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Expanding edge experiments are promising to open new physics windows of quantum Hall systems. In a
static edge, the edge excitation, which is described by free fields decoupled with the bulk dynamics, is
gapless, and the dynamics preserve conformal symmetry. When the edge expands, such properties need not
be preserved. We formulate a quantum field theory in 1þ 1-dimensional curved spacetimes to analyze the
edge dynamics. We propose methods to address the following questions using edge waveforms from the
expanding region: Does the conformal symmetry survive? Is the nonlinear interaction of the edge
excitations induced by edge expansion? Do the edge excitations interact with the bulk excitations?
We additionally show that the expanding edges can be regarded as expanding universe simulators of two-
dimensional dilaton-gravity models, including the Jackiw-Teitelboim gravity model. As an application, we
point out that our theoretical setup might simulate emission of analog Hawking radiation with the Gibbons-
Hawking temperature from the future de Sitter horizon formed in the expanding-edge region.
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I. INTRODUCTION

How did our Universe develop from its earliest
moments? To answer this major question of quantum
cosmology, great efforts have been made both in theory
and in the attempts of verifying the theory by observations
of the cosmic background radiation and black holes. An
ideal scenario would be the reproduction of the origin and
evolution of the Universe or producing black holes in a
laboratory and thereby experimentally verifying the theory
through controlling key parameters. Regarding this, analog
experiments have been performed in various systems [1–4].
Quantum Hall (QH) systems are unique and promising.

A QH system [5,6] emerges when a strong perpendicular
magnetic field (B) is applied to two-dimensional (2D)
electrons when the Landau level filling factor ν ¼
2πℏne=ðeBÞ becomes an integer or a rational fraction,
where ℏ and e are the reduced Planck constant and the
elementary charge, respectively.
The theoretical study of QH systems has contributed to

modern understanding of condensed matter physics.

Notably, the QH systems are regarded as typical topologi-
cal materials consisting of the bulk and edge. The dynamics
in the bulk yield a large energy gap in its dispersion
relations. In the bulk, there exist various gapped excitations
such as magnetorotons [7–10] and anyonic quasiparticles
[11–13]. The dispersion relation of the edge currents are
firmly protected owing to the topological structure of the
systems, and the edge excitations are always in gapless
modes. The effective theory of the bulk is given by a
topological field theory referred to as the Chern-Simons
gauge theory [14–18]. In the topological field theory, no
local dynamics appears, and properties of the system are
stable under local perturbations in the bulk. The bulk action
is not invariant under the gauge transformation at the edge.
This unsatisfactory gauge-variant behavior of the bulk is
compensated by adding a gauge-variant edge action with
quantum anomaly. Hence, this predicts the edge dynamics
[19]. It is possible to express the same edge degrees of
freedom by both a fermionic field and bosonic field via the
statistics transmutation in one-dimensional space. It is
known that the bosonic field corresponds to the charge
density of the edge current and can be directly observed by
measuring the voltage deviation in the edge experiments
[10,20–25]. The edge effective theories are given by free
field theories with a chiral condition. Here, the chiral
condition implies that the excitations move in one direction
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along the edge and do not return to the upstream region.
The theories belong to a class of conformal field theory
(CFT) in 1þ 1 spacetime dimensions, which preserves an
infinite-dimensional conformal symmetry, referred to as the
Virasoro symmetry [26]. The total gauge symmetry of the
bulk-edge composite system ensures the gapless property
of the edge excitations.
Until now, all experiments of QH systems have been

performed in a static situation, except for local edge
excitations [10,20–24]. The electrons are confined in the
bulk region by the static electric field created by the surface
potential of host semiconductors of the 2D electrons. Thus,
the edge attached to the bulk remains unchanged in time. In
Ref. [27], expanding edges were proposed. The edge
expands by gradually relaxing the external electric fields
through continuous electron supply into the bulk. The
excitations moving along the edge are affected by the
expansion. In such situations, it is quite nontrivial that the
conformal symmetry still holds. Recall that the static
conformal symmetry is protected by topological properties
of QH systems which are insensitive to microscopic details.
It is known that such topologically robust phenomena are
not limited to static systems but may also emerge in some
periodically driven quantum systems [28]. From this view-
point, it can be expected that the conformal symmetry still
survives in the expanding QH edges. On the other hand,
there exists a risk of terminating the conformal symmetry in
the realistic experiments. It is considered that the conformal
symmetry does not survive in some 1þ 1-dimensional
acoustic systems described by a minimally coupled mass-
less scalar field [29]. Also the conformal symmetry can be
broken by inhomogeneity induced by impurities and/or
time dependence of the realistic QH systems. About the
effective field theory for expanding-edge systems, it should
be stressed that answers to the following fundamental
questions are unknown at present:
(1) Does the edge current remain gapless in the ex-

pansion? Specifically, is the conformal symmetry
preserved at the boundary?

(2) Beyond the free field theory, does nontrivial
interaction among edge excitations emerge in the
expansion?

(3) During the expansion, do excitations in the edge
interact with gapped excitations in the bulk?

The expanding-edge experiments will provide crucial
results for the answers to the above questions. Note that the
experiments are able to achieve this aim even in classical
regimes of the systems. Thus, the experiments are quite
promising to reveal new physics of the systems under such
dynamical backgrounds.
In quantum regimes with extremely low noise, QH edges

may be applied to future development in quantum infor-
mation science. The edge excitations transport quantum
states, i.e., quantum information along an edge connected
between distant points inside a quantum device. This means

that the QH edges play a role of quantum channels. In such
situations, the expanding region provides a useful quantum
gate referred to as quantum squeezing for the quantum
states [27]. In addition, measurement of zero-point fluc-
tuation at the downstream of the edge and its feedback to
the upstream are capable of extracting local zero-point
energy at the upstream accompanied by generation of a
negative energy density region in the edge [25]. The
protocols are referred to as quantum energy teleportation
(QET) [30–32]. The inevitable energy cost Ein of the
measurement at the downstream is regarded as the input
energy of QET, and the extracted positive energy Eout at the
upstream is regarded as the output energy of QET satisfy-
ing 0 < Eout < Ein. It is expected that long-distance QET
may be attained utilizing quantum entanglement of the
expanding-edge systems [27].
The proposed experiment of expanding edges in [27]

will also have large implications to cosmology. The
expanding edge can be regarded as a simulator for the
expanding universes in 1þ 1 spacetime dimensions. In
particular, the charge density of the edge current is capable
of playing the analog role of a quantum field in curved
spacetimes. In curved spacetime field theories, many
intriguing phenomena are predicted [33]. One of these
phenomena is the Hawking radiation emission out of black
hole horizons [34]. The black hole evaporation induced by
Hawking radiation has not yet been confirmed in astro-
physical observations, but many believe that black holes are
evaporating. If a black hole completely evaporated and its
Hawking radiation remained in space, the thermal radiation
would be in a mixed state with a single parameter, that is, its
temperature. Thus, at a glance, the radiation does not
appear to carry the huge amount of information originally
stored inside black holes. Where has the information gone?
Suppose that the initial state of the black hole is a pure state
and that the evolution to the mixed state is realized resulting
in a loss of quantum coherence without any environmental
interaction. Then unitarity would be broken, which is one
of fundamental laws of quantum mechanics. This unre-
solved problem is referred to as the information loss
problem.
In the exploration of information loss, crucial missing

links of Hawking’s original analysis are known [35]. For
example, his calculation is only semiclassical. The matter is
quantized, but the spacetime remains classical in his
analysis. Thus, his theory does not cover the final burst
of black holes. In the theory of general relativity for
classical spacetime, a curvature singularity appears and
loses predictability by the theory after the burst. To avoid
this flaw, quantum theory is required, which can treat
quantum spacetimes with no singularities. Although several
candidates such as string theory exist, quantum gravity
theory remains elusive owing to the lack of strong guiding
principles, actual measurements, and convincing observa-
tions to determine the theory uniquely. To resolve the
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information loss, any findings and inspiration, which are
delivered by analog black hole experiments in condensed
matter physics including QH systems, are considered
useful [36].
Such analog experiments also shed light on the trans-

Planckian problem [37]. The typicalwavelength of a thermal
quantum particle emitted from a black hole with massM is
computed as λ ¼ OðGM=c2Þ, using the Hawking temper-
ature T ¼ ℏc3=ð8πkBGMÞ [34]. Here, c is the velocity of
light,G is thegravitational constant, and kB is theBoltzmann
constant. The particle experiences severe redshift by gravi-
tational potential when it propagates to spatial infinity. At
the previous point near the horizon where the particle is
created, thewavelength of the particle mode is much shorter
than the Planck length lP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
. Thus, a precise

description of the mode in the past regime is required for
fundamental microscopic theories such as string theory. It is
possible that Hawking’s approximation is incorrect and has
serious discrepancy. However, his results appear to be
correct. In reality, the formula for Hawking temperature T
and derived entropy S ¼ kBc3A =ð4GℏÞ for black holes
with horizon areaA are consistent with the other theoretical
results of generalized thermodynamics [38,39] and statis-
tical mechanics with state counting in string theory [40].
Thus, why Hawking’s analysis works so well despite being
semiclassical is a mystery. This is called the trans-Planckian
problem.
We can reconsider the trans-Planckian problem in con-

densed matter physics. If Hawking’s prediction is correct,
analog black holes also emit Hawking radiation, no matter
what the analog black holes are made of [41]. Analog
systems corresponding to black holes possess natural cutoff
length, just like the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
of

electron in QH systems. This phenomenon poses an analog
version of the trans-Planckian problem by regarding lB as
lP. Thus, when the original problem is considered, it is
significant to analyze the analog problem. Notably, the
trans-Planckian problem also appears in an inflationary
expanding universe owing to the existence of the cosmo-
logical horizon in the universe. Hawking radiation is
emitted out of the horizon and provides nondecaying
thermal fluctuation even in the extreme expansion of the
universe. Therefore, expanding-edge experiments using
QH systems are also appropriate for exploration of the
corresponding trans-Planckian problems associated with an
expanding universe.
In the inflationary universe, there exists another con-

ceptual issue related to quantum field theory in the
expanding universe. The accelerated expansion in the
inflationary universe provides large-scale quantum fluctu-
ations of the inflaton field over the Hubble horizon scale.
This primordial fluctuation leads to gravitational instabil-
ities that ultimately form large-scale structures in our
Universe [42]. However, it is not known how the quan-
tum-classical transition of field fluctuation occurs in a long

wavelength region beyond the Hubble horizon scale.
Because the details and mechanisms of the transition
process are not known, it remains far from profound
understanding. In the analysis, quantum entanglement is
known to be capable of capturing the quantum-classical
transition [43–46]. The bipartite entanglement between two
spatial regions will be lost in the course of evolution
[43,46], and entanglement harvesting from spatially sep-
arated regions becomes impossible [44,45]. Additionally a
study of entanglement structure in quantum states in de
Sitter space [47] may be useful to resolve the issue. It is
possible to simulate the generation of analog primordial
fluctuations experimentally, using expanding analog uni-
verses of QH systems. We are able to detect and study the
entanglement of long wavelength quantum fluctuations in
the expanding universe. This direction of analog experi-
ments in QH systems facilitates us to capture a detailed
understanding of the quantum-classical transition process
in the early Universe.
In this paper, we formulate a general theory of the

expanding edge of QH systems in a cosmology language,
i.e., quantum field theory in a curved spacetime. Taking
account of the great success of effective field theory of
static edge systems, we adopt the similar description of
effective field theory for the time-dependent edge systems.
It is assumed that such an effective theory description is
valid as long as we consider a long wavelength regime. In
fact, the QH edge experiments usually observe edge
excitation wavelengths about 100 times larger than the
magnetic length lB [10,24]. Hence the effective theory
description may be suitable for the realistic experiments.
The derivation of the effective equations obeyed by edge
modes from a microscopic Hamiltonian of the dynamical
QH system is out of our aim in this paper and will be
reported in future. The theory will be directly applied to
analyses of future experiments of the edge expansion and
stimulate an interdisciplinary interest connecting con-
densed matter physics and cosmology. First, we divide
the entire edge into three regions, as depicted in Fig. 1:
input flat region I, expanding region II, and output flat
region III. Region I is defined as x > þL=2. Region II is
defined as −L=2 ≤ x ≤ þL=2. Region III is defined as
x < −L=2. Here, L denotes the width of region II when the
edge is static. Edge excitation starts from region I and runs
through the expanding region II, and finally enters
region III.
The structure of this paper is as follows. In Sec. II,

conformally flat coordinates x� of general relativity are
introduced for the expanding region II. Additionally, we
define another conformally flat set of coordinates x�out of the
expanding region II, which are smoothly connected with
the conformally flat coordinates of the output region III.
Similarly, we define different conformally flat coordinates
x�in of the expanding region II, which are smoothly con-
nected with the conformally flat coordinates of the input
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region II. The coordinate transformation is derived between
x�out and x�in. We introduce Bogoliubov coefficients between
in-mode functions for region I and out-mode functions for
region III. The implication of the Bogoliubov coefficients
measurement in realistic experiments is discussed for future
experiments. In Sec. III, we show that the expanding edges
can be regarded as simulators of homogeneous and
isotropic universes referred to as Friedmann-Lemaître-
Robertson-Walker (FLRW) universes in 1þ 1 dimensions.
The dynamics are described by 2D gravity models with a
scalar field Φ, which is called the dilaton field. The models
include the famous Jackiw-Teitelboim (JT) model with a
negative constant curvature R ¼ −4λ2 [48,49]. The JT
model has recently attracted considerable attention because
the gravity model is closely connected with a many-body
model called the Sachdev-Ye-Kitaev model [50–52], and it
suggests a nontrivial example of an AdS/CFT correspon-
dence [53]. To connect the edge system with the AdS/CFT
correspondence, the three-dimensional anti–de Sitter (AdS)
chiral gravity may be interesting, which is dual to 2D CFT
[54]. Kerr/CFT correspondence may be also related to the
edge dynamics [55–57]. The JT model with positive
cosmological constant is referred to as the de Sitter JT
(dSJT) model in this paper. The dSJT model achieves an
exponentially fast expansion of the analog universe. Thus,

the rapidly expanding-edge experiments are quite fascinat-
ing for the study of the trans-Planckian problem and the
quantum-classical transition problem in the dSJT model. In
Sec. IV, as an application of our experimental setup, we
present the analog Hawking radiation from region II. With
the de Sitter–type expanding-edge region, a future horizon
is formed and the power of signals measured in region III
shows the Planckian distribution with Hawking temper-
ature λ=ð ffiffiffi

2
p

πÞ. We summarize our results in Sec. V. In the
Appendix, useful formulas are attached for 2D gravity.

II. CONFORMALLY FLAT COORDINATES
FOR EXPANDING REGION

Let us first consider static edge systems. First, we define
the edge excitation as the left mover with respect to the
spatial coordinate x at the edge. Specifically, excitation runs
from the right region with x > 0 to the left region with
x < 0. Subsequently, v denotes the edge current velocity of
the system. Introducing relativity notations, as in cosmol-
ogy, is useful. The time t is replaced by x0 ¼ vt. The spatial
coordinate x is denoted by x1, and light cone coordinates
are then defined as x� ¼ x0 � x1, even though v is not the
actual velocity of the light. The edge excitation is repre-
sented by a free real field φðxþÞ. The field φðxþÞ is
proportional to the voltage fluctuation on the edge and can
be directly measured in experiments [58]. In this situation,
the spacetime for the edge is just a flat spacetime called the
Minkowski spacetime. The square of the spacetime-invari-
ant distance, which is called metric form, is given by

ds2¼−v2dt2þdx2¼−ðdx0Þ2þðdx1Þ2¼−dxþdx−: ð1Þ

The aforementioned equation fixes the metric matrix for
each coordinate system as

�
g00 g01
g10 g11

�
¼
�−1 0

0 1

�
;

�
gþþ gþ−

g−þ g−−

�
¼
�

0 −1=2
−1=2 0

�
;

where ds2 ¼ gμνdxμdxν. Note that φðxþÞ satisfies the
massless Klein-Gordon equation,

½−ð∂0Þ2 þ ð∂1Þ2�φ ¼ −4∂þ∂−φ ¼ 0; ð2Þ

and the chirality condition ∂−φ ¼ 0 implying that the edge
current moves only in the left direction.
Let region II start expanding uniformly at t ¼ 0, with the

remaining regions I and III being unchanged. The space-
time metric in region II is described by the following
equation:

ds2 ¼ −v2dτ2 þ a2ðτÞdx2; ð3Þ

where τ is the proper time for an observer at x ¼ const, and
it is equal to t when t < 0. The positive function aðτÞ of τ

Region II

Region II

Bulk

Edge
Input waveOutput wave

x = +
L
2

x

x = �
L
2 x = 0

Region IRegion III

Region I

x0

x1

Bulk

Edge

(a)

(b)

Region III

FIG. 1. Schematic of setup. (a) Top view of the QH system
consisting of the bulk and the edge. Regions I and III are flat and
region II is the expanding region. (b) The QH edge in 2D
spacetime using the coordinates x0 ¼ vt and x1 ¼ x.
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satisfies aðτÞ ¼ 1 when τ < 0. At a fixed time τ, the
physical distance l between two points at x ¼ x1 and x ¼
x2ð>x1Þ is computed as l ¼ aðτÞðx2 − x1Þ. Thus, aðτÞ
determines the real size of the spatial region using the
coordinate values and is called the scale factor of the
expanding universe. Let us rewrite Eq. (3) as

ds2 ¼ a2ðτÞ
�
−v2

�
dτ
aðτÞ

�
2

þ dx2
�
: ð4Þ

By defining the relativistic coordinates as

x0 ¼ vt ¼ v
Z

τ

0

dτ0

aðτ0Þ ; x1 ¼ x; ð5Þ

and introducing a real function Θ of x0, which obeys
Θðx0Þ ¼ ln aðτÞ, we obtain the following metric form in the
light cone coordinates:

ds2 ¼ − exp

�
2Θ

�
xþ þ x−

2

��
dxþdx−; ð6Þ

where x0 ¼ ðxþ þ x−Þ=2. The form of Eq. (6) is defined as
conformally flat.
Note that, at least in a local spacetime region, any

metric form in 1þ 1 dimensions can be rewritten using a
general coordinate transformation to the conformally flat
form ds2 ¼ − exp ð2Θðxþ; x−ÞÞdxþdx−, where Θðxþ; x−Þ
is a real function of the light cone coordinates x�.
This is because we have 2 degrees of freedom as
a general coordinate transformation: x0þ ¼ fþðxþ; x−Þ
and x0− ¼ f−ðxþ; x−Þ. By considering the two functions
f� in the appropriate forms, the two conditions g0þþ ¼ 0 and
g0−− ¼ 0 are satisfied in the new coordinates x0�. Hence, we
always obtain conformally flat metric forms. The factor
exp ð2Θðxþ; x−ÞÞ is called the conformal factor.

A. Conformally flat coordinates connecting to the
expanding and output regions

The conformally flat coordinates x� in Eq. (6) as defined
in region II cannot extend to region III as the conformal
factor jumps at the boundary x ¼ x1 ¼ −L=2. However,
another set of conformally flat coordinates x�out ¼ x0out �
x1out can be introduced, which smoothly connect regions II
and III at the boundary x ¼ x1 ¼ −L=2. To ensure that x�out
are conformally flat coordinate systems, the original
coordinates x� must be x∓out-independent functions, i.e.,
x� ¼ x�ðx�outÞ. Then, the metric form in Eq. (6) is given by
the new coordinates x�out as

ds2 ¼ − exp

�
2Θ

�
xþðxþoutÞ þ x−ðx−outÞ

2

�

− ln

�
dxþout
dxþ

dx−out
dx−

��
dxþoutdx−out: ð7Þ

The above metric form remains the flat metric form in
region III as ds2 ¼ −dxþoutdx−out. The coordinate trans-
formation x� ¼ x�ðx�outÞ is uniquely determined by the
following two conditions:

(i) The spatial position of the boundary in the new
coordinates is given by x1 ¼ x1out ¼ −L=2.

(ii) The time coordinates at the boundary coincide with
each other: x0 ¼ x0out.

Here, conditions (i) and (ii) can be replaced by (i) and a
conformal factor continuity condition, i.e., the conformal
factor in x�out is continuous at the boundary between
regions II and III such that
(ii)′

1 ¼ exp

�
2Θ

�
xþðxþoutÞ þ x−ðx−outÞ

2

�

− ln

�
dxþout
dxþ

dx−out
dx−

��
at x1 ¼ −L=2: ð8Þ

Condition (i) yields the following condition:

xþout

�
x0 −

L
2

�
− x−out

�
x0 þ L

2

�
¼ −L: ð9Þ

By taking the derivative with respect to x0, we get the
following relation:

dxþout
dxþ

�
x0 −

L
2

�
¼ dx−out

dx−

�
x0 þ L

2

�
: ð10Þ

Using condition ðiiÞ0 the following relation is derived:

dxþout
dxþ

�
x0 −

L
2

�
dx−out
dx−

�
x0 þ L

2

�
¼ expð2Θðx0ÞÞ: ð11Þ

From the above equation and Eq. (10), xþout obeys the
following relation:

dxþout
dxþ

�
x0 −

L
2

�
¼ exp ðΘðx0ÞÞ: ð12Þ

By changing the free parameter x0 to xþ ¼ x0 − L=2, this
equation can be replaced by

dxþout
dxþ

ðxþÞ ¼ exp

�
Θ
�
xþ þ L

2

��
: ð13Þ

Integration of this equation yields
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xþoutðxþÞ ¼
Z

xþ

0

dy exp

�
Θ
�
yþ L

2

��
; ð14Þ

where the integration constant is fixed, such that xþout ¼ 0

when xþ ¼ 0. As the coordinate function xþoutðxþÞ is
a monotonically increasing function of xþ, it has the
inverse function xþ¼FoutðxþoutÞ, which satisfies x ¼
FoutðxþoutðxÞÞ, i.e.,

xþ ¼ FoutðxþoutÞ ⇔ xþoutðxþÞ ¼
Z

xþ

0

dy exp

�
Θ
�
yþ L

2

��
:

ð15Þ

Similarly, the coordinate function x−outðx−Þ can be derived
from Eq. (9) to be

x−outðx−Þ ¼ xþoutðx− − LÞ þ L

¼
Z

x−−L

0

dy exp

�
Θ
�
yþ L

2

��
þ L; ð16Þ

where Eq. (14) is used within the right-hand side. In the
same way as the above discussion, it is possible to
introduce continuous conformally flat coordinates x�in,
which connect regions I and II. The coordinate functions
xþinðxþÞ and x−inðx−Þ obey

xþin

�
x0 þ L

2

�
− x−in

�
x0 −

L
2

�
¼ L; ð17Þ

at the boundary x1 ¼ x1in ¼ L=2. As region I remains flat,
the metric form is given by ds2 ¼ −dxþindx−in for x1in > L=2.
By changing L → −L in Eq. (14), we obtain the following
relation:

xþinðxþÞ ¼
Z

xþ

0

dy exp

�
Θ
�
y −

L
2

��
: ð18Þ

Here, we introduce the inverse function xþ ¼ FinðxþinÞ,
which satisfies x ¼ FinðxþinðxÞÞ such that

xþ¼FinðxþinÞ⇔xþinðxþÞ¼
Z

xþ

0

dy exp

�
Θ
�
y−

L
2

��
: ð19Þ

In Eq. (16), changing L → −L yields

x−inðx−Þ ¼ xþinðx− þ LÞ − L

¼
Z

x−þL

0

dy exp

�
Θ
�
y −

L
2

��
− L: ð20Þ

B. Conformal symmetry of expanding-edge excitations

In this section, we introduce the coordinate transforma-
tion between xþout and xþin. Let F

−1
in ðxÞ denote the inverse

function of FinðxÞ, i.e., F−1
in ðFinðxÞÞ ¼ x. It should be noted

that F−1
outðFoutðxÞÞ ¼ x holds true. We then define the

composite function FðxÞ ¼ F−1
in ðFoutðxÞÞ, which satisfies

xþin ¼ FðxþoutÞ. From Eqs. (14) and (18), the following
relation holds:

X ¼
Z

FoutðXÞþL=2

L=2
dy expðΘðyÞÞ;

FðXÞ ¼
Z

FoutðXÞ−L=2

−L=2
dy expðΘðyÞÞ: ð21Þ

By combining two equations in Eq. (21), the following
relation is derived:

FðXÞ ¼ X −
Z

FoutðXÞþL=2

FoutðXÞ−L=2
dy exp ðΘðyÞÞ

þ
Z

L=2

−L=2
dy exp ðΘðyÞÞ: ð22Þ

If the function ΘðvtÞ is a constant function independent of
t, the above equations reduce to FðXÞ ¼ X. However, if
ΘðvtÞ depends on t, then FðXÞ is a nontrivial function,
which describes the dynamics of the expanding-edge
region.
If the conformal symmetry (Virasoro symmetry) survives

even in the expansion, the time evolution of the edge
excitation is given in regions I and II simply by
φinðxin þ vtinÞ, where φinðxþinÞ is the initial configuration
in region I. In region II, the configuration can be expressed
with respect to xþout as φinðFðxþoutÞÞ. Assuming the con-
formal symmetry, the configuration in region III takes the
same form as that within region II,

φoutðxout þ vtoutÞ ¼ φoutðxþoutÞ ¼ φinðFðxþoutÞÞ: ð23Þ

In future experiments of the expanding-edge systems,
confirmation of the above equation directly implies veri-
fication of the conformal symmetry preservation.

C. Measurement of Bogoliubov coefficients
and its implications

In this section, we consider the dynamical analysis of
excitations in the expanding edge using the Bogoliubov
coefficients in the curved spacetime field theory. Suppose
plane wave mode functions are defined by

ukðxÞ ¼
e−ikxffiffiffiffiffiffiffiffi
4πk

p ; ð24Þ

where the wave number k has continuous positive values.
Then the input wave φinðxþinÞ in region I can be expanded as

φinðxþinÞ ¼
Z

∞

0

dkðaðinÞk ukðxþinÞ þ aðinÞ�k u�kðxþinÞÞ; ð25Þ
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where aðinÞk are complex coefficients in this expansion.
From Eq. (23), the output wave is then calculated as

φoutðxþoutÞ¼
Z

∞

0

dk0ðaðinÞk0 uk0 ðFðxþoutÞÞþaðinÞ�k0 u�k0 ðFðxþoutÞÞÞ:

ð26Þ
Note that the output waveform is given by φout;k0 ðxþoutÞ ¼
uk0 ðFðxþoutÞÞ if the input wave is the plane wave as in
Eq. (24) with k ¼ k0. To extract information about the
dynamics in region II induced by the edge expansion, let us
expand uk0 ðFðxþoutÞÞ with respect to the plane wave mode
functions as

uk0 ðFðxþoutÞÞ ¼
Z

∞

0

dkðαðk; k0ÞukðxþoutÞ þ βðk; k0Þu�kðxþoutÞÞ:

ð27Þ
The coefficients αðk; k0Þ and βðk; k0Þ are referred to as
Bogoliubov coefficients and satisfy the unitarity conditions
[33] as follows:Z

∞

0

dqðαðk; qÞα�ðk0; qÞ − βðk; qÞβ�ðk0; q0ÞÞ ¼ δðk − k0Þ;

ð28aÞ
Z

∞

0

dqðαðk; qÞβðk0; qÞ − βðk; qÞαðk0; qÞÞ ¼ 0: ð28bÞ

The output wave φoutðxþoutÞ can be expanded using the
plane wave mode functions in Eq. (24) as

φoutðxþoutÞ ¼
Z

∞

0

dkðbðoutÞk ukðxþoutÞ þ bðoutÞ�k u�kðxþoutÞÞ; ð29Þ

where bðoutÞk are the expansion coefficients and are com-
puted as follows:

bðoutÞk ¼
Z

∞

0

dk0ðaðinÞk0 αðk; k0Þ þ aðinÞ�k0 β�ðk; k0ÞÞ: ð30Þ

The coefficients αðk; k0Þ and βðk; k0Þ play a crucial role in
the quantum regime [33]. By introducing creation operators

âðinÞ†k and b̂ðoutÞ†k and annihilation operators âðinÞk and b̂ðoutÞk ,
satisfying

½âðinÞk ;âðinÞ†k0 �¼ℏδðk−k0Þ; ½b̂ðoutÞk ;b̂ðoutÞ†k0 �¼ℏδðk−k0Þ; ð31Þ
the field operators φ̂inðxþinÞ and φ̂outðxþoutÞ are given by

φ̂inðxþinÞ ¼
Z

∞

0

dkðâðinÞk ukðxþinÞ þ âðinÞ†k u�kðxþinÞÞ; ð32aÞ

φ̂outðxþoutÞ¼
Z

∞

0

dkðb̂ðoutÞk ukðxþoutÞþ b̂ðoutÞ†k u�kðxþoutÞÞ: ð32bÞ

Using αðk; k0Þ and βðk; k0Þ, we obtain proof of the follow-
ing relations:

b̂ðoutÞk ¼
Z

∞

0

dk0ðαðk; k0ÞâðinÞk0 þ β�ðk; k0ÞâðinÞ†k0 Þ; ð33aÞ

b̂ðoutÞ†k ¼
Z

∞

0

dk0ðα�ðk; k0ÞâðinÞ†k0 þ βðk; k0ÞâðinÞk0 Þ: ð33bÞ

Note that the input vacuum state j0ini is defined by

âðinÞk j0ini ¼ 0. Thus, βðk; k0Þ describes particle creation in
region III from the input vacuum in region I. The expect-

ation values of particle number density n̂ðoutÞk , with wave
number k, are computed as

hn̂ðoutÞk i¼ 1

ℏ
h0injb̂ðoutÞ†k b̂ðoutÞk j0ini¼

Z
∞

0

dk0jβðk;k0Þj2: ð34Þ

The total number of particles is evaluated as

hN̂ðoutÞi ¼
Z

∞

0

dkhn̂ðoutÞk i:

This implies that quantum particle creation in the expand-
ing analog universes can be predicted only from βðk; k0Þ,
which can be measured in the classical regime of the
system. Thus, experimentally determining βðk; k0Þ is
crucial.
Here it may be useful to comment about a relation between

the conformal symmetry and the coefficient βðk; k0Þ. If a
conformally flat coordinate system covers the entire space-
time region (region Iþ region IIþ region III) in the experi-
ments and remains the flat metric in regions I and III, xþout is
equal to xþin up to a factor and a constant. Thus, the conformal
symmetry always results inβðk; k0Þ ¼ 0. It shouldbe stressed
that this is not the case in our situation since we do not have
such a global conformally flat coordinate system. Due to this
fact, the function uk0 ðFðxþoutÞÞ becomes a nontrivial function
with a transient behavior in a region of xþout and includes
negative frequency out modes. This implies that βðk; k0Þ ≠ 0
in general even if the conformal symmetry is preserved.
As regions I and III remain flat during the expansion of

region II, the excitations in the regions are always described
by the free fields in Eqs. (32a) and (32b). The coefficients
αðk; k0Þ and βðk; k0Þ can be estimated using the exper-
imental data in region III, even if the conformal symmetry
is broken in region II. Thus, the question of whether the
conformal symmetry survives can be answered by the
experimental data analysis of the waveform φoutðxÞ in
Eq. (23), αðk; k0Þ, and βðk; k0Þ in Eq. (27). Let us consider a
deviation δφout;k0 ðxÞ from the predicted function form
φout;k0 ðxÞ. Then the following relation holds for the devia-
tions of αðk; k0Þ and βðk; k0Þ:
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δφout;k0 ðxþoutÞ¼
Z

∞

0

dkðδαðk;k0ÞukðxþoutÞþδβðk;k0Þu�kðxþoutÞÞ:

ð35Þ

From the above equation, the following relations are
directly computed via the Fourier transformation:

δαðk; k0Þ ¼
ffiffiffi
k
π

r Z
∞

−∞
dxþ δφout;k0 ðxþÞ expðikxþÞ; ð36Þ

δβðk; k0Þ ¼
ffiffiffi
k
π

r Z
∞

−∞
dxþ δφout;k0 ðxþÞ expð−ikxþÞ: ð37Þ

By substituting observed deviation δφout;k0 into Eqs. (36)
and (37), we are able to quantify the conformal symmetry
breaking for every wavelength k0 of the input wave and
wavelength k of the output plane wave. It is possible that
the conformal symmetry breaking may occur only for some
regions of ðk; k0Þ. In such a case, Eqs. (36) and (37) provide
the information of the detailed structure of the symmetry
breaking.
If the future experiments will confirm breakdown of the

conformal symmetry, then we will be able to consider
various kinds of extended effective field theories in region
II to compute αðk; k0Þ and βðk; k0Þ, and compare the
predictions with the experimental results. To construct
simple effective theories describing the possible breakdown
of the conformal symmetry, we propose to assume the
general covariance, i.e., symmetry under general coordi-
nates transformations, as a working hypothesis for the
dynamics. Then the equation of motion takes a general
form as follows:

�
∇2−

�
mðtÞv
ℏ

�
2

−ξRðtÞ
�
φðt;xÞ−U0ðφ;tÞ¼Jðt;xÞ: ð38Þ

Here ∇2 is the covariant Laplacian operator in region II,
mðtÞ is the time-dependent effective mass induced by the
expansion. The scalar curvature of the FLRW spacetime in
region II is denoted by RðtÞ, and ξ is a real parameter
controlling the curvature interaction. The terms with mðtÞ
and ξRðtÞ induce different velocity of the edge excitation in
region II for each wave number k and break the conformal
symmetry. The term U0ðφ; tÞ represents a time-dependent
nonlinear interaction of the field φðt; xÞ, which may also
break the conformal symmetry. The term Jðt; xÞ is a
possible source. When the source term Jðt; xÞ exists, an
additional wave φJðt; xÞ is classical-mechanically gener-
ated by the source, even in the zero input wave case. Note
that the source Jðt; xÞ also breaks the conformal symmetry,
but it remains harmless when the nonlinear interaction does
not exist or when the amplitude of the input wave is so
small that the nonlinear interaction can be neglected.
In such cases, it turns out that the source term can be

eliminated by subtracting φJðt; xÞ from φðt; xÞ. The
dynamics information about the edge excitations in region
II is imprinted onto αðk; k0Þ and βðk; k0Þ, which enables us
to check the validity of Eq. (38).
Increasing the amplitude of the initial wave φinðxþinÞ in

region I, the experiments are able to determine whether
nonlinear interactions like U0ðφ; tÞ are generated in
region II. If the amplitude of φoutðxþoutÞ does not increase
linearly as the amplitude of φinðxþinÞ, the nonlinear inter-
action exists. Furthermore, it should be emphasized that an
experimental check of the edge unitarity conditions of
αðk; k0Þ and βðk; k0Þ in Eqs. (28a) and (28b) may detect the
existence of bulk-edge interactions in region II. If the edge
excitations interact with bulk excitations like magneto-
rotons, the edge dynamics are coupled with the bulk
dynamics and cannot be determined only by the edge
information. Specifically, the relations in Eqs. (28a) and
(28b) may be extended to the following relations:Z

∞

0

dqðαðk;qÞα�ðk0;qÞ−βðk;qÞβ�ðk0;qÞÞ

þ
Z

d2qðα̃ðk; q⃗Þα̃�ðk0; q⃗Þ− β̃ðk; q⃗Þβ̃�ðk0; q⃗ÞÞ¼ δðk−k0Þ;Z
∞

0

dqðαðk;qÞβðk0;qÞ−βðk;qÞαðk0;qÞÞ

þ
Z

d2qðα̃ðk; q⃗Þβ̃ðk0; q⃗Þ− β̃ðk; q⃗Þα̃ðk0; q⃗ÞÞ¼ 0;

where α̃ðk; q⃗Þ and β̃ðk0; q⃗Þ are contributions to the
Bogoliubov coefficients induced by the bulk mode func-
tions. This implies that Eqs. (28a) and (28b) are not
satisfied if the bulk-edge interactions appear in region II.
Consequently, the experiments are able to provide upper
bounds of coupling constants of bulk-edge interactions in
various situations. More detailed analyses in this section
will be reported in forthcoming papers.

III. EXPANDING EDGES AS UNIVERSE
SIMULATORS IN 2D DILATON GRAVITY

In this section, we show that the expanding edges of QH
systems are regarded as universe simulators of 2D dilaton-
gravity models. Some useful formulas for 2D gravity are
given in the Appendix. Let us suppose the following action
for a real scalar field Φ, which is called the dilaton field,
and the metric field gαβ:

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p ðΦR − 4λ2VðΦÞÞ; ð39Þ

where λ is a positive constant and VðΦÞ is the potential term
of Φ. As shown later, the determination of the time
schedule of edge expansion corresponds to the determi-
nation of a form of VðΦÞ. Thus, the field φ in Eq. (38) can
be interpreted as a matter field in a curved spacetime
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background of 2D dilation gravity with the potential term
VðΦÞ. The metric equation δS=δgαβðxÞ ¼ 0 derived from
Eq. (39) is written as

ðgαβ∇2 −∇α∇βÞΦþ 2λ2VðΦÞgαβ ¼ 0: ð40Þ

Here we have used a property of the 2D gravity, such that
Rαβ − Rgαβ=2 ¼ 0. The field equation δS=δΦðxÞ ¼ 0 reads

R ¼ 4λ2V 0ðΦÞ; ð41Þ

where V0ðΦÞ is the derivative function of VðΦÞwith respect
to Φ. As already mentioned in Sec. II, any 2D spacetime is
able to be described, at least locally, by the conformally flat
metric as ds2 ¼ − exp ð2Θðxþ; x−ÞÞdxþdx−. In this coor-
dinate system, Eq. (40) is simplified to the following three
equations:

∂þ∂−Φ − λ2VðΦÞe2Θ ¼ 0; ð42aÞ

∂2þΦ − 2∂þΘ∂þΦ ¼ 0; ð42bÞ

∂2
−Φ − 2∂−Θ∂−Φ ¼ 0: ð42cÞ

Similarly, Eq. (41) is reduced to

2∂þ∂−Θ − λ2V 0ðΦÞe2Θ ¼ 0: ð43Þ

To describe FLRW universes, let us consider metric forms
such that Θ does not have any x dependence,

ds2 ¼ −e2Θððxþþx−Þ=2Þdxþdx− ¼ e2ΘðvtÞð−v2dt2 þ dx2Þ:

The conformal factor e2ΘðvtÞ directly corresponds to the
conformal factor in Eq. (6) of the expanding-edge realistic
experiments. In this case, Eqs. (42a) and (43) become

d2Φ
dt2

− 4v2λ2VðΦðtÞÞe2ΘðvtÞ ¼ 0; ð44aÞ

d2Θ
dt2

− 2v2λ2V 0ðΦðtÞÞe2ΘðvtÞ ¼ 0: ð44bÞ

Equations (42b) and (42c) result in the same equation as

d2Φ
dt2

− 2
dΘ
dt

dΦ
dt

¼ 0: ð45Þ

Let us divide both sides by (dΦ=dt) in Eq. (45),
yielding d=dtðlnðdΦ=dtÞ − 2ΘðvtÞÞ ¼ 0. By integrating the
aforementioned equation with respect to t, we obtain
dΦ=dt ¼ Ae2ΘðvtÞ, whereA is a positive integration constant.
The constant A can be replaced by λv using a transformation
such thatΘðvtÞ → ΘðvtÞ − 1=2 lnAþ 1=2 lnðλvÞ. Thereby,
the equation can be written as

dΦ
dt

¼ λve2ΘðvtÞ: ð46Þ

By integrating Eq. (46), we obtain the following equation:

ΦðtÞ ¼ λv
Z

t

0

dt0 e2Θðvt0Þ þΦ0; ð47Þ

where Φ0 is a constant. In the expanding-edge experiment,
the factor e2ΘðvtÞ is fixed as a function of t. This determines
the monotonically increasing function ΦðtÞ in Eq. (47).
Subtracting Eq. (44a) from Eq. (45) yields

2
dΘ
dt

dΦ
dt

¼ 4v2λ2VðΦðtÞÞe2ΘðvtÞ:

By substitutingEq. (46) into the above equation, the potential
as a function of time t can be determined by

VðΦðtÞÞ ¼ 1

2vλ
dΘ
dt

ðvtÞ: ð48Þ

Here we define the inverse function of ΦðtÞ as tðΦÞ. Since
ΦðtðΦÞÞ ¼ Φ holds, the potential term VðΦÞ is fixed by the
function ΘðvtÞ as

VðΦÞ ¼ 1

2vλ
dΘ
dt

ðvtðΦÞÞ: ð49Þ

It is worth highlighting that various function forms of ΘðvtÞ
can be realized by changing the time schedule of the edge
expansion in the experiments. This implies that the expand-
ing-edge experiments provide universe simulators of the
dilaton-gravity models.
When we consider VðΦÞ ¼ −Φ, the model becomes the

Jackiw-Teitelboim model [48,49]. The equation of motion
possesses a solution of AdS spacetime with negative
constant curvature R ¼ −4λ2. The edge expansion experi-
ment is capable of simulating the JT model by taking the
conformal factor as

eΘðvtÞ ¼ 1

cosh ðHvtÞ ; ð50Þ

where we introduced H ¼ ffiffiffi
2

p
λ; H−1 corresponds to the

AdS curvature radius. The conformal factor yields the
following FLRW metric of AdS spacetime with proper
time τ:

ds2 ¼ −v2dτ2 þ cos2 ðHvτÞdx2: ð51Þ

From Eq. (47), the time evolution of the dilaton field is
given by
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ΦðtÞ ¼ Hvffiffiffi
2

p
Z

t

0

dt0

cosh2ðHvt0Þ þΦ0

¼ 1ffiffiffi
2

p tanh ðHvtÞ þΦ0: ð52Þ

Next, let us consider the dSJT model, which is con-
structed by H → iH in the JT model with the negative
cosmological constant −λ2. The corresponding potential
term in Eq. (39) is given by VðΦÞ ¼ Φ. This model
reproduces the de Sitter spacetime with a positive constant
curvature as R ¼ 4λ2. The conformal factor is fixed as

eΘðvtÞ ¼ 1

cos ðHvtÞ : ð53Þ

In this case, H−1 corresponds to the Hubble radius of de
Sitter spacetime. Since the FLRWmetric is computed using
proper time τ as

ds2 ¼ −v2dτ2 þ cosh2 ðHvτÞdx2; ð54Þ

the analog universe experiences an inflationary expansion
when τ > 0. From Eq. (47), the time evolution of the
dilaton field is derived as follows:

ΦðtÞ ¼ 1ffiffiffi
2

p tan ðHvtÞ þΦ0:

We demonstrate the effect of the expanding (shrinking)
region on the edge mode’s waveform. The mode function in
region III is related to the mode function in region I by
Eq. (23), which is explicitly obtained by finding the
function FðXÞ. The function FðXÞ is explicitly given by
Eq. (56) when the boundary of region II is the de Sitter
spacetime (54), while FðXÞ for the anti–de Sitter spacetime
is given by the analytic continuation. The derivation of
FðXÞ for the de Sitter case is presented in the next section.

From Eq. (23), the form of edge excitation φoutðxþoutÞ in
region III is predicted, assuming the conformal symmetry
in region II.
Figures 2(a) and 2(b) show the behavior of the input

wave φin (black curves) and output wave φout (red curves)
in de Sitter and AdS spacetime. Here, the input wave is
assumed to be the following Gaussian form:

φinðxþinÞ ¼ a exp

�
−
ðxþin − bÞ2

2c2

�
;

where a, b, and c are arbitrary parameters. Note that the
parameterH in de Sitter spacetime (54) is replaced by iH in
AdS spacetime (51). In our case, de Sitter spacetime is
expanding, so the output wave is also spreading, but, in
AdS spacetime, it is shrinking, so the output wave is
narrowing. In both cases, the longer the input wave stays in
region II, the more it will be affected by the expansion or
shrinkage, and the output wave will behave as if it is
expanding or shrinking.
When region II is the expanding de Sitter spacetime (54),

i.e., inflationary universe, there appear the wave modes
whose wavelength stretched infinitely. Namely, the cos-
mological horizon appears. This predicts the Hawking
radiation in the edge modes on the quantum Hall systems,
which we will discuss in the next section.

IV. EDGE MODES’ HAWKING RADIATION

In this section, we will discuss the Hawking radiation
when region II is an inflationary universe. We first evaluate
FoutðXÞ in (21) for the inflationary universe with the
conformal factor (53), which covers a whole (1þ 1)-
dimensional de Sitter spacetime. From Eq. (21), FoutðXÞ
obeys the following equation:

X¼ 1

2H
ln

�
1þ sinðHðFoutðXÞþL=2ÞÞ
1− sinðHðFoutðXÞþL=2ÞÞ×

1− sinðHL=2Þ
1þ sinðHL=2Þ

�
:

FIG. 2. Behavior of φin (black curves) and φout (red curves). (a) de Sitter (H ¼ 1=
ffiffiffi
2

p
), (b) AdS spacetime (H ¼ i=

ffiffiffi
2

p
) cases. All

parameters, i.e., a, b, c, L, are identical except for H. Here x denotes xþin for φin and xþout for φout.
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Thus, the functions FoutðXÞ and FðXÞ are computed as

FoutðXÞ ¼ −
L
2
þ 1

H
arcsin

�ð1þ sin ðHL=2ÞÞe2HX − ð1 − sin ðHL=2ÞÞ
ð1þ sin ðHL=2ÞÞe2HX þ ð1 − sin ðHL=2ÞÞ

�
; ð55Þ

FðXÞ ¼ 1

2H
ln

�
1þ sin ðHðFoutðXÞ − L=2ÞÞ
1 − sin ðHðFoutðXÞ − L=2ÞÞ ×

1þ sin ðHL=2Þ
1 − sin ðHL=2Þ

�
: ð56Þ

The function FðXÞ behaves as is shown in Fig. 3. For a
negative value of X ¼ X� < 0, FðX�Þ ¼ −∞ and for
X → þ∞, F → const. The domain and the range of
FðXÞ are semi-infinite, and this behavior indicates exist-
ence of horizons in the present spacetime. About X ¼ 0,
FðXÞ ≈ X which corresponds to behavior of flat spacetime.
Indeed, in the limit of L → 0, a whole spacetime region
becomes flat and FðXÞ ¼ X is recovered.

Figure 4 shows Penrose diagrams of the analog space-
time for the QH system with an expanding and contracting
edge. Regions I and III are flat spacetimes, and region II is a
part of the de Sitter spacetime representing the expanding
edge, whose metric is described by (54) with the global
chart. This form of de Sitter metric covers a whole region of
the de Sitter spacetime and represents a contracting uni-
verse for t < 0 and an expanding universe for t > 0. Three
spacetime regions I–III are joined along spatial points xin ¼
L=2 and xout ¼ −L=2. Owing to its global structure, only a
part of the data prepared onI − of region I can reachIþ of
region III, which implies existence of the event horizon in
this spacetime (H þ in Fig. 4).
Reachability of signals from the in-region I to the out-

region III depends on the size L of the expanding-edge
region II (Fig. 5); for π=2 < LH, signals from region I
cannot reach region III. For LH < π=4, signals prepared at
t ¼ 0 in region I reach region III at t > 0.
Figure 6 shows the waveform φoutðXÞ ¼ φinðFðXÞÞ with

φinðXÞ ¼ e−ikX. Owing to the existence of the future
horizon H þ, the wave is stretched and freezes out as
X → ∞. This behavior of the wave is the same as that for
black hole formation via gravitational collapse. Thus, we
expect the emission of Hawking radiation from the vicinity
of the future horizonH þ if the scalar field is quantized and
the vacuum condition for the in-vacuum state is imposed at
I − in region I, which corresponds to the Unruh vacuum
state in the standard scenario of Hawking radiation via

FIG. 4. Penrose diagram for the QH system with an expanding (t > 0) and a contracting (t < 0) edge region II, which is assumed to be
a part of the de Sitter spacetime with the global chart. Owing to its global structure, this spacetime possesses a future horizonH þ and a
past horizon H −. The shaded region of the right panel shows the region that the edge modes in I − in region I move to reach Iþ in
region III.

FIG. 3. Behavior of the function FðXÞ which relates xþin and xþout
as xþin ¼ FðxþoutÞ. The domain and the range of FðXÞ become
semi-indefinite, which indicates existence of horizons in the
present spacetime.
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gravitational collapse [33,34,59]. We do not discuss details
of the quantum effect in this paper (we will discuss this
aspect in our forthcoming paper), but just investigate the
Bogoliubov coefficient which can be obtained from the
relation between classical wave modes φin and φout.
For the input plane wave φinðXÞ ¼ e−ikX, from Eq. (27),

the Bogoliubov coefficients are obtained by the following
Fourier transformation:

αðk; k0Þ ¼
ffiffiffiffi
k
k0

r Z
∞

−∞
dX e−ik

0FðXÞeikX;

βðk; k0Þ ¼
ffiffiffiffi
k
k0

r Z
∞

−∞
dX e−ik

0FðXÞe−ikX: ð57Þ

To extract information of late time particle creations in
region II, we consider the asymptotic behavior of the
function FðXÞ for HX ≫ 1,

FðXÞ ≈ −c0 − c1e−HX; ð58Þ

with

c0 ¼
2

H
lnðtanðHL=2ÞÞ; c1¼

4

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sinðHL=2Þ
1þ sinðHL=2Þ

s
: ð59Þ

Using this asymptotic form of FðXÞ, we obtain the
Bogoliubov coefficient as

βðk; k0Þ ≈
ffiffiffiffi
k
k0

r
eik

0c0

H

Z
∞

0

dy y−ik=H−1eik
0c1y

¼
ffiffiffiffi
k
k0

r
eik

0c0

H
ð−ik0c1Þ−ik=HΓ

�
ik
H

�
: ð60Þ

Therefore,

jβðk; k0Þj2 ≈ 2π

Hk0
1

exp ð2πk=HÞ − 1
; ð61Þ

and it shows the Planckian distribution with a temperature

TH ¼ H
2π

: ð62Þ

This temperature coincides with the Gibbons-Hawking
temperature in the de Sitter spacetime. Equation (61) is
a signal of the classical counterpart of Hawking radiation
from the future horizon in region II. Although region II
corresponds to an expanding de Sitter universe, owing to
our setup of experiment, the global structure of spacetime
resembles the situation of black hole formations by
gravitational collapse, and it is possible to detect
Hawking radiation from the analog black hole. The temper-
ature of the emitted Hawking radiation is the same as that of
the de Sitter horizon. More detailed analysis on Hawking
radiation from the expanding-edge region will be presented
in our forthcoming paper.

V. SUMMARY

In this paper, we formulated a general theory for the
analysis of future experiments of the expanding edges of
QH systems. The dynamics of edge expansion is described
by the waveform φoutðxþoutÞ of edge excitation measured in
region III and its Bogoliubov coefficients αðk; k0Þ and
βðk; k0Þ. Based on Eq. (23), the experiments determine

FIG. 6. The waveform received at a detection point in region III
(LH ¼ 0.5). X corresponds to xþout. The input signal is a plane
wave φin ¼ e−ikX with k ¼ 10. For X → X� ≈ −1.6, the input
wave is infinitely blueshifted owing to the past de Sitter horizon
H − in region II, and for X → þ∞, the input wave is infinitely
redshifted owing to the future de Sitter horizon H þ in region II.

FIG. 5. L dependence of the global structure of spacetime. Red lines represent world lines for fixed spatial points in regions I and III.
From left to right: 0 < LH < π=4, π=4 < LH < π=2, π=2 < LH. For π=2 < LH, signals emitted from the in-region I cannot reach the
out-region III.
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whether the conformal symmetry survives in region II. By
increasing the amplitude of the initial wave φinðxþinÞ in
region I, the experiments determine whether nonlinear
interactions of the edge waves are generated in region II.
If the amplitude of the output wave φoutðxþoutÞ does not
increase linearly with the increase in the amplitude of
φinðxþinÞ, the nonlinear interactions exist. If the experiments
show a breakdown of the edge unitarity conditions of
αðk; k0Þ and βðk; k0Þ in Eqs. (28a) and (28b), the edge
excitations interact with bulk excitations. More detailed
analyses will be reported in forthcoming papers.
We have also shown that the expanding edges can be

regarded as analogs of expanding universes in 2D dilaton-
gravity models, including the JT model and dSJT model.
By controlling the time schedule of the edge expansion, the
experiments are capable of simulating the gravity models
with the potential term VðΦÞ in Eq. (49). Furthermore, we
demonstrated the analog Hawking radiation from the
de Sitter horizon formed in the expanding-edge region,
which might be detected in our experimental setup. Since
the field φ in Eq. (38) for a QH system in a low-noise
situation is regarded as a quantum field in an expanding
analog universe, the time-dependent QH systems enable us
to explore the trans-Planckian problem and the quantum-
classical transition problem in 2D dilaton gravity.
In conclusion, future studies of the expanding-edge

experiments are expected to reveal new physics of QH
systems, yielding numerous milestones that endeavour to
resolve the fundamental problems in the early Universe.
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APPENDIX: FORMULA FOR 2D GRAVITY

(i) Flat spacetime metric,

ds2 ¼ −c2dt2 þ dx2:

(ii) Definition of Christoffel symbols for general metric
form ds2 ¼ gμνdxμdxν,

Γα
βγ ¼

1

2
gαμð∂βgμγ þ ∂γgμβ − ∂μgβγÞ:

(iii) Definition of Riemann curvature tensor,

Rα
βμν ¼ ∂μΓα

νβ − ∂νΓα
μβ þ Γα

μγΓ
γ
νβ − Γα

νγΓ
γ
μβ;

Rαβμν ¼ gαγRγ
βμν.

(iv) Definition of Ricci curvature tensor,

Rαβ ¼ Rμ
αμβ ¼ gμνRμανβ:

(v) Definition of scalar curvature,

R ¼ gαβRμ
αμβ ¼ gαβgμνRμανβ:

(vi) In 2D gravity theory, Rαβμν and Rαβ are uniquely
determined by R and gμν as

Rαβμν ¼
1

2
Rðgαμgβν − gανgβμÞ;

Rαβ ¼
1

2
gαβR:

(vii) Light cone coordinate systems,

x� ¼ ct� x ¼ x0 � x1:

(viii) Partial derivatives with respect to x�,

∂þ ≔
∂

∂xþ ¼ ∂x0
∂xþ ∂0 þ

∂x1
∂xþ ∂1 ¼

1

2
ð∂0 þ ∂1Þ;

∂− ≔
∂

∂x− ¼ ∂x0
∂x− ∂0 þ

∂x1
∂x− ∂1 ¼

1

2
ð∂0 − ∂1Þ:

(ix) Any metric form can be rearranged into a confor-
mally flat metric form as

ds2 ¼ − expð2Θðxþ; x−ÞÞdxþdx−;

at least, in any local region of whole spacetime.
(x) Nonvanishing Γα

βγ in conformally flat coordinate
system,

Γþ
þþ ¼ 2∂þΘ;

Γ−
−− ¼ 2∂−Θ:

(xi) Scalar curvature in a conformally flat coordinate
system,

R ¼ 8e−2Θ∂þ∂−Θ:
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