t3
—00 —0o0

nn' £=0,2

_ 2B(N)Z QOO,OOS(Z)O.nl _ 4&(1\7) Z SOO.nl : _
0 n (En - E0)2 0 " En - EO

GO,

K

Results for perturbative coefficients [G('? (N, 1)] for the
cases N =2 and N = 3, for low orders of perturbation
theory, are given in Tables II and III, respectively. This
concludes our discussion of the formalism used for
obtaining higher orders of perturbation theory for the
correlation functions discussed in this article. We can
now proceed to the comparison with the analytic large-
order estimates and the subleading corrections, evaluated in
Ref. [15].

IV. COMPARISON WITH TWO-LOOP
CORRECTIONS FOR LARGE ORDER

A. Analytic formulas

In this section, we briefly review the results obtained in
[15] concerning the large-order behavior of the ground-
state energy and of an M-point correlation function G for a
D-dimensional field theory with N components, which can
be traced to the two-loop corrections to the instanton
configurations that describe the leading factorial growth
of the perturbative coefficients.. We refer to the perturbative

(M)

coefficient of order K as G ’. When K is large, we can

express G%m to order 1/K as

G = @F(K +b) G)b <—%>K
-0 o]
b= %, (72)

where A = 4/3 is the action of the ¢* theory evaluated on
the instanton saddle point multiplied by the coupling
constant and with an inverted sign. For large K, we can
replace K — 1 4+ b — K in the denominator of the second
term and identify the 1/K correction.

(E, — Eo)(E, — Eo) |

(E, — Eo)(Ey — Ey)

2 2
SOO nlSOOn '1

~(N)
8
% %; (En’ _EO)(En +En _2E0>

(71)

We start with the ground-state energy obtained using the
relation in Eq. (52) computing the bracket of the perturba-
tive Hamiltonian with the unperturbed and perturbed
ground-state eigenfunctions. Specifically, one needs to
examine the relation

/+oo C(O)

Here, [Gl(\('),)l} « 1s the specialization of the general asymptotic
perturbative coefficient G of order K given in Eq. (72) to
the ground-state energy function (M = 0) in one spatial
dimension (D = 1) and for an internal O(N) symmetry

group,

(73)

(ndr ~ Y _[GO(N. 1)]xg".

(0)(1\] 1) 1\? 1\ K
(0) _TW. ) N
[GOY(N,1)]x . F(K+b)(A> < A)
AdO(N, 1) >
X[“m”“ ﬂ’
N
b_j, (74)
where we defined
) 5 8N/2
cO(N,1) =2z TN/2) (75a)
5 5 703)
(N )= 24+2 47?
9 1 73 7,
+<16 St )N+32N (75b)

For the two-point correlation function given in Eq. (52)
one needs to examine the relation
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/ e~ SIGOWN ]k (76)

© K

Here, [GE\% | is the specialization of the general asymptotic
perturbative coefficient Gg of order K given in Eq. (72) to
the two-point correlation function (M = 2) in one spatial
dimension (D = 1) and for an internal O(N) symmetry

group,
@(N,1) 1\e/ 1\K
) _ Wl S
[GH(N,1)]g po F(K+b)<A> ( A>
Ad® (N, 1)
1l
X[ Kkrb-1 oK )]
b1+ (77)
2
where we defined
@) , 87
N,1)=2 78
c?(N,1) " TINJ2)" (78a)
5 5 73
dY(N,1) = — +— —
(N 1) 24 22 T 4
9 1 7203 7,
= - N N2, 78b
+<16 22 471'2) 3 (786)

For the second derivative of the two-point correlation
function at zero momentum, the asymptotic relationship is
given in Egs. (53),

/Fwﬂcwampv§:m@mwnmk¢: (79)

K

where

[GOP)(N, 1)) = WF(K +b) G) ’

INK[ . AdYP)(N,1)
- ) [ S K2
X<A>{ K+b-1 O )]’
h—14+Y (80)
2
with
©p) . 8N/2
14 —
c\“P)(N, 1) p3 rN/2) (81a)
‘ 5 4 21L3) 934(5)
(Op) = 4 T\
AN, 1) 24+ 4 P 27t
36 932(5) 7,
- = — N2 (8l
+< 6t o >N+32N (81b)

For the four-point correlation function, the relationship
is, from Egs. (63),

+0o0 +o0 +0o0
/ dr, / dr; / d1,CW (15, 13, 14)

~ Z )k g, (82)

where

GH(N. 1)) —@ <K+”)(l)b(_%)l(

AdW (N, 1) >
%“}Tﬁr+“Kﬂ
b:2+E, (83)

2

with

@ . 8N/2

1)=4 4
cW(N,1)=4rx FN/2)" (84a)
d¥(N,1) :i+£_7C(3)

’ 24 22 270

9 7£(3) 7,
+ <16_+ - )N+32N. (84b)

For the two-point correlation function with a wigglet
insertion, the relationship is, from Egs. (71),

[ Tan [T anct 0, ~ G W. D)o
K

(85)
where
(1.2) b K
(1,2) C (N, 1) 1 1
=— " T(K+b)|~] [-=
Ad (N, 1)
] - —— K2
ko1 T )} ’
N
b=2+=, (86)
2
with
8N/2
c2(N, 1) = 822 (87a)
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35 5 7C(3)
AN = 2
15 1 7¢(3) 7,
——— N +—=N-. 87b
" <16 272 4 > 3 (870)

For reference, the first few perturbative coefficients
[GAN D]k, [GP(N. D], [GH(N.1)]g,  and
[GU2(N, 1)]g, for K =0, 1, 2, 3, 4, 5, and 10, for the
internal O(N) symmetry groups with N = 1, 2, 3, are also
given in Tables I-III.

B. Significance of the two-loop correction

In Figs. 1-4, we plot the asymptotic expression of the
coefficients of the perturbative expansion of the ground-
state energy and of the correlation functions as a function
of the inverse of the order of perturbation K. These
coefficients have been divided by their leading order
expression reported in Eq. (72), that is, the expression
proportional to

01 =Ll (1) (-5)" 69

and they read

]y = ot (59)

These coefficients have been compared with their next-to-
leading order estimate, i.e., with the multiplicative term

d(M.N
=t =1 a2 ()
K
and with
00, o0 = 1 - g JWN).
=k~ v K+b-1
d(M.N)  (b—1)d(M.N) 13
—1-4 A o(=).
kK K RV
(1)

which carries a (part of the) next-to-next-to-leading 1/K?
correction term.

In Figs. 1-4, we observe a good agreement between the
asymptotic estimate of the perturbative coefficients of
the correlation functions obtained in Ref. [15] with the
explicit higher-order calculations reported here. Indeed,
the improvement of the agreement upon the inclusion of the
next-to-leading order correction is quite remarkable. The
calculation of the large-order behavior of the perturbative
expansion of the correlation functions for N > 1 was much

Correction to the Large—Order Asymptotics:
Ground—State Energy for N =1,2,3

100

0.50 0.75 1.00
1/K

(b)

FIG. 1. Coefficients of the perturbative expansion of the ground
state of the energy for N = 1, 2, 3 are displayed as a function of
the inverse of the order of perturbation (blue dots). These
coefficients have been divided by their leading asymptotic
estimate, given in Eq. (89), and have been compared with their
subleading order estimate. Dashed black lines have been obtained
while including the b — 1 term in the denominator of the 1/(K +
b —1) term in Eq. (91), while solid black lines exclude this term
and follow only the 1/K term given in Eq. (90). The first
150 perturbative coefficients have been obtained for N = 1, 2, 3.
(a) Ground-state energy for N = 1. (b) Ground-state energy for
N = 2. (c¢) Ground-state energy for N = 3.

more computationally expensive than for the case N = 1,
restricting the highest order of perturbation theory that was
computationally accessible.
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Two—Loop Correction to Large—Order Asymptotics for N =1

100

050 0.75 1.00
1/K

(c)

100
"

075 | . L0 ve

0.96

—(p)

000 003 006 009 012 015
1/K

025 -

0.00
0.00 025 050 0.75 100

1/K

(b)

050 0.75 1.00
1/K

(d)

FIG. 2. Same as Fig. 1, but data are plotted for the correlation functions in N = 1. The first 63 perturbative coefficients have been
obtained for each correlation function. (a) Two-point correlation function (N = 1). (b) Derivative of two-point correlator (N = 1).
(c) Four-point correlation function (N = 1). (d) Correlator with wigglet insertion N = 1).

We have extrapolated the asymptotic behavior of the
perturbative coefficients of the four-point correlation func-
tion. The highest-order perturbative coefficients for N = 1,
2, 3 are observed to be approximately aligned along a
straight line (as a function of the variable 1/K). That is a
strong indication that, despite the relatively small number
of perturbative coefficients available, we have already
reached the asymptotic behavior which is mathematically
represented by the first term of order 1/K, and additions
from the 1/K? and 1/K> terms, in the expansion in
Eq. (91). We have used an extrapolation scheme based
on a cubic polynomial in 1/K, and the corresponding
results have been plotted together with the predictions from
the two-loop calculation in Fig. 5. As can be seen from the
figure, the extrapolations show an excellent agreement with
the analytical predictions. For the four-point correlation
function under investigation, the extrapolated 1/K coef-
ficient reproduces the predicted one with an error of
0.020% for N =1, of 0.75% for N = 2, and of 0.76%
for N = 3.

Our fitting and extrapolation procedure is a two-step
process. First, we equate groups of three consecutive
perturbative coefficients, starting at order K = K, + i
and ending at order K = K, + i 4+ 2, with the following
third-order polynomial in 1/K:

200 gy g % b c

Epy (K) =142+t
K=K,+1i, K,+i+1, K,+i+2,
i=0, ... i (92)

Here, K = K, is chosen as the index of the first perturba-
tive coefficient where a visual inspection of the trend in the
perturbative coefficients shows a linear behavior of E%w) in
1/K. To be specific, the system of equations, consisting of

the relations (in the case of i = 0)

M
) (K,) =

[1]
[1]

o (93a)
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Two—Loop Correction to Large—Order Asymptotics for N = 2

Sx
0]

050 K 075 1.00
1/

(a)

050 0.75 1.00
1/K

(c)

FIG. 3.
panels (a), (b), (c), and (d).

—~(M —_(M
:Ei:{))(Ka +1) =8¢, (93b)
—(M —(M
:Ei:)o)(Ka +2)= :.%azrz, (93c¢)

leads to coefficients a;_q, b;—y, and c;—y. The system of
equations

(M) (M)

B (Ko +1) =E¢, (94a)
—(M —~(M
210 (K, +2) =g, (94b)
—~(M —~(M
=0 (K, +3) = 8¢5 (94c)

leads to coefficients a,_;, b;,—;, and c¢;_;. This process
is repeated for i =2, i=3, up to i=1i,,, where
K, = K, + inax + 2 is the highest perturbative order cal-
culated. The asymptotic behavior of the coefficients a;, b;,
and c¢; has then been obtained through a least-squares fit
with fit function

10 N
090
LN =
08 ° > < %085
° o7 s i
° o 080
L] =~ ~
06 | ~ 9075
" ~006 008 010 012 014
S =zl /K
N . =~ -
04 - =~

02

0.00 025 050 075 1.00
1/K

(®)

050 075 1.00
1/K

(d)

Same as Fig. 2, but for N = 2. We numerically compute the first 16, 18, 13, 14 perturbative coefficients, respectively, for

a a [04
f(X):1+;1+x—§+x—_§, (95)

where x = i is the initial index of the system of equations
discussed above, suitably generalized to a continuous real
rather than integer argument. This leads to the best fit
parameters @ = (@), b = (a,), and ¢ = (a3), where (-)
indicates the result of the best least-squares fit. The fitted
(red) curve in Fig. 5 is then obtained as

b ¢

a2t (96)

EM gy =1+ 2

EM(K) =1+ I
For other correlation functions, we found that the deviation
of the 1/K coefficient obtained from the extrapolation of
the exact analytic result varies and depends on the
correlation function studied as well as the number of
perturbative coefficients available. In particular, the
deviation depends on how close the highest-order pertur-
bative coefficients reproduce the asymptotic behavior. In all
cases of correlation functions studied, the deviation of the
best fit for the 1/K coefficient from the analytic calculation
is less than 15%. A potential improvement based on a
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Two—Loop Correction to Large—Order Asymptotics for N =3

050 075 1.00
1/K

(a)

[ ] -
050 075 100
1/K

(©)

10 0.90

08 < 080
i

0.70
000 005 010 9.15 020 025
1/K

02

0 ' ' L i
0.00 . 050 0.75 1.00

10

08

02

0 [ ] -
000 y 050 075 1.00
1/K

(d)

FIG. 4. Same as Fig. 2, but for correlation functions in a theory with an internal symmetry group O(N = 3). Correspondingly, we
numerically compute the first 16, 18, 15, 14 perturbative coefficients, respectively, for panels (a), (b), (c), and (d).

higher number of perturbative coefficients is left for future
investigations. In the current paper, our goal is to verify the
leading (two-loop) correction to the large-order perturba-
tive expansion about the instantons, not to computationally
drive the perturbative higher-order calculations expansions
to their limits.

V. CONCLUSIONS

In this article, we have discussed the explicit higher-
order calculation of the perturbative expansions of corre-
lation functions for the O(N') quartic anharmonic oscillator.
We discussed the N = 1 quantum anharmonic oscillator in
Sec. II. In Sec. III, we discussed the formulation of the
perturbative expansion of the correlation functions of the
O(N) quantum anharmonic oscillator, where the internal
symmetry group is assumed to be O(2) or O(3), and
general formulas are given which allow us to enter a unified
evaluation of the perturbative expansions. Specifically, we
considered the two-point correlation function in Sec. III B,
the four-point correlator in Sec. III C, and the correlation
function with a wigglet insertion in Sec. IIID. The
comparison with analytic results together with a review

of the previously (Ref. [15]) obtained results for the large-
order behavior of the correlation functions was carried out
in Sec. IV. The data in Figs. 1-3 underline the importance
of the next-to-leading order correction to the large-order
factorial growth of the perturbative coefficients for the
demonstration of the agreement of asymptotic estimates
and explicit perturbative calculations.

Let us take, as an example, the coefficient of order gg (the
“eight-loop coefficient”) for the two-point correlation
function in the O(3) model. The explicit result is

(G ] xg ~3.03 x 10°. (97)
The leading asymptotic term is
G5 ks ~ 8.87 x 10°. (98)

With the inclusion of the two-loop (order 1/K) correction,
we find the (much better) estimate

G, ks 7 2.38 X 106, (99)
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Extrapolation Results of Large—Order Asymptotics:
Four-point Correlation Function for N =1,2,3
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FIG. 5. Comparison between the extrapolated (red curves) and
predicted (black curves) asymptotic behavior of the perturbative
coefficients of the four-point correlation functions for N = 1, 2,
3. (a) Four-point correlation function N = 1. (b) Four-point
correlation function N = 2. (c¢) Four-point correlation function
N =3.

which differs from the exact perturbative coefficient by
roughly 20 percent. At order K = 10, we already observe
93 percent agreement, whereas at order K = 14, the

agreement is slightly better than 97 percent. In some other
cases, the agreement is surprisingly good even at very low
orders. For example, for N = 2, the two-loop large-order
estimate of the coefficient of the four-point correlation
function agrees with the exact perturbative coefficient at the
level of 98 percent, in eight-loop order (K = 8).

The tests presented here are essential to have a good
starting point from which to extend the calculations to field
theory, i.e., to the case D > 1, where this type of checks is
not possible anymore. Specifically, the agreement between
these two different approaches ensures the correctness of
the method described in [15], which can then be general-
ized to obtain the perturbative expression of the correlation
functions for two- and three-dimensional N-vector models
where it is not possible to use the conventional techniques
of perturbation theory. We recall that, irrespective of the
dimension D, the same dispersion relation relates the large-
order growth of the coefficients of a correlation function
with the behavior at small orders of perturbation of its
imaginary part for negative coupling.
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APPENDIX A: SOME USEFUL DEFINITIONS
AND IDENTITIES

1. Matrix elements

In this section, we will derive the expression for the
various angular matrix elements denoted as « and /3, which
appear in the main text. We start by considering the matrix
element (n,7j|rcos@,|n’,77'). If the coordinate rcos@, is
aligned with the quantization axis, then the only
nonvanishing transition matrix element will be obtained
for all magnetic projections equal to zero. We can there-
fore assume that |n,7j) =|n,¢,0,...,0) and |n,7f)=
|n',¢’,0,...,0). Under these assumptions, we can write
the matrix element as

<n,ﬁ|FCOS Hlln/’ ﬁ/> - Sizf,ri’f’a,(/ﬁ]?lz” (Ala)
where the radial part is given as follows:
Snf.n’f’ = /d}" rNRnf(r)Rn’f’(r)’ (Alb)
™ = [ do,---do 0,)J(6,. ....0
Ay p = 1 -1 €08(61)J(0y, ..., On_1)
X Y(}"'O*(ﬁl, ...,GN_l)Yg}”O(Gl, ...,HN_l), (AlC)
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and J(6,,...,0y_;) is the Jacobian due to the hyper-
spherical change of coordinates.
Due to the orthogonality relations between the hyper-
(N
spherical harmonics, only a few of the a,, terms are
nonzero. For example, if £ = 0, then we have for N = 2
and N = 3, respectively,

1
al), = 5 (60 +80.1). (A2a)
o _ 1 A2b
Ay p = 7§ 71 ( )
When ¢ = 1, one instead obtains
@ _ L, 45 A3
A g = 5( o0+ 0p2), (A3a)
3) 1 2
o, =—=0p0+—=05, A3b
1.7 \/5 0 \/ﬁ 2 ( )
In general, one has
e L 5 A4
Ap p = 5( o o1 00 o) (A4)

For the two-point function with a wigglet insertion,

we also have to consider the matrix element
(n,ij|(rcos 0,)? |n’ q’) where |n,7) = |n,Z,0,...,0) and
|n',ify = |n',¢,0,...,0). It can be written as

(n,ij|(rcos 0,)*n,ij') = an,n/f/ﬁ;?,, (ASa)
where

Ouvie = [ &P Ry (DRyr (). (ASH)
ﬂg’v{lE / d91 s dHN_l(COS(Gl))ZJ(HI, ey HN—I)

X Y90 (0, ....0y_)Y% 00y, ....0y-1).  (A5c)

Also in this case, because of the orthogonality relations
between the hyperspherical harmonics, only a few of the
,B%,}, terms are nonzero. For example, if £ = 0, then we

have for N =2 and N = 3, respectively,

1

ﬂ(@ 1 (2050 + 640+ 6. 2), (A6a)
1 2

/B(%' =3 <5f’,0 + ﬁéf’ 2> (A6D)

When ¢ = 1, instead, one has

ﬂ(lzjﬂ Z (6// 1 + 2551 + (Sf/ ) (A7a)

0 _ 1 5 5 A7b

ﬁ_l,g/—4( o1+ 0p1+ 04 3), (A7b)
1 3

Pir =7 (3551,1 + 2\@6ﬂ.3>. (A7c)

The above formulas can be used to perform all required
angular integrals for the correlation functions considered in
our investigations.

2. Case N=3

For N = 3, the coefficients a(fo,3 and ﬂf f, can be
written in terms of the Gaunt coefficients Y27 A » defined as

mm m
the integral over three spherical harmonics

2r n
/ do / dé sin(0)
0 0

X Y;m <9’ QO) Yf’m’ (97 (ﬂ) Yf”m” (97 (/7)

Yff/ o

mm'm"

(A8)

By writing cos(f) and cos(6)? in terms of spherical
harmonics we get

=2, [vgls (49)

and

3 1 4 !
Brr =3 (4)3Ya +2v2r5 ). (AL0)
Alternatively, the integral appearing in Eq. (A8) can be
interpreted using the Wigner-Eckart theorem and can be
written as the product of the Clebsch-Gordan coefficient
corresponding to the quantum numbers ¢, ¢/, £", m, m’,

and m”, and the reduced matrix element of the spherical
harmonic tensor Y(0,¢) = Y, (0, ¢), as

2r T
A d(l) A do sin(&) Y}m (9, (/)) Yf’m’ (9, (0) Yf//m// (9, q))

C?/ /f// "
me'm” o Y f”

where the reduced matrix can be expressed using a 3j
symbol with three zero magnetic projections:

, 20+ 1)(2¢ +
(AT llen) = (1) CEDCE
T
f f/ f//
X .
<0 0 0)
3)

Using this convention the coefficients a,, and ﬂgzﬂ, will

= (=1)f—¢"+¢ ZLmEm (A1)

(2" +1)

(A12)

read
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Cl(’)’;’ ! v
A AlA

al), = (=1)'2, [ (A13)

T Czof’ '

\/21/’

+ (=1 —f’+f2ﬁM ||Yol|e >

These results are in agreement with the formulas obtained in
Appendix A 1.

1 4 o
Pl = (0 (110

(A14)

APPENDIX B: ALTERNATIVE PROCEDURE

The perturbative treatment of the radial part can be
accomplished by a direct mapping of the procedure out-
lined in Egs. (2)-(8) onto a computer algebra system.
However, it is useful to delineate an alternative procedure to
compute the eigenvalues and eigenfunctions of the per-
turbed three-dimensional harmonic oscillator.

We will deal with the N = 3 case; the generalization to
N =2 is relatively straightforward. We adapt to our case
the results of Ref. [22], where the computation has
been carried out for a general central field perturbation.
The eigenvalues and eigenfunctions of our Schrodinger
equation

(—62 +rr 4+ g r4> W,om(r,0,0)

= anfanfm(r7 0, ’ﬂ)’ Ay = 2Emf’ (Bl)

where E,, can be written as a perturbative series in the

\Pnfm(r’ 9’ (,0) = Rnf(r)Yfm (9’ (/))7 (BZb)
Roo(r) = N 200 Sl (P) g5, (B2c)
K=0

where N, = N is defined in Eq. (30). Each coef-
ficient u’ ,(r?) can be expressed as a linear combination of
the eigenfunctions of the unperturbed case (it can be shown
that only 4K terms will contribute to the Kth-order
perturbation)

K qn/+2K f+
W) = Y AL, (B3a)
j=max(q,,—2K.0)
1
qnf:anf,O_?’_Zf:E(n_f)' (BSb)

The coefficients a,, g and Ag; can be determined from

Egs. (32) and (33) of Ref. [22] by setting B;
cases are

= %. Special

AO :5

j’qnf, AK~qnt’ = 0 V K > 0 (B4)

J
However, there are some typos in the passages of the paper,
and we report here a corrected version of the main passages
needed to arrive to the result.

We use the following recursive relation of the general-
ized Laguerre polynomials:

coupling parameter g, ¢ m !
ML) =Y a(mon LY L (P). (BS)
0 n=0
Ay = Zanf,KgK7 (Bza)
K=0 where
|
_1yn-n ! 2 min(j+m—n.j) j+m—n +k+ f_i_i
alm.n.jy = - CT CE O ! (Bo)
LGt+m=—nte+3), oo =R n=j+k)im—j+kl
We can then rewrite Eq. (26) of [22] as
o o = 2(K—w+1) S "
(@ne = DAg;L; (%) = Z 1(K—w) ZAWJ Z a(K =w A 1i )L i 42 at ZAWJ j
=0 i=0
00 Jj+2 f+
=5 Ay 3 a2+ 2= i) - Z g ZAWJ j (B7)

Jj=0 i=j-2

. £+ . .
For a specific value of L +2(r2), with the convention

w 0
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0(0) =1 (B3)
for the Heaviside step function ©, we get
1 0 1 K-1 (Kw)
Agps=—— Y A 1)a2.j+2=5.)02—|s—jl)———) ay, A,
K S(me_s)jgo (K-1)j ( ) ( | |) 4(qnt’_s);) 3
=— Ag_nia2,j+2=s,j)———) a, "A,
(K=1)j »J »J nt w,s%nt K
8(q”f - S) max(j=q,,—2(K-1),0) 4(q’“'p - S) w=0
1 qu+2<K_1)
=5 > Ag-1);0(2, ] +2 = que J)- (BY)

J=max(q,,~2(K-1).,0)

We can therefore write a recursive relation that will provide an expression for the perturbative coefficients of the eigenvalues
and eigenfunctions of the Schrodinger equation. The two-dimensional case can be derived from the three-dimensional one
using the expression for the eigenfunctions reported in Eq. (28).
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