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We investigate the free energy and entropy of the Gaussian massive scalar field theory in the static de
Sitter space-time for arbitrary temperature. For the inverse temperatures of the form β ¼ 2π2k, k ∈ Z, in
curvature units, we find the explicit form of the free energy and its derivatives with respect to the
temperature. There are two types of contributions to the free energy: one is of the “area type” and can be
attributed to the horizon, while the other is of the “volume type” and is associated with the interior of the
space-time. The latter contribution in the odd-dimensional case in the limit of the week field (large mass or
small Hubble constant) significantly depends on the temperature. Namely, for β < 2π, the free energy
behaves as Fbulk

β ∼ e−βm, while for β > 2π it behaves as Fbulk
β ∼ e−2πm. We also show that even the leading

UV contributions to the free energy significantly depend on the state of the theory, which is very unusual.
We explain the origin and physical meaning of these observations. As the model example we consider the
situation in the Rindler wedge of the flat space-time.
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I. INTRODUCTION

There are indirect signs that there was a rapid, exponen-
tially expanding epoch in our Universe, which had a de
Sitter like geometry [1–4]. Quantum fields in the static
patch of the de Sitter space-time are believed to have
thermal properties [5–9]. The canonical Gibbons-Hawking
temperature is related to the geometry, i.e., fixed, e.g., by
the requirement that the de Sitter metric should be regular
when analytically continued to the imaginary time. This
requirement leads to the periodicity of the correlation
functions in the Euclidean time coordinate with the period
fixed by the inverse Gibbons-Hawking temperature
β ¼ 2π, in the units of the de Sitter curvature.
However, quantum fields in the static de Sitter space-

time in the state with the Planckian density matrix for exact
modes do not possess the same essential properties as
those in Minkowksi space-time [10]. Furthermore, if the
temperature is different from the canonical one, the back-
reaction on the background geometry is strong, as shown in
[11–13]. At the end of the day, the thermalization process
in the de Sitter space-time, particularly, and in curved
space-times, in general, is far from being well under-
stood [14].

We will not consider these problems in the present paper,
but we would like to better understand the properties of the
thermal states (with the Planckian distribution of generic
temperature for the exact modes in the curved space-time).
For that reason, in this paper, we calculate the one-loop free
energy and entropy of the Gaussian massive scalar field
theory in the static de Sitter universe.
Our calculations extend considerations of earlier works

of different authors on the related issues. See, e.g., [15–20].
For generic values of space-time dimension d and inverse
temperature β, we provide an expression for the free energy
in terms of an integral. This integral representation agrees
with the answer obtained in a recent work [21], where the
free energy in the de Sitter space-time was expressed in
terms of the Harish-Chandra character. We discovered this
result when we finished work on our paper.
On top of obtaining the same formula, we find the

explicit form of the one-loop effective action (free energy)
in the static de Sitter universe of two dimensions for a
sequence of temperatures of the form β ¼ 2π2k, k ∈ Z. The
same sort of explicit form can be found in any dimensions.
Then we study the properties of the free energy in various
limits and explain the origin and the physical meaning of
the new divergences (as compared to the Minkowski space-
time) in the free energy. Then, we calculate the correspond-
ing entropy.
The entanglement entropy contains both UV divergent

and finite terms:

S ¼ SUV þ Sfin: ð1:1Þ
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The general analysis with the use of the heat kernel method
in curved space-times with conical singularities [22,23]
shows that the structure of the UV divergent terms in d
dimensions has the following form:

SUV ¼ ad−2
ϵd−2

þ � � � þ a1
ϵ
þ a0 logðϵÞ; ð1:2Þ

where ϵ is the short distance cutoff, and ai are some
constants that depend on the geometry of the space-time
and physical quantities of the field theory. The coefficient
ad−2 of the leading divergent term is proportional to the
area of the horizon. This sort of behavior of the entropy is
usually referred to as the area law [24,25]. We obtain a
similar structure in the static de Sitter space-time. As
compared to the previous works on the same subject we
do all the calculations in the Lorentzian signature and relate
the appearance of the extra (area type) terms in the entropy
to the peculiarities of the propagators on the horizon. One
should keep in mind that the same peculiarities of the
propagators lead to the strong backreaction on the geom-
etry [13].
The paper is organized as follows. In Sec. II, we discuss

the method of calculation of the effective action or the free
energy, using the analytical continuation in complex
time. We do that for the free massive scalar field in general
static curved space-time, which allows one to express the
effective action via the Feynman propagator. In Sec. II, we
use this method for the two simplest cases: in the flat space-
time in the Minkowskian and Rindler coordinates. Then we
discuss how an extra divergence in the free energy in the
Rindler coordinates is associated with the presence of the
horizon. In Sec. III, we discuss the geometry of the static
chart of the de Sitter space-time and the canonical quan-
tization of the massive scalar field theory in such a
background. Then we construct the thermal Feynman
propagator in the theory under consideration. In Sec. IV,
we derive an integral representation for the one-loop
effective action of the massive scalar field in the two-
dimensional de Sitter space-time for an arbitrary temper-
ature. We analytically continue the obtained expression to
the Euclidian time to obtain the free energy from the
effective action. Then we discuss a method of computation
of the explicit form of the free energy and its derivatives
with respect to the temperature for inverse temperatures
from the sequence β ¼ 2π2k, k ∈ Z. In Sec. V, we extend
our considerations to higher dimensional cases and con-
sider various limits and general patterns in the behavior of
the free energy in odd space-time dimensions, where the
computations are simpler. In Sec. VI, we make conclusions.

II. THE METHOD AND SETUP

There are several different methods to calculate the free
Bose gas partition function in curved space-times, e.g., in
one of the standard methods one uses the heat kernel

regularization procedure (see, e.g., [26]). In this section, we
discuss another approach, in which one uses real-time
formalism and then analytically continues to the Euclidian
signature.
To show how it works, we apply our method to the

massive Gaussian scalar field in d dimensional flat space-
time first in the Minkowskian and then in Rindler coor-
dinates. Then, in the next section, we apply this method to
the same theory in the de Sitter space-time. We use the flat
space-time example just as a toy model or testing ground
for our method.
As we shall see, after the analytical continuation to the

Euclidian signature, our results for the Rindler space-time
agree with those obtained earlier by the standard meth-
ods [27].
The effective action for the Gaussian theory is defined as

Z ¼ eiSeff ¼
Z

d½φ�eiS½φ� ¼
Z

d½φ� exp
�
i
2

Z
ddx

ffiffiffi
g

p

× ð∂μφ∂μφ −m2φ2Þ
�
∝ det½−□g þm2�−1

2: ð2:1Þ

Rather than calculating (2.1) with the use of the heat kernel
method, we instead express its derivative with respect tom2

via the propagator [15,28]. Namely, it is straightforward to
see that

∂
∂m2

log
Z

d½φ�eiS½φ� ¼ −
i
2

R
ddx

ffiffiffiffiffiffi−gp R
d½φ�φðxÞφðxÞeiS½φ�R
d½φ�eiS½φ�

¼ −
i
2

Z
ddx

ffiffiffiffiffiffi
−g

p
Gðx; xÞ: ð2:2Þ

This allows one to express the effective action via the
Feynman propagator in the coincidence limit:

Seff ¼ −
1

2
lim
M→∞

Z
ddx

ffiffiffiffiffiffi
−g

p Z
m2

M2

dm̄2Gðx; xÞ: ð2:3Þ

The coincidence limit should be taken along spatial
directions to avoid ambiguities due to the cut in the
complex plane of the geodesic distance.
In the case of the finite temperature field theory, one has

to use the thermal Feynman propagator:

Gβðx; yÞ ¼
Tr½e−βHTφðxÞφðyÞ�

Tre−βH
; ð2:4Þ

where β is the inverse temperature. Obviously, the answer
for the effective action (or the free energy, after the
analytical continuation) depends on the state one chooses
for calculating the propagator.
In all, the problem reduces to the construction of the

scalar field propagator, then taking the coincidence limit,
with an appropriate regularization to be discussed below,
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and then making the proper analytical continuation to the
Euclidian time.

A. Free energy in the Minkowskian coordinates

Let us start with the simplest case for the thermal
effective action for the massive scalar field in flat space-
time in the Minkowskian coordinates. This is just a text-
book example.
The thermal Feynman propagator in such a case is

Gβðx; tÞ ¼
Z

dd−1k
ð2πÞd−1

�
eiωkjtj−ik⃗ x⃗

2ωk

1

eβωk − 1

þ e−iωkjtjþik⃗ x⃗

2ωk

�
1þ 1

eβωk − 1

��
; ð2:5Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
.

Then, using (2.3), one obtains the effective action of the
form:

Sβ
eff ¼ −

Vd−1T
2

Z
m2

M2

dm̄2

Z
dd−1k

ð2πÞd−1ωk

�
1

2
þ 1

eβωk − 1

�
;

ð2:6Þ

where T is the duration of time and Vd−1 is the spatial
volume. The first term under the integral on the rhs of the
last equation leads to the standard UV divergence due to the
zero-point fluctuations. It can be either subtracted or
absorbed into the renormalization of the ground state
energy after the regularization by the momentum cutoff.
The remaining expression remains finite even if one
takes M → ∞.
To obtain the free energy, one should perform the Wick

rotation t ¼ −iτ to the Euclidean signature in (2.6). Here
one should keep in mind that the thermal Feynman
propagator is analytic in the complex t plane on the infinite
stripe along the real axis. The stripe is of the width ½0; βÞ
along the imaginary axis, where β is the inverse temper-
ature. This fact is related to the so-called Kubo-Martin-
Schwinger property (see, e.g., [29]). Due to these analytic
properties of the propagator, after the Wick rotation, one
should substitute T → −iβ. Thus the effective action (2.6)
transforms into

iSβ
eff → −βFβ ¼ −

Vd−1β

2

Z
m2

M2

dm̄2

×
Z

dd−1k
ð2πÞd−1

1

ωkðeβωk − 1Þ : ð2:7Þ

This expression is finite and can be transformed into

Fβ ¼
Vd−1

β

Z
dd−1k
ð2πÞd−1 log½1 − e−βωk �: ð2:8Þ

To obtain this expression, we calculated the integral over m̄
and took the limit M → ∞. For the sake of completeness,
let us examine the behavior of this free energy in various
limits. In the massless limit, one obtains the well-known
explicit Stefan-Boltzmann law:

Fβ ¼
Vd−1

β

Sd−1
ð2πÞd−1

Z
∞

0

dkkd−2 log ½1 − e−βk�

¼ −
Vd−1Sd−1
ð2πÞd−1

Γðd − 1ÞζðdÞ
βd

¼ −
Vd−1

βd
ζðdÞΓðd

2
Þ

π
d
2

: ð2:9Þ

At the same time, in the limit βm ≫ 1, one finds that

Fβ ≈ −
Vd−1

β

Sd−1
ð2πÞd−1

Z
∞

0

dkkd−2e−β
ffiffiffiffiffiffiffiffiffiffi
k2þm2

p

¼ −
Vd−1

β

Sd−1
ð2πÞd−1

2
d−2
2 m

d
2Γðd−1

2
Þ

β
d−2
2

ffiffiffi
π

p Kd
2
ðβmÞ

≈ −
Vd−1

ð2πÞd−12
mðd−1Þ=2e−βm

βðdþ1Þ=2 : ð2:10Þ

We will use below these limiting expressions to compare
with the free energy in Rindler and de Sitter space-times.

B. Free energy in the Rindler chart

Now let us elaborate our approach in the d dimensional
Rindler chart (or wedge, also known as quadrant) of flat
space-time. The metric of the flat space-time in these
coordinates is

ds2 ¼ e2ξð−dη2 þ dξ2Þ þ dx⃗2; ð2:11Þ

where x⃗ are the d − 2 flat transverse spatial directions. The
massive scalar modes in this metric are expressed via the
MacDonald functions (see, e.g., [30]). The thermal
Feynman propagator of the free massive scalar field is
[30,31]

Gβðη2; ξ2; x⃗2jη1; ξ1; x⃗1Þ

¼
Z

dd−2k
ð2πÞd−2

Z
∞

0

dω
π2

�
eiωjη2−η1j−ik⃗Δx⃗ sinhðπωÞ

× Kiωð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
eξ1ÞKiωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
eξ2Þ 1

eβω − 1

þ e−iωjη2−η1jþik⃗Δx⃗ sinhðπωÞKiωð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
eξ1Þ

× Kiωð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
eξ2Þ

�
1þ 1

eβω − 1

��
: ð2:12Þ

After the substitution of (2.12) into (2.3) and integration
over the d − 2 transverse spatial directions and time, one
obtains that

FREE ENERGY AND ENTROPY IN RINDLER AND DE SITTER … PHYS. REV. D 105, 105003 (2022)

105003-3



Sβ
eff ¼ −TAd−2

Z
m2

M2

dm̄2

Z
dd−2k
ð2πÞd−2

×
Z þ∞

0

dω
π2

sinhðπωÞ
�
1

2
þ 1

eβω − 1

�

×
Z

∞

−∞
dξe2ξKiωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ k2

p
eξÞKiωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ k2

p
eξÞ;

ð2:13Þ

where Ad−2 is the volume of the transverse (d − 2)-dimen-
sional flat space, and T is the duration of time. This
expression has several divergences. The first divergence is
coming from the 1=2 term under the square brackets in the
integral over ω. This is the standard UV divergence due to
the zero-point fluctuations. The divergence is independent
of the temperature and is similar to the one in the
Minkowski space-time (2.6). So we treat it the same
way as in the previous subsection, i.e., subtract it via
renormalization. The remaining divergence we cut off by
restricting the integration over the momenta by jk⃗j ≤ Λ.
Such a divergence is not present in the Minkowski
coordinates. We elaborate on its nature in the next
subsection.
Then, using the relation [32]:

Kiωð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ k2

p
eξÞKiωð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ k2

p
eξÞ

¼ 2

Z
∞

0

dλK0ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄2 þ k2

p
eξ coshðλÞÞ cosð2λωÞ; ð2:14Þ

one can take the integral in (2.13) over ξ and m̄2 to find that

Sβ
eff ¼ −

TAd−2

2

Z jk⃗j≤Λ dd−2k
ð2πÞd−2 log

k2 þm2

k2 þM2

×
Z þ∞

0

dω
π2

sinhðπωÞ
eβω − 1

Z
∞

0

dλ
cosð2λωÞ
cosh2ðλÞ : ð2:15Þ

Then, using the standard integral representation of the
logarithm:

log
B
A
¼

Z
∞

0

ds
s
ðe−sA − e−sBÞ;

one obtains

Sβ
eff ¼

TAd−2

2

Z jk⃗j≤Λ dd−2k
ð2πÞd−2

×
Z

∞

0

ds
s
ðe−sðk2þm2Þ − e−sðk2þM2ÞÞ

×
Z þ∞

0

dω
π2

sinhðπωÞ
eβω − 1

Z
∞

0

dλ
cosð2λωÞ
cosh2ðλÞ : ð2:16Þ

In this expression we can cut off the lower limit of
integration over s by ϵ2 → 0. This allows one to take

Λ → ∞. Then all the expressions remain finite. After that
one can take the Gaussian integrals over k to obtain

Sβ
eff ¼

2TAd−2

π

Z þ∞

0

dω
sinhðπωÞ
eβω − 1

Z
∞

0

dλ
cosð2λωÞ
cosh2ðλÞ

×
Z

∞

ϵ2

ds

ð4πsÞd2 ðe
−m2s − e−M

2sÞ: ð2:17Þ

Taking the integral over λ in the last expression we obtain
the effective action of the form1:

Sβ
eff ¼ 2TAd−2

Z
∞

0

dω
ω

eβω − 1

Z
∞

ϵ2

ds

ð4πsÞd2 ðe
−sm2 − e−sM

2Þ:

ð2:18Þ

Here one can safely take the limit M → ∞, because all
integrals are finite for nonzero ϵ.
At the same time, in all the equations after (2.11), one

can perform the Wick rotation t ¼ −iτ to the Euclidean
signature. Again one should keep in mind2 the analytic
properties of the thermal Feynman propagator in the
complex t plane and substitute T → −iβ.
In all, after the Wick rotation the effective action (2.18)

transforms into

iSβ
eff → −βFβ ¼ βAd−2

Z
∞

0

dω
2ω

eβω − 1

Z
∞

ϵ2

ds

ð4πsÞd2 e
−sm2

:

ð2:19Þ
Taking the integral over ω one obtains that the free energy
is equal to

Fβ ¼ −
π2Ad−2

3

1

β2

Z
∞

ϵ2

ds

ð4πsÞd2 e
−sm2

: ð2:20Þ

This is the result that was found earlier in [27]. The UV
divergent contribution to the entropy that follows from
(2.20) agrees with (1.2).
In the two-dimensional case it is more convenient to

restore M and take the limit ϵ → 0 to represent the answer
for the free energy in the following form:

Fβ ¼
π

6β2
log

m
M

: ð2:21Þ

As one can see now, there is an essential difference between
the free energy of the scalar field in the Rindler (2.20) and

1For the massless theory in d ¼ 2 dimensions, the s integral
in (2.18) is also divergent in the IR limit, i.e., the mass m must
be kept to be nonzero to provide the IR cutoff.

2One should also keep in mind that for generic values of β, the
analytically continued metric (2.11) has the conical singularity
with the deficit angle 2π − β. This is relevant for the discussion of
the next subsection [33].
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Minkowski (2.8) coordinates in the flat space-time. First,
while in the Rindler coordinates, the free energy is propor-
tional to the temperature in the second power (and this does
not depend on the dimension of the space-time), in the
Minkowski space-time, this dependence is essentially
related to the space-time dimension [see (2.9) and
(2.10)]. Second, the free energy in the Minkowski coor-
dinates is proportional to the spacial volume Vd−1, while in
the Rindler coordinates the free energy is proportional to
the “area” of the horizon Ad−2. Third, after subtracting the
zero-point fluctuations, the free energy in Minkowski
coordinates is finite in contrast to the Rindler one.
Apparently, all these differences in the free energy for

various charts can be traced back to the fact that in different
coordinate systems, we use different modes and Cauchy
surfaces of different topology (see, e.g., [14] for a related
discussion). The presence of the horizon is obviously
crucial. Below we discuss these issues in greater details.

C. Discussion of the extra divergence present
in the Rindler chart

In [11,12], it was shown that such a thermal propagator,
which we used above in the Rindler chart, has an
anomalous singularity at the horizon. That happens for
noncanonical temperatures β ≠ 2π in the acceleration units.
The simplest idea how to see the presence of the

anomalous divergence in question is as follows. Let us
examine the behavior of the propagator for β ¼ π near the
horizon. For this temperature, one can use the relation:

1

eπω − 1
¼ 1

e2πω − 1
þ eπω

e2πω − 1
; ð2:22Þ

and Eq. (2.12). Then, for β ¼ π, one can represent the
propagator in the following form:

Gπðη2;ξ2; x⃗2jη1; ξ1; x⃗1Þ
¼ G2πðe2ξ1 þ e2ξ2 − 2eξ1þξ2 coshðη1 − η2Þ þ ðx⃗1 − x⃗2Þ2Þ
þG2πðe2ξ1 þ e2ξ2 þ 2eξ1þξ2 coshðη1 − η2Þ þ ðx⃗1 − x⃗2Þ2Þ:

ð2:23Þ

Here the first term is the standard Poincare invariant two-
point function for the canonical temperature β ¼ 2π. It is
the same as in Minkowski space-time. It has the standard
UV divergence for the lightlike separations of its points.
At the same time, the second term in (2.23) is finite

inside the Rindler wedge but becomes singular once both
its points are taken to the same side of the horizon—
boundary of the wedge. The second term’s argument
vanishes when both points are lightlike separated on the
same side of the horizon (future or past, ξ1;2 → �∞). As a
result, when both points of the propagator are lightlike
separated on the horizon, they has the standard UV
divergence but with the wrong (anomalous) coefficient.

(For the temperature under consideration corresponding to
β ¼ π, the coefficient is wrong by the factor of 2.) It can be
shown that the coefficient depends on the temperature
[11,12]. This subsection shows how this anomalous diver-
gence manifests itself in the effective action and is related to
the discussion above.
Let us again substitute (2.12) into (2.3), but calculate first

the integrals over the momenta k instead of those over the
transverse d − 2 spatial directions. To do this calculation,
let us represent the equations in a more suitable form.
Namely, we use in (2.14) of the following representation:

K0ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
eξ coshðλÞÞ

¼
Z

∞

0

dρ
2ρ

exp

�
−ρ −

ðm2 þ k2Þe2ξcosh2ðλÞ
ρ

�
: ð2:24Þ

Then instead of (2.13), we obtain

Sβ
eff ¼ −TAd−2

Z
m2

M2

dm̄2

Z
dd−2k
ð2πÞd−2

Z þ∞

0

dω
π2

sinhðπωÞ

×

�
1

2
þ 1

eβω − 1

� Z
∞

−∞
dξe2ξ

Z
∞

0

dλ cosð2λωÞ

×
Z

∞

0

dρ
ρ
exp

�
−ρ −

ðm2 þ k2Þe2ξcosh2ðλÞ
ρ

�
:

ð2:25Þ

Here we treat as usual the divergent contribution from the
zero-point fluctuations. But (2.25) has also other divergen-
ces. In fact, let us change the variables e2ξ ¼ s in (2.26) and
impose the cutoff parameter ϵ2 at the lower bound of the
integration over s. This cutoff can be interpreted as a
smallest possible distance to the horizon. Now one can take
M → ∞ and one does not need to regularize the integral
over k. Then, taking the integrals over the momentum and
mass in the last expression, one obtains

Sβ
eff ¼−TAd−2

Z þ∞

0

dω
π2

sinhðπωÞ
eβω−1

Z
∞

0

dλ
cosð2λωÞ
coshdðλÞ

×
Z

∞

0

dρρ
d−2
2 e−ρ2π

Z
∞

ϵ2

ds

ð4πsÞd2 exp
�
−
m2scosh2ðλÞ

ρ

�
:

ð2:26Þ

The last integral here is divergent at the horizon of the
Rindler coordinates (2.11), i.e., in the limit ϵ → 0. As we
can see now this divergence appears due to the singularity
of the thermal propagator at the horizon, which we have
described above in this section and which was encountered
in [11,12].
Let us now rescale the integration variable s in (2.26) to

obtain

FREE ENERGY AND ENTROPY IN RINDLER AND DE SITTER … PHYS. REV. D 105, 105003 (2022)

105003-5



Sβ
eff ¼ −

2TAd−2

π

Z þ∞

0

dω
sinhðπωÞ
eβω − 1

Z
∞

0

dλ
cosð2λωÞ
cosh2ðλÞ

×
Z

∞

0

dρe−ρ
Z

∞

ϵ2 ρ

cosh2ðλÞ

ds

ð4πsÞd2 e
−m2s: ð2:27Þ

Note that the finite parts, ϵ0, of the regularized effective
actions (2.19) and (2.27) do coincide. At the same time, the
divergent parts of (2.27) and (2.19) are different. However,

if one makes the replacement ϵ2 → ϵ2 cosh2ðλÞ
ρ in (2.27), then

after the calculation of the λ and ρ integrals, one repro-
duces (2.19).
In all, there is a divergent contribution in the effective

action (free energy) in the Rindler coordinates, directly
related to the presence of the horizon. There is no such
divergence in the Minkowskian coordinates. The divergent
contribution is proportional to the horizon area rather than
to the volume of space-time. At the same time, to obtain
(2.27) we subtracted (renormalized) the divergence due to
zero-point fluctuations, which are present even in the
ground state, β ¼ ∞, for the exact modes. Note that such
a divergence as in (2.27) is also present for the canonical
temperature, i.e., when the Feynman thermal propagator in
the Rindler chart is equivalent to the Poincaré invariant
Feynman propagator in the Minkowskian coordinates.

III. QUANTIZATION IN THE STATIC CHART
OF THE DE SITTER SPACE-TIME

In this section, we discuss quantization of the massive
scalar field in the d ≥ 2 dimensional static patch of the de
Sitter space-time. The case d ¼ 2 for any value of β was
considered in detail in [12], while the case d ¼ 4 only
for the canonical temperature β ¼ 2π was elaborated
in [34,35].

A. Geometry of the static chart
of the de Sitter space-time

The d-dimensional de Sitter space-time is the hyper-
boloid embedded in the (dþ 1)-dimensional ambient
Minkowski space-time:

dSd ¼ fX ∈ Rd;1; XαXα ¼ −R2g; α ¼ 0; d: ð3:1Þ

In what follows, we set the de Sitter radius to R ¼ 1. The
static patch of the de Sitter space-time is covered by the
coordinates as follows:8>><
>>:

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− r2

p
sinh t

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1− r2

p
cosh t

Xi ¼ rzi 2 ≤ i ≤ d

; t ∈ ð−∞;∞Þ; r ∈ ð0; 1Þ: ð3:2Þ

Where zi are the coordinates on the (d − 2)-dimensional
sphere. In these coordinates, the de Sitter metric, induced

from the flat one of the ambient space-time, takes the
following form:

ds2 ¼ −ð1 − r2Þdt2 þ ð1 − r2Þ−1dr2 þ r2dΩ2
d−2: ð3:3Þ

One of the main properties of this metric is the existence of
the timelike Killing vector, which allows one to introduce
the notion of energy and define the thermal state with
Planckian distribution for the exact modes and the inverse
temperature β.
The static patch is bordered by the Killing horizon at

r2 ¼ 1, where the metric degenerates. Hence, the afore-
mentioned timelike killing vector is not globally defined.
Note that in a two-dimensional de Sitter space-time, the
range of the r coordinate is different: r ∈ ð−1; 1Þ; the 2D
static patch is bordered by the bifurcate Killing horizon.

B. Quantization

Now let us apply the standard method of the canonical
quantization to the Gaussian massive scalar field theory on
the background (3.3). The Klein-Gordon equation for the
field is as follows:

ð□þm2Þϕ ¼
� ∂2

t

1 − r2
−

1

rd−2
∂rðrd−2ð1 − r2Þ∂rÞ

−
△Ω

r2
þm2

�
ϕ ¼ 0: ð3:4Þ

Here △Ω is the Laplace operator on the unit sphere. The
positive frequency mode is defined by the separation
variables as

ϕωjkðt; r;ΩÞ ¼
1ffiffiffiffiffiffi
2ω

p e−iωtRωjðrÞYjkðΩÞ: ð3:5Þ

The hyperspherical harmonics YjkðΩÞ solve the following
equation:

△ΩYjkðΩÞ ¼ −jðjþ d − 3ÞYjkðΩÞ; ð3:6Þ

where j is the non-negative integer, k ¼ ð1; 2;…; Nj;dÞ is
the multi-index and the degeneracy of these harmonics Nj;d

is given by

Nj;d ¼
ðjþ d − 4Þ!
ðd − 3Þ!j! ð2jþ d − 3Þ; ð3:7Þ

with the exceptional case d ¼ 3 and j ¼ 0, whereN0;3 ¼ 1.
The radial function Rωj solves the equation:
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�
−

ω2

1 − r2
−

1

rd−2
∂rðrd−2ð1 − r2Þ∂rÞ

þ jðjþ d − 3Þ
r2

þm2

�
RωjðrÞ ¼ 0; ð3:8Þ

as follows from (3.4) and (3.5).
The last equation has two linearly independent solutions.

In the two-dimensional case, these solutions are Ferrers
functionsPiω

−1
2
þiν

ð�rÞ, also known as Legendre functions on
the cut. Both are regular and normalized as follows [12]:

Rωð�rÞ ¼ Γð1
2
þ iν − iωÞΓð1

2
− iν − iωÞffiffiffiffiffiffi

2π
p

ΓðiωÞ Piω
−1
2
þiν

ð�rÞ;

ð3:9Þ

where

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

�
1

2

�
2

s
: ð3:10Þ

The mode expansion of the field operator can then be
written as follows:

ϕðt; rÞ ¼
Z

∞

0

dω½ϕωðt; rÞaω þ ϕωðt;−rÞbω þ ϕ�
ωðt; rÞa†ω

þ ϕ�
ωðt;−rÞb†ω�: ð3:11Þ

Here, the double degeneracy of the energy level ω appears
due to the presence of the left and right moving modes. As a
result, one has to introduce two pairs of creation and
annihilation operators for each level:

½aω; a†ω0 � ¼ δðω − ω0Þ; ½bω; b†ω0 � ¼ δðω − ω0Þ;
and ½aω; bω0 � ¼ 0: ð3:12Þ

At the same time, in the case when the dimension of space-
time is more than two, only one linear combination of the
two independent solutions is regular3 at r ¼ 0:

RωjðrÞ ¼ Aωjrjð1 − r2Þiω2 2F1

�
iω − iνþ jþ d−1

2

2
;

iωþ iνþ jþ d−1
2

2
; jþ d − 1

2
; r2

�
; ð3:13Þ

where 2F1 is the hypergeometric function, Aωj is some
normalization constant to be defined below and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

�
d − 1

2

�
2

s
: ð3:14Þ

Note that in two dimensions, r ∈ ð−1; 1Þ, while in d > 2,
the range is r ∈ ½0; 1Þ and r ¼ 0 is not the boundary.
Then for the case when d > 2, the mode expansion of the

field operator is as follows4:

ϕðt; r;ΩÞ ¼
Z

∞

0

dω
X
j;k

ðϕωjkaωjk þ ϕ�
ωjka

†
ωjkÞ; ð3:15Þ

where the creation and annihilation operators obey the
canonical commutation relations:

½aωjk; a†ω0j0k0 � ¼ δðω−ω0Þδj;j0δk;k0 and ½aωjk; aω0j0k0 � ¼ 0:

ð3:16Þ

The vacuum is defined as the state that is annihilated by all
annihilation operators: aωjkj0i ¼ 0.
To fix the normalization constant Aωj, we demand that

the field operator and its conjugate momentum should obey
the canonical commutation relations:

½ϕðt; r;ΩÞ; ∂tϕðt; r0;Ω0Þ� ¼ iffiffiffi
g

p
gtt

δðr − r0ÞδðΩ −Ω0Þ:

ð3:17Þ

Using the completeness relation for the hyperspherical
harmonics YjkðΩÞ:

X∞
j¼0

XNj;d

k¼0

YjkðΩÞYjkðΩ0Þ ¼ 1ffiffiffiffiffi
gΩ

p δðΩ −Ω0Þ ð3:18Þ

and (3.16), one can reduce the relation (3.17) to the
completeness condition for the basis of radial functions:

Z
∞

0

dωRωjðrÞR�
ωjðr0Þ ¼

1 − r2

rd−2
δðr − r0Þ: ð3:19Þ

3Note that Eq. (3.8) does have a singularity at r ¼ �1 and at
r ¼ 0, but normalization condition does not impose any regu-
larity conditions at r ¼ �1. Meanwhile, the normalization con-
dition does impose the regularity condition at r ¼ 0 in d > 2.

4The way of quantization we are applying here is adequate in
such a symmetric space as de Sitter. We use here the modes which
have a fixed form in the entire space-time. In fact, the tree-level
propagator constructed for the Fock space ground state with the
use of such a mode expansion as (3.15) is a function of the
geodesic distance between its points. There is, however, a
different way to quantize in any space-time: one has to choose
a Cauchy surface and a basis of mode functions (of only spatial
coordinate) and then evolve the corresponding field operator with
the use of the free Hamiltonian. However, the latter way of
quantization does not respect the de Sitter isometry: already tree-
level propagator does depend separately on each of its arguments.
That is the reason why we choose the first method to quantize the
theory in de Sitter space-time.
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Instead of finding the normalization from the completeness
relation, it is much easier to find it from the orthogonality
condition for the radial components of the modes. In fact,
multiplying both sides of (3.19) by r0d−2

1−r02 Rωjðr0Þ and
integrating over r0, it is easy to see that the orthogonality
condition should be of the following form:

Z
1

0

dr
rd−2

1 − r2
RωjðrÞR�

ω0jðrÞ ¼ δðω − ω0Þ: ð3:20Þ

Using Eq. (3.8), one can show that the integrand on the lhs
of (3.20) is the total derivative:

Iωω0 ¼
Z

1

0

dr
rd−2

1 − r2
RωjðrÞR�

ω0jðrÞ

¼ 1

ω02 − ω2

Z
1

0

dr½RωjðrÞ∂rðrd−2ð1 − r2Þ∂rR�
ω0jðrÞÞ

− R�
ω0jðrÞ∂rðrd−2ð1 − r2Þ∂rRωjðrÞÞ�

¼ rd−2ð1 − r2Þ
ω02 − ω2

½RωjðrÞ∂rR�
ω0jðrÞ − R�

ω0jðrÞ∂rRωjðrÞ�
����1
0

:

ð3:21Þ

The contribution at the lower limit of this integral is
vanishing since the radial function is regular at the origin.
To find the contribution from the upper limit, one can use
the asymptotic behavior of RωjðrÞ near r ¼ 1:

RωjðrÞ ≈ AðωÞð2 − 2rÞ−iw
2 þ BðωÞð2 − 2rÞiw2 ; ð3:22Þ

where

AðωÞ ¼ Aωj
ΓðiwÞΓðd−1

2
þ lÞ

Γðdþ2l−2iνþ2iw−1
4

ÞΓðdþ2lþ2iνþ2iw−1
4

Þ ð3:23Þ

and

BðωÞ ¼ Aωj
Γð−iwÞΓðd−1

2
þ lÞ

Γðdþ2l−2iν−2iw−1
4

ÞΓðdþ2lþ2iν−2iw−1
4

Þ : ð3:24Þ

Using the asymptotic behavior (3.22), one obtains

Iωω0 ¼ lim
r→1

�
−
ið2 − 2rÞ−1

2
iðw0þwÞ

w0 þ w
AðwÞBðw0Þ�

−
ið2 − 2rÞ−1

2
iðw−w0Þ

w − w0 AðwÞAðw0Þ�

þ ið2 − 2rÞ12iðw0þwÞ

w0 þ w
BðwÞAðw0Þ�

þ ið2 − 2rÞ12iðw−w0Þ

w − w0 BðwÞBðw0Þ�
�
: ð3:25Þ

Then, in (3.25), we use

lim
r→1

ð2 − 2rÞ12iðw�w0Þ

w� w0 ¼ lim
r→1

�
cos ð1

2
logð2 − 2rÞðw� w0ÞÞ

w� w0

þ i sin ð1
2
logð2 − 2rÞðw� w0ÞÞ

w� w0

�
¼ −iπδðw� w0Þ: ð3:26Þ

Here we also use one of the standard representations of the
delta function and the Riemann-Lebesgue lemma, which
states that

lim
r→1

cos ð1
2
logð2 − 2rÞðw� w0ÞÞ

w� w0 ¼ 0

in the distributional sense.
After that, taking into account Eq. (3.26), we obtain

Iωω0 ¼ πðjAðωÞj2 þ jBðωÞj2Þδðω − ω0Þ: ð3:27Þ

As a result, to obtain proper commutation relations, the
normalization constant of the modes (3.13) should be
defined as

jAωjj2 ¼
jΓðdþ2l−2iν−2iw−1

4
ÞΓðdþ2lþ2iν−2iw−1

4
Þj2

2πjΓðiωÞj2Γ2ðd−1
2
þ lÞ : ð3:28Þ

This concludes the discussion of the canonical quantization
in the static chart of the de Sitter space-time.

C. The thermal propagator

Now we find the thermal Wightman function since it is
the building block that is needed to find the Feynman
propagator and, then, to calculate the effective action.
The expectation value over the quantum thermal state

with the inverse temperature β is defined as in (2.4), where
the free Hamiltonian in the static chart of the de Sitter
space-time is given by

H≔
Z

dx
ffiffiffi
g

p
T0
0¼

Z þ∞

0

dωωða†ωaωþb†ωbωÞ ford¼2 and

H≔
Z

dd−1x
ffiffiffi
g

p
T0
0¼

X
j;k

Z þ∞

0

dωωa†ωjkaωjk for d>2:

ð3:29Þ

Here, T0
0 is the corresponding component of the stress-

energy tensor of the theory (2.1) in the metric (3.3). To
obtain the expressions for the Hamiltonians, we used the
mode expansions (3.11) and (3.15) with the modes found in
the previous subsection.
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Then the corresponding thermal Wightman function is

Wβðt1 − t2; r1; r2Þ ¼ hϕðt1; r1Þϕðt2; r2Þi

¼
Z

∞

0

dωdω0½ϕωðt1; r1Þϕ�
ω0 ðt2; r2Þhaωa†ω0 i þ ϕωðt1;−r1Þϕ�

ω0 ðt2;−r2Þhbωb†ω0 i

þ ϕ�
ωðt1; r1Þϕω0 ðt2; r2Þha†ωaω0 i þ ϕ�

ωðt1;−r1Þϕω0 ðt2;−r2Þhb†ωbω0 i� for d ¼ 2 ð3:30Þ
and

Wβðt1 − t2; r1; r2;Ω1;Ω2Þ ¼ hϕðt1; r1;Ω1Þϕðt2; r2;Ω2Þi

¼
X

k;k0;j;j0

Z
∞

0

dωdω0½ϕωjkðt1; r;Ω2Þϕ�
ω0j0k0 ðt2; r2;Ω2Þhaωjka†ω0j0k0 i

þ ϕ�
ωjkðt1; r;Ω2Þϕω0j0k0 ðt2; r2;Ω2Þha†ωjkaω0j0k0 i� for d > 2; ð3:31Þ

where

ha†ωaω0 i ¼ nðωÞδðω − ω0Þ; hb†ωbω0 i ¼ nðωÞδðω − ω0Þ;

ha†ωjkaω0j0k0 i ¼ nðωÞδðω − ω0Þδjj0δkk0 ; and nðωÞ ¼ 1

eβω − 1

is the Bose-Einstein or Planckian distribution. After some rearrangements, we obtain the following expressions for d ¼ 2:

Wβðt1 − t2; r1; r2Þ ¼
Z

∞

0

dω

�
ðϕ�

ωðt1; r1Þϕωðt2; r2Þ þ ϕ�
ωðt1;−r1Þϕωðt2;−r2ÞÞ

1

eβω − 1

þ ðϕωðt1; r1Þϕ�
ωðt2; r2Þ þ ϕωðt1;−r1Þϕ�

ωðt2;−r2ÞÞ
�
1þ 1

eβω − 1

��
: ð3:32Þ

and for d > 2:

Wβðt1 − t2; r1; r2;Ω1;Ω2Þ ¼
X
k;j

Z
∞

0

dω

�
ϕ�
ωjkðt1; r1;Ω1Þϕωjkðt2; r2;Ω2Þ

1

eβω − 1

þ ϕωjkðt1; r1;Ω1Þϕ�
ωjkðt2; r2;Ω2Þ

�
1þ 1

eβω − 1

��
: ð3:33Þ

Using the thermal Wightman function, one can construct the thermal Feynman propagator as follows:

Gβðt1 − t2; r1; r2;Ω1;Ω2Þ ¼ θðt1 − t2ÞWβðt1 − t2; r1; r2;Ω1;Ω2Þ þ θðt2 − t1ÞWβðt2 − t1; r2; r1;Ω2;Ω1Þ; ð3:34Þ

which will be used below for the calculation of the effective action.

IV. EFFECTIVE ACTION IN THE 2D STATIC DE SITTER SPACE-TIME

In this section, we compute the one loop effective action for the massive scalar field in a two-dimensional de Sitter space-
time. And after the Wick rotation, we find the free energy. The thermal Feynman propagator in 2D, which was found in the
previous section, is as follows

Gβðt1 − t2; r1; r2Þ ¼
Z

∞

0

dω
sinhðπωÞ

4 cosh πðν − ωÞ cosh πðνþ ωÞ

×

�
1

eβω − 1
eiωjt1−t2jðPiω

−1
2
þiν

ðr1ÞP−iω
−1
2
þiν

ðr2Þ þ Piω
−1
2
þiν

ð−r1ÞP−iω
−1
2
þiν

ð−r2ÞÞ

þ
�
1þ 1

eβω − 1

�
e−iωjt1−t2jðP−iω

−1
2
þiν

ðr1ÞPiω
−1
2
þiν

ðr2Þ þ P−iω
−1
2
þiν

ð−r1ÞPiω
−1
2
þiν

ð−r2ÞÞ
�
: ð4:1Þ
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After the substitution of (4.1) into (2.3), one obtains that the effective action is

Sβ
eff ¼ −

T
2

Z
m2

M2

dm̄2

Z
∞

0

dω
sinhðπωÞ

cosh πðν − ωÞ cosh πðνþ ωÞ
�
1

2
þ 1

eβω − 1

� Z
1

−1
drPiω

−1
2
þiν

ðrÞP−iω
−1
2
þiν

ðrÞ; ð4:2Þ

where T is the duration of the Lorentzian time, and M is very large in the curvature units. The integral over ω in the last
expression is divergent. This is the standard UV divergence due to the zero-point fluctuations. The situation here is
absolutely similar to the one we have encountered in (2.7) and (2.18). Thus, we can simply renormalize this contribution as
in the previous section.
To take the integral in (4.2) over the spatial direction, r, we use the properties of the Legendre functions and the

corresponding differential equation:

�
−

ω2

1 − r2
− ∂rð1 − r2Þ∂r þm2

�
Piω
−1
2
þiν

ðrÞ ¼ 0:

Applying this equation, one can show what the integrand in (4.2) can be written as a total derivative, and the answer for the r
integral in (4.2) depends only on the behavior of the Legender functions at the limits of integration:

Z
1

−1
drPiω

−1
2
þiν

ðrÞP−iω
−1
2
þiν

ðrÞ ¼ lim
m0→m

Z
1

−1
dr

P−iω
−1
2
þiν0 ðrÞ∂rð1 − r2Þ∂rPiω

−1
2
þiν

ðrÞ − Piω
−1
2
þiν

ðrÞ∂rð1 − r2Þ∂rP−iω
−1
2
þiν0 ðrÞ

m2 −m02

¼ lim
m→m0

ð1 − r2Þ
P−iω
−1
2
þiν0 ðrÞ∂rPiω

−1
2
þiν

ðrÞ − Piω
−1
2
þiν

ðrÞ∂rP−iω
−1
2
þiν0 ðrÞ

m2 −m02

����þ1

−1
: ð4:3Þ

Now, from the asymptotic behavior of the Legender functions, we find that

sinhðπωÞ
cosh πðν − ωÞ cosh πðνþ ωÞ

Z
1

−1
drPiω

−1
2
þiν

ðrÞP−iω
−1
2
−iνðrÞ

¼ 1

2πν

�
ψ

�
1

2
− iω − iν

�
− ψ

�
1

2
− iωþ iν

�
þ ψ

�
1

2
þ iωþ iν

�
− ψ

�
1

2
þ iω − iν

��
: ð4:4Þ

Where ψðzÞ ¼ Γ0ðzÞ=ΓðzÞ is the digamma function with simple poles of the residue −1 at z ¼ −n. After the substitution of
(4.4) into (4.2), one can take the integral over m̄2 to find

Sβ
eff ¼ −

iT
2π

Z
∞

0

dω
1

eβω − 1
log

�
Γð1

2
− iω − iνÞΓð1

2
− iωþ iνÞ

Γð1
2
þ iωþ iνÞΓð1

2
þ iω − iνÞ

�
− ðν → MÞ: ð4:5Þ

Here (ν → M) means the same term as explicitly written here, but with ν form (3.14) replaced byM, which is assumed to be
very large in comparison with the de Sitter curvature.
Now let us represent the thermal distribution as the sum of the geometric series to find that

Sβ
eff ¼ −iT

1

2π

Z
∞

0

dω
X∞
n¼1

e−βωn log

�
Γð1

2
− iω − iνÞΓð1

2
− iωþ iνÞ

Γð1
2
þ iωþ iνÞΓð1

2
þ iω − iνÞ

�
− ðν → MÞ: ð4:6Þ

Taking the integral over ω by parts and using the relation

e−βnjωj

βn
¼ 1

π

Z
∞

−∞
dy

eiyω

y2 þ ðβnÞ2 ; ð4:7Þ

one obtains

Sβ
eff ¼ −

T
2π2

Z
∞

−∞
dω

X∞
n¼1

Z
∞

−∞
dy

eiyω

y2 þ ðβnÞ2
�
ψ

�
1

2
− iω − iν

�
þ ψ

�
1

2
þ iωþ iν

��
− ðν → MÞ: ð4:8Þ
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Here, one can take the integral over ω by closing the contour in the upper half of the complex ω-plane, if y > 0, and in the
lower one, if y < 0. The result is

Z
∞

−∞
dωeiωy

�
ψ

�
1

2
− iω − iν

�
þ ψ

�
1

2
þ iωþ iν

��
¼ −2π

X∞
k¼0

e−iyν−ðkþ1=2Þjyj ¼ −π
e−iyν

sinh jyj
2

: ð4:9Þ

Hence,

Sβ
eff ¼

T
2π

X∞
n¼1

Z
∞

−∞
dy

1

y2 þ ðβnÞ2
eiyν − eiyM

sinh jyj
2

: ð4:10Þ

Thus, we arrive at the integral representation of the
effective action. For the arbitrary value of β and ν, we
don’t know how to express the integral in (4.10) via known
special functions. As we will see in the next section, the
explicit form for Sβ

eff and its derivatives over β can be found
only for β ¼ 2π2n, n ∈ Z.
By performing theWick rotation and changing T → −iβ,

due to the analytic properties of the Feynman propagator in
the complex t plane,5 one finds the free energy:

iSβeff → −βFβ ¼
β

4π

Z
∞

−∞
dy

πy
β cothðπyβ Þ − 1

y2
eiyν − eiyM

sinh jyj
2

;

ð4:11Þ

which can be used to find thermodynamic properties of the
massive scalar field theory (or free Bose gas) in the de Sitter
space-time. Similar integral representation was found ear-
lier in recent works [21,36], were the author expressed the
free energy in terms of the integral over the SOð1; 2Þ
Harish-Chandra character.
The free energy (4.11) diverges in the limit M → ∞.

This divergence is the same as the one that appears in the
Rindler coordinates and was discussed in the previous
section. In fact, let us cut from the integration contour over
y a small ϵ vicinity of the origin, similarly to what we did in
the previous section. After such a cut, one can take the limit
M → ∞ since the integrand in (4.11) is a fast oscillating
function everywhere on such a contour. However, the
resulting expression for the free energy diverges in the
limit ϵ → 0 in the same way as it was the case in (2.20). In
the remaining part of this section, we keep M fixed since it
is more convenient to regularize this way the free energy in
the two-dimensional case. Thus, for a finite value ofM, the
integrand in (4.11) remains finite at the origin, y ¼ 0.

A. Explicit free energy and entropy for β= 2π

In this subsection, we show that the free energy (4.11)
and the corresponding entropy can be found explicitly

when β ¼ 2π. Since the entropy is defined as
S ¼ ðβ∂β − 1Þ log½Z�, it is enough to find the value and
the first derivative of the free energy for β ¼ 2π.
The free energy (4.11) for β ¼ 2π can be rewritten in the

form:

F2π ¼ −
1

2π

Z
∞

0

dy
y
2
cothðy

2
Þ − 1

y2
cosðyνÞ − cosðyMÞ

sinh y
2

;

ð4:12Þ
where we divided the region of integration in (4.11) as y ∈
ð−∞; 0� and y ∈ ½0;þ∞Þ and then changed y → −y in the
first region.
To calculate this integral, let us represent it as the sum of

two terms:

F2π ¼ lim
ϵ→0

½L1ðϵ; νÞ þ L2ðϵ; νÞ�; ð4:13Þ

where

L1ðϵ; νÞ ¼ −
1

2π

Z
∞

ϵ
dy

1
2
cothðy

2
Þ

y
cosðyνÞ − cosðyMÞ

sinh y
2

¼ −
1

4π

Z
M

ν
dm

Z
∞

ϵ
dy coth

�
y
2

�
sinðymÞ
sinh y

2

ð4:14Þ
and

L2ðϵ; νÞ ¼
1

2π

Z
∞

ϵ
dy

1

y2
cosðyνÞ − cosðyMÞ

sinh y
2

¼ 1

2π

Z
M

ν
dm1

Z
m1

0

dm
Z

∞

ϵ
dy

cosðymÞ
sinh y

2

: ð4:15Þ

These two integrals diverge separately in the limit ϵ → 0,
but the divergent contributions cancel each other in the sum
(4.13). Further on, we will use the table integral from [32]

Z
∞

ϵ

expðaxÞ
sinhbðxÞ dx ¼ 2eðaþ1Þϵ

ðaþ bÞsinhb−1ðϵÞ

× 2F1

�
1;
2þ a − b

2
;
2þ aþ b

2
; e2ϵ

�
; ð4:16Þ

where 2F1 is the hypergeometric function. Using this
relation, one can calculate the integrals over y in (4.14)
and (4.15). Then, taking the limit ϵ → 0, we find5They are essentially the same as in flat space-time.
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F2π ¼
1

2π

�
ν2 − 2νℜ

�
iψ ð−1Þ

�
1

2
− iν

��

− 4ℜ

�
ψ ð−2Þ

�
1

2
− iν

���
− ðν → MÞ: ð4:17Þ

Note that F2π < 0 for all values of m, i.e., of ν.
For large values ofm, the leading contribution to the free

energy is as follows:

F2π ≈
1

12π
log

m
M

; ð4:18Þ

which is twice larger than the same contribution in the
Rindler space-time (2.21) for the canonical temperature
β ¼ 2π. To understand this point, let us consider the
eigenfunctions from the continuous spectrum of the
well-known quantum mechanical scattering problem in
the two-dimensional de Sitter space-time:�

−∂2
x þ

m2

cosh2x

�
RωðxÞ ¼ ω2RωðxÞ: ð4:19Þ

This equation follows from (3.8) after the change of
variables tanhðxÞ ¼ r.
In the limit of large mass the potential barrier in (4.19)

gets large. Then, the main contribution to the effective
action comes from the regions near both sides of the
horizon (in 2D), where the potential looks approximately
the same as in the Rindler space, namely: m2

cosh2 x → 4m2e−2x.
Thus, each side of the horizon (at r ¼ �1) gives the same
Rindler type contribution to (4.18). At the same time, in the
limit of small mass, the free energy behaves as

F2π ≈
1

12π
log

m6

M
;

where the expression under the logarithm is dimensionless
since all the masses are measured in units of the de Sitter
curvature, which we set to one.
To find the entropy or heat capacity, one has to calculate

the derivative of the free energy over β. Using the approach
described above, one can calculate any derivative of the free
energy with respect to β at β ¼ 2π. However, we will
calculate only the first derivative, which is relevant to our
main discussion. The derivative of (4.11) with respect to β
is equal to

∂βFβ¼2π ¼
1

2π

Z
∞

0

dy

�
−
csch2ðy

2
Þ

8π
þ cothðy

2
Þ

4πy

�

×
cosðyνÞ − cosðyMÞ

sinh y
2

: ð4:20Þ

Representing again this expression as the sum of two terms,
as it was done in (4.13), and using the integral (4.16), one
obtains

∂βFβ¼2π ¼
1

32π2

�
4ν2 − 2ð1þ 4ν2Þℜ

�
ψ ð0Þ

�
1

2
− iν

��

þ 16νℜ

�
iψ ð−1Þ

�
1

2
− iν

��

þ 16ℜ

�
ψ ð−2Þ

�
1

2
− iν

���
− ðν → MÞ: ð4:21Þ

As a result, the entropy S ¼ β2∂βFβ¼2π can be calculated
exactly for any mass ν. Obviously, the resulting expression
contains the two-dimensional de Sitter analog of the
Bekenstein-Hawking term. It can be singled out by taking
the large mass limit. This contribution has such a form as
S ≈ − 1

3
log m

M. It is again twice larger than the Bekenstein-
Hawking entropy in the Rindler space-time, due to the
presence of two sides of the horizon in the two-dimensional
de Sitter space-time.
Another interesting limit is that of small mass:

S ≈ − 1
3
logm3

M . Below we will see how the temperature β
is present in these limiting expressions.

B. Explicit free energy and entropy for β = 2π2n

In this section, we explicitly find the free energy and
entropy for β ¼ 2π2n, n ¼ 1; 2; 3;… in 2D. Consider the
difference of two free energies (4.11) for temperatures
differing by the factor of 2:

F2π2nþ1 −F2π2n ¼
1

2nþ3π

Z
M

ν
dm

Z
∞

0

tanhð2−n−2xÞ
sinhðx

2
Þ sinðmxÞ:

ð4:22Þ

The integral in this recurrent relation can be written in a
simpler form than in Eq. (4.11). In fact, the integrand in
(4.22) can be expressed in the form:

tanh ð2−n−2xÞ
sinhðx

2
Þ ¼ ð−1Þ2nþ1

2−n−1

cosh2 ð2−n−2xÞ

þ
Xn−1
s¼0

1

2s

X2n−s−1
k¼1

expð xk
2nþ1Þð−1Þð2sþkÞ

1þ expð x
2sþ1Þ ; ð4:23Þ

where we use the partial fractional expansion of the rational
fraction. Then using the table integral as follows:

Z
∞

0

expðaxÞ
1þ expðbxÞ dx ¼ ψð1 − a

2bÞ − ψð1 − aþb
2b Þ

2b
;

if ℜðaÞ < ℜðbÞ and ℜðbÞ > 0; ð4:24Þ

we get the recurrent relation of the form:
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F2π2nþ1 − F2π2n ¼ ℜ

�ð−1Þ2nþ12−2−2n

π
ði2nν½ψ ð−1Þð1=2 − i2nνÞ − ψ ð−1Þð1 − i2nνÞ�

þ ψ ð−2Þð1=2 − i2nνÞ − ψ ð−2Þð1 − i2nνÞÞ

þ
Xn−1
s¼0

X2n−s−1
k¼1

ð−1Þ2sþk

21þs

�
ψ ð−1Þ

�
1

2
−

2sk
21þn − i2sν

�
− ψ ð−1Þ

�
1 −

2sk
21þn − i2sν

���
− ðν → MÞ: ð4:25Þ

Since the free energy for β ¼ 2π and the difference of the two expressions for free energy are known exactly from (4.17)and
(4.25), one can represent the free energy for β ¼ 2π2n as

F2π2n ¼ F2π þ
Xn−1
l¼0

ðF2π2lþ1 − F2π2lÞ: ð4:26Þ

Furthermore, the recurrent relation for the first derivative of the free energy over β is as follows:

∂βðβFβ¼2π2nþ1Þ − ∂βðβFβ¼2π2nÞ ¼
Z

∞

0

cosðνyÞ − cosðMyÞ
25þ2nπ sinhðy

2
Þ cosh2 ð2−2−nyÞ dy: ð4:27Þ

Using the partial fractional expansion of the hyperbolic function in (4.27), one can compute this integral as it was done
above, and then solve the simple recurrent relation for arbitrary n. Namely, we use the following expansion:

1

sinhðy
2
Þcosh2ð2−2−nyÞ ¼

1

2nþ1ð−1þ e
y

2nþ2Þ
−

1

2nþ1ð1þ e
y

2nþ2Þ
þ ð−1Þ2n22−n
ð1þ e

y

2nþ1Þ3
−
3ð−1Þ2n21−n
ð1þ e

y

2nþ1Þ2

−
ð−1Þ2nð−5þ 21þ2nÞ

32nð1þ e
y

2nþ1Þ
þ
Xn
k¼1

X2k
s¼1

ð−1Þ2n−kþs21−nþkð2k−1 − sþ 1Þ expðyðs−1Þ
2nþ1 Þ

1þ e
y

2n−kþ1

ð4:28Þ

and obtain

∂βðβFβ¼2π2nþ1Þ − ∂βðβFβ¼2π2nÞ ¼ −
2−5−2n

π
ℜ½ψð1 − i22þnνÞ� − 2−6−2n

π
ℜ½ψð1 − i21þnνÞ − ψð1=2 − i21þnνÞ�

þ ð−1Þ2n2−6−2nð1þ 21þ2nð1þ 12ν2ÞÞ
3π

ℜ½ψð1=2 − i2nνÞ − ψð1 − i2nνÞ�

þ
Xn
k¼1

X2k
s¼1

ð−1Þ2n−kþs

25þ2nπ
ð2k−1 − sþ 1Þℜ

�
ψ

�
1þ 21þk − i21þnν − s

21þk

�

− ψ

�
1þ 2k − i21þnν − s

21þk

��
; ð4:29Þ

where the table integral (4.24) was used.
Since the first derivative of the free energy (4.21) for the inverse temperature β ¼ 2π is known, one can represent the

entropy for the inverse temperature β ¼ 2π2n as

S2π2n ¼ 2π2n
�Xn−1
l¼0

½∂βðβFβ¼2π2lþ1Þ − ∂βðβFβ¼2π2lÞ� þ 2π∂βFβ¼2π þ F2π − F2π2n

�
: ð4:30Þ

The same technique allows one to calculate explicitly any derivative of the free energy for β ¼ 2π2n, but the corresponding
expressions are rather complicated. We will not discuss them here.

C. Explicit free energy and entropy for β = 2π
2n

This section explicitly finds the free energy and entropy for the inverse temperatures of the form β ¼ 2π
2n
, n ¼ 1; 2; 3;… in

2D. Here, we will use a bit different technique from the one used in the previous subsection.

FREE ENERGY AND ENTROPY IN RINDLER AND DE SITTER … PHYS. REV. D 105, 105003 (2022)

105003-13



Let us again consider the difference of two free energies (4.11) with temperatures differing by the factor of 2:

F 2π
2nþ1

− F2π
2n
¼ 2n−2

π

Z
M

ν
dm

Z
∞

0

dy
sinðmyÞ

cosh ð2n−1yÞ
sinh ð2n−1yÞ

sinhðy
2
Þ

¼ 2n−2

π

Z
M

ν
dm

Z
∞

0

dy
sinðmyÞ

cosh ð2n−1yÞ
X2n−1−1

k¼−2n−1
e
1
2
ð1þ2kÞy: ð4:31Þ

Taking the integrals and solving the recurrent relation, one obtains

F 2π
2nþ1

¼ F2π þ
Xn−1
s¼0

X2s−1−1
k¼−2s−1

2s−2

π
ℜ

�
ψ ð−1Þ

�
1þ 2s þ 2k − 2iν

22þs

�
− ψ ð−1Þ

�
1þ 32s þ 2k − 2iν

22þs

��
− ðν → MÞ: ð4:32Þ

Similarly, the recurrent relation for the first derivative of the free energy over β is as follows:

∂βðβFβ¼ 2π
2nþ1

Þ − ∂βðβFβ¼2π
2n
Þ ¼ −

Z
∞

0

cosðνyÞ − cosðMyÞ
23−2nπ sinhðy

2
Þcosh2ð2n−1yÞ dy

¼ 1

16π
ℜ

�
−

23þ2n

1þ 4ν2
þ 21þ2nψ

�
−
1

2
− iν

�
þ
X2n
k¼1

�
ð1þ 2n − 2kþ 2iνÞψ

×

�
1

2
þ −1þ 2k − 2iν

2nþ2

�
− ð1þ 2n − 2kþ 2iνÞψ

�
−1þ 2k − 2iν

2nþ2

���
: ð4:33Þ

Since we know exactly the value of the first derivative of the free energy (4.21) for β ¼ 2π, we can represent the entropy for
β ¼ 2π

2n
as

S2π
2n
¼ 2π

2n

�Xn−1
l¼0

�
∂β

�
βFβ¼ 2π

2lþ1

�
− ∂β

�
βFβ¼2π

2l

��
þ 2π∂βFβ¼2π þ Fβ¼2π − Fβ¼2π

2n

�
: ð4:34Þ

Note that any derivative of the free energy can be calculated
for β ¼ 2π

2n
, but we do not write it here explicitly.

Let us discuss now different limits of the thermo-
dynamic quantities in question for the temperatures of
the form β ¼ 2π2n, n ∈ Z. Namely, for largem, the leading
contribution to the free energy is as follows:

F2π=2n ≈
22n

12π
log

m
M

≈
π

3β2
log

m
M

;

which is twice larger than the same quantity in the
Rindler space-time (2.20) due to the presence of
bifurcate horizons. For small m the lading contribution
to free energy is

F2π=2n ≈
2n logðmÞ

2π
−
22n logðMÞ

12π
≈
1

β
logm −

π

3β2
logM:

ð4:35Þ

The free energy (4.11) in the low temperature limit can
be represent as follows:

Fβ ≈ −
1

2π

X∞
1

1

ðβnÞ2
Z

∞

−∞
dy

eiyν − eiyM

sinh jyj
2

¼ −
π

3β2
2ℜ

�
ψ

�
1

2
− iν

�
− ψ

�
1

2
− iM

��
; ð4:36Þ

which can be also deduced from the previous equation. Let
us also point out here that the high temperature limit can
only be investigated via the consideration of the exact
expression for the free energy. The obtained expressions
together with those found in the previous subsection allow
one to find analytic expressions for the thermodynamic
quantities in question for arbitrarily high and low (but
discrete) temperatures.

V. THE CASE OF d > 2 DIMENSIONS

So far, we have considered the two-dimensional static de
Sitter space-time. In this section, we extend our consid-
erations to higher dimensions. It is shown in [37] that
the properties of in-out effective actions of the massive
scalar field in the Poincaré and the global patches of the de
Sitter space-time essentially depend on the dimension of
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space-time. In even space-time dimensions, there is an
imaginary contribution, which hints on the particle crea-
tion, while in odd dimensions, the imaginary contribution is
vanishing, which, however, does not mean that there is no
particle creation in odd dimensions [37]. In this paper, we
consider thermal states in the in-in formalism in the static
de Sitter patch. We will see that “thermal effects” also
significantly depend on whether the dimension of the de
Sitter space-time is even or odd.
By definition (2.3), the effective action in the d dimen-

sional case can be written as

Sβ
eff ¼ −

1

2

Z
m2

M2

dm̄2
X
k;j

Z
∞

0

dω
ω

�
1

2
þ 1

eβω − 1

�

×
Z

dt
Z

1

0

drrd−2RωjðrÞR�
ωjðrÞ

Z
dΩYjkðΩÞY�

jkðΩÞ:

ð5:1Þ

The 1=2 term in the square brackets in the last expression
leads to the divergence due to zero-point fluctuations. We

treat it the same way as above. Furthermore, note that here,
unlike the two-dimensional case, the presence of the cutoff
M is not sufficient to make the last expression finite: in
higher than two dimensions the last expression is divergent.
We cut off this divergence by imposing j < Λ for some
large Λ in the sum over j.
The integral over the spherical angles can be evaluated

using the orthogonality condition:

Z
dΩYjkðΩÞY�

j0k0 ðΩÞ ¼ δjj0δkk0 : ð5:2Þ

To evaluate the integral over the product of radial functions
in (5.1), we use the method of the previous sections, where
we showed that the volume integral over the two modes can
be written as a total derivative. Then the answer for the
integral depends only on the behavior of the modes at the
boundary of the patch—near the horizon.
Using (3.8), one can reduce the integral over the product

of the radial functions (3.13) to

Z
1

0

drrd−2R�
ωlðr;mÞRωlðr;mÞ

¼ lim
m0→m

Z
1

0

dr
Rωlðr;m0Þ�∂rðr2ð1 − r2Þ∂rÞRωlðr;mÞ − Rωlðr;mÞ∂rðr2ð1 − r2Þ∂rÞR�

ωlðr;m0Þ
m2 −m02

¼ lim
m0→m

Rωlðr;m0Þ�r2ð1 − r2Þ∂rRωlðr;mÞ − Rωlðr;mÞr2ð1 − r2Þ∂rRωlðr;m0Þ�
m2 −m02

����1
0

¼ ω

4πν

�
ψ

�
2L − 2iω − 2iνþ d − 1

4

�
− ψ

�
2L − 2iωþ 2iνþ d − 1

4

�
− ψ

�
2Lþ 2iω − 2iνþ d − 1

4

�

þ ψ

�
2Lþ 2iωþ 2iνþ d − 1

4

��
: ð5:3Þ

In all, taking the integral in (5.1) over the spatial volume and calculating the sum over k, we obtain at the following
expression for the effective action:

Sβ
eff ¼

T
16π

XΛ
j¼0

ðjþ d − 4Þ!
ðd − 3Þ!j! ð2jþ d − 3Þ

Z
m2

M2

dm̄2

ν

Z
∞

−∞
dω

1

eβω − 1

×

�
ψ

�
1

4
ð2j − 2iω − 2iνþ d − 1Þ

�
− ψ

�
1

4
ð2j − 2iωþ 2iνþ d − 1Þ

�
− ψ

�
1

4
ð2jþ 2iω − 2iνþ d − 1Þ

�

þ ψ

�
1

4
ð2jþ 2iωþ 2iνþ d − 1Þ

��
: ð5:4Þ

As one can see, we obtain almost the same result as in the two-dimensional case, (4.2) and (4.4), but with the additional sum
over j, which gives the additional ultraviolet divergence that is cut off by Λ → ∞.
Performing the same manipulations with (5.4) as in Sec. IV, one obtains

Sβ
eff ¼

T
2π

XΛ
j¼0

ðjþ d − 4Þ!
ðd − 3Þ!j! ð2jþ d − 3Þ

Z
∞

−∞
dy

X∞
n¼1

eiνy − eiMy

y2 þ β2n2
e−jyjðd−32 þjÞ

sinhðjyjÞ : ð5:5Þ
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In this expression we can cutoff from the region of
integration over y the interval of the width ϵ around the
origin. Namely we assume that the integration range in the
last expression is γ ¼ ð−∞;−ϵÞ ∪ ðϵ;∞Þ. This allows one
to take the limits Λ → ∞ and M → ∞ since, over such a
region, we integrate a fast oscillating function and the
expression remains finite for ϵ ≠ 0. Taking the sum over j,
we obtain the effective action of the following form:

Sβ
eff ¼

T
2d−1π

Z
γ
dy

X∞
n¼1

1

y2 þ β2n2
eiνy

sinhd−1ðjyj
2
Þ
: ð5:6Þ

Performing the summation over n in the last expression,
one finds

Sβ
eff ¼

T
2d−1π

Z
γ
dy

πy
β cothðπyβ Þ − 1

2y2
eiνy

sinhd−1ðjyj
2
Þ
: ð5:7Þ

After the analytical continuation to the imaginary time, one
obtains the free energy of the following form:

Fβ ¼ −
1

2d−1π

Z
γ
dy

πy
β cothðπyβ Þ − 1

2y2
eiνy

sinhd−1ðjyj
2
Þ
: ð5:8Þ

The divergence of the integral at the origin, y ¼ 0, is cut off
by the choice of the contour γ. As we will see below the
divergence of the resulting expression, as ϵ → 0, is the
same as we have seen above in the Rindler chart. This
integral representation was earlier found in a recent work
[21], where the authors expressed the free energy in terms
of the integral over the SOð1; dÞ Harish-Chandra character.
We learned about this result when the work on the present
paper was finished.
From Eq. (5.8), one can see the difference between

odd and even dimensions. That is due to the power of
sinhd−1ðjyj

2
Þ. In odd dimensions, the absolute value jyj can

be replaced by y itself, and then one can use Cauchy’s
residue theorem to evaluate the integral. That explains the
simplification in odd dimensions.
Furthermore, note that since the dimension of the de

Sitter space-time manifests itself in the power of
sinhd−1ðjyj

2
Þ in the denominator of the integrand in (5.8),

in any dimensions, one can do the same calculations as in
the two-dimensional space-time. In particular, this means
that in any dimension, one can calculate explicitly the value
of the free energy and its derivatives for the discrete family
of temperatures, β ¼ 2π2n, n ∈ Z. In this section, however,
we restrict our considerations to the free energy properties
only for odd dimensions and any β, since we can use
Cauchy’s residue theorem to evaluate the integral (5.8).
Thus, adding a small semicircular contour Cϵ around the

origin y ¼ 0 and subtracting the same contribution and
closing the contour by the infinite semicircular contour CR,
R → ∞, we obtain

Fβ ¼ lim
R→∞

lim
ϵ→0

ðIð−R;−ϵÞ∪ðϵ;RÞ þ ICR
þ ICϵ

− ICϵ
Þ: ð5:9Þ

Let us denote the sum of the first, second, and third terms as
Fbulk
β and the forth term as Fhor

β since, as we will see below,
these expressions can be interpreted as contributions from
the bulk of the static de Sitter space-time and from the
vicinity of the horizon correspondingly. The contour
integrals in Fbulk

β give, via the Cauchy residue theorem,
the expression of the form:

Fbulk
β ¼ lim

R→∞
lim
ϵ→0

Ið−R;−ϵÞ∪Cϵ∪ðϵ;RÞ∪CR

¼ 2πi
X

Res

�
−

1

2d−1π

πy
β cothðπyβ Þ − 1

2y2
eiνy

sinhd−1ðy
2
Þ
�
:

ð5:10Þ
Where the sum on the rhs of this expression runs over two
sets of poles. The first set is due to the thermal distribution
under the integral (5.8). The positions of the poles in this set
depend on the temperature, β. The second set is due to the
poles of sinhd−1ðy

2
Þ. Both sets together are

y ¼ iβn; n ∈ Zþ and y ¼ i2πk k ∈ Zþ: ð5:11Þ

The fourth term in (5.9) diverges in the limit ϵ → 0 and can
be represented as

Fhor
β ¼−ICϵ

¼
Xd−12
k¼1

a2k−1ðm;βÞ
ϵ2k−1

þa0ðm;βÞþOðϵÞ; ð5:12Þ

where all ak are polynomial functions of the mass in the
units of the de Sitter curvature. All terms in this expression,
except k ¼ 0, can be absorbed into the renormalization of
the gravitational effective action. The term with a0 is equal
to −πi times the residue at the origin.
One can interpret Fhor

β as the contribution from the
boundary of the static patch—from the horizon. First, recall
that the divergent contributions are associated with the
singularity of the thermal Feynman propagator at the horizon.
Second, consider the limit of the large mass and small
temperature. In such a case, the potential in the equation
for the modes becomes exponentially large, as in the 2D case
(4.19). Then the main contribution to the effective action
comes from the near-horizon region, as in the case of the
Rindler coordinates. Hence, in such a limit, one of the
coefficients in (5.12), which corresponds to the finite con-
tribution in the limit ϵ → 0, acquires the following form:

a0ðm; βÞ ≈ ð−1Þdþ1
2

3

md−2

Hβ2
AdS
d−2

2dπ
d−2
2 Γðd

2
Þ ; ð5:13Þ

whereAdS
d−2 ¼ 2π

d−1
2

Γðd−1
2
Þ

1
Hd−2 is the surface area of the boundary of

the static de Sitter space-time. In this expression, we restored

E. T. AKHMEDOV and D. V. DIAKONOV PHYS. REV. D 105, 105003 (2022)

105003-16



the Hubble constantH. This expression is consistent with the
explicit formof the finite contribution to the effective action in
the Rindler chart of flat space-time:

Fβ ¼
ð−1Þd−12

3

md−2

αβ2
Ad−2

2dπ
d−2
2 Γðd

2
Þ : ð5:14Þ

Where we also restored the proper acceleration α. In the
Rindler chart the finite part of the free energycontainsonly the
contribution proportional to the area of the horizon divided by
the acceleration: Fβ ∼

Ad−2
α . As we see here, in the de Sitter

space-time there is also similar contribution, which is propor-
tional to the horizon area divided by the Hubble con-

stant a0 ∼
AdS
d−2
H .

The contribution to the free energy, which cannot be
attributed to the boundary, in odd dimensional case is as
follows:

Fbulk
β ¼ −

X∞
n¼1

1

2d−1βn
e−βνn

½i sinðnβ
2
Þ�d−1 −

i
2d−2ðd− 2Þ!

×
X∞
n¼1

∂d−2

∂yd−2
πy
β cothðπyβ Þ− 1

2y2
ðy− i2πnÞd−1
sinhd−1ðy

2
Þ eiνy

����
y¼i2πn

:

ð5:15Þ

In the limit of large mass, the main contribution in the last
expression comes from the closest to the real axis pole,
whose position depends on the temperature:

Fbulk
β ≈

8<
:

− 1

2d−1β½i sinðβ
2
Þ�d−1 e

−βm; if β < 2π

− ðimÞd−2
2dþ1π2iðd−2Þ! ½2π

2

β cotð2π2β Þ − 1�e−2πm; if β > 2π
:

ð5:16Þ

Thus, in the limit of large temperature, one obtains that
Fbulk
β ∼ e−βm, while in the low temperature limit—Fbulk

β ∼
e−2πm; i.e., the behavior of the leading contribution to the
free energy changes at β ¼ 2π.
Let us consider also the situation in even dimensions.

Expanding the integrand in (5.8) around the origin one can
represent the divergent (horizon) contribution to the free
energy in even dimensions in a similar to (5.12) form:

Fhor
β ≈

Xd−12
k¼1

b2kðm; βÞ
ϵ2k

þ bðm; βÞ logðϵÞ þOðϵÞ; ð5:17Þ

where bk are also polynomial functions of the mass
measured in the units of the de Sitter curvature. Note that
the divergent logarithmic term as ϵ → 0 is present only in
even dimensions. At the same time, as we will see below, in
the limit m

H → 0 logarithmically divergent contributions
appear in all dimensions.

The explicit form of ak, bk coefficients is quite humon-
gous and is not very informative. In fact, all ak and bk
except a0, b0 do depend on the regularization scheme. Let
us list a few relevant terms in small number of dimensions;
e.g., the explicit form of the divergent contributions to the
free energy in d ¼ 3 is as follows:

Fhor
β ≈

π

3β2ϵ
;

in d ¼ 4 it is

Fhor
β ≈

π

6β2ϵ2
þ 15πβ2 þ 60πβ2ν2 þ 8π3

360β4
logðϵÞ;

and in d ¼ 5:

Fhor
β ≈

π

9β2ϵ3
−
πð5β2 þ 15β2ν2 þ 2π2Þ

90β4ϵ
;

Let us now restore the Hubble constant in (5.15) and
consider the flat space limit H

m → 0. In such a case

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2 − ðd−1
2
Þ2

q
≈ m

H. One can see that the second term

in (5.15) vanishes in this limit because it contains expo-
nentially suppressed terms: e−2πn

m
H. Hence, the leading

contribution to the free energy is contained in the following
expression:

Fbulk
β ≈ −

X∞
n¼1

1

2d−1βn
e−βmn

½i sinðnβH
2
Þ�d−1 ≈ −

X∞
n¼1

1

βn
e−βmn

½inβH�d−1 :

ð5:18Þ

Then, if βm → 0, one obtains

Fbulk
β ≈ ð−1Þdþ1

2
ζðdÞ

Hd−1βd
: ð5:19Þ

Using the spatial volume of the static de Sitter space-time:

VsdS
d−1 ¼

Z
dΩd−2

Z
1=H

0

dr
rd−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2r2
p ¼ π

d
2

Hd−1Γðd
2
Þ ;

ð5:20Þ

one can rewrite (5.19) as follows:

Fbulk
β ≈ ð−1Þdþ1

2
VsdS
d−1
βd

ζðdÞΓðd
2
Þ

π
d
2

: ð5:21Þ

This expression reproduces [up to the factor of ð−1Þdþ1
2 ] the

one for the free energy of the massive scalar field in the
Minkowski space-time (2.9).
In all, the free energy in the static de Sitter space-time

contains both Fhor
β , which contains divergent terms and is
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similar to the free energy in the Rindler chart (these terms
are proportional to the area of the horizon) and the finite
Fbulk
β , which is proportional to the volume of the space-time

and is similar to the free energy in the Minkowskian
coordinates.
Now let us consider the free energy (5.8) in the limit of

small mass (as compared to the Hubble constant) in the
space-time of arbitrary dimension. In this limit:

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H2
−
ðd − 1Þ2

22

r
≈ −i

d − 1

2
þ i

1

d − 1

m2

H2
: ð5:22Þ

As shown above, the integration over y in (5.8) in the
vicinity of the origin corresponds to the contribution
from the boundary, and the rest of the integration region
corresponds to the free energy of the bulk of the space-time.
To identify the main bulk contribution to the free energy in
the limit of small mass, let us consider only the integration
region from y ∈ ½L;∞Þ, where L ≫ 1=2. For such a
contribution, one can use the following approximation
for the denominator in (5.8): 2d−1 sinhd−1ðjyj

2
Þ ≈ e

d−1
2
jyj.

Hence, one obtains

Fbulk
β ≈ −

1

2β

Z
∞

L

dy
y
e−

1
d−1

m2

H2y ≈
1

2β
log

�
L

d − 1

m2

H2

�

≈
1

β
log

� ffiffiffiffi
L

p m
H

�
: ð5:23Þ

Thus, the main contribution to the bulk free energy in the
limit mH → 0 contains a logarithmic term. Thus, we see that
the logarithmic contributions to the free energy can appear
also beyond 2D in any dimension.

VI. CONCLUSION

In this work, we consider the one-loop free energy and
the entropy of the Gaussian massive scalar field theory in
the static de Sitter space-time. We show that the divergent
part of the free energy is associated with the additional
(anomalous) singularities of the thermal Green functions on
the horizon in the de Sitter space-time [11,12]. We also
consider the Rindler chart of the flat space-time as a model
example.
In this work, we study in detail the two-dimensional de

Sitter space-time. We find an analytic form for the free
energy and the entropy for the family of inverse temper-
atures of the form β ¼ 2π2k, k ∈ Z. Also, in the odd
dimensional de Sitter space-time for arbitrary temperatures,
we separate contributions to the free energy that are
divergent, and associated with the horizon, and that are
finite, and are attributed to the interior of the space-time.
In the odd space-time dimension, we find the week field

(large mass or small Hubble constant) expansion of the free
energy. The leading contribution in this expansion depends
on temperature: for large temperatures Fβ ∼ e−βm and for
low ones, Fβ ∼ e−2πm. Thus, free Bose gas in the de Sitter
space-time has certain properties that make it quite different
from the one in the Minkowski space-time.
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