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Tree-level scattering amplitudes for gravitons, gluons, and Goldstone particles in any dimensions are
strongly constrained by basic principles, and they are intimately related to each other via various relations. We
study two types of “universal expansions” with respect to gauge bosons and Goldstone bosons; the former
expresses tree amplitudes in Einstein gravity (Yang-Mills) as linear combinations of single-trace Einstein-
Yang-Mills (Yang-Mills-ϕ3) amplitudes with coefficients given by Lorentz products of polarizations and
momenta, and the latter expresses tree amplitudes in nonlinear sigma model, (Dirac-)Born-Infeld and a
special Galileon theory, as linear combinations of single-trace mixed amplitudes with particles of lower
“degree of Adler’s zero” and coefficients given by products of Mandelstam variables. We trace the origin of
gauge-theory expansions to the powerful uniqueness theorem based on gauge invariance, and expansions in
effective field theories can be derived from gauge-theory ones via a special dimension reduction.
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I. INTRODUCTION

Recent years have witnessed enormous progress in
unraveling unexpected simplifications and new, hidden
mathematical structures for scattering amplitudes in quan-
tum field theory (c.f. [1]). Such remarkable structures have
been found not only for amplitudes in special theories such
asN ¼ 4 super-Yang-Mills to all loop orders [2–4], but also
for tree amplitudes in a wide range of theories such as gauge
theories, gravity, and effective field theories (EFTs).
Moreover, deep, universal relations have been discovered
for such amplitudes of gluons, gravitons, and Goldstone
particles (c.f. [5–8]), and the origin for some of these
relations still remain to be understood.
Tree amplitudes in general relativity (GR) and Yang-

Mills (YM) theory, which encode leading two-derivative
interactions of gravitons and gluons, turn out to be uniquely

determined by gauge invariance, provided that one starts
with an ansatz of cubic tree graphs and correct power
counting [9,10]. This is rather remarkable as it implies that
unitarity and locality, reflected in factorization of ampli-
tudes, can be derived from gauge invariance and singularity
structures for these amplitudes. On the other hand,
Goldstone particles for spontaneous symmetry breaking
have intriguing infrared behavior encoded in soft limits
[11,12]; certain amplitudes of these EFTs have enhanced
Adler zero which are totally invisible in Feynman dia-
grams, similar to gauge invariance for gauge theories and
gravity. These include pions in the nonlinear sigma model
(NLSM), scalars in Dirac-Born-Infeld (DBI), and even a
special (most symmetric) Galileon theory (sGal), with
increasingly vanishing soft behavior [12–14] known as
Adler zero [15]. Similarly, with quartic-graph ansatz and
correct power counting, these amplitudes are uniquely
determined by enhanced Adler zero under soft limits
[10]. Born-Infeld (BI) amplitudes enjoy both gauge invari-
ance and Adler zero, though it is slightly more nontrivial to
fix them using such conditions [16].
All these amplitudes are closely related to each other via

a web of relations. Perhaps the most famous ones are
double-copy relations (see the review [17] and references
therein), originally discovered by Kawai–Lewellen–Tye
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(KLT) in string theory [18] and by Bern–Carrasco–
Johansson (BCJ) via color-kinematics duality in QFT
[5,19], which can be summarized in the slogan
“GR ¼ YM ⊗ YM” [20]. We use L ⊗ R to denote the
theory whose amplitudes are obtained by field-theory KLT
[21,22] or equivalently tree-level BCJ double-copy, of
amplitudes in theories L and R with color/flavor structures;
this ⊗ operation becomes particularly natural and universal
in Cachazo-He-Yuan (CHY) formulas [6,23–26], and
by construction biadjoint ϕ3 serves as the identity [25];
I ¼ I ⊗ ϕ3 ¼ ϕ3 ⊗ I for any theory I. From this perspec-
tive, it has been extended to a large class of theories
including EFTs, e.g., ðDÞBI ¼ YMðsÞ ⊗ NLSM, and
sGal ¼ NLSM ⊗ NLSM [6]. Two more operations con-
nect these amplitudes in theory space, which can be
understood from CHY formulas [6,26] or more directly
as “unifying relations” [7]. The ⊕ operation produces
mixed amplitudes of two types of particles, I ⊕ II, with
particular interactions between them, and additional color/
flavor structure for II (compared to I), e.g., GR ⊕ YM ¼
Einstein-Yang-MillsðEYMÞ and an interesting “extended
DBI” theory from DBI ⊕ NLSM [6] (see also [27]).
A special dimension reduction (DR) reduces gauge bosons
to Goldstone bosons [8], e.g., YM to NLSM (gluons to
pions), GR to BI (gravitons to photons) etc.
In this paper, we study a different type of relation among

amplitudes which further demonstrate how these ampli-
tudes are strongly constrained and closely related to each
other. We call them “universal expansions” since they apply
to amplitudes of gravitons, gluons, and Goldstone particles
universally, and they encode ⊕, ⊗, as well as DR in a
natural way. The amplitude with n gravitons can be
expanded as a linear combination of EYM (GR ⊕ YM)
mixed amplitudes with rþ 2 gluons in a single trace and
n − r − 2 gravitons (for r ¼ 0; 1;…; n − 2), and each
coefficient is a Lorentz product of rþ 2 polarization
vectors and r momenta; the same holds if we replace
gravitons (gluons) with gluons(biadjoint ϕ3 scalars) in YM,
or photons in BI (pions in NLSM). Note that these mixed
amplitudes, which turn out to be building blocks of the
original amplitude, are simpler since the new particles have
spin lowered by one compared to the original ones.
Remarkably, we find that with ansatz of [10], gauge
invariance in n − 1 particles uniquely determines this
expansion, thus indirectly fixes all these mixed amplitudes.
More precisely, gauge invariance in n − 2 gravitons/gluons
already fixes the form of the expansion, with each term
obtained by certain differential operators acting on the full
ansatz [10]; by imposing gauge invariance on any of the
remaining two particles, we uniquely fix the expansion and
consequently these mixed amplitudes. Since EFT ampli-
tudes can be obtained via special DR from gauge-theory
ones, they have similar expansions e.g., BI (NLSM)
amplitude as a linear combination of mixed amplitudes
of BI ⊕ YM (NLSM ⊕ ϕ3), with coefficients given by

products of Mandelstam variables. The new particles in
these mixed amplitudes, gluons (ϕ3 scalars), have lower
degree of Adler zero (by two) compared to that of the
original ones, photons (pions).
Let us summarize our main results as follows. For gauge

theories and gravity, their amplitudes satisfy gauge invari-
ance; An is invariant under eμi → eμi þ αpμ

i for i ¼ 1; � � � n.
It turns out that gauge invariance implies an expansion for
the n-point tree amplitude of theory I [28],

AI
n ¼

X
α

ð−1ÞrWð1; α; nÞAI⊕IIðfᾱgj1; α; nÞ; ð1Þ

where we single out two special legs, e.g., 1; n, and the sum
is over all ordered subsets of f2;…; n − 1g denoted by α
(with jαj ¼ r for r ¼ 0; 1;…; n − 2), and fᾱg denotes the
complementary (unordered) set with n − 2 − r labels [29].
For each term, we have a Lorentz-contraction prefactor

Wð1;α; nÞ≡ e1 · fα1 · fα2…fαr · en;

with linearized field strength fμνi ≡ pμ
i e

ν
i − eμi p

ν
i , and a

mixed amplitude of n − 2 − r particles in theory I in fᾱg
and rþ 2 particles in theory II with spin lowered by one;
they are ordered as ð1; α; nÞ ≔ ð1; α1;…; αr; nÞ since they
carry additional color/flavor structure. These theories are
summarized in Table I as follows.
There are similar universal expansions for EFT ampli-

tudes with (enhanced) Adler zero; the defining properties of
these EFTs is that their amplitudes vanish (to certain a
degree) under soft limit; for pμ

i ¼ τp̂μ
i with τ → 0, we have

limpi∼OðτÞ→0 An ¼ OðτhÞ for any i, where we call h the
degree of Adler zero. These amplitudes and their expan-
sions follow from gauge theory and gravity ones via a
special DR. One way for expanding amplitudes in theory I
with n Goldstone bosons is

AI
n ¼

X
α;odd

Ŵð1; 2; α; nÞAI⊕IIðfᾱgj1; 2; α; nÞ; ð2Þ

where, after singling out 1; 2; n, the sum is over ordered
subsets of f3;…; n − 1g with r ¼ jαj odd, and

Ŵð1; 2; α; nÞ≡ p2 · f̂α1 � � � f̂αr · pn

with f̂μνi ≡ pμ
i p

ν
i , or Ŵ ¼ s2;α1sα1;α2 � � � sαr;n (with si;j ≔

pi · pj) [30]; the mixed amplitudes has ðn − 3 − rÞ particles
of theory I in fᾱg and rþ 3 particles of theory II with
degree of Adler’s zero h reduced by two, which carry

TABLE I. Gauge theories in universal expansion and corre-
sponding spin.

Gauge theories

I GR (s ¼ 2) YM (s ¼ 1) BI (s ¼ 1)
II YM (s ¼ 1) ϕ3 (s ¼ 0) NLSM (s ¼ 0)
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additional color/flavor structure and are ordered as
ð1; 2; α; nÞ. These theories and their degree of Adler’s zero
can be found in the following Table II [31].
We remark that these mixed amplitudes encode highly

nontrivial interactions between particles in theory I and II,
and it is not obvious at all why they appear as “building
blocks” of universal expansions of pure amplitudes of
theory I. For example, the mixed amplitudes of Yang-
Mills ⊕ biadjoint ϕ3 come from the Lagrangian in [6],
which consists of YMs from dimension reduction and the
biadjoint ϕ3 interaction term; mixed amplitudes of
EYM ¼ GR ⊕ YM encode the well-known minimal cou-
pling of gravitons and gluons. For BI ⊕ NLSM and other
cases for EFTs, it is only after computing these mixed
amplitudes via CHY or DR, can we determine the
Lagrangian with rather intricate interaction terms [32,33].
Since these mixed amplitudes were originally discovered

via CHY, the two sets of expansions can be easily derived
using these formulas as well (see [34–37] and e.g., [38,39]);
but this just shifts the question to why these amplitudes
have such nice CHY formulas. In this paper we do not rely
on CHY formulas at all, but instead we find that all mixed
amplitudes in gauge theories and gravity are indirectly
determined by the uniqueness of the full amplitude in GR/
YM, which is naturally written as an expansion. Note that
each term in the gauge-theory expansion is gauge invariant
with respect to n − 2 particles, which is the best one can
achieve for any functions other than the full amplitude
[9,10]. In a sense, such expansions resemble certain Taylor
expansions for the full amplitude; each coefficient is the
analog of xm (with x being Lorentz products of e and p),
and the mixed amplitudes are given by corresponding mth
order derivatives, which are known as transmuted operators
[7] acting on the full amplitude, ∂m

∂xm AðxÞ.
Examples: Before proceeding, we present a few simple

examples for these expansions. For n ¼ 3 YM amplitude,
the expansion is trivial: we have two terms, e1 ·

e3AYM⊕ϕ3ðf2gj1; 3Þ ¼ 1
2
e1 · e3e2 · ðp1 − p3Þ with r ¼ 0,

and −e1 · f2 · e3 with r ¼ 1 [where Aϕ3ð1; 2; 3Þ ¼ 1].
For n ¼ 4 we have terms with r ¼ 0, 1, 2

AYM
4 ¼ 1

2!
e1 · e4AYM⊕ϕ3ðf2; 3gj1; 4Þ

− e1 · f3 · e4AYM⊕ϕ3ðf2gj1; 3; 4Þ
þ e1 · f2 · f3 · e4Aϕ3ð1; 2; 3; 4Þ þ ð2 ↔ 3Þ; ð3Þ

and exactly the same expansion holds with YM (ϕ3)
replaced by GR (YM) or BI (NLSM). For n ¼ 4
EFT amplitudes, we have only one term with r ¼ 1:

ANLSM
4 ¼ p2 · f̂3 · p4A

ϕ3

4 ð1234Þ ¼ s12 þ s23, and for n ¼ 6

we have

ANLSM
6 ¼ p2 · f̂3 · f̂4 · f̂5 · p6Aϕ3ð1; 2; 3; 4; 5; 6Þ

þ 1

2!
p2 · f̂3 · p6ANLSM⊕ϕ3ðf4; 5gj1; 2; 3; 6Þ

þ Permð3; 4; 5Þ: ð4Þ

Again the same holds when NLSM (ϕ3) is replaced by sGal
(NLSM), BI (YM), and DBI (YMs).

II. UNIVERSAL EXPANSIONS FOR GAUGE
THEORIES AND GRAVITY

In this section we derive expansions of GR and YM
amplitudes [40] from the powerful uniqueness theorem
based on gauge invariance [9,10]. We start by writing
general forms of the ansatz

An ¼
X
g

NgQ
iPg;i

; ð5Þ

where we sum over all possible cubic graph g (only planar
ones for color-ordered YM amplitudes), and for each graph
g we have n − 3 propagators (i ¼ 1;…; n − 3). The numer-
ator takes the form

Ng ¼
X
I

mIcg;I;

where we sum over a basis of monomials mI of Lorentz
products e · e; e · p; p · p with constants cg;I to be fixed.
Each monomial contains s copies of polarization vectors ei
for i ¼ 1; 2;…; n, and k ¼ sðn − 2Þ powers of momenta
from power counting (s ¼ 1, 2 for YM and GR respec-
tively). The basis is determined from constraints
p2
i ¼ 0; e2i ¼ 0; pi · ei ¼ 0;

P
n
i¼1 pi ¼ 0; in particular, it

can be chosen by eliminating pi · pn for i ≠ n and
p1 · pn−1, as well as pn · ei (for i ≠ n), p1 · en. The ansatz
for n ¼ 4 YM case

A4¼
c1;1e1 ·e4e2 ·p1e3 ·p1

s1;2
þc2;1e1 ·e4e2 ·p1e3 ·p1

s2;3
þ���;

has two planar cubic trees and 30 monomials in our basis,
thus there are 60 constant parameters c1;i and c2;i for
i ¼ 1;…; 30 [41]. For GR we have 3 cubic trees and each
numerator has 302 monomials as “squares” of the YM ones,
thus 2700 parameters in total.
Let us first review the uniqueness theorem for YM and

GR amplitudes based on gauge invariance [10]. It states
that gauge invariance for any n − 1 particles uniquely fixes

TABLE II. Effective field theories in universal expansion and
corresponding degree of Adler’s zero.

Effective field theories

I sGal (τ3) NLSM (τ1) BI (τ1) DBI (τ2)
II NLSM (τ1) ϕ3 (τ−1) YM (τ−1) YMs (τ0)
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the above ansatz An (up to an overall constant) to be the
correct n-point YM or GR amplitudes. The key in the proof
of this theorem relies on the following Lemma which we
will use shortly.
Lemma: Let BðkÞ be a polynomial linear in each

polarization vector, with at most k factors of the form e ·
p in any given term, then BðkÞ can only be gauge invariant
in at most in k particles for k < n − 2 (with momentum
conservation in n particles). With these at hand, we now
move to our main claim.
Claim: The gauge invariance in n − 1 legs, e.g.,

1; 2;…; n − 1, uniquely fixes the above ansatz An (up to
an overall constant) in the form of (1), which in turn fixes
all mixed amplitudes contained in the expansion.
We will prove this in three steps, and we focus on YM

case (the proof for GR is completely analogous).
Step 1: We show that after imposing gauge invariance of

f2; 3;…; n − 1g, each monomial of the ansatz must contain
a Lorentz product of the form

wð1; α; njsignsÞ≡ e1 · vα1

�Yr
i¼2

v̄αi−1 · vαi

�
v̄αr · en; ð6Þ

where we introduce a new notation. Given an ordered set
α ¼ ðα1;…; αrÞ, there are 2r terms fromWð1;α; nÞ and we
label them with r signs; we use the vector vi to denote
either pi or ei for particle i, with v̄i the other one,
i.e., ðvi; v̄iÞ ¼ ðpi; eiÞ or ðei; piÞ, and the first/
second choice is denoted by a þ or − sign. For
example, wð1; 2; 3; 4j−;þÞ ¼ ðe1 · e2Þðp2 · p3Þðe3 · e4Þ
while wð1; 2; 3; 4jþ;−Þ ¼ ðe1 · p2Þðe2 · e3Þðp3 · e4Þ. In
other words, using gauge invariance in 2;…; n − 1 we
will show that the ansatz takes the form

An ¼
X
α

X
signs

wð1; α; njsignsÞCð1; α; njsignsÞ; ð7Þ

where for each prefactor we denote its coefficients in the
ansatz as Cwhich looks like an amplitude since it again has
all cubic trees with numerators given by remaining Lorentz
products of e’s and p’s.
To prove this, we look at the vector dotted into e1 for

each term in the ansatz. If it is en we are done, and we only
need to consider ei and pi for i ≠ 1; n in our basis. If e1 is
dotted with pi, this term must contain ei and the chain goes
on, but if we have e1 · ei, then gauge invariance of particle i
forces us to have another term, with e1 · pi, thus we have
An ¼ e1 · piC

þ
i þ e1 · eiC−

i þ � � �. Under the replacement
ei → pi, we see that the two terms must cancel against each
other, which means that C−

i must contain pi in it (such that
there is a chance for it to cancel Cþ

i jei→pi
with the

replacement). We have shown that in our basis, when e1
is dotted with vi, there must be v̄i in the same term, and we
can continue in asking what vector is dotted into v̄i. In this
way, we see that for any term we have a prefactor as

e1 · vρ1

�Yt
i¼2

v̄ρi−1 · vρi

�
v̄μρt ;

where jρj ¼ t < n − 2. Now there are three possibilities
with the vector dotted into v̄ρt :
(1) en, for which we are done.
(2) ej or pj for j ∉ f1; ρ; ng, for which we keep going

and extends the chain.
(3) pj for j ∈ f1; ρg which is ruled out by the Lemma;

note the coefficient of such a factor is equivalent to a
polynomial BðkÞ with at most k ¼ n − t − 3 e · p
factors, but we require it to be gauge invariant in
n − t − 2 particles, and that leads to a contradiction.

This concludes our proof for Eq. (7).
Step 2: To proceed, it is crucial to note that the

replacement eαj → pαj eliminates the difference between
vαj and v̄αj , thus gauge invariance in this particle allows us
to relate two terms in Eq. (7) with only one sign difference
for αj; both terms contain a factor of the form

e1 · vα1 � � � v̄αj−1 · pαj × pαj · vαjþ1
� � � v̄αr · en

and clearly the two coefficients only differ by a sign

Cð1; α; nj…;þ;…Þ ¼ −Cð1; α; nj…;−;…Þ: ð8Þ

Thus, 2r coefficients with the same α at most differ by a
sign (q denotes the number of − in the signs),

Cð1; α; njsignsÞ ¼ ð−1ÞqCð1;α; njall plusÞ: ð9Þ

Therefore, for each α, the 2r prefactors w exactly combine
intoWð1; α; nÞ ¼ P

signsð−1Þqwð1; α; njsignsÞ and we have

An ¼
X
α

Wð1; α; nÞA0ðfᾱgj1;α; nÞ: ð10Þ

where we have defined the coefficients

A0ðfᾱgj1; α; nÞ≡ Cð1; α; njall plusÞ: ð11Þ

Furthermore, we see that A0ðfᾱgj1;α; nÞ must be gauge
invariant for particles in fᾱg since each term does not talk
to each other under gauge transformations of
f2;…; n − 1g. We conclude that by even just gauge
invariance of n − 2 particles puts strong constraints on
An, such that it takes the expansion form Eq. (10) with
gauge-invariant coefficients A0, which need to be fixed.
Finally, we note that since each A0 is the coefficient of

wð1; α; njall plusÞ of An, it can be extracted using a
differential operator acting on An,
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A0ðfᾱgj1; α; nÞ ¼ ∂e1·pα1

�Yr
i¼2

∂eαi−1 ·pαi

�
∂eαr ·en

An:

Step 3: Before proceeding, we need one of the main
results of [7], where transmuted operators for ⊕ was
introduced. Single-trace YM ⊕ ϕ3 (GR ⊕ YM) ampli-
tudes with an ordered subset β can be obtained by acting
such operators on the YM/GR amplitude, e.g.,

T½β�AYM ¼ AYM⊕ϕ3ðfβ̄gjβÞ; ð12Þ

where gluons in fβg are transmuted into biadjoint ϕ3

scalars by the operator (we denote s ¼ jβj)

T½β� ¼ ∂eβ1 ·eβs

Ys−1
i¼2

∂eβi ·ðpβi−1−pβs Þ: ð13Þ

An example is T½1; 2; 3; 4� ¼ ∂e1·e4∂e2·ðp1−p4Þ∂e3·ðp2−p4Þ.
A crucial point is that in our basis where pn is eliminated
by momentum conservation, all the derivatives with respect
to ei · pn can be dropped, thus the operator becomes very
similar to the one extracting A0 from An.
As a final step, we impose gauge invariance on 1 or n,

which fixes An to be AYM
n ; thus all remaining parameters in

those A0’s are completely fixed. Not surprisingly they turn
out to be those mixed amplitudes we want

A0ðfᾱgj1; α; nÞ ¼ T½α−1; 1; n�AYM
n ð1; 2;…; nÞ

¼ AYM⊕ϕ3ðfᾱgjα−1; 1; nÞ
¼ ð−1ÞrAYM⊕ϕ3ðfᾱgj1; α; nÞ; ð14Þ

where we have used the fact that the amplitude picks up
ð−1Þr under reflection, and we arrive at Eq. (1).
We have also explicitly checked our proof for n ¼ 4, 5.

Starting from our ansatz with 60 parameters, by imposing
gauge invariance of particle 2,3, we indeed find the
expansion form (10) and only 9 parameters remain for
those A0. By imposing gauge invariance of 1 or 4, the
amplitude becomes Eq. (1) up to an overall constant. For
n ¼ 5, the general ansatz includes 2475 parameters, impos-
ing gauge invariance of 2,3,4 gives Eq. (10) with only
72 parameters left; gauge invariance for 1 or 5 uniquely
fixes it as the expansion of n ¼ 5 YM amplitudes.

III. UNIVERSAL EXPANSIONS FOR EFFECTIVE
FIELD THEORIES

The expansions of EFTs can be obtained by imposing the
special DR [7,8] on both sides of Eq. (1). We define
(2dþ 1)-dimensional momenta for the original particles
to be pj ¼ ðpμ

j ; 0; 0
μÞ with the first and third entries

d-dimensional and the middle entry one dimensional.
We choose two special legs a, b with polarization vector

ea ¼ eb ¼ ð0μ; 1; 0μÞ; the remaining n − 2 polarizations
are chosen as ej ¼ ðpμ

j ; 0; ip
μ
j Þ for j ≠ a, b. Reducing to d

dimensions gives (pi · pj trivially reduce)

ei · ej →

�
1 fi; jg ¼ fa; bg
0 otherwise

;

ei · pj →

�
0 i ∈ fa; bg
pi · pj otherwise

: ð15Þ

It is remarkable that gluons in 2dþ 1 dimensions then
become pions in d dimensions; equivalently, we can use the
operators that transmute gluons to pions [7]

∂
∂ðeaebÞ

Yn
i≠a;b

�Xn
j≠i

pipj
∂

∂ðpjeiÞ
�
AYM
n ¼ ANLSM

n : ð16Þ

By applying DR or such operators on the right-hand side of
Eq. (1), they transmute e.g., gluons in fᾱg into pions term
by term and change the coefficientsW to Ŵ. It is interesting
that different choices of a, b (with respect to 1; n) lead to
three different types of EFT expansions, and we keep in
mind that mixed amplitudes with odd number of Goldstone
particles in theory I vanish.
If we choose a; b ¼ 1; n, then on the right-hand side only

the term with e1 · en → 1 survives from DR and we reach at
the well-known fact that the amplitude in theory I is
identical to that with only two particles in II (as a trivial
expansion) AI

n ¼ AI⊕IIðf2;…; n − 1gj1; nÞ [32].
The second choice is e.g., a, b ¼ 1, 2, then we reach at

the expansion in Eq. (2), where we must have odd r since
we need the number of particles in I, rþ 3, to be even, and
we have

P
n−3
i¼1;odd i!ðn−3i Þ terms on the right-hand side. Note

the only nonvanishing term must start with 1,2 and since
e1 · e2 → 1 we have p2 on the left end of Ŵ.
Finally, we have the slightly more complicated expan-

sion with the third choice e.g., a, b ¼ 2, 3

AI
n ¼

X
α;β

ð−1Þsþ1ðp1 · f̂α1 � � � f̂αr · p2Þðp3 · f̂β1 � � � f̂βs · pnÞ

× AI⊕IIðfᾱ ∩ β̄gj1; α; 2; 3; β; nÞ þ ð2 ↔ 3Þ; ð17Þ

where we sum over (nonintersecting) ordered sets
α; β ⊂ f4;…; n − 1g with r ¼ jαj; s ¼ jβj and rþ s even;
particles in II form an ordering ð1; α; 2; 3; β; nÞ, and we
refer to the complementary set with n − 4 − r − s particles
in I as fᾱ ∩ β̄g. One can check that we haveP

n−4
i¼0;even 2ðiþ 1Þi!ðn−4i Þ terms in the expansion. Even

for n ¼ 4, we have two terms ANLSM
4 ¼ −p1 · p2p3 · p4

Aϕ3ð1; 2; 3; 4Þ þ ð2 ↔ 3Þ. These expansions hold for even
n, and when n is odd, the EFT amplitudes vanish and
instead we have a nontrivial linear relation for mixed
amplitudes from DR. Such relations take the same form
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as Eqs. (2) and (17) with the only difference being that r or
rþ s are even or odd in these two cases.
Last but not least, there are different ways of applying

DR to the GR expansion, which lead to expansions for
other EFTs. Note that the polarization tensor contains two
sets of polarization vectors e; ẽ, and in Eq. (1) we have only
expanded with e in Wð1; α; nÞ (ẽ side is untouched). If we
perform DR with the replacement Eq. (15) on e, we have
the EFT expansion of BI (into BI ⊕ YM). If we perform
DR on ẽ, we have gauge-theory expansion of BI (into
BI ⊕ NLSM) very nicely, and if we perform DR on both e
and ẽ, we obtain the (EFT) expansion of sGal into
sGal ⊕ NLSM. All these expansions are summarized
in Fig. 1.

IV. DOUBLE AND RECURSIVE EXPANSIONS,
AND DOUBLE COPY

In this section we present more expansions, such as
double expansions in the case of GR, sGal, and especially
BI. We point out that our expansions represent the first step
of expanding amplitudes in a recursive way, which allows
us to connect to the double copy directly.
Let us start with GR case, where we apply (1) to both e

and ẽ, and this leads to a double expansion

AGR¼
X
α;β

ð−1ÞrþsWð1;α;nÞW̃ð1;β;nÞ

×AGR⊕2YM⊕ϕ3ðfᾱ∩ β̄gjα∩ β̄jβ∩ ᾱj1;α∩β;nÞ; ð18Þ

where the prefactorWð1; α; nÞ and W̃ð1; β; nÞ contains e and
ẽ respectively; the four subsets of particles refer toϕ3 scalars
(with both orderings), gluons with ordering α (polarization
ẽ), and β (e), as well as gravitons. By applying DR on both e
and ẽ gives the double expansion for sGal, and if we only

apply it on e or ẽ, we have the double expansion for BI (with
pions, gluons, andϕ3 scalars inmixed amplitudes). All these
are consequences of (1) and (18) which originate from the
uniqueness theorem; alternatively, they can be derived from
double copies of basic expansions of YM and NLSM
amplitudes, which implies that ⊕ and ⊗ commute, e.g.,
ðYM⊕ ϕ3Þ⊗ ðNLSM⊕ ϕ3Þ ¼BI⊕NLSM⊕YM⊕ ϕ3.
We summarize them with red color in Fig. 1.
What is more interesting is that these mixed amplitudes

can be expanded further with more particles in II, leading
to a recursive expansion of the original amplitude in I. At
each step we need to pick a reference particle, e.g.,
for EFTs, (2) can already be viewed as expanding the
(trivial) mixed amplitude AI⊕II

n ðf2;…; n − 1gj1; nÞ with
reference 2. We focus on the gauge-theory case since EFT
ones can be derived via DR, whose precise form depends
on the choice of a, b. Quite nicely, such recursive
expansions for gauge theories and gravity read [34–37]

ð19Þ

where ᾱ0 is an arbitrary reference particle in fᾱg, β is an
ordered subset with s labels of fᾱg=fᾱ0g, and fβ̄g
is the complementary set as usual; we need to sum
over j ¼ 0; 1;…; r (with α0 ≡ 1 for j ¼ 0 case), and
shuffle the two ordered sets. For example, with particle
2 as the reference particle, AYM⊕ϕ3ðf2; 3; 4gj1; 5; 6Þ can be
expanded as

FIG. 1. Summary of universal expansions.
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ð20Þ

One can keep going until onlyAϕ3

amplitudes remain on the
right-hand side. In general, the end result for such a recursive
expansion reads AI

n ¼
P

π∈Sn−2 N
I=II
n ðπÞAII

n ð1; π; nÞ where
we have expressed AI

n as a linear combination of ðn − 2Þ!
ordered amplitudes in II with coefficients Nn known as the
BCJ master numerators in the theory I=II (such that
I=II ⊗ II ¼ I). Note that the quotient theory is again
universal; for gauge-theory expansions I=II ¼ YM, and
for EFTones, I=II ¼ NLSM. Such expansions thus provide
a systematic way for extracting kinematic numerators
needed in all these theories, and this way of extracting them
was originally found using CHY formulas in [34,36,42] (see
also [43,44]) and automatized in [45,46]. Different choices
of reference particles lead to different recursive expansions
and BCJ numerators, but all of them are equivalent. It is an
interesting open question if we can derive such expansions
directly from e.g., gauge invariance and Adler zero.

V. CONCLUSION AND DISCUSSIONS

In this paper we study certain expansions of amplitudes
which work universally in gauge theories, gravity, and
various EFTs, and they interpolate⊕ and⊗ operations that
connect all these amplitudes. While gauge-theory expan-
sions follow from uniqueness based on gauge invariance,
currently we have only derived expansions in EFTs
(including BI) from the gauge-theory ones via DR; their
Adler-zero uniqueness relies on singularity structure of
quartic diagrams but individual mixed amplitudes involve
cubic diagrams, thus more works are needed for obtaining
them directly from uniqueness. In addition, we do not know
how to derive recursive expansions, which eventually lead
to BCJ numerators of YM/NLSM, without referring to
CHY formulas. We would like to understand all these from
the perspective of constraining amplitudes from basic
principles.
Relatedly, one can prove such expansions by using on

shell recursion relations [13,47,48], since it is straightfor-
ward to show that residues at any poles agree on both sides
by factorizations. What remains to be shown is the absence
of pole at infinity, e.g., for BCFW shifts of 1; n in gauge-

theory cases. Note that gauge invariance for n − 2 particles
are manifest in (1), and the nontrivial point is the gauge
invariance in 1 or n, which in turn implies such behavior at
infinity [49]. A similar argument applies to EFT expansions
(2) where we need to show (enhanced) Adler zero of 1; 2; n,
which also relates to the behavior at infinity [50]. It would
be highly desirable to understand all these better. Another
interesting question concerns possible relations of our EFT
expansion with the appearance of these mixed amplitudes
from soft limits, where they were first discovered as
‘extensions of original theories [32]. Of course all relations
we discussed follow from CHY formulas, and as usual
we can look for their origins in string theory
(c.f. [22,44,51–55]). The question we ask here is, however,
can we demystify these relations purely from field-theory
perspective (see [56,57])?
Last but not least, a direct consequence of Eq. (1) is a

similar expansion for corresponding one-loop integrands
obtained by the forward limit [58–60], which is in the
representation naturally given by ambitwistor string [61,62]
at one loop [63,64] (see also [65,66]). As an example, we
first expand the (nþ 2)-pt YM tree amplitude,

AYMðþ; 1; 2;…; n;−Þ ¼
X
α

ð−1ÞrWðþ; α;−Þ

× AYM⊕ϕ3ðfᾱgjþ; α;−Þ; ð21Þ

where we expand the amplitude by fixing external legs
labeled by þ;−, and α denotes ordered subsets of
f1; 2;…; ng. We take the forward limit of þ;− on both
sides, identify eþ with e− and sum over the possible states.
The prefactor becomes

Wðþ; α;−Þ!F:L:Trðfα1 · fα2…fαrÞ:

Thus we get the one-loop expansion for YM,

AYM;loopð1; 2;…; nÞ ¼
X
α

ð−1ÞrTrðfα1 · fα2…fαrÞ

× AYM⊕ϕ3;scalar-loopðfᾱgjαÞ: ð22Þ

It would be interesting to further study such expansions in
gauge theories and EFTs at loop level.
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