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We present a method to study the semiclassical gravitational collapse of a radially symmetric scalar
quantum field in a coherent initial state. The formalism utilizes a Fock space basis in the initial metric, is
unitary and time reversal invariant up to numerical precision. It maintains exact compatibility of the metric
with the expectation values of the energy momentum tensor in the scalar field coherent state throughout the
entire time evolution. We find a simple criterion for the smallness of discretization effects, which is violated
when a horizon forms. As a first example, we study the collapse of a specific state in the angular momentum
l ¼ 0 approximation. Outside the simulated volume, it produces a Schwarzschild metric with rs ∼ 3.5lp.
We see behavior that is compatible with the onset of horizon formation both in the semiclassical and
corresponding classical cases in a regime where we see no evidence for large discretization artifacts. In our
example setting, we see that quantum effects accelerate the possible horizon formation and move it radially
outward. We find that this effect is robust against variations of the radial resolution, the time step, the
volume, the initial position and shape of the inmoving state, the vacuum subtraction, the discretization of
the time evolution operator, and the integration scheme of the metric. We briefly discuss potential
improvements of the method and the possibility of applying it to black hole evaporation. We also briefly
touch on the extension of our formalism to higher angular momenta but leave the details and numerics for a
forthcoming publication.
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I. INTRODUCTION

Ever since Hawking’s seminal paper [1], semiclassical
effects in the vicinity of horizons have been widely debated
in the literature [2–6] (for reviews, see, e.g., [7,8]). A lot of
this discussion has focused on the vacuum behavior of
quantum fields on a background metric that is supposed to
have formed by a different mechanism than by the collapse
of the quantum fields themselves. In the classical theory,
the formation of a horizon from collapsing scalar fields has
been intensively studied numerically [9–20], while for the
semiclassical case, we are aware of only one other
suggestion for a numerical treatment [21,22], although
various other methods have been applied to this problem
[23–27].
In this paper, we present a formalism to numerically

study the gravitational collapse of a radially symmetric
complex scalar quantum field in real time in the angular
momentum l ¼ 0 approximation.
The fact that the scalar field only interacts semiclassi-

cally via gravity allows us to trace its evolution without any

Fock space truncation if we remain in the Fock space of the
original metric. While it would be extremely complicated to
represent the scalar field in the Fock space of the final
metric and thus observe the outgoing particle content, we
can nonetheless trace the expectation values of crucial
quantities such as the Hamiltonian density of the scalar
field throughout the entire time evolution and thereby
obtain a quantitative picture of the collapse.
One of the main features of our formalism is the

guaranteed compatibility of the scalar field with the back-
ground metric at all times. Although we can disentangle
classical from vacuum contributions and thus explicitly
study backreaction effects, the metric is at every point in
our time evolution compatible with the corresponding
expectation value of the energy-momentum tensor of the
scalar field.
Using this new formalism, we then investigate the

collapse of one specific field configuration that asymptoti-
cally gives a Schwarzschild metric outside of the simulated
volumewith (in Planck units) rs ∼ 3.5. We demonstrate that
with very moderate computational effort, our formalism
can trace the time evolution of such a state faithfully until
about a maximum rs=r ∼ 0.9, signifying the onset of
horizon formation. We investigate the sizes of discretization
and finite volume effects and apply different vacuum
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subtraction procedures, discretizations, and integration
schemes. In addition, we give a simple criterion that
signifies the presence of large discretization artifacts. In
our example setting, the onset of the horizon formation in
the semiclassical theory happens at larger radii and with a
higher rs=r than in the classical case (see Fig. 1). This
finding is corroborated by an energy influx into the region
of the forming horizon both from the outside and from the
inside.
Continuing our simulations at times even closer to the

expected horizont formation, we see a host of new effects
that we deem likely to be discretization artifacts.
Although it is well-known that l ¼ 0 modes dominate

the Hawking radiation in the spherically symmetric case
[28], and that the l ¼ 0 approximation, which we employ
here, can be used to obtain some qualitative insight [29], we
would like to stress that it is still an uncontrolled approxi-
mation in principle and that taking higher momentum
modes into account will be essential for a quantitative
understanding. The formalism as presented in this paper is
not directly suited for the complete numerical treatment of
the system, including the vacuum contributions to the
higher angular momentum modes of the scalar field. A
generalization taking these modes into account is possible
[30] and will be studied in detail in a forthcoming
publication.
The paper is structured as follows. In Sec. II, we derive

the semiclassical (and classical) equations of motion for
coherent states in our original Fock space basis. In Sec. III,
we discretize these equations of motion and provide a
method for implementing sensible consistent initial states.

In Sec. IV, we present the main physics results, and we
conclude in Sec. V.

II. DERIVATION OF THE FORMALISM

A. The classical equations of motions

Wework in Planck units ℏ ¼ c ¼ G ¼ 1. We investigate
a radially symmetric classical Nc component complex
scalar field ϕ̄ on a background metric of the form [9],

gμν ¼ diagðα2ðt; rÞ;−a2ðt; rÞ;−r2;−r2sin2θÞ: ð1Þ

From the action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

16π
Rþ 1

2
gμνϕ̄†

;μϕ̄;μ

�
;

we obtain a complete set of classical equations of motion
[9,20]. For the metric part, we have

α;r
α

−
a;r
a

−
a2 − 1

r
¼ 0

a;r
a

þ a2 − 1

2r
¼ a

rα
Hr

a;t
a

¼ α

ra
Pr; ð2Þ

while the evolution of the scalar field is governed by the
Hamiltonian H ¼ R∞

0 drHr arising from the Hamiltonian
density,

Hr ¼
α

a

�
1

2πr2
Π̄Π̄† þ 2πr2ϕ̄†

;rϕ̄;r

�
;

where the conjugate momenta are defined as

Π̄ ¼ 2πr2
a
α
ϕ̄†
;t Π̄† ¼ 2πr2

a
α
ϕ̄;t;

In addition, a pseudo-momentum density,

Pr ¼ ðΠ̄ϕ̄;r þ Π̄†ϕ̄†
;rÞ;

occurs in the last equation in (2). This equation, however, is
not independent, and we ignore it in our numerical treat-
ment other than for crosschecking purposes.
We now perform the substitution,

ϕ ¼
ffiffiffiffiffiffi
2π

p
r

ffiffiffiffiffi
a0

α0

s
ϕ̄;

so that the Hamiltonian density may be written as

Hr ¼ ðQψÞ†rðQψÞr; ð3Þ

FIG. 1. Three snapshots of the gravitational collapse of a
spherically symmetric scalar field. The plots show, for three
different asymptotic observer times, the radial Hamiltonian
density of the scalar field (or its expectation value in the case
of the quantum field) and the ratio of local Schwarzschild radius
to radius rs=r for both the classical and semiclassical case. It is
clearly visible that quantum effects increase the peak of the
forming horizon as well as shift its location radially outward.
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where

Q ¼
�
q 0

0 A

�
ψ ¼

�
ϕ

Π†

�
; ð4Þ

with the diagonal matrix A that has elements,

Ar ¼
a0rαr
α0rar

: ð5Þ

The metric parameters a0 and α0 here refer to the values
of a and α at a reference time t0, and the operator q is
defined as

q ¼
ffiffiffi
α

a

r
r∂r

ffiffiffiffiffi
α0

a0

s
1

r
: ð6Þ

To facilitate a mode decomposition of the field ϕ, we
introduce the singular value decomposition (SVD) of q0,
the operator q at time t0, as

q0 ¼ UωVT; ω ¼ diagðω1;ω2;…Þ: ð7Þ

This decomposition allows us to define field modes
ψ̂k, which depend on the metric at the reference
time t0, as

ψ r ¼
Z

∞

0

dkU�
rkψ̂k: ð8Þ

Here and in the following, quantities with an index k are
understood to be related to the modes defined in the above
equation. We adopted an index notation for k and r even for
the continuous case. Using the basis,

ϕ̂k ¼
ðb−Þk þ ðbþÞ†kffiffiffiffiffiffi

2ω
p ϕ̂†

k ¼
ðb−Þ†k þ ðbþÞkffiffiffiffiffiffi

2ω
p

Π̂k ¼ −
ðb−Þk − ðbþÞ†kffiffiffiffiffiffi

2ω
p Π̂†

k ¼
ðb−Þ†k − ðbþÞkffiffiffiffiffiffi

2ω
p ;

we express the Hamiltonian density as

Hr¼
1

2

Z
∞

0

dk0
Z

∞

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p
Ar

× ðððbþÞk0 ðbþÞ†kþðb−Þ†k0 ðb−ÞkÞðUrk0UrkþVrk0VrkÞ
þððbþÞk0 ðb−Þkþðb−Þ†k0 ðbþÞ†kÞ
× ðUrk0Urk−Vrk0VrkÞÞ:

The poisson brackets of the ðb�Þk and ðb�Þ†k are

fðbþÞk; ðbþÞ†k0g ¼ fðb−Þk; ðb−Þ†k0g ¼ −iδðk − k0Þ1f; ð9Þ

where 1f is the unit matrix in component space, and all
other Poisson brackets vanish. In the semiclassical theory,
the ðb�Þ†k and ðb�Þk will therefore play the role of creation
and annihilation operators of the scalar field.

B. Time evolution of observables

In anticipation of the semiclassical time evolution, we
will now develop the equations of motion for the ðb�Þ†k andðb�Þk, keeping in mind that they can be either complex
numbers obeying the canonical equations of motion or
operators with commutation relations,

½ðbþÞk; ðbþÞ†k0 � ¼ ½ðb−Þk; ðb−Þ†k0 � ¼ δðk − k0Þ1f: ð10Þ

We start by writing the Hamiltonian in the compact form,

H ¼ bþWb†þ þ b†−Wb− þ bþXb− þ b†−Xb
†
þ;

where we have defined

Wk0k ¼
Z

∞

0

dr
1

2

ffiffiffiffiffiffiffi
ωk0

p �
Urk0

a0α
α0a

Urk þ Vrk0
a0α
α0a

Vrk

� ffiffiffiffiffiffi
ωk

p

and

Xk0k ¼
Z

∞

0

dr
1

2

ffiffiffiffiffiffiffi
ωk0

p �
Urk0

a0α
α0a

Urk − Vrk0
a0α
α0a

Vrk

� ffiffiffiffiffiffi
ωk

p
:

The Heisenberg equations of the ðb�Þk and ðb�Þ†k on a
given metric then become1

ðbþÞk;t ¼ −iðbþÞk0Wk0k − iðb−Þ†k0Xk0k

ðb−Þk;t ¼ −iWkk0 ðb−Þk0 − iXkk0 ðbþÞ†k0 ; ð11Þ

which can easily be shown to be a Bogolyubov [31]
transformation in the semiclassical case. We would now
like to construct the creation and annihilation operators at a
given time b†�ðtÞ and b�ðtÞ in terms of the same operators
b†� ¼ b†�ðt0Þ and b� ¼ b�ðt0Þ at the reference time t0.
Because of the form of the time evolution (11), we can
generically write

bþðtÞ ¼ bþwþðtÞ þ b†−x
†
þðtÞ

b−ðtÞ ¼ w−ðtÞb− þ x†−ðtÞb†þ;

with coefficient matrices w�ðtÞ and x�ðtÞ that obviously
fulfill the initial conditions,

w�ðt0Þ ¼ 1 x�ðt0Þ ¼ 0:

1Here, we introduce an integral convention xkyk ≔
R
∞
0 dkxkyk

over continuous momentum modes. For discrete indices, the
standard summation convention still applies.
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Using these initial conditions and the time evolution
of the creation and annihilation operators (11),
we find the time evolution of the coefficient matrices
to be2

_wðtÞ ¼ −iwðtÞW − ix�ðtÞX
_xðtÞ ¼ −ixðtÞW − iw�ðtÞX;

where we can identify

wðtÞ ¼ wþðtÞ ¼ wT
−ðtÞ xðtÞ ¼ x†þðtÞ ¼ x�−ðtÞ:

Since the time evolution is a Bogolyubov transformation,
the coefficient matrices fulfill the identities,

1 ¼ w†ðtÞwðtÞ − x†ðtÞxðtÞ xTðtÞwðtÞ ¼ wTðtÞxðtÞ:

We now define linear combinations,

uðtÞ ¼ ðwðtÞ þ x�ðtÞÞ ffiffiffiffi
ω

p
UT

vðtÞ ¼ ðwðtÞ − x�ðtÞÞ ffiffiffiffi
ω

p
VT;

of the coefficient matrices for which the time evolution
equations,

_u ¼ −ivAq0T

_v ¼ −iuAq0; ð12Þ

are particularly well-suited for a numerical treatment. We
can express Hr and Pr at an arbitrary time t in terms of
these new coefficient matrices and the creation and anni-
hilation operators at the initial time t0 as

Hr ¼
1

2
ðbþvþ b†−v�ÞArðv†b†þ þ vTb−Þ

þ 1

2
ðbþu − b†−u�ÞArðu†b†þ − uTb−Þ ð13Þ

and

Pr ¼
i
2
ðbþuþ b†−u�Þ

a0r
α0r

ðv†b†þ − vTb−Þ

−
i
2
ðbþv − b†−v�Þ

a0r
α0r

ðu†b†þ þ uTb−Þ: ð14Þ

The first two equations of (2) together with (5), (6), (12),
(13), (14) and the initial conditions,

uðt0Þ ¼
ffiffiffiffi
ω

p
UT

vðt0Þ ¼
ffiffiffiffi
ω

p
VT: ð15Þ

thus form a complete set of equations of motion for the
classical case. As a last step, we replace the parameters α
and a, describing the metric by the more suitable

d ¼ r
a2

α̂ ¼ αa;

which we can use to rewrite the equations of motion (2) as

1 − d;r
d

¼ α̂;r
α̂

1 − d;r
2d

¼ Ĥr

−
1

2α̂

d;t
d

¼ P̂r; ð16Þ

with

Ĥr ¼
1

2
ðbþvþ b†−v�Þ

1

α̂0rd0r
ðv†b†þ þ vTb−Þ

þ 1

2
ðbþu − b†−u�Þ

1

α̂0rd0r
ðu†b†þ − uTb−Þ ð17Þ

and

P̂r ¼
i
2
ðbþuþ b†−u�Þ

1

α̂0rd0r
ðv†b†þ − vTb−Þ

−
i
2
ðbþv − b†−v�Þ

1

α̂0rd0r
ðu†b†þ þ uTb−Þ: ð18Þ

The relation to the original densities is given by

Ĥr ¼
1

α̂rdr
Hr P̂r ¼

1

α̂rdr
Pr: ð19Þ

We also recast the auxiliary variable (5) as

Ar ¼
α̂rdr
α̂0rd0r

;

and the operator q0 ¼ qðt0Þ (6)

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
rα̂0d0

p
∂r

ffiffiffiffiffiffiffiffiffiffi
α̂0d0

r3

r
: ð20Þ

Note that Ĥr does not depend on the current metric at all,
but only on the metric at the reference time t0. It is thus easy
to radially integrate the first two equations in (16).

C. Vacuum subtraction and normal ordering

We now proceed to quantize the scalar field in the
Heisenberg picture. For this purpose, we can utilize the
standard Fock space representation at the reference time t0,
since all the subsequent time evolution is absorbed by the
coefficient matrices u and v. We also need to replace theHr

2We use the shorthand notation _x ≔ x;t.
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and Pr in (2) by expectation values of suitably normal
ordered operators.
Let us start by considering a general bilinear operator,

O¼ o0þbþoþþb†þþb†−o−−b−þbþoþ−b−þb†−o−þb
†
þ:

Its vacuum expectation value is

h0jOj0i ¼ o0 þ TrðoþþÞ;

and thus, if we want it to vanish, we have to impose the
normal ordering condition,

o0 ¼ −TrðoþþÞ:
If we add to the modified Hamiltonian density (17) a
constant term ĥ0r so that

∶Ĥr ≔ ĥ0r þ Ĥr;

the normal ordering condition becomes

ĥ0r ¼ −
Nc

2

1

α̂0rd0r
ðv�krvkr þ u�krukrÞ:

Naturally, this condition cannot be satisfied for all times
simultaneously. Given the physical situation we are inter-
ested in, however, we choose the following two subtraction
schemes. First, we simply demand that at our reference time
t0, where the nonzero energy density is far away from a
potentially forming horizon, the vacuum expectation value
of the Hamiltonian density vanishes. This results in

ĥ0r ¼ −
Nc

2

1

α̂0rd0r
ðv�krðt0Þvkrðt0Þ þ u�krðt0Þukrðt0ÞÞ; ð21Þ

where the initial ukrðt0Þ and vðt0Þ are given by (15). This
fails to exactly reproduce the desired property, namely that
the vacuum expectation value of the Hamiltonian density
vanishes on a flat background metric, but it approaches it
asymptotically as we shift the initial position of our
inmoving field farther outward. The second possibility is
to try to directly render the Hamiltonian density zero on a
flat background metric. To accomplish this, we can in
principle define

ĥ0r ¼ −
Nc

2
ðvfree�kr vfreekr þ ufree�kr ufreekr Þ; ð22Þ

with the free

ufree ¼ ffiffiffiffiffiffiffiffiffi
ωfree

p
UT

free

vfree ¼ ffiffiffiffiffiffiffiffiffi
ωfree

p
VT
free;

where Ufree, Vfree, and ωfree are obtained by an SVD of the
free operator,

UfreeωfreeVT
free ¼ qfree ¼ r∂r

1

r
:

In this paper, we predominantly use the first definition,
but we will also explore the possibility of imposing the
second condition in our numerical simulations. Several
other subtraction schemes are possible, and it would be
interesting to study if they lead to different behaviors. We
leave this question for future work. We note in passing that
h0jP̂ðt0Þj0i ¼ 0, and thus, no vacuum subtraction needs to
be applied for this operator.
There is a third type of vacuum subtraction that is

interesting purely as an observable. We call it the final state
vacuum subtraction, and it consists of subtracting the
vacuum Hamiltonian density,

ĥ0r ¼ −
Nc

2

1

α̂rdr
ðv̄�krv̄kr þ ū�krūkrÞ; ð23Þ

where the

ū ¼ ffiffiffiffi
ω̄

p
ŪT

v̄ ¼ ffiffiffiffi
ω̄

p
V̄T

belong to the operator,

q̄ ¼
ffiffiffiffiffiffiffiffi
rα̂d

p ∂r

ffiffiffiffiffiffi
α̂d
r3

r
; ð24Þ

that has a singular value decomposition (SVD),

q̄ ¼ Ū ω̄ V̄T: ð25Þ

It corresponds to subtracting the vacuum Hamiltonian
density of the vacuum state corresponding to the metric
parameters α̂ ¼ α̂ðtÞ and d ¼ dðtÞ that have evolved at a
time t. Since it is extremely difficult to reexpress states
other than the vacuum in this new Fock basis, wewill not be
using it for the time evolution of our system, but it is
nonetheless an interesting observable.

D. Coherent states

Let us now construct a single particle state,

jfi ¼ ðf†þb†þ þ b†−f−Þj0i;

where the f�ik are as of now arbitrary coefficients of the ith

field component corresponding to the SVD component
(frequency) ωk. We will use the shorthand notation,

b† ¼ ðf†þb†þ þ b†−f−Þ;

and for convenience, impose unit normalization on the
state,
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hfjfi ¼ f†þfþ þ f†−f− ¼ 1:

Taking the expectation value of ∶Ĥr∶ in this state results in

hfj∶Ĥr∶jfi ¼
Nc

2

1

α̂0rd0r
ðv�krvkr þ u�krukrÞ þ ĥ0r

þ 1

2

�
fTþ

�
u�

1

α̂0rd0r
uT þ v�

1

α̂0rd0r
vT

�
f�þ

�

þ 1

2

�
f†−

�
u�

1

α̂0rd0r
uT þ v�

1

α̂0rd0r
vT

�
f−

�
;

while

hfj∶P̂r∶jfi ¼
Nc

α̂0rd0r
Imðv�krukrÞ

þ i
2

�
fTþ

�
v�

1

α̂0rd0r
uT − u�

1

α̂0rd0r
vT

�
f�þ

�

þ i
2

�
f†−

�
v�

1

α̂0rd0r
uT − u�

1

α̂0rd0r
vT

�
f−

�
:

It is straightforward to generalize these relations for
arbitrary n-particle states,

jni ¼ 1ffiffiffiffiffi
n!

p b†nj0i:

We will, however, concentrate on unit normalized coherent
states,

jλi ¼ e−
jλj2
2

X∞
n¼0

λnffiffiffiffiffi
n!

p jni;

with the coherent state parameter λ. The relevant matrix
elements of coherent states are given by

hλjb†kþbk0þjλi ¼ jλj2fþðkÞf�þðk0Þ
hλjb†k−bk0−jλi ¼ jλj2f�−ðkÞf−ðk0Þ
hλjbk0þbk−jλi ¼ λ2f−ðkÞf�þðk0Þ
hλjb†k0−b†kþjλi ¼ λ�2f�−ðk0ÞfþðkÞ:

If we thus define

lkþ ¼ λ�fþðkÞlk− ¼ λf−ðkÞ;

we can cast the matrix elements ĥr ¼ hλj∶Ĥr∶jλi and p̂r ¼
hλjP̂rjλi into the form,

ĥr ¼
Nc

2α̂0rd0r
ðv�krvkr þ u�krukrÞ þ ĥ0r

þ 1

2α̂0rd0r
ððluÞ†rðluÞr þ ðlvÞ†rðlvÞrÞ ð26Þ

p̂r ¼
Nc

α̂0rd0r
Imðv�krukrÞ

þ 1

2α̂0rd0r
ððluÞ†rðlvÞr þ ðlvÞ†rðluÞrÞ; ð27Þ

where

lu ¼ −iðu†lþ þ uTl−Þ
lv ¼ v†lþ − vTl−: ð28Þ

Note that the second line on the rhs of both (26) and (27)
are equivalent to the right-hand sides of (17) resp. (18)
when substituting ðl†þ; l−Þ for b� and thus, correspond to
the classical component. The first lines on the rhs of (26)
and (27) thus represent the quantum effects. Instead of the
classical equations of motion (16), we now have the
semiclassical equations of motion,

1 − d;r
d

¼ α̂0

α̂
1 − d;r
2d

¼ ĥr

−
1

2α̂

d;t
d

¼ bp:r ð29Þ

It is straightforward to show that the third equation is
redundant also in the semiclassical case with coherent states
and that the entire set of equations is self-consistent. We
also find that the quantities ĥ and p̂ fulfill a modified
continuity equation,

1

a

�
a
α
h

�
;t
−
1

α

�
α

a
p

�
;r
¼ 0; ð30Þ

where, in accordance with (19), we have

h ¼ α̂dĥ p ¼ α̂dp̂; ð31Þ

so that p gives the direction of the scalar field energy flux
with the convention that a positive p corresponds to an
inward pointing flux.
We will from now on, exclusively focus on states that

excite only a single field component, e.g., the first one. We
can thus drop the field index component, and the only effect
of the additional field components is the enhancement by
Nc of the vacuum contribution. Following [27], we use this
as a tool to enhance vacuum effects in case one needs them
to be more prominent.

III. NUMERICAL IMPLEMENTATION

The first two equations of (29) together with (26), (28),
(12), (20), the initial conditions (15), and the SVD (7) form
a complete set of equations to describe the time evolution of
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our field that we now want to discretize. As noted
in the preceding section, we can effectively use the
same set of equations to describe both the classical
and the semiclassical evolution with the only difference
that in the classical evolution, we have to omit the first lines
on the rhs of (26). Our numerical integration scheme is
based on leapfrogging the scalar evolution equations (12)
with a radial integration of the metric according to the first
two equations of (29) in such a way as to optimally
conserve the Bogolyubov-transformation property of the
time evolution.

A. The classical radial integration

Let us first concentrate on the classical radial integration
of the metric given ĥr. We introduce a set of radial
coordinates, ri, i ¼ 0;…; Nr, with Δi ¼ ri − ri−1 > 0
and the boundary conditions of our metric, r0 ¼ d0 and
α̂Nr

¼ α̂ðrNr
Þ ¼ 1. The latter of the two conditions ensures

that our metric is Schwarzschild for r > rNr
(with a

Schwarzschild radius rNr
− dNr

), while the former places
a horizon at r0 if r0 > 0 or ensures that there is no central
singularity at r ¼ 0 if r0 ¼ 0. In the numerical part of this
paper, we will exclusively study the case r0 ¼ 0, although
the algorithm presented is perfectly capable of numerically
handling the r0 > 0 case as well.
To integrate the metric, we note that the first two

equations of (29) give us

lnðα̂Þ0 ¼ 2ĥ;

which integrates to

α̂i−1 ¼ α̂ie−2hi ;

where we have defined

hi ¼
Z

ri

ri−1

drĥðrÞ:

Together with the boundary condition α̂Nr
¼ 1, we thus

find

α̂i ¼ e−2
P

Nr
j¼iþ1

hj : ð32Þ

To obtain di ¼ dðriÞ, we have to integrate the second
equations in (29), i.e.,

1 − d0

2d
¼ ĥr:

To do so, we must assume a specific shape of the density
function in between two discretization points, and varying
this shape will result in different discretization errors. For
the numerical simulations, we choose either of two shapes,
both of which are safe in a sense that they do not produce

unwanted horizons (dðrÞ ¼ 0) in between discretization
points. The first shape we use is a series of δ-shells,

ĥðrÞ ¼ lim
ε→0

� hi
ε ri − ε < r ≤ ri
0 else

;

which results in the recursion relation,

di ¼ ðdi−1 þ ΔiÞe−2hi : ð33Þ

The second shape is a piecewise constant function,

ĥðrÞ ¼ hi
ri − ri−1

ri−1 < r < ri;

which results in the recursion relation,3

di ¼ e−hi
�
di−1e−hi þ Δi

sinhðhiÞ
hi

�
: ð34Þ

Either of these two relations allows us to compute the di
from inside out starting with the boundary condition
d0 ¼ 0. We can also see that the relative difference between
both recursion relations is of the order hi, and thus, it is
important that the condition,

hi ≪ 1; ð35Þ

is maintained throughout the entire time evolution. This is
not trivial, especially near a forming horizon. From (31),
we conclude that for a finite h, ĥ diverges when d → 0.
Since a horizon is characterized by d ¼ 0, our formalism
will inevitably break down at some point before a horizon
appears.

B. Construction of a consistent initial state

Before we start the time evolution of the scalar field, we
need to ensure that we have a consistent initial state; i.e., the
initial coherent state coefficients lk� when inserted into
(26) have to produce an ĥ that generates the correct initial
metric parameters α̂0 and d0. These parameters occur in the
operator q0 (20) whose SVD (7) in turn provides the basis
(15) for the mode expansion of the initial state. To construct
such a self-consistent initial state, we start by providing

3Note that in the numerical implementation, one can use
Horner’s method to obtain accurate values of di for small hi.
Written in Horner form, the Taylor expansion of the critical
function is

sinhðxÞ
x

¼ 1þ x2

2 · 3

�
1þ x2

4 · 5

�
1þ x2

6 · 7
ð1þ…Þ

��
:

For x < 0.3, it is sufficient to use this expansion up to the fifth
nontrivial term to guarantee double precision accuracy.
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initial hi ≥ 0 and the ratio ki ∈ ½−1; 1�. We proceed by
constructing from them the initial metric parameters
according to (32) and either (33) or (34). This allows us
to construct the operator q0 according to (20) and obtain its
SVD (7). Of course, we have to discretize the derivative
operator ∂r in q0, and we do this by taking the simple
forward difference operator. Other options and their con-
sequences are explored in Sec. III.
The next step is to determine the classical part of

the initial hi, which we denote by hci ¼ hi − h0i , where
h0i is the vacuum contribution. When imposing the normal
ordering condition (21), the initial vacuum expectation
value h0j∶Ĥr∶j0i ¼ 0, so h0i ¼ 0 and thus, hci ¼ hi. For the
normal ordering condition (22), we instead have

h0i ¼
Nc

2

1

α̂0i d
0
i
ðv�kiðt0Þvkiðt0Þ þ u�kiðt0Þukiðt0ÞÞ

−
Nc

2
ðvfree�ki vfreeki þ ufree�ki ufreeki Þ: ð36Þ

It turns out that, especially in regions where hi ¼ 0, we can
have a vacuum contribution that is slightly larger than the
total h0i > hi. This would imply a negative classical
contribution hci < 0, which, of course, is impossible. To
obtain an approximate free vacuum subtraction, we thus
have to modify the initial vacuum contribution slightly.
Since it turns out that the overall shape of the vacuum
contribution h0i is rather similar to hi itself up to a
multiplicative factor, our preferred choice for an approxi-
mate free vacuum subtraction is thus provided by

hci ¼ ð1 − xÞhi;

where the constant x is given by the ratio of the vacuum
contribution,

x ¼ h0m
hm

;

at the position m of the maximum value of hi.
With the classical contribution hci thus obtained we

construct the

ðluÞi ¼ signðkiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hci

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2i

q �s

ðlvÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hci

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2i

q �s

and, inverting relation (28) for the initial values uðt0Þ and
vðt0Þ (15), we finally obtain the consistent initial state,

lk� ¼ 1ffiffiffiffiffiffi
ωk

p
Xp
i¼1

�ðlvÞiVik þ iðluÞiUik

2
ð37Þ

C. Initializing the scalar field

The physical situation we are interested in is the
gravitational collapse of a scalar field. Accordingly, we
would like the initial state to be an inmoving shell. To make
it inmoving as much as possible, we choose ki ¼ 1, which
results in piðt0Þ ¼ hiðt0Þ, where the hi and pi are the
discretized versions of (26) and (27),

hi ¼
Nc

2α̂0i d
0
i
ðv�kivki þ u�kiukiÞ þ ĥ0i

þ 1

2α̂0i d
0
i
ððluÞ†i ðluÞi þ ðlvÞ†i ðlvÞiÞ

pi ¼
Nc

α̂0i d
0
i
Imðv�kiukiÞ þ

1

2α̂0i d
0
i
ððluÞ†i ðlvÞi þ ðlvÞ†i ðluÞiÞ

lu ¼ −iðu†ðtÞlþ þ uTðtÞl−Þ
lv ¼ v†ðtÞlþ − vTðtÞl−: ð38Þ

We are still left with the choice of the exact shape of hi. One
could in principle take a thin shell at some radius re, i.e.,
hi ∝ δie=Δe, but this or similar choices have a lot of high
frequency (i.e., large ω) components that we would like to
avoid. We therefore choose to smear out the thin shell to a
bump that has a finite support ½R − σ; Rþ σ�. When
studying discretization artifacts, we choose the width of
the bump to stay constant in physical units. We therefore
initialize

hiðt0Þ ¼
�Δifσ;λðri − RÞ jR − rij < σ

0 jR − rij ≥ σ:
ð39Þ

In this paper, we use either one of two window functions.
The first one, which we use for our main results, is the
Nuttall bump function [32] that has the form,

fσ;λðxÞ ¼ λ
X3
k¼0

ak cos

�
k
2πðxþ σÞ

σ

�
; ð40Þ

with the coefficients,

a0 ¼ 0.355768

a1 ¼ −0.487396

a2 ¼ 0.144232

a3 ¼ −0.012604;

and a normalization factor λ that determines the bump
height. The second, which we use as a cross-check, is

fσ;λðxÞ ¼ λe−
σ2

σ2−x2 : ð41Þ

We prefer the Nuttall function as it excites high frequency
components (in ωk) less. Since the Nuttall function is
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designed to suppress high frequency components in Fourier
space as opposed to our U-V basis, further improvement
that is targeted to the specific basis should be possible. We
do not, however, investigate this in the current paper but
leave it for future studies.

D. Time evolution of the scalar field

Our next task is to evolve the scalar field component
matrices u and v according to (12) with the initial condition
(15). The update should be as close as possible to an exact
Bogolyubov transformation. We start out by noting that we
can write (12) in the form,

_u

ffiffiffiffiffiffiffiffiffiffi
α̂d
α̂0d0

r
¼ −iv

ffiffiffiffiffiffiffiffiffiffi
α̂d
α̂0d0

r
q̄T

_v

ffiffiffiffiffiffiffiffiffiffi
α̂d
α̂0d0

r
¼ −iu

ffiffiffiffiffiffiffiffiffiffi
α̂d
α̂0d0

r
q̄;

with the operator (24) that has an SVD (25). We define

g ¼
ffiffiffiffiffiffiffiffiffiffi
α̂d
α̂0d0

r
H ¼ g

�
0 Ū ω̄ V̄T

V̄ ω̄ ŪT 0

�
g−1;

and write the time evolution in matrix form as

ð du dv Þ ¼ −ið u v ÞHdt:

Assuming constant metric parameters and thus constant g,
we can integrate this expression over a finite time intervall
Δt and obtain

ð uðtþ ΔtÞ vðtþ ΔtÞ Þ ¼ ð uðtÞ vðtÞ Þe−iHΔt:

Computing the matrix exponential, we find

e−iHΔt ¼ g

�
Ū cosðω̄ΔtÞŪT −iŪ sinðω̄ΔtÞV̄T

−iV̄ sinðω̄ΔtÞŪT V̄ cosðω̄ΔtÞV̄T

�
g−1:

A constant metric during the time evolution of the scalar
field is of course an approximation that introduces finite
time step discretization errors. In order to keep these small,
we implemented an update scheme that leapfrogs the time
evolution of the scalar field with the radial integration of the
metric. In particular, we start out with an implicit time step
that updates u and v from t − Δt to the time t according to

uðtÞ ¼ uðt − ΔtÞgŪ cosðω̄ΔtÞŪTg−1

− ivðt − ΔtÞgV̄ sinðω̄ΔtÞŪTg−1

vðtÞ ¼ vðt − ΔtÞgV̄ cosðω̄ΔtÞV̄Tg−1

− iuðt − ΔtÞgŪ sinðω̄ΔtÞV̄Tg−1; ð42Þ

where the metric parameters d and α̂ that occur in g are
those at time t. To obtain these metric parameters, we start

by first evaluating (42) with the metric parameters at t − Δt.
We then start an iteration by first computing hi according to
(38). This allows us to compute updated metric parameters
d and α̂ according to (32) and either (33) or (34) that we can
plug in to q̄ (24) and g. Following an other SVD (25), we
can complete one iteration step by reevaluating (42). This
iteration is repeated until the metric parameters converge,
which is typically achieved after a few steps for cases of
interest. After having successfully iterated the metric
parameters d and α̂ and thus, g at time t, we complete
the update by performing an explicit time step,

uðtþ ΔtÞ ¼ uðtÞgŪ cosðω̄ΔtÞŪTg−1

− ivðtÞgV̄ sinðω̄ΔtÞŪTg−1

vðtþ ΔtÞ ¼ vðtÞgV̄ cosðω̄ΔtÞV̄Tg−1

− iuðtÞgŪ sinðω̄ΔtÞV̄Tg−1;

with them. One can show that this update is an exact
Bogolyubov transformation, which in the component
matrix basis is equivalent to the condition,

Reðu†ðtÞvðtÞÞ ¼ q0;

being fulfilled for all times t.

E. Absorbing boundary conditions

The update algorithm detailed thus far is unitary and has,
apart from numerical errors, an exact time reversal sym-
metry. Awave packet that hits the outer boundary rp of our
discretized space will be reflected. Of course, this is a finite
volume effect and can in principal be remedied by
expanding the range of our discretization. However, if
we are willing to give up unitarity, we can implement
absorbing boundary conditions, for the classical part at
least, by modifying the initial state at every time step.
Let us for this purpose define the classical part of hi and pi
from (38),

hci ¼
1

2α̂0i d
0
i
ððluÞ†i ðluÞi þ ðlvÞ†i ðlvÞiÞ

pc
i ¼

1

2α̂0i d
0
i
ððluÞ†i ðlvÞi þ ðlvÞ†i ðluÞiÞ;

and impose the condition that both hc and pc vanish on the
outermost coordinate rNr

, i.e., hcNr
¼ pc

Nr
¼ 0. This con-

dition implies

ðluÞi ¼ ðlvÞi ¼ 0;

which, according to the relation (28), requires a change in
the coherent state coefficients l�. According to (37), these
coefficients have the form,
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l� ¼ �lR þ ilI ð43Þ

with real lR and lI, which we want to preserve. We thus
plug the ansatz (43) into (28) and solve for lR and lI . The
result is

lR ¼ 1

2
ðvTR þ vTI u

T−1
R uTI Þ−1ðlv − vTI u

T−1
R luÞ

lI ¼
1

2
ðuTR þ uTI v

T−1
R vTI Þ−1ðlu þ uTI v

T−1
R lvÞ;

where uR=I and vR=I are the real resp. imaginary
parts of u and v. Obviously, this modification of the state
is not part of the time evolution in the Heisenberg
picture. We could in principle model the absorbed com-
ponent as an outgoing classical wave packet in
some approximation for r > rNr

and feed the resulting
α̂Nr

< 1 back into the radial integration of the metric as a
boundary condition. For the sake of simplicity, however,
we restrict ourselves to maintaining α̂Nr

¼ 1, which
implies that the absorbed component vanishes in a truly
unphysical way.

F. Numerical stability

Having implemented the algorithm we described
above numerically in double precision arithmetic, we
encountered problems with numerical stability of the
SVD in certain cases. Specifically, if r0 ¼ 0 and the ri
are evenly spaced, the numerical inaccuracies in the
vacuum component of the h1 increase exponentially once
we have Nr ≳ 200 discretization points. Of course, one
can solve this problem by increasing the numerical
precision, which is, however, extremely expensive in
terms of computer time. Fortunately, there is an alternative
for the specific physical situation that we are interested in:
Initially, (i.e., at time t0), we choose the scalar field
configuration as a thick shell that has vanishing ĥðrÞ ¼
p̂ðrÞ ¼ 0 for r < R0. With the specific window functions,
we have defined in (39), we have R0 ¼ R − σ. We can thus
integrate the trajectory rcutðtÞ of a lightlike test particle
that is radially free falling toward the center starting
from R0 at t0. If we exclude causality violations (which
can only appear as discretization effects), we know that at
the time t we should have vanishing ĥðrÞ ¼ p̂ðrÞ ¼ 0
inside a shell r < rcutðtÞ. Imposing this condition during
the update, i.e., explicitly setting to zero all hi for which
ri < rcutðtÞ, will thus remove these particular discretiza-
tion artifacts.
In order to implement this procedure, we need to

integrate the trajectory of our test particle. A radially
ingoing lightlike geodesic in our metric is characterized by

dt ¼ −
α̂d
r
dr:

In a region where ĥ ¼ 0 (which applies to the entire region
that our test particle is free falling through), α̂ and
ρ ¼ r − d are constant, and the geodesic integrates to

ðt1 − t2Þα̂ ¼ r2 − r1 þ ρ ln
r2 − ρ

r1 − ρ
:

Solving explicitly for r2, we obtain

r2 ¼ ρþW0ððr1 − ρÞer1−ρþðt1−t2Þα̂Þ;

where W0ðxÞ is the principal branch of the Lambert
W-function. When performing a complete update step of
our scalar field and the metric by a time intervalΔt, we thus
need to update the cutoff radius as

rcutðtþ ΔtÞ ¼ ρþW0ððrcutðrÞ − ρÞercutðtÞ−ρþΔtα̂Þ:

IV. RESULTS

A. Simulation setup

We will now concentrate on one specific physical
situation, which is that of an Nc ¼ 2 component field that
is in a geometry with no preexisting horizon, i.e., r0 ¼ 0.
We will also choose a uniform discretization in the radial
coordinate r, i.e., ri − ri−1 ¼ Δ, for all i ¼ 1;…; Nr.
Although nonuniform discretizations would be desirable
and are in principle possible with our formalism, we
observed partial reflection phenomena at the boundary
between different Δi whose further investigation we leave
open for future studies. We vary the physical size rNr

of our
discretized system to be either 10, 12, or 14 and at t0 ¼ 0,
place initially inmoving bumps of the generic form (39),
with width σ ¼ 1 at either R ¼ 9, 11, or 13, with the
obvious restriction R < rNr

so that the bump fits into the
discretized system. The size of the initial bump is chosen
such that the effective Schwarzschild radius of the outer-
most shell is ρNr

¼ rNr
− dNr

≅ 3.5. We have different
radial discretizations in steps of factors 2 between Δ ¼ 0.1
and Δ ¼ 0.00625 corresponding, for a system size of
rNr

¼ 10, to Nr ¼ 100, 200, 400, 800, and 1600 and time
steps Δt ¼ 0.001, 0.002, and 0.004. In the following
discussion, we will use as a default case the system with
rNr

¼ 10 (R ¼ 9), Nr ¼ 800, Δt ¼ 0.004, a Nuttall bump
shape (40), a simple forward difference discretization of the
derivative operator in (20), (24), an initial state vacuum
subtraction (21), and a δ-shell radial integration (33) with
reflecting boundary conditions.
Note that on a technical level, the time evolution of the

classical field is equivalent to setting Nc ¼ 0 in (38). When
we refer to the vacuum and classical contributions to any
observable, we generically mean the coefficient of the term
proportional to Nc and the rest. We can thus refer to the
“vacuum contribution” even in the classical (Nc ¼ 0) case,
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where it does not contribute toward the time evolution at
all. Thus defined, we can directly compare the vacuum
contributions of the classical and semiclassical time evo-
lution, which is useful for estimating backreaction effects.
Throughout the time evolution of our system, we will

monitor how well the condition (35) is fulfilled, which is
necessary for radial discretization effects to be small. For
this reason, we will define a safe zone through the
criterion,4

max
i
ðhiÞ ¼ maxðΔĥÞ < 0.08; ð44Þ

which we will elaborate on in Sec. IV C. For our default
case, this translates into a safe zone of t≲ 14.8 with values
for other discretizations listed in Table I.
Note that this criterion is a necessary but not a sufficient

condition for the smallness of discretization artifacts.

B. Qualitative behavior of the system

Let us first look at the time evolution of our default case
in the safe zone. In Fig. 2, we compare at three different
(asymptotic coordinate) times t the semiclassical (Nc ¼ 2)
to the classical (Nc ¼ 0) time evolution. We plot
the Hamiltonian density5 h ¼ α̂dh together with the metric
parameter rs=r ¼ 1 − d=r that indicates how far away a
system is at any given point from forming a horizon. The
behavior of both the classical and the semiclassical case is
consistent with a forming horizon. We note, however, that
quantum effects both enhance the peak in rs=r and shift it
radially outward. This behavior is also evident when
looking at the original metric parameters α and a (Fig. 3).
To identify the origin of this quantum effect, we plot in

Fig. 4 the vacuum contribution to the Hamiltonian density
h0 together with the vacuum contribution p0 of p, which is
related to h by a modified continuity equation (30) and
thus, akin to a momentum density. We see that for all three
time slices plotted in Fig. 4, p0 has the structure of a leading

negative region followed by a trailing positive one. The
zero crossing happens close to the point of maximum h (see
Fig. 5). Remembering that in our convention, a positive
value of p signifies a radial influx, while a negative value
corresponds to an outflux, the shape of p0 tells us that
quantum effects tend to increase the peak in the
Hamiltonian density h at the expense of the neighboring
regions in this phase of the collapse. This is clearly visible
in the shape of h0, which has a peak flanked on either side
by regions where it is negative. It is also interesting to note
that this structure is even visible in the classical case with
the peak of h0 shifted accordingly, so that it is slightly
outward of the peak of h as it is in the semiclassical case. In

FIG. 2. Time evolution of the Hamiltonian density h and the
local rs=r for our default run. We can clearly see the onset of
horizon formation. In the semiclassical case, the horizon for-
mation is both more pronounced and happening at larger r.

TABLE I. The maximum time for which the criterion (44) is
fulfilled for our semiclassical default case and its variations due to
different radial discretization.

Nr tsafe

100 4.8
200 8.9
400 12.1
800 14.8
1600 17.5

semi semi
class class

FIG. 3. Time evolution of the metric parameters α and a for our
default run. The sharper and more radially outward onset of
horizon formation in the semiclassical case is clearly visible.

4The specific value 0.08 used in this criterion applies to the
Nuttall bump shape and may vary slightly for other shapes.

5For simplicity, we will routinely omit to mention that we are
looking at expectation values in the semiclassical case and
assume that this is implied.
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Fig. 5, we plot the relevant portion of the t ¼ 12 panel of
Fig. 4, where these features are clearly distinguishable.
In order to give a visual illustration of the time evolution

of our default system, we provide in Fig. 6 a contour
plot the Hamiltonian density h for the time evolution up to
t ¼ 20 that compares the classical to the semiclassical
evolution.

The final observable we would like to present is the
“final state” vacuum contribution to the Hamiltonian
density h0f. We define it as the vacuum contribution to
the Hamiltonian density, but with a vacuum subtraction
term (23) related to the vacuum that corresponds to the
metric parameters α̂ ¼ α̂ðtÞ and d ¼ dðtÞ at the given time t
in the evolution. We plot this quantity in Fig. 7 for three
different times. As can be seen, according to the final state
vacuum, quantum effects lead to a depletion of energy
inside the forming horizon and an enhancement outside. In
Fig. 8, we compare the vacuum contribution to the
Hamiltonian density h0 with its final state counterpart h0f.

C. Radial discretization

If we look at the time evolution of the default case
beyond the safe zone t≳ tsafe, we see the gradual onset of
radial discretization artifacts, mainly through high fre-
quency modes. This behavior is displayed in Fig. 9, where
we compare the results for our default case to those of the
same system but with a radial discretization Δ that is twice
as fine, i.e., Nr ¼ 1600.
For this finer discretization, the safe zone extends to

t≲ 17.5. We can clearly see that when we are within the
safe zone of both systems, the results of both discretizations
agree (top panel of Fig. 9). At a time that is out of the safe
zone for the coarser discretization but still within the safe
zone of the finer one (middle panel), the coarser discre-
tization starts to exhibit high frequency discretization
artifacts, while the finer discretization does not. Finally,
when we are out of the safe zone of both systems (bottom
panel), the finer discretization shows high frequency
discretization artifacts as well. We have checked that this

FIG. 4. Time evolution of the vacuum contributions to the
densities h and p. For all times shown, the shape of p0 consists of
a negative bump interior to the forming horizon and a positive
bump outside of it, indicating an additional energy influx toward
the horizon forming region from both the inside and the outside.
Correspondingly, the vacuum contribution to the energy density
h0 is positive in the horizon forming region and negative just
outside it. The dip in h0 at the original position of the bump r ¼ 9
is an effect of the vacuum subtraction procedure.

semi

semi

semi

class

class

class

FIG. 5. A more detailed look at the relevant region of the t ¼ 12
panel of Fig. 4. Horizontal lines indicate the peak position of the
total Hamiltonian density h. It is evident that quantum effects
increase the peak height of h and shift it outward while slightly
decreasing its value in the immediate vicinity.

class semi

FIG. 6. Contour plot the function signðhÞ lnð1þ 104jhjÞ of the
Hamiltonian density h for the time evolution of our default
system. The shaded area on top corresponds to the unsafe zone
t≳ 14.8. The black dashed diagonal lines correspond to dr ¼
�dt and indicate the trajectory of a radially infalling massless test
particle on a fictitious flat background metric.
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behavior is generically true also for the even coarser
discretizations, which is why we believe (44) to be a
reasonable criterion for the specific bump shape we use. In
Fig. 10, we plot the Hamiltonian density h, its vacuum
contribution h0, and rs=r for all five radial discretizations at
the time t ¼ 12. At this time, we are, according to Table I,
out of the safe zone for our two coarsest discretizations with
Nr ¼ 100, 200 but within the safe zone of all discretiza-
tions with Nr ¼ 400 or finer.
Finally, we turn again to our safe zone criterion (44). In

Fig. 11, we show the time evolution of maxiðhiÞ for the
various discretizations, from which we can read off the
extent of the safe zone tsafe that we give in Table I.
Interestingly, there is a marked increase of maxiðhiÞ just

barely outside the safe zone of our finest discretization. If
this would happen in a region where we could trust our

simulation, it would be indicative of a forming horizon.
Since it is beyond the safe region, however, we can not
exclude that it is purely a discretization artefact.
Nonetheless, in the semiclassical simulation, a horizon is
actually forming around this time, and we see d → 0 there.
ThemaxiðhiÞ that we have plotted in Fig. 11 is relevant for

algorithmic consideration, but not directly suitable for

FIG. 8. Comparison of h0 with h0f . In each case, we plot the
function signðxÞ lnð1þ 104jxjÞ where x is either h0 or h0f. The
shaded area on top corresponds to the unsafe zone t ≳ 14.8.
The black dashed diagonal lines correspond to dr ¼ �dt and
indicate the trajectory of a radially infalling massless test particle
on a fictitious flat background metric.

FIG. 9. Comparison between two different radial discretizations
Nr ¼ 800, 1600 of the same physical system at different times t.
The top panel represents a time that is in the safe zone of both
discretizations, while the middle panel corresponds to a time that
is out of the safe zone of the coarser Nr ¼ 800 discretization,
while still being inside the safe zone of the finer Nr ¼ 1600 case.
The bottom panel shows a time that is out of the safe zone even
for the finer discretization.

semi class

semi

semi
class

class

FIG. 7. Time evolution of the final state vacuum contribution to
the Hamiltonian density h0f for three different times (top) and a
detail from t ¼ 12 (bottom). Horizontal lines indicate the peak
position of the total Hamiltonian density h. From the perspective
of the final state vacuum, quantum effects deplete the energy
density inside the forming horizon and enhance it outside.
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physical comparisons as it contains the radial discretization
lengthΔ via hi ¼ ĥiΔ. We can instead compare maxiðĥiÞ ¼
maxiðhiÞ=Δ that is a physical density. This comparison is
depicted in Fig. 12. We see that initially all curves agree and
that the coarser discretizations branch off from the rest of the
curves around their respective tsafe. Interestingly, it seems that
outside of the range of validity, the coarser the discretization,
the less likely it is to lead to horizon formation.

D. Discretizing the derivative operator

In the default case, we use the simple forward difference
operator,

ð∇fÞij ¼
δiþ1;j − δi;j

Δ
;

to discretize the derivative in (20), (24). To estimate the
effect that this choice has on our result, we investigate three
other choices. The first two are the backward difference
operator ∇b ¼ ∇T

f and the symmetric difference operator
∇ ¼ ð∇f þ∇bÞ=2. Both the forward and the backward
difference operator have discretization effects that are
formally of the order ∂ −∇f=b ¼ OðΔÞ, while for the
symmetric difference operator, we have ∂ −∇ ¼ OðΔ2Þ.
In addition to these two choices, we also investigate a more
extended difference operator that involves two points in
forward and one in backward direction,

ð∇xÞij ¼
1

Δ

X2
k¼−1

ckδiþx;j;

where the ck are fixed such that the discretization effects
are ∂ −∇x ¼ OðΔ3Þ.
In Fig. 13, we compare the Hamiltonian density h and its

vacuum contribution h0 at time t ¼ 12 for all discretiza-
tions. One can see that despite the differences, the quali-
tative behavior of all four discretizations is the same. We
also note that for the symmetric difference operator, we see
a marked increase of high frequency discretization artifacts.
This is not surprising, as the symmetric difference operator
has problems disentangling low and very high frequency
modes.6 For the remaining three discretizations we show in

FIG. 12. Comparison of the physically relevant quantity
maxiðĥiÞ for different radial discretizations.

FIG. 10. Comparison of different radial discretizations at
t ¼ 12. One can see that for Nr ¼ 100, 200, this time is outside
the safe zone, while it is still inside for the finer discretizations.

FIG. 11. Comparison of the algorithmically relevant quantity
maxiðhiÞ for different radial discretizations. The horizontal line is
at 0.08, corresponding to the criterion (44).

6We can see a related phenomenon in the simple case of
applying the symmetric difference operator to a Fourier mode
fkðxÞ ¼ expð−ikxÞ, which results in ð∇fÞðxÞ ¼ i sinðΔkÞΔ fðxÞ.
Thus, to the operator ∇, the Fourier modes of momentum k
and π=Δ − k are indistinguishable. More concretely, the exclu-
sive even-odd coupling of the operator q0 enforces opposing
checkerboard patterns of the coefficient matrices u and v. Among
other things, this forces the diagonal elements of u†v to vanish,
which, in the light of the continuity equation (30), is a particularly
unwelcome discretization artifact.
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Fig. 14, the difference between the classical and semi-
classical h0 at t ¼ 12. We can clearly see that the feature of
a more outward lying semiclassical peak that is enhanced
by quantum effects is equally present for all three discre-
tizations of the derivative operator.
The difference between the discretizations is of course a

discretization error that should vanish in the limitΔ → 0. In
Fig. 15, we therefore show the comparison of Fig. 13 again,
but this time, for one coarser Nr ¼ 400 and one finer Nr ¼
1600 radial discretization. We can see that the agreement
between the different discretizations of the derivative

operator is slightly better for the finer radial discretization.
Nonetheless, a more detailed study of this topic on
substantially finer radial discretizations would be highly
desirable.

E. Other variations of the update procedure

In addition to the radial discretization, we also have to
check that the temporal discretization we use is fine
enough. In Fig. 16, we compare results for three different
time steps and find that they are virtually indistinguishable.
For our finest radial discretization Nr ¼ 1600, we actually
observe some tiny discrepancies in the high frequency
components around the position of the original peak, but
even they are entirely negligible for the entire time
evolution even beyond the safe zone.
Next, we would like to investigate the effect of classi-

cally absorbing boundary conditions as introduced in
Sec. III E. In Fig. 17, we compare the time evolution
between the two sets of boundary conditions and see that
they agree rather precisely.

FIG. 15. Same as Fig. 13 for two different radial discretizations
corresponding to Nr ¼ 400 (top) and Nr ¼ 1600 (bottom).

FIG. 13. Hamiltonian density h and its vacuum contribution h0

at time t ¼ 12 for the semiclassical case and various discretiza-
tions of the derivative operator. The labels correspond to the
number of forward (f) and backward (b) points included in the
discretized derivative.

FIG. 14. Comparison of the vacuum contribution to the
Hamiltonian density h0 between the classical and semiclassical
cases for three different discretizations of the derivative operator.
Note that the important qualitative features, i.e., the different peak
positions for the classical and semiclassical cases and the
enhancement of h by vacuum contributions in the peak region,
are clearly present for all choices of the discretization.
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The slight difference between the results with the two
boundary conditions in Fig. 17 should of course be a finite
volume effect. We can check this explicitly by performing
the same comparison on a larger discretized volume with
rNr

¼ 12. We do this in Fig. 18 and indeed see that the
difference between the two cases gets even smaller.
We can also study finite volume effects by comparing

our default system with two systems that have a larger
rNr

¼ 12 and 14. As seen in Fig. 19, finite volume effects
are very small.
In Fig. 20, we repeat this comparison for absorbing

boundary conditions. We see that finite volume effects are
even smaller in this case, indicating that the main con-
tribution toward finite volume effects for our default system
in fact comes from classical reflection off the outer
boundary.
Next, we investigate varying the shape of the initial ĥ of

the scalar field from the usual Nuttall form (40) to the

FIG. 17. Comparison of results with different boundary con-
ditions at t ¼ 12.

FIG. 18. The same plot as Fig. 17 but for a larger discretized
volume rNr

¼ 12.
FIG. 16. Comparison of results for different time steps at
t ¼ 12.

FIG. 19. Comparison of our default system of radial extent
rNr

¼ 10 at t ¼ 12 with two systems of larger radial extent
rNr

¼ 12, 14 that are otherwise identical.

FIG. 20. The same as Fig. 19 but with absorbing boundary
conditions.
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exponential form (41). Figure 21 compares the two systems
at an early time t ¼ 2. Clearly, the exponential shape is less
peaked than the Nuttall form, but the important qualitative
feature, the enhancement of the Hamiltonian density h
around the peak region by the vacuum contribution h0, is
also prominent for the exponential bump.
At a later time t ¼ 12, this property persists as is evident

from Fig. 22. For the exponential bump, h peaks at a larger
radius, but the vacuum contribution h0 does enhance the
peak as it does for the Nuttall bump.
The next topic we would like to address is that of the

error made by putting the scalar field at a rather small
distance initially instead of asymptotically far away. We
address this issue in a direct way by increasing the volume
and putting the center of the initial bump to a larger distance
and, more indirectly, by varying the vacuum subtraction.
The effect of moving the initial scalar field farther outward
on a larger system is displayed in Fig. 23. Since the shape
of the bump changes as it propagates toward the center, we

do not expect the result from the different starting positions
to agree exactly at the respective times when they have
reached the same radial coordinate. Nonetheless, we can
see that the differences are minimal with the bumps that
started from a larger distance showing higher peaks.
The effect of changing the vacuum subtraction from the

standard initial state normal ordering (21) to the free field
subtraction (22) modified as described around (36) at an
early time t ¼ 2 is shown in Fig. 24.
Although we can see a marked difference in the vacuum

contribution to the Hamiltonian density h0 around the
initial position of the scalar field, the effect on h and even
on h0 outside this region is negligible. The difference

FIG. 21. Comparison of the semiclassical evolution with differ-
ent initial scalar field bump shapes at t ¼ 2.

FIG. 22. The same as Fig. 21 but at a later time t ¼ 12.

FIG. 23. Comparison of different starting positions of the scalar
field. Results are compared at times where the respective systems
have reached the same peak position of h than the reference t ¼
12 for our default system. Fields that started farther out show a
more pronounced peak of both h and its vacuum contribution h0.

FIG. 24. Comparison of two vacuum subtraction procedures at
time t ¼ 2. The pronounced difference in h0 between the two
procedures is confined to the region of the initial bump position.
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between the two procedures stays small also at later times,
as seen in Fig. 25 for t ¼ 12.
Finally, we would like to investigate the effect of

changing the radial integration scheme from the standard
δ-shell case (33) to the piecewise constant (34). As can be
seen in Fig. 26, also this effect is entirely negligible
at t ¼ 12.

F. The operators q0 and q̄

It is quite instructive to investigate a bit the singular
mode structure of the operators q0 (20) and q̄ (24). We start
with the singular vectors U·k and V ·k of q0, which are
interesting because they form the basis of the mode
expansion. We plot a sample of the V ·k in Fig. 27. It is
interesting that the shape of the initial bump is reflected in
the modes with largest ω since they have support almost
entirely in that region.

Turning to the operator q̄ that is used in the time
evolution of the scalar field, we are first interested in
how its singular values change during the course of the
evolution of the system. This is plotted in Fig. 28 for a
representative selection of modes.
We see that during the course of the time evolution, the

number of low modes increases while the high modes are
thinned out. Deep within the unsafe region, we can even see
a number of modes that reach singular values very close to
ω ¼ 0 in a very short time. It is reasonable to assume that
this concentration of low modes is connected to the onset of
horizon formation. The closer the system gets to forming a
real horizon, the more we expect modes to separate into
those that are largely outside the forming horizon and take
part in the usual time evolution and those modes that are
largely inside and freeze as seen in coordinate time t (which
is the physical time of an asymptotic observer). In order
check whether this picture is correct, we define the “inside”
and “outside” components of the singular vectors belong-
ing to the singular value ω̄k as

ðfinV Þ2k ¼
Xs

i¼1

jV̄skj2 ðfoutV Þ2k ¼
XNr

i¼sþ1

jV̄skj2

ðfinUÞ2k ¼
Xs

i¼1

jŪskj2 ðfoutu Þ2k ¼
XNr

i¼sþ1

jŪskj2;

where we define s to be the index of the radial
coordinate with the minimum di=ri, i.e., the coordinate
at which the system is closest to forming a horizon.
Since the singular vectors are unit normalized, we
have ðfinV Þ2k þ ðfoutV Þ2k ¼ ðfinUÞ2k þ ðfoutU Þ2k ¼ 1.

In Fig. 29, we plot the fin=outU=V of a representative sample
of modes. We see that with the exception of the few modes
with the very highest ω, all modes start out with a
substantial “in” component, which is of course what we
expect from Fig. 27. As the bump and therefore the
boundary between “in” and “out” moves toward the center,
we first see the bulk of the modes gaining a substantial
“out” component. At around t ¼ 10, however, we see that
the “out” components of the low modes start to decrease
again while more and more of the higher modes cross over
to be fully in the “out” region. Finally, deep in the unsafe
region and at the point where Fig. 28 showed the appear-
ance of modes with almost vanishing singular values, we
see a sudden drop of the “out” components of these modes
to almost zero, indicating that indeed they are frozen behind
the developing horizon.
In order to display the relevant properties of the

eigenmodes more compactly, we define the mode separa-
tion parameter,

s2 ¼ 1

2
ðhðfinUÞ2k þ ðfinV Þ2kiin − hðfinUÞ2k þ ðfinV Þ2kioutÞ; ð45Þ

FIG. 25. The same as Fig. 24 but at a later time t ¼ 12.

FIG. 26. Comparison of the time evolution with our two radial
integration schemes at t ¼ 12.
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FIG. 27. Some of the singular vectors U·k of the operator q0 for our default system and their singular values ωk. On the left-hand side,
we plot every 50th mode starting from the mode with the lowest singular value and the mode with the highest singular value. On the
right-hand side, we zoom in on three interesting regions for which we plot every mode. Note that the spacing of the modes decreases for
increasing ω except for the few modes with the highest ω that are concentrated in the region of the original bump position.

FIG. 28. Time evolution of the singular values ω̄ of q̄. Starting
from the highest, we plot every 10th ω̄. The shaded area on the
right marks the unsafe region t > tsafe.

FIG. 29. The “inside” and “outside” components of the singular
vectors of q̄. We plot the same representative sample of motes as
in Fig. 28 with the same color coding.
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where h·iin denotes the average over all “inside” modes,
which we arbitrarily define as those modes with
ðfinUÞk þ ðfinV Þk > 1. Correspondingly, h·iout denotes the
average over all “outside” modes, which are those that
do not fulfill this condition. When a horizon forms, we
expect the modes to divide into those that have support
exclusively inside the horizon and those that have support
exclusively outside. Thus, s ¼ 1 indicates horizon
formation.
In Fig. 30, we plot the mode separation parameter versus

t. The horizon formation is clearly visible in the
unsafe zone.

G. Consistency check

In the continuum, the last equation in (29), i.e.,

_d ¼ −2α̂dp̂r;

together with the first one,

1 − d0

d
¼ α̂0

α̂
;

guarantees that when p̂r vanishes in some finite region, the
metric does not change there. Looking at our finite,
discretized system as an approximation to the infinite
continuum case, we of course have p̂r ¼ 0 in the region
r > rNr

, i.e., outside of our outermost discrete coordinate.
Consequently, if we had a perfect update algorithm, the
metric parameters in the outside region, and thus, also dNr

would never change.7 Since this property follows from the
one equation of motion that we never use explicitly, it is a
useful cross-check of the validity and accuracy of our
numerical implementation.

In Fig. 31, we plot rs ¼ rNr
− dNr

throughout the
semiclassical time evolution, varying the radial discretiza-
tion and the radial integration scheme. We see that rs is
conserved to a relatively high accuracy with the δ-shell
integration faring markedly better than the piecewise
constant. We can also see that for the finer discretizations,
the agreement breaks down at large t outside the safe
region. This coincides with the explosion of the maximum
hi and the sudden separation of the eigenmodes that we had
observed above.

H. Prospects of observing Hawking radiation

An obvious question at this point is whether there is any
prospect, in our formalism, to observe the effects of
Hawking radiation. Since we have no method at present
to represent the state of the scalar field in the outgoing Fock
space, the individual field quanta are of course inaccessible.
We could, however, hope to see the related outgoing energy
flux. We can do a quick order of magnitude estimate of an
expected flux based on a potential horizon formation at rs
based on the Stefan-Boltzmann law. This estimate tells us
to expect an energy flux of the order,

h;t ∼
Nc

3840πr2s
;

and a corresponding flux in p according to (30). Plugging
in our rs ∼ 3, we find that in our current setup, this is
several orders of magnitude smaller than the peak value of
even the vacuum part h0f alone and poses a formidable
challenge for future studies.

I. Computational aspects

All numerical results presented in this paper have been
obtained with a standard Fortran 2008 code on a small
number of standard PCs. A fully independent Julia code

FIG. 30. The mode separation parameter s (45) versus t. FIG. 31. Cross-check of how constant the effective Schwarz-
schild radius rs ¼ rNr

− dNr
is on the outermost shell.

7Remember that α̂Nr
¼ 1 is fixed by our boundary condition

for radial integration.
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was also written to cross check the main results. The most
time consuming part of the algorithm is of course the SVD,
especially in the implicit update step where it has to be
invoked repeatedly. We have used standard LAPACK
routines in double precision for this task and not exploited
the fact that consecutive SVDs are of very similar matrices.
We also have not used any form of optimization or
parallelization of our code beyond standard compiler flags.
Keeping this in mind, the time evolution of our default case
scenario to t ¼ 20 took about six hours of computer time on
a single core of a standard PC. Although the SVD scales
with the third power of the system size andΔt probably will
have to be reduced for finer discretization, it should be
possible to simulate substantially larger systems on parallel
supercomputers.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a formalism to compute
numerically the semiclassical gravitational collapse of a
scalar quantum field in an initial coherent state in the
angular momentum l ¼ 0 approximation. Figure 32 sum-
marizes our main result, which is the enhancement and

radial outward shift of the peak of the energy density by
quantum effects.
As a next step, we would like to investigate how the

vacuum modes of the scalar field at higher angular
momentum, which we have ignored in this first study, will
change the behavior of the system. The formalism we have
presented here can be generalized to take these modes into
account [30], and a detailed numerical study is planned for
a forthcoming publication.
On a more technical note, it would be nice to

explore the possibility of inhomogeneous discretizations
that would increase the radial resolution in the
relevant region without too much computational over-
head. In addition and possibly related is the question
of finding a bump function that is optimized to have
minimal overlap with the singular vectors of high ω on the
specific metric.
Another direction we would like to explore in the future

is the use of a different metric parametrization, e.g., with
radially infalling coordinates. An even more ambitious goal
would be to span the state of the scalar field in the Fock
space basis of the final time, which would give us access to
the outgoing particle content.
However, the ultimate question is whether the time

evolution of the semiclassical collapse is unitary and if
so, whether our formalism could in principle trace it from
the initial infall through the (almost) formation of a horizon
to the eventual evaporation via Hawking radiation in a
situation where the corresponding classical theory does
produce a horizon. Needless to say that the technical
obstacles are huge.
Finally, a problem that we have completely ignored until

now is whether semiclassical gravity is even applicable in
the regime we are working in (the effective Schwarzschild
radius of our entire system viewed from the outside is only
∼3.5 Planck lengths). One direction for future investiga-
tions would therefore be to study larger systems with a
higher scalar field content so that we are further in the
semiclassical regime and check if our physical conclusions
hold there, too.
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FIG. 32. Summary of the collapse for our default case with the
finest radial discretization Nr ¼ 1600. The top panel shows the
Position of the maximum of rs=r versus t where rs is the local
effective Schwarzschild radius of the metric. The middle panels
shows the corresponding maximum value of rs=r and the bottom
panel shows the mode separation parameter s (45). The shaded
region for large t corresponds to t > tsafe. We can clearly see that
quantum effects enhance the potential horizon formation and
move it radially outward. We also see that in the semiclassical
case, our algorithm ultimately produces a horizon, which how-
ever happens in the region that we deem to be dominated by
discretization artifacts.
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