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We demonstrate that interacting ultraviolet fixed points in four dimensions exist at strong coupling and
away from large-N Veneziano limits. This is established exemplarily for semisimple supersymmetric gauge
theories with chiral matter and superpotential interactions by using the renormalization group and exact
methods from supersymmetry. We determine the entire superconformal window of ultraviolet fixed points as
a function of field multiplicities. Results are in accord with the a-theorem, bounds on conformal charges,
Seiberg duality, and unitary. We also find manifolds of Leigh-Strassler models exhibiting lines of infrared
fixed points. At weak coupling, findings are confirmed using perturbation theory up to three loop. Benchmark
models with low field multiplicities are provided, including examples with Standard-Model-like gauge
sectors. Implications for particle physics, model building, and conformal field theory are indicated.
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I. INTRODUCTION

Ultraviolet fixed points are key for the renormalizability
and predictive power of quantum field theories. The classic
example is given by asymptotic freedom of the strong
nuclear force, where the fixed point is noninteracting [1,2].
The possibility of interacting ultraviolet (UV) fixed points,
often denoted as asymptotic safety [3], has been conjec-
tured early on [4]. Recently, this field has taken up some
speed due to the discovery of UV conformal fixed points in
models of particle physics [5–10]. Conditions under which
asymptotic safety arises in weakly coupled four-dimen-
sional quantum field theories (without gravity) are by now
well understood: Non-Abelian gauge fields are central [6],
alongside Yukawa and scalar interactions and subject to a
stable vacuum [7,8]. Templates with strict perturbative
control have been found for unitary [5], orthogonal and
symplectic [9], or product gauge groups [10], and super-
symmetry [11]. This has also triggered new ideas for model
building [12,13], asymptotically safe extensions of the
Standard Model explaining the electron and muon g − 2
anomalies [14–16] whose new type of flavor phenomenol-
ogy can be tested at colliders [17], and explanations of
flavor anomalies as evidenced in rare B-meson decays [18].
Further results cover vacuum stability [19] including the
Higgs [14–16,18], Abelian factors [13], global fixed points
[20], aspects of radiative symmetry breaking [21], UV
conformal windows [22], and fixed point mergers [23].

Despite the vast body of weakly coupled fixed points at
hand, it has remained an open challenge to understand
asymptotic safety of strongly coupled 4D quantum field
theories from first principles. It would be desirable to have
rigorous and explicit examples at hand, if only as a proof of
principle, and to clarify whether large matter field anomalous
dimensions or new phenomena may become an obstacle for
safety in the UV. Moreover, it is well known that weakly
coupled fixed points often require a large number of gauge
and matter fields, such as in a Veneziano large-N limit, while
decreasing the number of matter fields turns fixed point
interactions stronger. In the context of asymptotically safe
model building where only finitely many new matter fields
are added to the Standard Model [12–18], it becomes
paramount to control the size of UV conformal windows
nonperturbatively and to understand how few matter fields
can sustain an underlying fixed point [22,23]. It would be
equally important to understand whether or not qualitatively
new types of fixed points arise at strong coupling, beyond
those discovered at weak coupling.
In this spirit, we put forward a nonperturbative search for

interacting UV fixed points in conventional 4D quantum
field theories, without gravity. With asymptotically safe fixed
points being presently out of reach for lattice simulations
or the conformal bootstrap, we turn, instead, to N ¼ 1
global supersymmetry as the nonperturbative tool of choice:
Nonrenormalization theorems ensure that superpotential
(Yukawa) couplings are renormalized nonperturbatively
via the chiral superfield anomalous dimensions, and exact
infinite-order perturbative renormalization group (RG) equa-
tions are available for gauge couplings [24,25]. Further, at
superconformal fixed points, anomalous dimensions of all
chiral superfields can be determined unambiguously using
the method of a-maximization [26]. Finally, independent
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quartics do not arise and vacuum stability is automatically
guaranteed provided gauge and Yukawa couplings take
viable fixed points. Taken together, these ingredients prove
sufficient to determine interacting fixed points reliably,
including at strong coupling.
Here, we apply this methodology exemplarily to an

asymptotically nonfree SUðN1Þ × SUðN2Þ supersymmet-
ric gauge theory, with massless chiral matter and a
superpotential, and determine the entire conformal win-
dow of interacting UV fixed points. Our basic setup is
illustrated in Fig. 1 which shows the phase diagram of a
semisimple gauge theory with superpotential interactions.
Notice that asymptotic freedom is absent because one of
the gauge sectors (α2) is infrared-free while the other is not
(α1). The theory may nevertheless develop an asymptoti-
cally safe fixed point (UV) which allows a well-defined
high energy limit and outgoing RG trajectories toward the
IR and which is the central topic of this study. Consistency
with Seiberg duality, and constraints from the a-theorem,
global charges, and unitarity, are also observed [27].
Findings are confirmed independently using perturbation
theory up to three-loop order. Implications of our findings
for the asymptotic safety conjecture, model building, and
conformal field theory are indicated.

II. SEMISIMPLE GAUGE THEORIES WITH
MATTER

We consider semisimple Yang-Mills theories with product
gauge group SUðN1Þ × SUðN2Þ coupled to chiral super-
fields ðψ ; χ;Ψ; QÞ with flavor multiplicities ðNF;NF; 1; NQÞ
and gauge charges as in Table I. We require that the model
has a global N ¼ 1 supersymmetry. It is then characterized
by two gauge couplings g1 and g2 and a Yukawa coupling y
via the superpotential

W ¼ yTr½ψLΨLχL þ ψRΨRχR�; ð1Þ

where the trace sums over flavor and gauge indices. The
superfields Q are not furnished with Yukawa interactions.
The theory has a global SUðNFÞL×SUðNFÞR×SUðNQÞL×
SUðNQÞR flavor and aUð1ÞR symmetry and is characterized
by the field multiplicities

ðN1; N2; NF; NQÞ: ð2Þ

Asymptotic freedom and interacting infrared fixed points
arise for suitable matter field multiplicities. For this study, the
regime of interest is where the SUðN1Þ gauge sector is
asymptotically free while the SUðN2Þ gauge sector is infra-
red-free. Accordingly, the free theory corresponds to a saddle
and asymptotic freedom cannot be achieved (Fig. 1), very
much like in the non-Abelian gauge sectors of the minimal
supersymmetric standard model (MSSM). In this light, the
gauge coupling α2 can be viewed as “dangerously irrelevant,”
in that it may become relevant due to the gauge-Yukawa
fixed point in the other gauge sector.
In the large-N Veneziano limit, the theory has previously

been studied in perturbation theory, where it was found that
interacting UV fixed points can arise at weak coupling with
perturbatively small anomalous dimensions [11]. The main
point of this study is to investigate the conditions under
which theories with (6) may develop strongly interacting
ultraviolet fixed points where anomalous dimensions
become large, of order unity. Ordinarily, this would require
strong coupling methods such as lattice simulations to
establish the claim. In supersymmetry, however, powerful
continuum methods beyond perturbation theory are avail-
able, to which we turn next.

III. RENORMALIZATION GROUP

To achieve our claim, we must find the renormalization
group equations for all couplings and identify their fixed
points and nonperturbative expressions for the chiral super-
field anomalous dimensions. Here, we exploit key features
of N ¼ 1 supersymmetric gauge theories that make this task
feasible.
For supersymmetric gauge theories, closed all-order

expressions for perturbative β-functions have been achieved
by Novikov et al. (NSVZ) [24,25] (see also [28,29]). We
introduce the gauge and Yukawa couplings as

α1;2 ¼
�
g1;2
4π

�
2

; αy ¼
�

y
4π

�
2

ð3Þ

G UV

FIG. 1. The basic setup in the plane of gauge couplings
ðα1; α2Þ, showing the free Gaussian fixed point (G) and an
interacting ultraviolet fixed point (UV), with arrows on RG
trajectories pointing from the UV to the IR. Note that the
Gaussian is a “saddle” and asymptotic freedom is absent.

TABLE I. Chiral matter with gauge charges and multiplicities.

Matter ψL ψR ΨL ΨR χL χR QL QR

SUðN1Þ □̄ □ □ □̄ 1 1 1 1
SUðN2Þ 1 1 □ □̄ □̄ □ □̄ □

Flavor NF NF 1 1 NF NF NQ NQ
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and denote the chiral superfield anomalous dimensions as γa
ða ¼ ψ ;Ψ; χ; QÞ, with β-functions βi ≡ dαi=d ln μði ¼
1; 2; yÞ defined as usual. The NSVZ beta functions for
the gauge couplings of our models are then given by

β1 ¼
2α21
Fðα1Þ

½NFð1 − 2γψÞ þ N2ð1 − 2γΨÞ − 3N1�; ð4Þ

β2 ¼
2α22
Fðα2Þ

½NFð1 − 2γχÞ þ N1ð1 − 2γΨÞ

þ NQð1 − 2γQÞ − 3N2�: ð5Þ

The scheme-dependent function FðαÞ is normalized to unity
for vanishing coupling [30] and reads FðαÞ ¼ 1–2CG

2 α in
the NSVZ scheme [24,25] with CG

2 the quadratic Casimir in
the adjoint. Close to the Gaussian fixed point, the anomalous
dimensions vanish and we can then read off the condition for
a saddle in terms of the field multiplicities (2),

3N1 > N2 þ NF;

3N2 ≤ N1 þ NF þ NQ: ð6Þ

This also covers the casewhere the one-loop coefficient of β2
vanishes identically. For the Yukawa coupling, we exploit
that supersymmetry dictates strict nonrenormalization theo-
rems, which ensure that superpotential couplings are only
renormalized through field anomalous dimensions. Hence,
the RG running is given by

βy ¼ 2αy½γψ þ γΨ þ γχ �; ð7Þ

valid to all orders in perturbation theory. Renormalization
group fixed points ðβi ¼ 0Þ correspond to superconformal
field theories.
All perturbative fixed points ðα�i ≪ 1Þ for this theory

have previously been found in [11]. In general, these are
either Banks-Zaks fixed points, where some of the gauge
couplings are nonzero but α�y ¼ 0, or gauge-Yukawa (GY)
fixed points with one (GY1), the other (GY2), or both gauge
couplings nonzero (GY12) and α�y > 0 [6,7]. It has also
been shown that if GY1 is UV, its outgoing trajectory is
connected with the IR fixed point (GY12), and similarly for
GY2 [11].
In this work, we focus on the regime (6) and search for

nonperturbative fixed points with the property

GY1∶ α�1 > 0; α�y > 0; α�2 ¼ 0: ð8Þ

Our ansatz states that the SUðN2Þ gauge sector is infrared-
free, meaning β2 > 0 in the vicinity of the Gaussian. If
β2 < 0 in the vicinity of the interacting fixed point, the
SUðN2Þ gauge sector suddenly becomes asymptotically
free, and the fixed point is ultraviolet. In its vicinity, α2 is

the only relevant coupling in the UV, which runs out of the
fixed point as

α2ðμÞ ¼
δα2ðΛÞ

1þ B2;effδα2 lnðμ=ΛÞ
; ð9Þ

with δα2ðΛÞ a small deviation at the high scale Λ, B2;eff ¼
B2 þ NFγχ þ 4N1γΨ > 0 the interaction-induced one-
loop coefficient, and B2 < 0 given by (minus) the one-
loop coefficient of (5) at the Gaussian. The couplings α1
and αy are irrelevant interactions in the UV and their
running is fully determined by the one of α2 [11]. This
scenario is schematically depicted in Fig. 1.
The necessary and sufficient conditions for the partially

interacting fixed point to turn the dangerously irrelevant
coupling α2 into a relevant one are given by

0 ¼ 3N1 − NFð1 − 2γψ Þ − N2ð1 − 2γΨÞ;
0 < 3N2 − NFð1 − 2γχÞ − N1ð1 − 2γΨÞ − NQð1 − 2γQÞ;
0 ¼ γψ þ γΨ þ γχ ; ð10Þ

where the two equations determine the fixed point, while
the inequality ensures the sign flip from β2 ≥ 0 close to the
Gaussian to β2 < 0 close to the fixed point (8).

IV. a-MAXIMIZATION

The beta functions (4), (5), and (7), and the conditions
(10), still depend on the superfield anomalous dimen-
sions. These can be determined either perturbatively, as
we will do in Sec. VIII below, or exactly, as we do here. To
that end, we exploit that fixed points of the renormaliza-
tion group correspond to superconformal field theories.
Hence, superfields must transform in representations of
the superconformal algebra. Focusing on the bosonic part,
we observe an extra global Uð1ÞR symmetry in addition to
the ordinary conformal algebra. The global and anomaly
free Uð1ÞR symmetry prescribes global charges Ri for all
chiral superfields at any superconformal fixed point and
thereby determines anomalous dimensions γi of chiral
superfields via

γi ¼
3

2
Ri − 1: ð11Þ

The task then reduces to the determination of R-charges at
superconformal fixed points for which we use the method
of a-maximization [26]. Specifically, at the fixed point
GY1 with (8) and characterized by (10), we find
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Rψ ¼ 2

3
ð1þ γψÞ ¼

NF½NF − ðN1þN2Þ�2−N2
1N2Δ

½N2−NF�½N1ðN2þNFÞþ ðN2−NFÞ2�
;

RΨ ¼ 2

3
ð1þ γΨÞ ¼

N2½N2− ðN1þNFÞ�2 −N2
1NFΔ

½NF −N2�½N1ðN2þNFÞþ ðN2−NFÞ2�
;

Rχ ¼
2

3
ð1þ γχÞ ¼

8

9

ðN2−NFÞ2
ðN2 −NFÞ2− ð1−ΔÞN2

1

;

RQ ¼ 2

3
ð1þ γQÞ ¼

2

3
; ð12Þ

and Δ > 0 the positive root of

Δ2¼1þ
�
N2−NF

3N2
1

�
2

½ð4N1þN2þNFÞ2−34N2
1−4N2NF�:

ð13Þ

The ψQ fermions do not interact at the fixed point (8), hence
γQ ¼ 0 and none of the R-charges depend on NQ. The
results for the R-charges uniquely determine the remaining
anomalous dimensions nonperturbatively and provide clo-
sure for the beta functions (4), (5), and (7). At weak
coupling, anomalous dimensions are small and R-charges
are close to their classical values ðRi ≈ 2

3
Þ. Moreover,

unitarity mandates that scaling dimensions D of spinless
operators must satisfy D ≥ 1 [27], additionally implying
γi ≥ − 1

2
(Ri ≥ 1

3
) for gauge-invariant scalar operators such

as ψ̄ψ .
The conditions for unitary quantum field theories with

interacting UV fixed points (10) only depend on ratios of
field multiplicities. Therefore, we can reduce the four-
dimensional parameter space of field multiplicities (2) to a
three-dimensional one. Following [11], we do so by
scaling-out one of the field multiplicities, say N1, and
by introducing three suitable ratios of field multiplicities
instead,

R¼N2

N1

; P¼N1

N2

NQþN1þNF−3N2

NFþN2−3N1

; ϵ¼NFþN2

N1

−3:

ð14Þ

The color ratio R (not to be confused with the R-charges Ri)
is sensitive to the relative size of gauge groups. The
parameter P < 0 is proportional to the ratio of one-loop
gauge coefficients. The parameter ϵ, which in the region of
interest is negative ϵ < 0, can be made arbitrarily small in a
Veneziano limit where it controls perturbative fixed points
provided jϵj ≪ 1. Since field multiplicities are semipositive
numbers, we further observe

0<R<3; P<
4ð1−RÞþϵ

Rϵ
; R−3< ϵ<0: ð15Þ

The parameters (14) take discrete values for integer field
multiplicities except in a Veneziano large-N limit where they
become continuous.

V. FIXED POINTS AND CONFORMAL WINDOWS

We are now in a position to investigate the range of field
multiplicities for which the theory displays an interacting
ultraviolet fixed point. Exploiting all constraints, we find
that the parameter P is bounded from above and from
below

PminðR; ϵÞ < P ≤ PmaxðR; ϵÞ: ð16Þ

The upper boundary Pmax relates to (6) and P ≤ 0, and to
the physicality of field multiplicities (15), whichever is
stronger. The lower boundary Pmin relates to the sign flip
for induced asymptotic freedom of SUðN2Þ. Explicitly,

PmaxðR; ϵÞ ¼
� 4ð1−RÞþϵ

Rϵ for R < 1þ ϵ
4

0 otherwise
; ð17Þ

PminðR; ϵÞ ¼
3RΨ − 2

Rϵ
þ ð3Rχ − 2Þð3 − Rþ ϵÞ

Rϵ
: ð18Þ

In the above, the R-charges RΨ and Rχ are understood as
functions of ðR; ϵÞ via (12) and (14). The parameters R and
ϵ are constrained globally by the physicality of couplings
(α ≥ 0) and unitarity,

1

4
< R < 2 and − 3

2
≤ ε < 0: ð19Þ

Figure 2 shows a contour plot of the superconformal
window (16) and (19) in the ðϵ; RÞ plane. The left panel
shows the lower boundary Pmin, while the right panel
shows the accessible range of P values between Pmin and
Pmax. The lower boundary in both graphs is given by
Rmin ¼ 1þ ε

2
, corresponding toN1 þ N2 ¼ NF. Above the

full white line R ¼ 1þ ε
4
, we have Pmax ¼ 0. Roughly

speaking, the width in P is largest around the full white line.
The upper boundaryRmaxðϵÞ arises as the solution of a cubic,
approximately given by Rmax ≈ 2þ 2

3
ϵwhereN2 ¼ NF. We

notice that the width Pmax − Pmin vanishes at Rmax, while it
remains small but non-zero at Rmin, except at the end points.
Weakly coupled fixed points correspond to parameters
ðP;R; ϵÞ close to the boundary where jϵj ≪ 1.
The conformal window is further illustrated in Fig. 3

showing its projection onto the ðP; RÞ plane. Within the
yellow-shaded area, weakly coupled fixed points arise
toward the right of the dashed line, while strongly coupled
fixed points can arise anywhere. Outside the yellow-shaded
area, asymptotic safety is not available and the correspond-
ing quantum field theories must be viewed as effective
rather than fundamental.
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It is interesting to discuss the NF dependence of fixed
points within the conformal window while keeping
ðN1; N2; PÞ fixed. In Fig. 2, this effectively corresponds
to varying ϵ along horizontal cuts. We notice that the
conformal window splits into two distinct types of models,
separated by dashed lines in Figs. 2 and 3, to which we refer
as “mostly weakly” and “mostly strongly” coupled.
Specifically, the first subset of models are those above the
dashed line in Fig. 2 and on the right of the dashed line in
Fig. 3. Their conformal window is characterized by

1 ≤ R < 2: ð20Þ

Then, for any admissible value of R within (20), there is a
range of viable parametersPwithin ð−1; 0� such that the UV
conformal window in ϵ covers the range

ϵmax ≤ ϵ < 0: ð21Þ

The lower bound ϵmax ¼ 3
2
ðR − 2Þ may become as low as

− 3
2
. The significance of this result is as follows. Perturbative

fixed points are controlled by the parameter jϵj ≪ 1 in a
large-N Veneziano limit, meaning that this part of the UV
conformal window contains all perturbatively controlled
superconformal UV fixed points found previously in [11].
Hence, we observe that all perturbative fixed points extend
into a nonperturbative conformal window for ϵ given
precisely by the range (21). The same considerations apply
for finiteN, away from a Veneziano limit, the only difference
being that ðR; P; ϵÞ take discrete rather than continuous
values. Since all theses fixed points are linked to weakly
coupled ones, and for want of terminology, we refer to the
models within (20) as mostly weakly coupled.

Next, we turn to the part of the conformal window below
the dashed line in Fig. 2 and to the left of the dashed line in
Fig. 3, characterized by

1

4
< R < 1: ð22Þ

For any admissible value of R within (22), there is a range
of viable parameters P within ð−4; 0� such that the UV
conformal window in ϵ covers the range

Pmin
4 3 2 1 0

4

211

44
1
3221111

244334444
22
11
2222
221111
1111111111211

03 2 1 21 1 43 45 4

1
4

2
3

1

3
2

2
Pmax Pmin

0 0.2 0.4 0.6 0.8 1.0

4

211

44
1
3221111

244334444
22
11
2222222
221111
1111111111211

03 2 1 21 1 43 45 4

1
4

2
3

1

3
2

2

R

FIG. 2. Contour plot of the superconformal window for asymptotic safety (16) in the ðR; ϵÞ plane showing the boundary Pmin (left) and
the height Pmax − Pmin (right); dashed and full white lines are explained in the main text.

FIG. 3. Projection of the superconformal window with inter-
acting ultraviolet fixed points onto the ðR; PÞ parameter plane.
Weakly coupled fixed points arise within the yellow-shaded area
on the right of the dashed line. Strongly coupled fixed points arise
within the entire yellow-shaded area for some range of ϵ. The full
dot is discussed in the main text.
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−
3

2
≤ ϵ < ϵmin < 0: ð23Þ

Here, the lower bound ϵmin ¼ 2ðR − 1Þ < 0 ensures induced
asymptotic freedom for the coupling α2. Most importantly,
we observe the existence of a finite gap ½ϵmin; 0� in ϵ within
which no asymptotically safe fixed points can be found. This
implies that none of the fixed points within (22) can be
achieved with strict perturbative control ðϵ → 0−Þ, not even
in a Veneziano limit. It is in this sense that the fixed points
within (22) are nonperturbative and parametrically discon-
nected from the free theory, quite different from those in
(20). For these reasons, we refer to these superconformal
fixed points as mostly strongly coupled.
Another important aspect of the conformal window

relates to the saddle close to the Gaussian which needs
to be overcome by the interacting fixed point. Recall that
the asymptotically free (infrared-free) direction is charac-
terized by the one-loop gauge coefficient B1 ¼ 2N1ϵ < 0
(B2 ¼ 2N2Pϵ ≥ 0), with (minus) their ratio given by the
imbalance parameter

I ¼ −B2=B1 ≡ jPj · R ð24Þ

for which we have I ≥ 0. Quantum effects at the interacting
fixed point overcome the positive or vanishing one-loop
coefficient B2 and turn it, effectively, into a negative one
(see Fig. 1). It is then important to understand the largest
imbalance that can be achieved without spoiling asymptotic
safety. We find that the imbalance is bounded from above,

0 ≤ I ¼ 3N2 − N1 − NF − NQ

NF þ N2 − 3N1

< 1; ð25Þ

where we recall that field multiplicities obey (6). In other
words, as soon as one gauge sector is as or more infrared-
free at the Gaussian fixed point than the other gauge sector
is ultraviolet-free, asymptotic safety at an interacting fixed
point cannot arise.
In Figs. 2 and 3, the small imbalance region 0 ≤ I ≪ 1 is

realized close to the upper boundaries where P ≈ 0. Here,
many ultraviolet fixed points can be found in large parts of
the parameter space including perturbative and nonpertur-
bative ones. With growing imbalance I → 1, the set of
perturbatively controlled fixed points shrinks to the vicinity
of a single point ðP;RÞ ¼ ð−1; 1Þ.1 Nonperturbatively,
however, many more fixed points realize a near-maximal
imbalance, corresponding to the lower boundary in
Fig. 2 with parameters given by the line R ¼ RminðϵÞ,
P ¼ −1=Rmin, and ϵ ∈ ½− 3

2
; 0Þ. In Fig. 3, the near-maximal

imbalance is realized along the lower boundary to the left of
the dashed line. We conclude that all models that may afford

the near-maximal imbalance are contained in the mostly
strongly coupled part of the conformal window (22).
We emphasize that the boundary at Pmin in (18) is not

part of the conformal window. The reason for this is that
whenever P → Pmin the inequality in (10) becomes an
equality, meaning that β2 → 0 nonperturbatively at the
fixed point (8). At this point the UV fixed point GY1

merges with yet another fixed point (a nonperturbative IR
fixed point GY12 [11]) in the limit P → Pmin. In conse-
quence, the fixed point (8) degenerates into a line of fixed
points for any α2, illustrated in Fig. 4. As such, this limit
offers a manifold of Leigh-Strassler-type models [31], each
of which is characterized by a line of interacting super-
conformal field theories, disconnected from the free theory
and generated by an exactly marginal operator. Further,
each of these lines of fixed points corresponds to an
infrared sink because the previously relevant perturbation,
given by α2, has become strictly marginal. This includes all
settings with maximal imbalance I ¼ 1. Concrete examples
for strongly coupled Leigh-Strassler models are delegated
to Sec. X below.2

Figure 5 shows the superfield anomalous dimensions
within the entire conformal window. Since the spectator
fermions ψQ are free at the fixed point (8), the chiral
superfield anomalous dimensions are only functions of
ðR; ϵÞ and independent of P. Overall, we find that
anomalous dimensions grow with growing jϵj. For models
within (20) or (22), the chiral anomalous dimensions
cover the range

0 > γψ ; γΨ ≥ −
1

2
and 0 < γχ ≤ 1 ð26Þ

FIG. 4. Schematic phase diagram of Leigh-Strassler-type models
in the plane of gauge couplings in the limit where the UV fixed
point degenerates into a line of IR fixed points (see Fig. 1).

1In a Veneziano limit, this are themodels withN1; N2; NF → ∞,
while NF=N1 ¼ NF=N2 ¼ 2 and NQ=N1 → 0.

2The fate of an IR sink can be evaded by adding mass term
perturbations for the NF superfields ψ , which may lift the
degeneracy and allow RG trajectories to emanate from the line
of fixed points. However, this mechanism defies the original setup
(6) in that the removal of the ψ degrees of freedom would make
the theory asymptotically free from the outset.
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with extremals reached at the ϵ ¼ − 3
2
and ϵ ¼ 0 bounda-

ries of the conformal window. For models within (22)
anomalous dimensions tend to take larger values than for
those in (20). A comparison with perturbation theory is
given in Sec. VIII. Incidentally, the monotonicity of γi
with growing ϵ establishes that anomalous dimensions do
not vanish unless the fixed point is free.

VI. CENTRAL CHARGES AND THE a-THEOREM

Superconformal fixed points can also be characterized by
central charges a, b, and c, the anomaly coefficients [32,33].
Their values have to satisfy certain conditions and can be
used to constrain viable fixed points. The global charges a
and c can be expressed in terms of the R-charges of chiral
superfields,

a ¼ 3

32
ð3TrR3 − TrRÞ; ð27Þ

c ¼ 1

32
ð9TrR3 − 5TrRÞ: ð28Þ

Given that the positivity conditions a, b, c > 0 are satisfied
nonmarginally for free theories, they are guaranteed to be
satisfied for perturbative theories. Similarly, the conformal
collider bound [34]

1

2
<

a
c
<

3

2
ð29Þ

cannot be violated for weakly interacting theories. Here, we
find that the positivity conditions and the conformal collider
bound are satisfied nonperturbatively, in the entire conformal
window, as they must.
We now turn to the a-theorem. It states that the central

charge a must be a decreasing function along RG trajectories
in any 4D quantum field theory [35,36]. We find that
aUV − aGauss < 0, which confirms that none of the UV fixed

points is connected by an RG trajectory with the free
Gaussian fixed point, in accord with Fig. 1. Further, we
noted earlier that any interacting UV fixed point in the
conformal window comes bundled with a fully interacting
nonperturbative IR fixed point (GY12) [11]. We find
aUV − aIR > 0, meaning that both conformal fixed points
are connected by RG trajectories flowing from the former to
the latter as in Fig. 1. We conclude that our results are
consistent with the a-theorem, as they must.

VII. SEIBERG DUALITY

Next, we comment on how our results relate to Seiberg’s
electric-magnetic duality [37]. At the partially interacting
fixed point (8) where the SUðN2Þ gauge sector is free, the
flavor symmetry of the theory is enhanced. This manifests
itself as an exchange symmetry under N2 ↔ NF, whereby
the quarks ψ andΨ interchange their roles while the fields χ
remain unchanged,

N2 ↔ NF; Rψ ↔ RΨ; Rχ ↔ Rχ ; ð30Þ

see (12). Hence, we observe an interacting “magnetic”
SUðN1Þ gauge theory which has NF þ N2 flavors of
“magnetic quarks” ψ and Ψ, alongside ðNF þ N2Þ2 singlet
mesons ðψLψRÞ, χL, χR, and ðΨLΨRÞ [38]. In this light, the
gauge-Yukawa fixed point (8) corresponds to a free non-
Abelian magnetic phase whose superconformal window is
known to cover the range 3

2
N1 < NF þ N2 < 3N1 [37],

which corresponds to the parameter range − 3
2
< ϵ < 0

observed in (19). Notice, however, that the conformal
window in Fig. 2 has additional constraints on ðR;PÞ that
ensure that the SUðN2Þ gauge sector becomes a relevant
perturbation at the fixed point.
Seiberg duality predicts the existence of a dual “electric”

theory which must have gauge group SUðNF þ N2 − N1Þ
coupled to NF þ N2 flavors of electric quarks. The con-
formal window of the non-Abelian Coulomb phase is given

FIG. 5. Contour plot showing the nonperturbative anomalous dimensions of chiral superfields at the superconformal fixed points of
Fig. 2. The full dot and dashed line are explained in the main text.
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by 3
2
ðNF þ N2 − N1Þ < NF þ N2 < 3ðNF þ N2 − N1Þ.

This corresponds to the exact same parameter band in ϵ
as the one in (19). In the special case where NF ¼ N2, given
by the upper boundary in Fig. 2, the R-charges simplify and
become

Rψ ¼ RΨ ¼ 1 −
N1

2NF
; Rχ ¼

N1

NF
: ð31Þ

One recognizes the R-charges for the quarks and singlet
mesons of supersymmetric magnetic QCD [37], whose
Seiberg dual is characterized by electric quarks ψ̃ and Ψ̃with

Rψ̃ ¼ RΨ̃ ¼ N1

2NF
: ð32Þ

We refer to [38] for further aspects of Seiberg duality in
theories with product gauge groups.

VIII. PERTURBATION THEORY

In this section, we contrast the nonperturbative deter-
mination of anomalous dimensions with perturbation
theory, using general expressions for perturbative beta
functions up to three loop, obtained in the dimensional
reduction scheme [39,40]. The main additions are pertur-
bative expressions for anomalous dimensions which at
superconformal fixed points can be used to cross-check the
nonperturbative results from a-maximization.
For the sake of this comparison, it is convenient to

perform a Veneziano limit and rescale gauge couplings as
αi → Niαi and Yukawa couplings as αy → N1αy. We also
use the parametrization (14). The parameter 0 < jϵj ≪ 1
then serves as a small expansion parameter to ensure
rigorous control of fixed points in perturbation theory. To
find fixed points, scaling exponents, and anomalous dimen-
sions to first (second) order in ϵ, we must retain terms up to
two (three) loop in the gauge coupling and up to one (two)
loop in the Yukawa beta functions [7,22]. We refer to these
approximations as next-to-leading order (NLO) and next-to-
next-to-leading order (NNLO), respectively. Using the gen-
eral results of [39,40] we find the gauge beta functions up to
three loop for our models as

βð1Þ1 ¼ 2α21ϵ;

βð2Þ1 ¼ 2α21½6α1 þ 2Rα2 − 4Rð3þ ϵ − RÞαy�;
βð3Þ1 ¼ 4α21½2ϵα21 − Rð2α1γð1ÞΨ þ γð2ÞΨ Þ

− ð3þ ϵ − RÞð2α1γð1Þψ þ γð2Þψ Þ�; ð33Þ

and

βð1Þ2 ¼ 2α22Pϵ;

βð2Þ2 ¼ 2α22

�
6α2 þ

2

R
α1 −

4

R
ð3 − Rþ ϵÞαy

�
;

βð3Þ2 ¼ 4α22

�
2Pϵα22 −

1

R
ð2α2γð1ÞΨ þ γð2ÞΨ Þ

−
3 − Rþ ϵ

R
ð2α2γð1Þχ þ γð2Þχ Þ

−
�
4þ Pϵ −

4þ ϵ

R

�
ð2α2γð1ÞQ þ γð2ÞQ Þ

�
: ð34Þ

The perturbative Yukawa beta function is given by (7) for
any loop order. The anomalous dimensions of the superfields
are required up to two-loop accuracy. They read

γð1Þψ ¼ Rαy − α1;

γð1ÞΨ ¼ ð3 − Rþ ϵÞαy − α1 − α2;

γð1Þχ ¼ αy − α2;

γð1ÞQ ¼ −α2; ð35Þ

and

γð2Þψ ¼ −Rαyðγð1ÞΨ þ γð1Þχ Þ − α1γ
ð1Þ
ψ þ 4ϵα21;

γð2ÞΨ ¼ −ð3 − Rþ ϵÞαyðγð1Þψ þ γð1Þχ Þ − ðα1 þ α2Þγð1ÞΨ

þ 4ϵα21 þ 4Pϵα22;

γð2Þχ ¼ −αyðγð1Þψ þ γð1ÞΨ Þ − α2γ
ð1Þ
χ þ 4Pϵα22;

γð2ÞQ ¼ −α2γ
ð1Þ
Q þ 4Pϵα22; ð36Þ

respectively. Then, interacting fixed points with (8) are
determined via a Taylor expansion of couplings in ϵ around
the zeros of (33) and (7), also using (35) and (36). Notice that
(34) is only used to determine whether the sign change from
β2 > 0 at the Gaussian to β2 < 0 at (8) has taken place.
Inserting the perturbative results for the fixed point into (35)
and (36) provides explicit expressions for the anomalous
dimensions of the form

γiðϵÞ ¼ Að1Þ
i ϵþ Að2Þ

i ϵ2 þOðϵ3Þ: ð37Þ

The six coefficients AðnÞ
i for i ¼ ψ ;Ψ; χ which for n ¼ 1, 2

arise from the perturbative fixed point solutions at NLO
and NNLO accuracy [10,22] still depend on the parameter
R (but not on P). Their explicit expressions are not given
because they do not offer further insights for the present
purposes.
The expressions (37) must be compared with the exact

R-charges from a-maximization (12). Writing the exact
anomalous dimensions in terms of the R-charges, and
expanding the expressions to second order in ϵ with the
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help of (14), we find the identical result for the coef-

ficients AðnÞ
i in (37). This establishes consistency of

findings between a-maximization and perturbation theory,
as it must.

IX. ANOMALOUS DIMENSIONS

In Fig. 5 we have shown the exact anomalous dimen-
sions across the entire UV conformal window. Here, we
have a closer look into anomalous dimensions and compare
with the NLO and NNLO predictions from perturbation
theory. More specifically, in Figs. 6 and 7, we compare
results at fixed color ratio R ¼ 3

2
, 1, 2

3
, and 1

3
, and for any ϵ

within ½− 3
2
; 0�, which corresponds to horizontal cuts across

Figs. 2 and 5.
We begin with Fig. 6 where our results for R ¼ 3

2
(left

panel) and R ¼ 1 (right panel) are shown. For small jϵj ≪ 1,
perturbation theory matches the exact results as it must. With
growing jϵj, all anomalous dimensions grow in magnitude.
For R ¼ 3

2
, the gray-shaded area indicates that fixed points

are no longer in the UV conformal window, leading to a
lower bound for ϵ, see (21). Also, the NLO results for γψ and
γΨ coincide accidentally. At NNLO, perturbative results for
all three anomalous dimensions are quite close to the exact
results in the admissible range for ϵ. ForR ¼ 1, the extension
of the conformal window is maximal. Here, anomalous
dimensions correspond to the fixed points along the dashed
lines in Figs. 2, 3, and 5, which marks the boundary between
the mostly weakly and mostly strongly coupled quantum
field theories, see (20) vs (22). Maximal values γψ ;Ψ → − 1

2

and γχ → 1 are reached for ϵ → − 3
2
. For γψ , we observe

that the NLO and NNLO results are close to the exact one
over the entire range for ϵ. For γΨ, the NLO correction
vanishes accidentally. Similarly, for γχ, the NLO result

strongly underestimates the exact value with growing jϵj.
However, at NNLO, perturbative results for all three
anomalous dimensions are close to the exact findings in
the entire range of ϵ. We conclude that differences between
NNLO and exact results are moderate over the entire
interval. Note that this does not hold true in general, but
when it does, one may use this near coincidence to extract
estimates for fixed points at strong coupling which otherwise
are not easily accessible.
The same analysis is repeated in Fig. 7 for the parameter

choices R ¼ 2
3
(left panel) and R ¼ 1

3
(right panel). These

horizontal cuts through Fig. 2 project onto the more
strongly coupled fixed points in (22). For either of these,
the small ϵ regions are excluded (gray-shaded areas)
because the corresponding fixed points are not ultraviolet.
In the increasingly narrow regions of interest (23), which
are ϵ ∈ ½− 3

2
;− 2

3
� and ϵ ∈ ½− 3

2
;− 4

3
�, respectively, we

observe that differences between NLO, NNLO, and exact
results become rather large for γχ, γψ , and γΨ. Outside the
UV conformal window, we also notice that γΨ is no longer
monotonous with ϵ, but instead changes sign for non-
vanishing ϵ and taking values outside the range (26).
Perhaps unsurprisingly, this confirms that the leading
orders of perturbation theory cease to offer a good
approximation for anomalous dimensions at strong cou-
pling, once jϵj is large.

X. BENCHMARKS FOR MODELS OF PARTICLE
PHYSICS

At weak coupling, ultraviolet fixed points are often
characterized by a large number of field multiplicities
[11]. At strong coupling, fixed points can arise with a
much lower number of matter fields. Therefore, we

FIG. 6. Exact anomalous dimensions and Uð1ÞR charges in comparison with two-loop (NLO) and three-loop (NNLO) results from
perturbation theory. Shown are projections along R ¼ 3

2
(left) and R ¼ 1 (right). Fixed points in the gray-shaded area do not show the

required sign flip in (10) for any P and are therefore outside of the UV conformal window.
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benchmark models with minimal numbers of gauge and
matter fields and explore whether variants could serve
as templates for asymptotically safe Standard Model
extensions.
Our benchmarks of superconformal fixed points with

low numbers of fields are summarized in Table II. They
represent strongly coupled models in that they have large
jϵj and anomalous dimensions. The benchmarks also
cover the full range of imbalance parameters I. Note that
because the ψQ fermions are free at the superconformal
fixed point, anomalous dimensions of chiral superfields
agree between different models as long as they only differ
in the NQ multiplicity, see models 2–4, models 5 and 6, or
models 7 and 8.
We begin with model 1, which is the sole example with

SUð2Þ × SUð2Þ gauge symmetry, the simple reason being
that the only other integer solution ðNF;NQÞ ¼ ð3; 2Þ to the
constraint (6) does not lead to asymptotic safety. Here,
anomalous dimensions are still small and well approxi-
mated by the perturbative three-loop result (see Fig. 6, right
panel). Moreover, in models 1 and 2, the SUð2Þ gauge
sector has a vanishing one-loop coefficient. In both cases a
viable interacting UV fixed point is found, located at a
boundary of the conformal window (Fig. 2) where I ¼ 0.
For the gauge group SUð3Þ × SUð2Þ, we find a total of

five solutions (models 2–6). For all of these SUð2Þ is
infrared-free at the Gaussian. Settings where SUð3Þ is
infrared-free do not lead to asymptotic safety. Also, all
models are within the strongly coupled domain where
three-loop perturbation theory does not offer an accurate
approximation (Fig. 7, left panel). Model 3 has NF ¼ 3 and
NQ ¼ 1 and its location in the conformal window is
indicated by a full dot in Figs. 2 and 3. The anomalous
dimensions are of order unity

ðγψ ; γΨ; γχÞ ≈ ð−0.41;−0.38; 0.79Þ ð38Þ

and shown by a full dot in Fig. 5. EnhancingNQ by one unit
gives another viable fixed point (model 4) without chang-
ing the anomalous dimensions. For ðNF;NQÞ ¼ ð4; 0Þ
(model 5) and ðNF;NQÞ ¼ ð4; 1Þ (model 6), the main
change is that jϵj, and hence the anomalous dimensions
come out slightly smaller than in models 2–4. Overall,
increasing the number of matter fields charged under
SUð2Þ also increases the imbalance parameter.
Models 3–6 have some similarities with the minimal

supersymmetric standard model. Unlike in the Standard
Model, the SUð2Þ sector of the MSSM becomes infrared-
free due to extra gauge charges from supersymmetry
partners, while the SUð3Þ sector remains asymptotically
free. Hence, the Gaussian corresponds to a saddle with
imbalance IMSSM ¼ 1

3
, just as in model 5. The imbalance

could even be made larger such as in model 4 or model 6
and still yield an asymptotically safe fixed point. Hence, we
see that supersymmetric gauge theories with the SM gauge
groups (neglecting hypercharge) and imbalances similar to
the MSSMmay very well become asymptotically safe [41].
The constraints (6) imply that maximal values for

anomalous dimensions (26) cannot arise if gauge group
factors are as small as SUð2Þ or SUð3Þ. For larger gauge
groups, however, we can find models realizing maximal
anomalous dimensions. An example is given by an
SUð6Þ × SUð2Þ gauge theory with NF ¼ 7 (model 7)
which has a near-maximal imbalance parameter ðI ¼ 7

9
Þ.

The model is located at the ϵ ¼ − 3
2
boundary of the

conformal window and leads to an asymptotically safe
fixed point with nonperturbatively large chiral field anoma-
lous dimensions,

FIG. 7. Same as Fig. 6, except that the projections are along R ¼ 2
3
(left) and R ¼ 1

3
(right). Decreasing R considerably narrows the UV

conformal window. The excluded (gray-shaded) areas refer to regions where some matter field field multiplicities would be unphysical
(negative).
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γψ ¼ −
1

2
; γΨ ¼ −

1

2
; γχ ¼ 1: ð39Þ

We conclude that the benchmark models are low-
field-multiplicity realizations of asymptotic safety with
phase diagrams as in Fig. 1. Most of them are nonperturba-
tive with large jϵj and large anomalous dimensions, whose
features are not captured reliably by a few leading orders of
perturbation theory (Fig. 7). With increasing sizes of gauge
group factors ðN1; N2Þ, many more solutions ðNF;NQÞ for
the constraint (6) arise, and a fair fraction of these lead to an
asymptotically safe fixed point within the UV conformal
window (Fig. 2).
Finally, we discuss two benchmark models with ϵ ¼ − 3

2
and maximal anomalous dimensions. These strongly
coupled models are of the Leigh-Strassler type and narrowly
outside the UV conformal window. The first one is model 8
with SUð6Þ × SUð2Þ gauge symmetry and NF ¼ 7, which
differs frommodel 7 only in thatNQ ¼ 1 instead ofNQ ¼ 0,
thus leading to a larger imbalance (I ¼ 8

9
). In consequence,

the ultraviolet fixed point of model 7 degenerates into a line
of fixed points due to β2j� vanishing identically at the gauge-
Yukawa fixed point. The exactly marginal coupling α2
becomes a free parameter and extends the fixed point into
an infrared attractive line. The same phenomenon occurs for
model 9, which has an SUð8Þ × SUð2Þ gauge symmetry
with NF ¼ 10 and imbalance I ¼ 1, situated at the lower-
left corner of Fig. 2. Although interesting in their own right,
models 8 and 9 no longer serve the purpose of ultraviolet
fixed points. However, we stress that the method of a-
maximization has been key in identifying fixed points with
exactly marginal directions.

XI. CONCLUSIONS

We have shown, as a proof of principle, that interacting
UV fixed points exist in strongly coupled quantum field

theories including away from Veneziano (large-N) limits.
Fixed point anomalous dimensions of matter fields can
grow large, taking values in the entire range dictated by
unitarity (26). Thereby, previously found perturbative
fixed points [11] extend naturally into a nonperturbative
conformal window (Fig. 6). Interestingly, a novel range of
fixed points has become available, with no perturbative
counterparts in a Veneziano limit (Fig. 7). We thus
conclude that the nonperturbative “phase space” of fixed
points is large and substantially larger than the one
accessible at weak coupling. Further, all conformal fixed
points (Fig. 2) are in accord with the a-theorem, bounds
on central charges, Seiberg duality, and unitarity. We also
found a manifold of Leigh-Strassler models arising at the
sign-flip-controlling boundary of the conformal window,
where theories display a line of IR fixed points generated
by an exactly marginal gauge interaction (Fig. 4). It is
understood that similar UV conformal windows, bounded
by Leigh-Strassler manifolds, arise naturally in other
semisimple gauge theories coupled to matter.
From the viewpoint of particle physics and model

building, it is quite promising that fixed points persist at
low field multiplicities (Table II), including with Standard-
Model-like gauge groups. The next natural questions to ask
are whether fixed points also arise in MSSM extensions
[41] or in nonsupersymmetric settings at strong coupling.
From the viewpoint of conformal field theory (CFT), it will
be interesting to classify asymptotically safe supersym-
metric theories more systematically and to extract CFT data
or structure coefficients directly from the RG fixed points.
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TABLE II. Parameter and anomalous dimensions for a selection of benchmark models with superconformal fixed points and a low
number of field multiplicities, including Leigh-Strassler-type models (8 and 9).

Model Gauge group NF NQ I R P ϵ γψ γΨ γχ

1 SUð2Þ × SUð2Þ 3 1 0 1 0 − 1
2

−0.126 −0.061 0.187
2 SUð3Þ × SUð2Þ 3 0 0 2

3
0 − 4

3
−0.412 −0.382 0.794

3 SUð3Þ × SUð2Þ 3 1 1
4

2
3

− 3
8

− 4
3

−0.412 −0.382 0.794
4 SUð3Þ × SUð2Þ 3 2 1

2
2
3

− 3
4

− 4
3

−0.412 −0.382 0.794
5 SUð3Þ × SUð2Þ 4 0 1

3
2
3

− 1
2

−1 −0.288 −0.174 0.462
6 SUð3Þ × SUð2Þ 4 1 2

3
2
3

−1 −1 −0.288 −0.174 0.462
7 SUð6Þ × SUð2Þ 7 0 7

9
1
3

− 7
3

− 3
2

− 1
2

− 1
2

1
8 SUð6Þ × SUð2Þ 7 1 8

9
1
3

− 8
3

− 3
2

− 1
2

− 1
2

1
9 SUð8Þ × SUð2Þ 10 0 1 1

4
−4 − 3

2
− 1

2
− 1

2
1
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