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We show how the theory of characters can be used to analyze an anomaly corresponding to chiral
fermions carrying an arbitrary representation of a gauge group that is finite, but otherwise arbitrary. By way
of example, we do this for some groups of relevance for the study of quark and lepton masses and mixings.
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Finite symmetry groups are ubiquitous in physics, e.g.,
for stabilizing particles such as the proton or dark matter or
for explaining the patterns of masses and mixings of quarks
and leptons. The lore of quantum gravity says that they
should be gauged and the lore of gauge symmetry says that
they should be free of anomalies that can arise when they
act on chiral fermions, at least if they are to be linearly
realized in vacuo.
The study of such anomalies was pioneered by Graham

Ross in collaboration with Luis Ibañez [1], who studied
cyclic groups by embedding them as subgroups of a
spontaneously broken Uð1Þ (see also [2]). The extension
to an arbitrary finite Abelian group follows immediately,
since such a group is isomorphic to a product of cyclic
groups, but the general case of groups that are not
necessarily Abelian is still poorly understood. This is
unfortunate, since groups with irreducible representations
whose dimensions exceed one, which is a sine qua non for
applications to flavor physics, are necessarily non-Abelian.
Here we show that one can perform a complete analysis

of the anomalies of an arbitrary finite group using the
theory of characters. To give a flavor of the power of this
approach, consider the following situation: given a group
and a representation of it, there must exist a unique largest
subgroup that is anomaly free with respect to that repre-
sentation. By considering all representations, one generates
a list of possible anomaly-free subgroups. As the examples
considered at the end of this paper show, this list can be
found using the theory of characters with a line or two of
menial algebra. (To match representations with subgroups
in the list takes another line or two.)

Let us begin by recalling the current state of the art but
phrasing things in a way which is both mathematically
kosher and as general as possible. Suppose the spacetime
dimension is 4 and that the fermions (all with the same
chirality) carry the complex representation ρ of G. An
argument [3] along the lines of Fujikawa’s [4], shows that
the transformation corresponding to g ∈ G is free of a
mixed anomaly between G and gravity if and only if
det ρðgÞ ¼ �1. The curious factor of �1 arises ultimately
from an index theorem, but we can see that it must be
present by following Ross and Ibañez and considering G to
be a cyclic group arising as the linearly realized subgroup
of a spontaneously broken Uð1Þ that is itself anomaly free.
The freedom to include a minus sign then arises from the
possibility that a single charged chiral fermion can acquire
a Majorana mass and thus decouple at low energy.
No further anomalies are detected by Fujikawa’s argu-

ment (we will discuss further possible anomalies at the end)
unless G has a nontrivial Lie algebra, but then G is no
longer finite. In that case, mixed anomalies can arise
between the normal subgroup G0 consisting of the com-
ponent path connected to the identity element in G and the
group of connected components G=G0, which is finite
assumingG is compact. A useful stepping stone in carrying
over the analysis to this more general case is to study
the slightly more general condition ðdet ρðgÞÞm ¼ 1 with
m ∈ N and we shall do so in what follows. So for the
gravitational anomaly discussed above, m ¼ 2, while for
the case where G ¼ G0 × G=G0 is a product, the corre-
sponding values of m for the mixed anomaly are given in
Ref. [5] in terms of the Dynkin indices of the representa-
tions of G0. For the N-dimensional fundamental represen-
tation of SUðNÞ, for example, we get m ¼ 1.
A recent preprint [6] (see also [5,7–9]) goes on to

establish the following: (i) the set of g ∈ G such that
ðdet ρðgÞÞm ¼ 1 forms a subgroup of G, which we call the
anomaly-free subgroup1 and denote Gm

ρ ; (ii) Gm
ρ is normal;
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and (iii) Gm
ρ contains the derived subgroup G0 (being the

normal subgroup generated by commutators, i.e., elements
in fghg−1h−1jg; h ∈ Gg). Moreover, the first of these three
facts implies that we may form the set of cosets G=Gm

ρ , the
second implies thatG=Gm

ρ forms a group (which we call the
anomalous quotient group), and the third implies that it is
Abelian. It is then further shown in [6] that the anomalous
quotient group is cyclic.
Our point of departure is to observe that all of these facts

follow almost immediately once one notices that the map
g ↦ ðdet ρðgÞÞm defines a homomorphism πmρ from G to
the Abelian group S1 ∈ C of complex numbers with unit
modulus, with group law given by complex multiplication.
Indeed, Gm

ρ is then the kernel of πmρ , so is normal, and
G=Gm

ρ is isomorphic to the image of πmρ , so is isomorphic to
a subgroup of S1. But all subgroups of the Abelian group S1

are of necessity Abelian and all finite subgroups of S1 are
moreover cyclic,2 so G=Gm

ρ is cyclic.
Regarding the observation in [6] that Gm

ρ ⊃ G0, this is
implied by our observation thatG=Gm

ρ is Abelian, but it will
be useful for what follows to spell out the connection in
more detail. To wit, we have that G0 is a normal subgroup,
so we can form the quotient groupG=G0, which turns out to
be Abelian and which we call the Abelianization of G. Its
importance lies in the fact that G=G0, equipped with the
natural projection map π0∶G → G=G0, is universal among
Abelian groups A equipped with a map σ∶G → A. In other
words, given any such A and σ, there exists a unique map σ0
such that3,4

σ ¼ σ0∘π0: ð1Þ

To go further, we notice that the map g ↦ ðdet ρðgÞÞm
defines not just a homomorphism, but also a character,
meaning that the heavy machinery of the theory of
characters can be brought to bear. Recall that, given a
representation ρ, the character χ afforded by ρ is the map
G → C∶g ↦ trρðgÞ defined by taking the trace of the linear
operator ρðgÞ. Its degree is given by its value on the identity

element in G or equivalently by the dimension of the vector
space carrying the representation ρ. Characters of degree
one, also called linear characters, are special because we
then have, colloquially, that “trρ ¼ ρ”; as a result they land
in S1 ⊂ C and define homomorphisms G → S1.
More precisely, there is a one-to-one correspondence

between linear characters and homomorphisms G → S1

and this allows us to study anomalies in complete general-
ity. Indeed, the total number of linear characters of G is
finite (being of degree one, they are necessarily irreducible
characters, so their number is bounded above by the
number of irreducible characters, which is equal to the
number of conjugacy classes, which in turn is bounded
above by the number jGj of elements of G, which is finite).
Moreover, as we shall soon see, the corresponding maps
G → S1 are easily explicitly determined, as are their kernels
and images. To study the anomalous properties of any
particular representation ρ, we merely need to explicitly
match up πmρ with a linear character on our list. This too is
easily done. In fact, because every representation of a finite
group is completely reducible, it is often possible to make
statements about the anomalies of all representations at
once, as we shall see when we discuss some examples.
Before we describe the gory details, it is perhaps useful

to spell out exactly what it achieves in terms of allowing us
to analyze the anomalies of a specified representation ρ of a
specified group G. To do that, we need to ask what it might
actually mean to “specify” ρ and G.
At the most explicit level, we might suppose that we are

given (perhaps as a result of inspecting a Lagrangian of
physical interest) a set of generators and relations for G
along with a set of matrices, one for each generator,
forming a representation of G. Here one might think that
our methods do not bring much, since one can directly
compute the mth powers of the determinants of matrices
and compare with unity. But even here, our methods
offer a slight advantage, in that we need only carry out
such a computation on a set of generators of the
Abelianization G=G0.5

Less explicitly, we might be given the character table for
G and the character χ afforded by ρ. Here, a priori, we
would need to first reconstruct ρ and then compute its
determinants (on conjugacy classes) as above. With our
methods, we can extract the anomaly from χ directly. Of
course, since the character table gives us every irreducible
character, we could also figure out the anomaly of any
representation (or its character) by reducing it. This is made
particularly straightforward by the fact that the determinant
of a reducible character is given by the product of the
determinants of its summands.
In fact, it is not even necessary to know the character

table, since we can (and will shortly show) reconstruct the

2Proof. Parametrize the elements of S1 by an angle in ½0; 2π�
and let θ be the smallest element in a finite subgroup. If the
subgroup is not cyclic, then it is not generated by θ, so there
must exist an element ϕ such that nθ < ϕ < ðnþ 1Þθ ⇒
0 < ϕ − nθ < θ. So θ is not the smallest element, which is a
contradiction.

3Proof. G=G0 is Abelian since ghG0 ¼ ghh−1g−1hgG0 ¼ hgG0.
Given σ, define σ0ðgG0Þ ≔ σðgÞ. This is well-defined since if
hG0 ¼ gG0, then there exists a commutator jkj−1k−1 (or a product
of commutators) such that h ¼ gjkj−1k−1. But then σ0ðhG0Þ ¼
σðhÞ ¼ σðgjkj−1k−1Þ ¼ σðgÞ ¼ σ0ðgG0Þ (a similar argument
works for a product of generators). It is unique because if σ00
is another such function, we must have σ00ðgG0Þ ¼ σ00πðgÞ ¼
σðgÞ ¼ σ0πðgÞ ¼ σ0ðgG0Þ.

4In high-falutin’ terms, we might say that Abelianization is a
functor from the category of groups to the category of Abelian
groups that is left adjoint to the functor that forgets that a group is
Abelian.

5A set of generators of minimal size has one generator for each
factor of G=G0 expressed as ΠiZki , where each ki divides kiþ1.
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necessary part of it (namely the linear characters) directly.
So let us suppose we are in the worst-case scenario where
we know G only in the form of some generators and
relations and are interested in an arbitrary representation.
Our first goal is to find the linear characters. By the
universal property in (1), these can be obtained by
precomposing the linear characters of the Abelianization
G=G0 with the map π0. So we use the given generators and
relations for G to find G0 and then G=G0, which we express
as a product of cyclic groups, i.e., G=G0 ≅ ΠiZki , where
each ki divides kiþ1, and choose a generator for each factor.
The jG=G0j distinct linear characters of G=G0 are then
obtained by assigning a kith root of unity to the ith factor.
Precomposing these with π0 then determines the linear
characters on G.6

From here, it is easy to answer the question of which
anomaly free subgroups arise when we consider the set of
all possible representations. This amounts to considering
which linear characters arise in the image of πm− and is
easily settled since π1− obviously surjects onto the linear
characters. So the map πm−; hits precisely the linear
characters that are m-fold products of linear characters
(with multiplication of characters defined pointwise in the
target). The kernels of these yield the possible anomaly-free
subgroups.
For a second question that is easy to answer, suppose

we are given just one character χ and we wish to compute
the anomaly free subgroup of a representation afforded
by it.
Given χ we may define a linear character as its

determinant det χ∶G → S1∶g ↦ det ρðgÞ, where ρ is any
representation affording χ. This may be computed explic-
itly from χ as follows. Supposing χ has degree n, then we
have the following beastly formula relating the determinant
of the character of an element to the characters of the
element’s powers (obtained straightforwardly from the
formula for an arbitrary square matrix given in [10]):

det χðgÞ ¼
X

fk1;…kl∈Nj
P

lkl¼ng
Πn

l¼1

ð−1Þklþ1

lklkl!
ðχðglÞÞkl : ð2Þ

For n ¼ 2, for example, we have

det χðgÞ ¼ χ2ðgÞ − χðg2Þ
2

; ð3Þ

while for n ¼ 3 we have

det χðgÞ ¼ χ3ðgÞ − 3χðg2ÞχðgÞ þ 2χðg3Þ
6

: ð4Þ

With the determinant in hand, we can simply raise it to the
desired power m and read off the kernel to extract the
anomaly-free subgroup.
With power tools in hand, let us now apply them to find

all the anomaly free subgroups of irreducible characters for
various groups that have appeared in the literature on flavor
physics.
We start with the group S3 of permutations of three

objects. It has three conjugacy classes, labeled by the cycle
lengths (.),(..), and (…). The derived subgroup is isomor-
phic to Z=3Z, consisting of the union of the conjugacy
classes (.) and (…) and the map π0 sends those classes to
the trivial element 1 ∈ Z=2Z ≅ G=G0 and sends the
class (…) to the nontrivial element −1. The two linear
characters of Z=2Z are defined by χ0ð1Þ ¼ χ0ð−1Þ ¼ 1
and χ1ð1Þ ¼ 1; χ1ð−1Þ ¼ −1. After precomposing with π0,
we find the linear characters of S3 given by χ0ðð:ÞÞ ¼
χ0ðð…ÞÞ ¼ χ0ðð::ÞÞ ¼ 1 and χ0ðð:ÞÞ ¼ χ0ðð…ÞÞ ¼ 1;
χ0ðð::ÞÞ ¼ −1. There is one further irreducible character,
which can be found using orthogonality to be
χ2ðð:ÞÞ ¼ 2; χ2ðð…ÞÞ ¼ −1; χ2ðð::ÞÞ ¼ 0. Its determinant
can only differ from 1 on the conjugacy class (..), for

which (3) yields det χ2ðð··ÞÞ ¼ χ2
2
ðð··ÞÞ−χ2ðð··Þ2Þ

2
¼ 0−2

2
¼ −1.

Thus we identify ker det χ2 ¼ χ1. So for odd m, the
irreducible representations affording χ1 and χ2 are anoma-
lous with the anomaly-free subgroup S03 ≅ Z=3Z, while for
even m all representations are anomaly free.
This example is somewhat boring since the list of

possible anomaly-free subgroups has just two entries,
viz. S3 and S03. A more interesting example from flavor
physics [11] is the quaternion group, of order 8. Henceforth
we take the liberty of starting from the character table,
which can be found these days at the touch of a button
using GAP [12]. The table for Q8 is shown at the top left in
Fig. 1. A glance at the linear characters shows that the
Abelianization is isomorphic to the Klein group Z=2Z ×
Z=2Z of order 4, so the derived subgroup is of order 2 and
is the subset f1;−1g ⊂ Q8.

7 But the three possible
anomaly-free subgroups for m odd are larger (because
the anomalous quotient must be cyclic), being all isomor-
phic to Z=4. One is f�1;�ig and the other two are
obtained by the outer automorphisms ofQ8, which permute
i, j, and k. Form even, all representations are anomaly free.
For the group A4, of order 12, of alternating permutations

of four objects, used in e.g., [14,15], the character table
appears at the top right in Fig. 1. The three linear characters
indicate that A4=A0

4 ≅ Z=3Z. Thus jA0
4j ¼ 4 and inspection

of χ1 shows us that A0
4 ¼ ½ð:Þ� ∪ ½ð12Þð34Þ� ≅ Z=2Z×

Z=2Z. For the remaining character (of degree 3), it
suffices to compute the determinant on the permutation

6We note that the map (of sets) from the set of conjugacy
classes of G to its Abelianization defined by ½g� → gG0 is
surjective, but not injective unless G0 is the trivial group.

7We shall not need it for our trifles, but a useful fact in this
context [13] is that g ∈ G is a commutator (ergo a generator
of G0) if and only if

P
i χiðgÞ=χið1Þ ≠ 0, where i indexes the

irreducible characters.
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(123). Since χ3ðð123ÞÞ ¼ 0, our formula collapses to

det χ3ðð123ÞÞ ¼ 2χ3ðð123Þ3Þ
6

¼ χ3ðð:ÞÞ
3

¼ 1, so det χ3 ¼ χ0. For
m ¼ 1, 2 mod 3, the irreducible representations affording
χ1 and χ2 are anomalous with anomaly-free subgroup
A0
4 ≅ Z=2Z × Z=2Z.
For the group SLð2; F3Þ, of order 24, consisting of 2 × 2

matrices with elements in the field F3, used in [16,17], the
character table appears at the bottom of Fig. 1. We
immediately read off that the Abelianization is isomorphic
to Z=3Z. The derived subgroup thus has order 8 and must
consist of the union of the conjugacy classes containing
ð1
0
0
1
Þ, ð−1

0
0
−1Þ, and ð0

1
−1
0
Þ, which is isomorphic to Q8. To

compute the determinants, it is sufficient to consider the
conjugacy class containing ð1

0
1
1
Þ. A simple calculation then

yields the right hand column in the table. For m a multiple
of 3, all representations are anomaly free; otherwise, only
the irreducible representations with characters χ0;3;6 are
anomaly free, while the others have an anomaly-free
subgroup SLð2; F3Þ0 ≅ Q8. Those who care for such things
may now continue ad nauseam.
Finally, we must return to the thorny question of whether

there might exist further anomalies, undetected by
Fujikawa’s argument. Such anomalies, which necessarily
can arise only if we consider spacetimes with nontrivial
topology, are signaled by a nontrivial value of the expo-
nentiated Atiyah-Patodi-Singer eta invariant. This is a

bordism invariant for finite G, but it is not known how
to compute it in general (for cyclic groups, see [18,19]).
Even if it is nontrivial, it may be possible to cancel the

resulting anomalies without changing the degrees of free-
dom by coupling to a topological quantum field theory.
Again, it is not known what form such a theory may take, in
general. One well-understood class of examples amounts to
replacing G by an extension G̃ (and ρ by its “restriction”
along G̃↠G), where the role of the topological theory is to
obstruct the lifting of an arbitrary principal G bundle to a
principal G̃ bundle [18,19]. Again, we may return to Ibañez
and Ross [1] for a pertinent example, where there exists an
l ∈ N such that the extension Z=nlZ↠Z=nZ can be used
to cancel the pure gauge anomaly for Z=nZ [2]. Our
arguments show that this cannot happen for the anomaly
that we have considered: any such anomaly corresponds
to a linear character G → S1, which cannot be sent to the
trivial character by pullback along any extension G̃↠G.
A similar argument from the bordism point of view appears
in [19].

ACKNOWLEDGMENTS

I am grateful to Joe Davighi for a discussion. This work
was supported by STFC consolidated Grant No. ST/
T000694/1.

FIG. 1. Character tables for Q8 (top left), A4 (top right), and SLð2; F3Þ (bottom) with conjugacy classes in the top row labeled
by representative group elements. The characters are labeled in the left-hand column and their respective determinants appear in the
right-hand column.
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