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Motivated by the search for the QCD critical point, we discuss how to obtain the singular behavior of a
thermodynamic system near a critical point, namely the Lee-Yang singularities, from a limited amount of
local data generated in a different region of the phase diagram. We show that by using a limited number of
Taylor series coefficients, it is possible to reconstruct the equation of state past the radius of convergence, in
particular in the critical region. Furthermore we also show that it is possible to extend this reconstruction to
go from a crossover region to the first-order transition region in the phase diagram, using a uniformizing
map to pass between Riemann sheets. We illustrate these ideas via the chiral random matrix model and the
Ising model.
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I. INTRODUCTION

Mapping the phase structure of QCD plays an important
role in understanding the structure of matter in extreme
environments, both theoretically and experimentally. A
particularly important aspect of this endeavor is the ongoing
search for the QCD critical point, a singular point in the
phase diagram where a smooth, continuous crossover
between the hadronic phase and the quark-gluon plasma
phase turns into a discontinuous, first-order transition.At the
critical point the transition is second-order. It is one of the
major motivations of the beam energy scan program at the
Relativistic Heavy-Ion Collider as well as future heavy-ion
facilities [1]. Quantitative theoretical knowledge of theQCD
critical point and the equation of state in its vicinity is crucial
for the experiments to identify critical point signatures [2].
The fermion sign problem complicates the use of lattice

QCD to explore the phase diagram at nonzero baryon
chemical potential, μB, where the critical point is conjec-
tured to exist. Without direct access to the phase diagram,
typical methods to extract information on the phase
diagram at finite density include Taylor expanding around
μB ¼ 0 [3,4], simulating QCD with an imaginary chemical
potential where there is no sign problem and analytically

continuing to real values [5], and resummation methods
some of which incorporate both [6–10].
At the same time, even without a direct calculation of

the critical point it is still possible to predict some of its
properties, if it exists. This is due to the fact that based on
general symmetry arguments, the QCD critical point is in
the same static universality class as the three dimensional
Ising model [11]. Universality essentially relates the
singular contribution to the QCD equation of state to
the equation of state of the Ising model in the vicinity of
the critical point. This fixes the critical exponents which
determine how certain thermodynamic functions diverge.
However, the precise form of this relation is not deter-
mined by universality. The relationship between the Ising
parameters (namely the reduced temperature r and the
magnetic field h) and those of QCD (the temperature T
and chemical potential μ) is not determined by univer-
sality and has to be extracted directly from QCD [2].
Likewise, the location of the critical point is also a
nonuniversal quantity.
In this paper we tackle these issues from the perspective

of series expansions: given a finite-order series expansion
around μ ¼ 0, we describe improved methods for
extracting physical information regarding the singularities
of the equation of state in the vicinity of the critical point. In
particular we show that with a suitably chosen resummation
scheme it is possible to: (i) extract the location of the
nearest complex singularities, the Lee-Yang edge singu-
larities, which can be used to determine the location of the
critical point and constrain the singular contribution to the
equation of state; and (ii) analytically continue the equation
of state across different Riemann sheets in a way that relates
the high temperature crossover region to the low temper-
ature first-order transition region. These ideas follow
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closely Ref. [12], whose mathematical foundations can be
found in Refs. [13,14].
The paper is organized as follows. In Sec. II we briefly

summarize the relevant properties of the chiral random
matrix model that we use to motivate and illustrate our
framework. In Sec. III we explain how to construct the Lee-
Yang edge singularities from a series expansion by using
the conformal-Padé method, and further to extract the
critical point and constrain the equation of state. In
Sec. IV we focus on a different problem and explain
how the equation of state can be analytically continued
across different Riemann sheets using a different resum-
mation scheme which we call “uniformized-Padé”. In the
conclusions we briefly discuss the outlook for future
extensions.

II. THE CHIRAL RANDOM MATRIX MODEL

We introduce the ideas that we develop in this paper via
the chiral random matrix model [15], which shares some of
the key properties with the conjectured QCD phase dia-
gram, such as chiral symmetry breaking and chiral restora-
tion at large chemical potential, as well as the existence of a
critical point along this transition curve. In this section we
review some of its known properties that will be relevant in
our analysis. Readers who are familiar with the model can
skip this section.
The chiral random matrix model is a toy model for QCD

where the matrix elements of the Dirac matrix are replaced
by Gaussian random variables. Its partition function for Nf
number of fermions is

ZðT;μÞ¼
Z

DΦe−NTrðΦΦ†ÞYNf

f¼1

detN=2

�Φþmf μþ iT

μþ iT Φ†þmf

�

×detN=2

�Φþmf μ− iT

μ− iT Φ†þmf

�
ð1Þ

where the integration is over all N × N complex matrices
Φ. We work with Nf ¼ 1 for the rest of the paper and
denote the quark mass as mq. In the N → ∞ limit the path
integral is saturated by the saddle point where the matrix Φ
is proportional to the unit matrix, Φ ¼ ϕ × 1N×N with
ϕ ∈ R:

lim
N→∞

1

N
logZðT; μÞ ¼ −min

ϕ
ΩðT; μ;ϕÞ ð2Þ

ΩðT; μ;ϕÞ ¼ ϕ2 −
1

2
log½ððϕþmqÞ2 − ðμþ iTÞ2Þ

× ððϕþmqÞ2 − ðμ − iTÞ2Þ�: ð3Þ

As usual the minimization of the free energy determines the
equation of state where the pressure is identified as
pðT; μÞ ¼ −minϕΩðT; μ;ϕÞ. The phase diagram of this

chiral random matrix model is shown in Fig. 1. Formq ¼ 0

and small values of T and μ, the ground state is given by
ϕ ≠ 0, which breaks chiral symmetry. At larger values of T
and/or μ, chiral symmetry is restored via a second or first
order transition, as shown in the figure as blue and red lines
respectively. For a fixed mq > 0, the chiral symmetry is
explicitly broken but the remnant of the second order
transition still persists as a rapid crossover. For lower
temperatures this crossover turns into a first order transition
(red lines in the figure). The point where the crossover turns
into a first order transition is a second order critical point.
As a function of mq the critical point follows a trajectory in
the three dimensional T, μ, mq space, as shown in Fig. 1.
We are specifically interested in the physics near the

critical point where

∂
∂ϕΩðT; μ;ϕÞ ¼ ∂2

∂ϕ2
ΩðT; μ;ϕÞ ¼ 0: ð4Þ

Let us denote the point where a real solution exists as
T ¼ Tc, μ ¼ μc, and ϕ ¼ ϕc.

1 The susceptibility and the
heat capacity diverge as power laws at the critical point.
Furthermore, the singular part of the equation of state in the
vicinity of the critical point is essentially the same as that of
the Ising model in the mean field limit, since the chiral
random matrix model and the Ising model are in the same
static universality class. The same holds for QCD as well,
but in this case it is the three dimensional Ising model as
opposed to the Ising model in the mean field limit.

FIG. 1. The phase diagram of the chiral random matrix model.
Red and blue curves represent the first and second-order transitions
and the black dot represents the tricritical point where the first and
second order transitions meet atmq ¼ 0. For nonzero values ofmq
the tricritical point turns into a secondorder critical pointwithmean
field exponents parametrized by mq, ðTcðmqÞ; μcðmqÞÞ.

1As we will explain further, as a particular property of the
mean field limit, Tc corresponds to the largest temperature such a
solution exists.
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In the continuum limit and d-dimensions, the Ising
model is described by a scalar field with the action

S ¼
Z

ddx

�
1

2
ð∂μϕÞ2 þ

1

2
r0ϕ2 þ 1

4
u0ϕ4

�
ð5Þ

In d ≤ 4 dimensions r0 and u0 flow to the Gaussian fixed
point where u0 becomes arbitrarily small and the theory can
be described by mean field theory. In mean field theory, the
equation of state follows from minimizing the effective
potential

ΩIðMÞ ¼ −hM þ 1

2
rM2 þ 1

4
M4 ð6Þ

where M is the average magnetization M ¼ hϕi. For
convenience we have rescaled ϕ to set the coefficient of
the quartic term to 1=4. The equation of state is obtained by
minimizing the effective potential:

∂ΩIðMÞ
∂M ¼ −hþ rM þM3 ¼ 0: ð7Þ

The critical point is located at ∂ΩIðMÞ=∂M ¼
∂2ΩIðMÞ=∂2

M ¼ 0, which corresponds to r ¼ h ¼ 0. For
fixed r > 0, the magnetization smoothly crosses over from
M < 0 toM > 0 as the magnetic field varies from h < 0 to
h > 0. For r < 0 this transition is first order. As is typical in
first order transitions for r < 0 and h < 0, in addition to the
global minimum state withM < 0 there is also a metastable
state withM > 0. The point in the phase diagram (for fixed
r) where the metastable state ceases to exist is the spinodal
point. The equation of state (7) is invariant under scaling
r → λr, h → λ3=2h, M → λ1=2M. Therefore it is convenient
to express the minimization in terms of the scaling
variables, w ≔ hr−3=2 and z ≔ Mr−1=2, as:

w ¼ zþ z3: ð8Þ

In the vicinity of the critical point, the equation of
state of the chiral random matrix model can be mapped to
that of the Ising model. Let us first expand the temperature
and the chemical potential around the critical point as
ΔT ¼ T − Tc, Δμ ¼ μ − μc. They can be mapped into the
Ising variables r and h linearly as

h ¼ hTΔT þ hμΔμ; r ¼ rTΔT þ rμΔμ ð9Þ

To see how this mapping works let us follow the steps in
[16] and expand ΩðϕÞ around the critical point

ΩðϕÞ ¼ ΩðϕcÞ þ f1ðT; μÞδϕþ f2ðT; μÞδϕ2 þ � � � ð10Þ

where δϕ ¼ ϕ − ϕc. Further expanding fi around Tc, μc
and eliminating the δϕ3 term via shifting δϕ by a constant
we have

ΩðϕÞ ¼ Ω0 − h̄δϕþ r̄
2
δϕ2 þ u

4
δϕ4 þ vuδϕ5

þOðδϕ6Þ ð11Þ

where the δϕ5 term is necessary to take into account the
correction to scaling that is present in Eq. (9) since h and r
have scale differently (h ∼ r3=2). This quintic term can be
eliminated via δϕ → δϕþ vðr̄=u − δϕ2Þ to leading order in
r. Finally rescaling the field so that the coefficient of the
quadratic term is 1=4 leads to the Ising form

ΩðϕÞ ¼ Ω0 − hδϕþ r
2
δϕ2 þ 1

4
δϕ4 þOðδϕ6Þ ð12Þ

Here h ¼ u−1=4h̄, and r ¼ u−1=2ðr̄þ 2vh̄Þ in leading order
in r̄. Since r̄ and h̄ are obtained from expanding f1 and f2
to linear order in ΔT and Δμ, from these expressions we
can read off the mapping parameters ðhT; hμ; rT; rμÞ.
For example, for mq ¼ 0.1 we obtain ðhμ; hT; rμ; rTÞ ≈
ð−1.692;−0.452; 0.315; 2.481Þ with tan α1 ≡ hμ=hT ≈
3.739 and tan α2 ≡ rμ=rT ≈ 0.127 (see Fig. 2).

Lee-Yang edge singularities

Formq > 0, the critical point (4) is a singular point in the
phase diagram. However, in general, for T ≠ Tc this
condition is satisfied for a pair of complex conjugate
values μ. These points correspond to the celebrated Lee-
Yang (LY) edge singularities [17] which will denote as
μLYðTÞ. For finite systems the LY singularities appear as
isolated zeroes of the partition function. In the thermody-
namic limit, these zeroes coalesce into branch cuts. The
branch points come in complex conjugate pairs and T
approaches Tc from above they pinch the real axis such
that μLYðTcÞ ¼ μc.
More generally, the finite N partition function, (1) is a

polynomial in μ of order 2N × Nf, which therefore has
2N × Nf zeros. As N → ∞ they form branch cuts and

FIG. 2. The Ising model parameters mapped to the ðT; μÞ plane
of the chiral random matrix model. The slopes of the r and h axes
are tan α1 ≡ hμ=hT and tan α2 ≡ rμ=rT , respectively. For mq ¼
0.1 the critical point is at Tc ≈ 0.67 and μc ≈ 0.46.
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μLYðTÞ are the branch points associated with these
cuts [18,19].
In the context of the critical point, we would like to

analyze μLYðTÞ in the vicinity of the critical point. Using
universality, we can turn to the Ising model where the Lee-
Yang singularity is simply dw=dz ¼ 0, which from Eq. (8)
leads to wLY ¼ �i2=ð3 ffiffiffi

3
p Þ.2 The LY singularity can be

viewed as a critical point and in its vicinity the equation of
state behaves as

z − zLY ∝ ðw − wLYÞσLY ð13Þ

where σLY ¼ 1=2 is the associated critical exponent.
Beyond the mean field limit, the critical equation of state
in the vicinity of the LY singularity is described by the ϕ3

theory with pure imaginary coupling [21] with
σ ≈ 0.074–0.085. Using the mapping back to the random
matrix model, Eq. (9), we obtain

μLYðTÞ≈μcþK1ðT−TcÞ� iK2ðT−TcÞ3=2

whereK1¼−
hT
hμ

; K2 ¼
2

3
ffiffiffi
3

p rμ3=2

hμ

�
rT
rμ

−
hT
hμ

�
3=2

: ð14Þ

It is worth noting that μLYðTÞ is real for T < Tc. In this
regime they correspond to the location of the two spinodal
points (supercooling and superheating points). The fact that
they lie on the real axis for T < Tc is an artifact of the mean
field limit. In general, the subleading term in Eq. (14) is
proportional to ðT − TcÞβδ where β and δ are the usual
critical exponents. In mean field theory βδ ¼ 3=2 and the
subleading term becomes real for T < Tc. Beyond mean
field this is not the case, which has interesting conse-
quences for the spinodal singularities [22–24].
The LY trajectory given in Eq. (14) is the main starting

point of our analysis. Our strategy in the next section will
be to reconstruct this expansion near Tc from a truncated
series expansion of the equation of state. Then one can
obtain the location of Tc, μc, as well as K1 and K2 which
contain the mapping parameters to the Ising model.
More generally, the LY singularities in the context of
QCD critical point have been discussed in, for example,
[19,20,25–29].

III. THE CONFORMAL MAP AND THE
LEE-YANG TRAJECTORY

In this section we explain how to determine the location
of the LY singularities with high precision in the practical
situation where we only have access to approximate
information about the equation of state. Furthermore, this
approximate information is typically computed in a region
away from the critical region, and yet we are most

interested in probing the vicinity of the critical point
(see for example [30]). Due to the fermion sign problem,
most commonly the region we have access to is around
μ ¼ 0 (see [5] for a recent review), and the information we
have is typically a local Taylor expansion around this point.
For concreteness let us focus on the susceptibility,

χðT; μÞ ¼ ∂2pðT; μÞ
∂μ2 ≈

XN
n¼0

cnðTÞμ2n: ð15Þ

The natural expansion parameter is μ2, similar to QCD in
which case is due to the charge conjugation symmetry.
Even though this is a local expansion around μ ¼ 0, it
contains global information, including especially the sin-
gular behavior around μ ¼ μLY. This information is
encoded in the coefficients cnðTÞ, and our task is to decode
it as efficiently and precisely as possible. Optimizing this
decoding procedure is important as in many cases we only
have access to the first few terms in the local expansion. In
this section we introduce an efficient framework that not
improves the approximation to the LY singularity com-
pared to other methods, but also provides an accurate
approximation to the equation of state in the critical region.
The ideas we pursue here are built upon techniques
developed in [13,14], and which have recently been applied
to the Gross-Neveu model in Ref. [12]. Here we apply them
to the random matrix model and detail the technical aspects
of the framework.
In general since μ2 ¼ μ2LY is the closest singularity to the

origin, the radius of convergence of the Taylor expansion in
Eq. (15) is jμ2LYj. However the coefficients cnðTÞ contain
much more information than just the radius of convergence.
The Darboux theorem [30,31] states that the behavior of the
coefficients cnðTÞ at large order n is directly related to the
behavior of the function in the vicinity of the nearest
singularity. Specifically, if the Taylor expansion coeffi-
cients of a function fðzÞ ¼ P∞

n¼0 bnz
n near the origin have

leading large-order growth as n → ∞:

bn ∼
1

zn0

��
nþ g − 1

n

�
ϕðz0Þ −

�
nþ g − 2

n

�
z0ϕ0ðz0Þ

þ
�
nþ g − 3

n

�
z20
2!
ϕ00ðz0Þ − � � �

�
ð16Þ

then the leading singularity is located at z0, and in the
vicinity of z0 the function behaves as

fðzÞ ∼ ϕðzÞ
�
1 −

z
z0

�
−g

þ ψðzÞ; z → z0 ð17Þ

where ϕðzÞ and ψðzÞ are analytic near z0. This means that
from a detailed study of the expansion coefficients cnðTÞ,
derived from the expansion about μ ¼ 0, we can learn
about the expansion of the function near the critical point.

2Beyond the mean field limit this value has been computed in
Ref. [20] for the three dimensional OðNÞ symmetric model.
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The leading term in (16) tells us the location of the
singularity, as well as its exponent g and its strength
ϕðz0Þ. The further subleading terms contain information
about the expansion of ϕðzÞ in the vicinity of the critical
point. The practical question is: what is the most efficient
way to extract as much of this information as possible, from
a limited number of cnðTÞ coefficients? Optimized strat-
egies for this problem have been developed recently
in [13,14].

A. The Padé approximant and the radius
of convergence

Away from Tc, the Lee-Yang singularities occur as a
complex conjugate pair. This can be seen from simple ratio
or root tests on the expansion coefficients cnðTÞ in (15).
If there were just one dominant singularity then the
radius of convergence could be extracted numerically by
a ratio test (jcn=cnþ1j → jμ2LYj as n → ∞) or by a root test
(jcnj−1=n → jμ2LYj as n → ∞) [32]. However, the results
of these ratio and root tests show a clear oscillatory
behavior—see Fig. 3, showing ratio and root test plots
for an illustrative choice of parameters, together with a
horizontal line showing the actual value of jμ2LYj for those
parameters. This oscillatory behavior is indicative of large
order behavior of the expansion coefficients cnðTÞ gov-
erned by interference between the influence of a complex
conjugate pair singularities:

cnðTÞ ∼ jSðμLYðTÞÞj
�
n − σLY − 1

n

�

×
cos ðnθLYðTÞ þ δLYðTÞÞ

jμ2LYðTÞjn
; n → ∞ ð18Þ

where θLY ¼ arg μ2LY, and δLY is the phase offset. The
parameter σLY is associated with the nature of the singu-
larity, while jSðμLYðTÞÞj characterizes the strength of the
singularity. As can be seen from the plots in Fig. 3, the

oscillatory behavior of the ratio test and the root test makes
it difficult to extract a precise estimate of the radius of
convergence, and the extraction of the other more refined
parameters (e.g., θLY, δLY, σLY and jSðμLYðTÞÞj) is even
more problematic.
A much more efficient way to extract the singular

behavior of the equation of state is to use Padé approx-
imants. Even if we were only interested in the radius of
convergence, Padé is still much more efficient. The simple
algorithm of selecting the Padé pole with the smallest
magnitude (i.e., closest to the origin), as a function of the
truncation order n, yields rapid convergence to jμ2LYj. See
Fig. 4. But the main advantage of Padé is that one can also
extract other physical features of a singularity, not just its
location (i.e., the radius of convergence jμ2LYj, and the phase
θLY ¼ arg μ2LY), but also its character (i.e., the exponent
σLY) and its strength [i.e., the Stokes constant SðμLYðTÞÞ].
This information can be extracted from exactly the same
input information as was used for the ratio and root tests:
namely, some number of coefficients cnðTÞ of the truncated
expansion (15).
Padé methods provide an excellent, and easy-to-imple-

ment, probe of the singularity structure. And even if only a
small number of initial input terms is available in (15),
yielding a potentially low-resolution view of the singularity
structure, this can then be further refined by combining
with conformal and uniformizing maps, as described below.
The starting idea is to approximate the original function by
a rational function [33,34],

P½χðT; μÞ� ¼ k0ðTÞ þ k1ðTÞμ2 þ � � � þ kN=2ðTÞμN
l0ðTÞ þ l1ðTÞμ2 þ � � � þ lN=2ðTÞμN

: ð19Þ

where for simplicity of illustration we consider N to be
even. Here the coefficients ki and li are determined by
expanding Eq. (19) in μ2 and matching with the original
expansion, Eq. (15). This procedure is completely algo-
rithmic, and is a built-in operation in symbolic software

FIG. 3. Left figure: the ratio test jcnðTÞ=cnþ1ðTÞj plotted as a function of the expansion order n, applied to the expansion coefficients
in (15), with parameters mq ¼ 0.1 and T ¼ 0.9 ≈ 1.34Tc. The horizontal line shows the value of jμ2LYj for these parameters (computed
from a Padé analysis described below). Note the large oscillations about this value. Right figure: the root test jcnðTÞj−1=n, for the same
coefficients and parameters. The root test also shows oscillatory behavior but is damped and tends very slowly to jμ2LYj.
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such asMathematica and MAPLE. It is worth noting that the
label T in Eq. (19) should be viewed as an index rather than
an argument of a smooth function, because the Padé
polynomials do not necessarily change smoothly when
the coefficients cnðTÞ change smoothly. In general the
order of the polynomials in the denominator and numerator
could be different as long as there are N þ 1 independent
coefficients. Here we consider the diagonal case where they
have the same order unless specified otherwise, but it is
important to note that numerical stability can be probed by
varying the degrees of the Padé polynomials.
In contrast with the truncated Taylor expansion (15), the

corresponding Padé approximant in (19) has poles. Along
with the zeros, the Padé poles approximate the location of
the leading singularity(ies). For a function with branch
points, Padé represents the branch points as the accumu-
lation points (in the N → ∞ limit) of arcs of interlacing
poles and zeros, whose shape is determined by minimizing
an effective electrostatic capacitance [13,14,35,36]. For a
complex conjugate pair of branch points, Padé generically
produces a configuration of poles and zeros of the form
shown in Fig. 5. We see in Fig. 5 that even with relatively
few coefficients (N ¼ 20), the branch point locations in the
complex plane can be determined very accurately. (In fact,
even N ¼ 10 gives quite an accurate approximation.)3

B. The conformal Padé method: Extracting
the susceptibilities

In addition to providing a significantly better method for
locating singularities, Padé approximants can also be used
to improve the accuracy of the approximation to the
equation of state and the susceptibilities. In this section
we describe accurate methods to supplement the Padé

approximants of the susceptibility, as well as for the higher
order susceptibilities

χnðT; μÞ ¼
∂npðT; μÞ

∂μn ð20Þ

These observables, especially χ3 and χ4, play a crucial role
in the search for the critical point as their magnitude grows
in the vicinity of the critical point.4 Their counterparts in
QCD are related to the skewness and kurtosis of the net
baryon number distribution [2]. Furthermore, their shape
and quantitative features depend nontrivially on the map-
ping parameters given in Eq. (9) [16]. Therefore it is vitally
important to obtain an accurate approximation to the
equation of state in order to resolve this structure.
Here we encounter an inherent shortcoming of the Padé

approach, but fortunately this problem can be overcome
[13] using suitable conformal maps [14,37,38]. While Padé
is very efficient at probing a complex conjugate pair of
singularities, as discussed in the previous section, it has a
shortcoming that it necessarily places unphysical poles
along the positive real axis: recall Fig. 5. This is because of

FIG. 4. The distance from the origin of the closest Padé pole in
the complex μ2 plane, plotted as a function of the order of
truncation of the expansion of the equation of state in (15). The
convergence to jμ2LYj is much faster than either the ratio test or
root test, shown in Fig. 3. These ratio and root test plots are re-
drawn here as opaque lines for comparison purposes.

FIG. 5. The poles and zeros of Padé approximants with N ¼ 20
terms for parameters mq ¼ 0.1 and T ¼ 0.9 ≈ 1.34Tc. The
complex conjugate pair μ2LY of LY singularities are indicated
with red opaque circles. Their distance from the origin determines
the radius of convergence: this value for jμ2LYj is indicated by the
horizontal lines in the plots in Figs. 3 and 4. The Padé
singularities give further information: we extract θLY ¼
argðμ2LYÞ as the angle from the real axis of the branch points,
and the strength SðμLYðTÞÞ of the LY singularity is obtained from
the residue of the associated Padé poles. Note the different scales
on the two axes: the argument θLY of μ2LY is quite small. Also note
that in representing a complex conjugate pair of branch points,
Padé constructs a curved arc of poles and zeros joining the two
branch points, together with another line of poles and zeros
emanating from the first arc and extending to infinity along the
real axis. This latter line is an artifact of Padé, not an inherent
feature of the underlying function [14,35,36].

3Below we describe an iterative method to refine this initial
estimate to even higher precision. See Fig. 9.

4The higher cumulants, χn, also grow in magnitude near the
critical point but are more challenging to measure experimentally.
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the electrostatic interpretation of Padé: Padé places poles
and zeros in a configuration of “charges” in two dimen-
sional space, accumulating to the locations of the genuine
singularities, but joined by arcs of charges which deform
their shape to minimize the electrostatic capacitance of the
resulting conductor [13,35]. For a configuration of two
complex conjugate branch points, and a singularity at
infinity, the capacitance is minimized by a curved arc of
poles and zeros joining the two finite singularities, merging
with a line of spurious unphysical poles and zeros along the
positive real axis, extending out to infinity and becoming
dense as N → ∞ [13,14,35,36].5 This is exactly the form of
the Padé singularities shown in Fig. 5. This has the
immediate physical consequence that the Padé approximant
to the susceptibility diverges for some μ2 ≳ jμ2LYj, where
these unphysical poles occur.
Knowing this inherent property of Padé, we can intro-

duce a suitable conformal map in order to cure this problem
of unphysical divergences of the susceptibilities. We
choose a conformal map which places the branch cuts in
the complex μ2 line as radial branch cuts emanating from
the LY singularities. These radial branch cuts do not
intersect the real axis. Performing the Padé approximation
after making this conformal map resolves the problem of
having spurious singularities along the positive real μ axis
[13,39]. This can be achieved with the conformal map
μ2 ¼ ϕðζÞ, where6

ϕðζÞ ¼ 4jμ2LYj
�
θLY
π

�
θLY=π

�
1 − θLY

π

�
1−θLY=π

×
ζ

ð1þ ζÞ2
�
1þ ζ

1 − ζ

�
2θLY=π ð21Þ

This map generates radial branch cuts along the radial
lines, re�iθLY , in the complex μ2 plane, emanating from the
complex conjugate branch points (the LY singularities).7

The conformal map (21) maps the μ2 plane into the unit
disk as shown in Fig. 6. The branch points (the LY
singularities) and the associated cuts (red, blue dots and
lines) are mapped onto the boundary of the unit disk.
Notice that each side of each cut (depicted as a dashed or
solid line) is mapped to a different segment of the unit

circle, meeting at the associated branch point, and at
ζ ¼ �1 corresponding to the point at infinity in the
μ2 plane.
The procedure is the following: we first map our

expansion (15) from the cut μ2 plane to the interior of
the unit disk in the ζ variable, then reexpand to the same
order in ζ (this is optimal [13]), and then make a Padé
approximation in terms of ζ. This Padé approximant is then
mapped back to the original μ2 plane, and the mapped Padé
poles and zeros do not lie on the real μ2 axis. The resulting
conformal-Padé approximation can therefore also be used
for μ2 > jμ2LYj, in the region where the pure Padé approxi-
mation fails due to the presence of spurious poles. See
Figs. 7 and 8.
This conformal-Padé method is straightforward to imple-

ment: we reexpand the susceptibility χðT;ϕðζÞÞ as a series
in ζ instead of as a series in μ2, truncating at the same order
(this procedure is optimal [13]):

χðT;ϕðζÞÞ ≈
XN
n¼0

c̃nðTÞζn ð22Þ

followed by a Padé approximant (now in terms of ζ) of this
reexpansion. Let us denote the poles and zeros of this
modified Padé approximant as ζi for i ¼ 1;…; N. Using the
conformal map (21) we map them back to the μ2 plane:

μ2i ¼ ϕðζiÞ: ð23Þ

Similar to Padé singularities, the μ2i values accumulate
toward the physical singularities, μ2LY. In Fig. 7 we show
the singularities in the unit disk and in the μ2 plane mapped
via Eq. (21). Notice that compared with the exact result, the
accuracy both in the unit disk and in the μ2 plane is

FIG. 6. Left figure: the singularity structure in the μ2 plane for
T > Tc, where the dots denote the LY singularities and the lines
denote symmetrically chosen radial branch cuts. The conformal
map (21) maps the μ2 plane into the unit disk jζj < 1 in the ζ
plane, with the LY singularities mapped to complex conjugate
points on the boundary, the unit circle (right figure). The two
sides of the radial cuts in the μ2 plane are mapped to segments of
the unit circle, meeting at the branch points, as indicated in the
right figure.

5These spurious poles and zeros are distinct from other
spurious poles and zeros which arise due to numerical insta-
bilities from lack of precision.

6See [40,41]. This conformal map appears in a wide range of
physical applications [42–44]. Note that apart from certain
special rational values of θ, there is no analytic expression for
the inverse function ϕ−1ðμ2Þ, but it is straightforward to imple-
ment this inversion numerically.

7This map only requires knowledge of the (complex) location
of the LY singularities, but does not require further knowledge of
the type or strength of the singularity. This also means that it can
be used iteratively to refine the knowledge of the location of the
LY singularities [13].
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remarkable. This increase in precision can be quantified as
a function of the number of terms [39].
In addition to the location of μ2LY, the susceptibility

χðT; μÞ (as well as the higher order susceptibilities) can be
reconstructed from the conformal Padé expression mapped
back to the μ2 plane:

χðT; μÞ ≈ P½χðT;ϕðζÞÞ�jζ¼ϕ−1ðμ2Þ ð24Þ

This procedure provides a significantly superior approxi-
mation to the susceptibility compared to ordinary Padé.

This can be seen in Fig. 8, where we compare the conformal
Padé results with other methods: Padé and the truncated
Taylor expansion.8 The most dramatic improvement is in
the range of validity of the extrapolation. The lack of
unphysical poles along the real axis allows conformal Padé

FIG. 7. The poles of the conformal Padé approximation in the unit disk in the ζ plane(left), and these poles mapped back to the μ2

plane (right). The conformal Padé method locates the physical LY singularities with high precision, and removes the problem of spurious
singularities on the real μ2 axis. These plots are made for mq ¼ 0.1 and T ¼ 0.9 ≈ 1.34Tc.

FIG. 8. The susceptibilities χ2,χ3,χ4,and χ5 for mq ¼ 0.1 and T ¼ 0.9 ≈ 1.34Tc obtained from directly summing the truncated series
expansion [gray], Padé [red] and conformal Padé [blue] resummations, compared with the exact result [black dashed]. The vertical
dashed gray line denotes the radius of convergence μ ¼ jμLYj ≈ 0.39. Note that only the conformal Padé reconstruction is able to resolve
the higher-order structure of the susceptibilities.

8Note that χ2 drops below zero at large μ. This is an artifact of
the random matrix model which takes into account only the soft
modes of the chiral condensate. Since the critical behavior is
driven by the soft modes, the model captures the essence of the
critical equation of state as explained in Ref. [15] but breaks
down at high densities.
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to provide a much better approximation to the susceptibility
much further than the radius of convergence of the original
Taylor series, jμ2LYj. In particular, the qualitative features of
the higher order susceptibilities, such as the “peak-dip”
structure of χ3, and the “peak-dip-peak” structure of χ4, are
successfully reproduced even with a relatively small
number of coefficients. These features cannot be seen in
the truncated Taylor series, or in its Padé approximant. We
stress that exactly the same input information [the coef-
ficients cnðTÞ] was used for these three approximations:
this input data was simply processed differently, with the
conformal Padé procedure being clearly superior.

C. Reconstruction of the Lee-Yang trajectory

We repeated the procedure explained above for a range
of temperatures to reconstruct the Lee Yang trajectory in

Eq. (14), using the conformal Padé resummation. As
mentioned earlier, the conformal map Eq. (21) contains
μLY, the quantity we wish to compute from it. We therefore
follow an iterative procedure which goes as follows:
(1) Estimate a preliminary μ2LY from ordinary Padé. This

step does not involve the conformal map.
(2) Plug this value in the conformal map, Eq. (21), and

perform conformal Padé.
(3) Update the value of μ2LY extracted from conformal

Padé.
(4) Go to step 2 and repeat.
In steps 1 and 3, among the poles and zeros of Padé and

conformal Padé we select the one that best approximates
μ2LY. This is achieved by filtering the poles and zeros to be
stable under variation of the orders of the Padé polyno-
mials. Then, the one with the largest imaginary part is
selected from the filtered poles and zeros. If all poles and

FIG. 9. The Lee Yang trajectory (14) extracted from conformal Padé with different numbers of terms (N ¼ 8, 10, 15), and with quark
masses (mq ¼ 0.1, 0.05, 0.01), compared with the exact result. Bottom-right: The convergence of the iterative procedure (explained in
text) with 30 iteration steps represented by the lines becoming darker.
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zeros are on the real axis, the one closest to the origin is
selected.
The refined estimation μ2ESTðTÞ so obtained may con-

verge to outlying values for certain temperatures. To
mitigate this uncertainty, a second-stage local optimization
is performed by first fitting μ2ESTðTÞ to the formula in
Eq. (14) (excluding obvious outliers) and inputting the
fitted values μ2FITðTÞ to the conformal map. A refined value
for μ2ESTðTÞ is then obtained by selecting the reexpanded
Pade pole or zero closest to μ2FITðTÞ in the μ2 plane, and the
whole process is repeated until convergence.
We used 30 steps for both stages of the iterative

procedure. In Fig. 9 (top and bottom-left) we show the
LY trajectory constructed by this procedure, for different
values of mq. In Fig. 9 (bottom-right) we show the
convergence of the second-stage iterative procedure for
mq ¼ 0.1 and N ¼ 15. For visualization purposes the
opacity of the curves is changed with the iteration step,
becoming darker as the iterative procedure progresses. As
seen from the figure, we obtain the real part of the Lee-
Yang singularity roughly with 0.02% accuracy. As
expected, it is more difficult to resolve the imaginary part,
as it vanishes at the critical point. However the accuracy is
still at the percent level.
Note that even with just 8 terms in the initial expansion,

the agreement with the exact result is quite good. The
biggest challenge arises in the region very close T ¼ Tc
where ImμLY approaches zero and resolving the small
imaginary part becomes more difficult numerically. At the
same time, as seen in Fig. 9, it is still possible to capture the
ðT − TcÞ3=2 behavior for T ≳ Tc even for N ¼ 8. This is in
contrast to ordinary Padé which provides a poor resolution
of ImμLY near Tc [12]. Finally by fitting the curves in Fig. 9
to the expected form of the trajectory, (14) Tc,μc, as well as
the coefficients K1 and K2. The results are given in Table I.
They are in good agreement with the exact results calcu-
lated directly from the mapping parameters ðhμ; hT; rμ; rTÞ
obtained via the Ginzburg-Landau analysis explained
in Sec. II.

IV. UNIFORMIZATION AND ANALYTIC
CONTINUATION OF THE ISING

EQUATION OF STATE

In the previous section we showed how to extract highly
accurate physical information about the Lee-Yang singu-
larities from a finite-order polynomial approximation to the
expansion of the partition function (or susceptibility) in
powers of the chemical potential. In this section we discuss
an even more difficult problem: how to extrapolate infor-
mation in the high temperature region, T > Tc, to the low
temperature region, T < Tc. This requires analytic con-
tinuation from the first Riemann sheet (T > Tc), where the
original expansion is generated, across a cut to the next
Riemann sheet, where T < Tc. We demonstrate that this
can be achieved even when starting with a finite-order
expansion, using methods developed in [13,14]. This
requires going beyond simple Padé analysis and conformal
maps, instead using uniformizing maps which encode more
information about branch cut structures. In this section we
illustrate these ideas on the mean field Ising model and, in
particular, show that the equation of state for low temper-
atures, T < Tc, can be constructed from the high temper-
ature expansion at T > Tc via analytic continuation. We
first show that an exact uniformization is possible for the
mean field Ising model, and then we show that even with
partial information a simple uniformizing map enables
accurate analytic continuation between Riemann sheets.
The key idea behind uniformization is to map the entire

multisheeted domain of the original function to the upper
half plane (it is useful to then map to the unit disk) in a
specially chosen uniformizing variable [13,14,45,46]. The
net result is that different sheets are mapped to different
regions of the unit disk, whose boundaries are connected by
modular transformations. If the exact uniformizing map is
known then this procedure is optimal and explicit [13,14].
While it is rare in nontrivial physics problems to know the
exact uniformizing map for the underlying Riemann sur-
face, fortunately this uniformization procedure can also be
implemented numerically using approximate information
about the Riemann surface. For example, even an approxi-
mate uniformizing map, simply based on the locations of a
few leading singularities, leads to dramatically higher
precision on the first sheet, as well as the ability to cross
approximately to other sheets [13,14]. This use of approxi-
mate information about leading singularities is analogous
to well-known procedures combining conformal maps with
Padé analysis [37,38,47]. However, there is an important
difference: with a conformal map one is limited to a given
sheet, as the original sheet is mapped inside the whole unit
disk. If instead one uses a uniformizing map to map first to
the upper-half-plane and then into the unit disk, the first
sheet is mapped to a particular region of the unit disk, and
second sheet to another (connected) region, and so on.
Therefore, analytic continuation trajectories in the unit disk
can pass smoothly between sheets. In such a situation the

TABLE I. The location of the critical point, ðTc; μcÞ, and the
Ising mapping parameters, ðK1; K2Þ of Eq. (9), obtained from the
conformal Padé reconstruction of the LY trajectory, using N ¼ 15
and N ¼ 8 input coefficients in the initial expansion (14). For
comparison we also list the exact values.

mq: 0.1 0.05 0.01
Tc, μc (exact): 0.670, 0.456 0.683, 0.410 0.716, 0.360
Tc, μc (N ¼ 15): 0.670, 0.456 0.684, 0.410 0.719, 0.360
Tc, μc (N ¼ 8): 0.674, 0.455 0.683, 0.410 0.717, 0.359
K1, K2 (exact): −0.267, 0.844 −0.308, 0.740 −0.362, 0.539
K1, K2 (N ¼ 15): −0.278, 0.831 −0.325, 0.719 −0.397, 0.526
K1, K2 (N ¼ 8): −0.282, 0.979 −0.334, 0.699 −0.400, 0.421
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uniformizing map is generically much more accurate than a
corresponding conformal map, and dramatically more
accurate than a Padé approximation.
Since the Ising model system has certain universal

features, such as the existence of a dominant pair of
complex conjugate singularities, even the mean field
analysis can be used to develop suitable approximate
uniformizing maps which turn out to be significantly more
accurate. We compare an exact uniformization of the mean
field Ising system with an approximation based on a
truncated initial expansion. The method is extremely
simple to implement (see Sec. IV B below), and can in
principle be adapted to more general problems, and beyond
mean field.

A. Exact uniformization of the
Ising model equation of state

Before discussing the analytic continuation through
resummation of an approximate truncated expansion, let
us briefly elaborate further on the analytic structure of the
Ising equation of state. The naive solution z ¼ zðwÞ of the
equation of state (8) produces three different expressions
for zðwÞ involving complicated cube roots. This reflects the
fact that the solution to the equation of state is defined on a
three-sheeted Riemann surface, which is in turn a direct
consequence of truncating the action (5) at Oðϕ4Þ.

However, as we show below, the mean field equation of
state can also be solved in terms of a uniformizing variable,
which makes the transition between sheets transparent.
To set notation, let us denote the three solutions of the

scaled equation of state (8) as z1ðwÞ, z2ðwÞ and z3ðwÞ, each
defined over one of the sheets (see Fig. 10). Only two of the
solutions are independent as z3ðwÞ ¼ −z2ð−wÞ. We will
refer to the sheets over which z1ðwÞ and z2ðwÞ are defined
as the high T and low T sheets, respectively. The high T
sheet captures the equation of state for r¼ ðT −TcÞ=Tc > 0
(see Fig. 11, left). It has two branch cuts emanating from
branch points at w ¼ �2i=ð3 ffiffiffi

3
p Þ, which correspond to the

Lee-Yang edge singularities where dw=dz ¼ 0. The other
two sheets over which z2ðwÞ and z3ðwÞ are defined capture
the low temperature, T < Tc, behavior where r < 0. They
are related to each other by the reversal of the direction of
the magnetic field, h, i.e., w → −w. The low T sheets each
have a single branch point, at z ¼ �2i=ð3 ffiffiffi

3
p Þ, respec-

tively. Furthermore one can move from the high T sheet to
the low T sheet via the analytic continuation: r → e−iπr,
which corresponds to w → e3iπ=2w and z → eiπ=2. The
equation of state, MðhÞ for T > Tc and T < Tc is shown
in Fig. 11, in terms of the scaling variables z and w. For
T > Tc the physical (i.e., real) values of magnetization and
magnetic field correspond to Rez1 and Rew, respectively.
For T < Tc and h < 0, after analytic continuation we

FIG. 10. The solution RezðwÞ of the scaled equation of state (8) in the complex w plane. From left to right: Rez1ðwÞ, Rez2ðwÞ and
Rez3ðwÞ. Similar plots can be generated for the imaginary part.

FIG. 11. The scaled equation of state zðwÞ for T > Tc (left) and T < Tc (right). The black dots in the right-hand figure show the
location of the Lee-Yang singularities w ¼ � 2i

3
ffiffi
3

p which corresponds to the spinodal point. The dashed/dotted parts denote the

metastable and unstable regions, respectively.
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obtain M ∝ −Imz2. Similarly for T < Tc and h > 0 we
have M ∝ −Imz3.
Let us now suppose that we only have access to a finite

number of terms of the Taylor series expansion of the
equation of state around h ¼ 0, for various fixed values of
T > Tc. This corresponds to having a finite number of
terms of the Taylor series expansion of z1ðwÞ around
w ¼ 0:

z1ðwÞ ¼ w − w3 þ 3w5 − 12w7 þ 55w9 þ � � � ð25Þ

This series has a radius of convergence jwLYj ¼ 2

3
ffiffi
3

p ≈ 0.385,

determined by the nearest singularities to the origin on the
first sheet,which are theLee-Yang singularities. Therefore an
approximation to the equationof statewith a truncatedTaylor
series can only capture a limited rangew < jwLYj, regardless
of how many terms we have in the expansion. To continue
beyond the radius of convergence we can make a Padé
approximant of the truncated Taylor series. As shown in
Fig. 12, this leads to an improvement in the direction of Rew,
along which there are no singularities (the Lee-Yang singu-
larities lie on the Imw line).
However, Padé breaks down along the imaginary w

direction because it places poles along the imaginary axis in
an attempt to represent the branch cuts. Recall that the Padé
approximant is a rational function so its only singularities
are poles. Padé represents a branch cut as an arc of
interlacing poles and zeros accumulating to the associated
branch point [13,14,35]. This has the consequence that the

Padé approximant is not accurate near a cut, and thus does
not accurately describe the analytic continuation across a
cut. Therefore, the Padé approximant to the truncated
equation of state z ¼ zðwÞ, which was developed on the
T > Tc sheet, cannot be accurately continued to the T < Tc
sheets.
This inherent deficiency of Padé can be overcome by

first using a uniformization map, and then making a Padé
approximation [13,14]. For the three-sheeted cubic in (8)
this can be done exactly, using the following basic facts:
(1) The equation of state (8) is naturally solved in terms

of hypergeometric functions [see (26)–(29)], whose
analytic continuation properties are well-defined and
simple.

(2) The hypergeometric functions are uniformized by an
explicit mapping to the upper half plane [see (30)],
which can then be mapped into the unit disk [see
(32)]. The resulting uniformization (33) then covers
all sheets, which can accessed simply by moving
around in the disk. See Figs. 13, 14, and [48] for an
interactive realization.

The physical implication is twofold. First, the resulting
analytic continuation, starting with exactly the same
truncated expansion, is dramatically more accurate, espe-
cially near the singularities and cuts. Second, different
sheets in the original variable are mapped to different
regions in the uniformizing upper half plane, but the result
is analytic in the entire upper half plane (or in the entire unit
disk), and therefore can be analytically continued between
sheets. To make this construction explicit, we first note that
the equation of state (8) is solved by

z1ðwÞ ¼ w2F1

�
2

3
;
1

3
;
3

2
;−

27w2

4

�
ð26Þ

z2ðwÞ ¼ −
w
2 2F1

�
2

3
;
1

3
;
3

2
;−

27w2

4

�

þ i2F1

�
1

6
;−

1

6
;
1

2
;−

27w2

4

�
: ð27Þ

and we recall that z3ðwÞ ¼ −z2ð−wÞ. Furthermore, we can
linearize the argument using standard hypergeometric
identities (see 15.8.27 and 15.8.28 in [49]):

z1ðwÞ ¼ −
2iffiffiffi
3

p
�
2F1

�
1

3
;−

1

3
;
1

2
;
1

2
ð1 − iw̃Þ

�

− 2F1

�
1

3
;−

1

3
;
1

2
;
1

2
ð1þ iw̃Þ

��
ð28Þ

z2ðwÞ¼
2iffiffiffi
3

p 2F1

�
1

3
;−

1

3
;
1

2
;
1

2
ð1− iw̃Þ

�
: ð29Þ

Here we define the rescaled variable w̃ ≔ 3
ffiffi
3

p
2
w, in terms of

which the Lee-Yang singularities are normalized to be at

FIG. 12. The scaled equation of state zðwÞ for T > Tc,
shown as the analytic continuation of finite truncations of the
Taylor expansion for z1ðwÞ on the first sheet in (25). The
truncated Taylor series [dotted line] is limited by the radius of
convergence, which is determined by the Lee-Yang singularities:
jwLYj ≈ 0.385. A Padé approximation [red dashed line] extends
accurately for some distance beyond the radius of convergence,
but with the uniformizing map [black dashed line] in (33) the
agreement with the exact expression is dramatically more
accurate, extending much further. Furthermore, this uniformized
analytic continuation was generated with half the number of
terms of the initial expansion.
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w̃ ¼ �i. Expressed in this form, all the branch cut
technicalities are greatly simplified because the hyper-
geometric functions have simple connection formulae
across a cut [45].
The next step is the crucial one. We use the fact that

hypergeometric functions are uniformized by the elliptic
modular function λðτÞ, where τ lives in the upper half plane
Imτ > 0 [45]. This is implemented by the following
transformation (to simplify the formulas we use the

rescaled variable w̃ ≔ 3
ffiffi
3

p
2
w):

w̃ðτÞ¼ ið−1þ2λðτÞÞ with inverse τðw̃Þ¼ i
Kð1þiw̃

2
Þ

Kð1−iw̃
2
Þ ð30Þ

Here λðτÞ is the modular lambda function λðτÞ ¼
θ42ðτÞ=θ43ðτÞ, where θ2ðτÞ and θ3ðτÞ are the Jacobi
elliptic functions: θ2ðτÞ¼

P∞
n¼−∞e2πiτðnþ1=2Þ2 and θ3ðτÞ¼P∞

n¼−∞e2πiτn
2

, defined in the upper half plane Imτ > 0.
The function KðmÞ in (30) is the complete elliptic integral
of the first kind:

KðmÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −msin2θ

p ð31Þ

The functions λðτÞ and KðmÞ are implemented in
Mathematica as ModularLambda and EllipticK.
It is convenient for both numerical and visualization

purposes to combine this map with a subsequent map that
takes the upper half τ plane into the unit disk jζj < 1:

τðζÞ ≔ i

�
1þ iζ
1 − iζ

�
with inverse ζ ¼ i

�
1þ iτ
1 − iτ

�
ð32Þ

The combined transformation, from the three-sheeted w
plane directly to the unit disk in ζ is

w̃ ¼ i

�
−1þ 2λ

�
i
1þ iζ
1 − iζ

��
with inverse

ζ ¼ i
Kð1−iw̃

2
Þ − Kð1þiw̃

2
Þ

Kð1−iw̃
2
Þ þ Kð1þiw̃

2
Þ ð33Þ

FIG. 13. Left: the w̃ plane for the first sheet (the high T sheet, T > Tc). The red and blue (upper/lower) lines denote the branch cuts
emanating from the LY singularities at w̃ ¼ �i. Center: The modular τ plane after the map w̃ → τ in (30). Right: the unit disk (the ζ
plane) after the map τ → ζ in (32). The curves with different colors represent the mapping between the w,τ and ζ planes.

FIG. 14. The representations of the second sheet (the low T sheet, T < Tc) in the w̃ plane (left), in the modular τ plane (center), and in
the ζ unit disk (right). Note that the low T sheet maps to regions in τ and ζ that connect directly to regions associated with the first sheet,
shown in Fig. 13.
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The geometrical properties of these maps are depicted in
Figs. 13, 14 and 15. Figure 13 shows how the first sheet in
the w̃ variable is mapped to a specific region of the upper
half complex τ plane, and subsequently to a specific
“circular quadrilateral” region of the unit disk in the ζ
variable (right-hand plot in Fig. 13). Figure 14 shows how
the second sheet in the w̃ variable is mapped to a different
but connected portion of the upper half τ plane, and
correspondingly to a different but connected portion of
the unit disk in the ζ variable. These two regions are related
by a modular transformation. This can be continued
ad infinitum, with the trajectories in the unit disk in ζ
encoding all possible trajectories on the three-sheeted
Riemann surface in the w̃ variable. Examples are given
below, and see [48] for an interactive realization.

B. Approximate reconstruction of the Ising equation
of state: The uniformized-Padé method

The maps described in the previous section give an exact
uniformization of zðwÞ on its entire Riemann surface.
However, the main practical use of these maps is as
building blocks for approximate uniformizing maps.
For example, suppose we know (or conjecture) that a
finite-order expansion about the origin is limited by

two dominant singularities, which are in general branch
points.9 Then an approximate uniformizing map can be
used, based solely on this (conjectured) information. If the
two branch points are symmetrically located, then the map
is precisely (33), but the corresponding map is known when
these two dominant singularities have general locations
[13,14,40,41].
Now suppose we do not have the exact solutions z1ðwÞ

and z2ðwÞ of the scaled equation of state (8), but just a
finite-order truncated expansion for z1ðwÞ, generated in the
high temperature region. We first locate the singularities
that limit the convergence: this can be done approximately,
using for example methods described in Sec. III (or even
more accurate methods in [13,14]). We learn that there are
two dominant singularities. Let us rescale the variable w to
place these at w̃ ¼ �i.
The actual implementation of the reconstruction

method is extremely simple. We note that the map from
w̃ to ζ in (33) takes the origin w̃ ¼ 0 to the origin of the
disk, ζ ¼ 0:

FIG. 15. The analytic continuation from the high T sheet to the low T sheets with h > 0 (upper) and h < 0 (lower). The arrows
showing trajectories inside the unit disk match the trajectories that cross from the high T sheet to the low T sheet in the w variable. The
corresponding boundaries of the sheets (i.e., the edges of the cuts) become circular boundaries inside the unit disk, obtained by Schwarz
reflections.

9This is a common occurrence in physical applications: e.g.,
[37,42–44,50,51].
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This means that we simply compose the series expansions
to convert the finite-order expansion in w̃ into a finite-order
expansion in ζ. We then Padé in ζ and map back to w̃. The
resulting uniformized-Padé procedure is [13,14]:
(1) Reexpand the original truncated Taylor series in w̃ as

a Taylor series in ζ, and truncate at the same order in
ζ. This procedure is optimal [13].

(2) Make a Padé approximant of the resulting truncated
series in terms of ζ.

(3) Map this Padé approximant back to the w̃ plane
using the inverse map in (33). (Note that in contrast
with the case of the conformal map (21), here the
uniformizing map and its inverse are both explicit.)

The output of this simple algorithm is an analytic continu-
ation of the truncated expansion of z1ðwÞ, which is of high
precision on the first (high temperature) sheet, and which
smoothly crosses to other sheets, in particular to the low
temperature region. The high precision also means that the
procedure can be iterated to refine an initial estimate of the
singularity locations.

1. Improved accuracy on the high temperature sheet

To quantify the high precision of this uniformized-Padé
analytic continuation on the first (T > Tc) sheet, we
compare it in Fig. 12 with the exact expression for
z1ðwÞ in (26) [or (28)], with the Taylor expansion of
z1ðwÞ truncated after 20 terms, and with the (near diagonal)
Padé approximant of this 20-term truncated expansion. As
expected, the truncated series breaks down at the Lee-Yang
radius of convergence 2

3
ffiffi
3

p ≈ 0.385. The Padé approximant

is better, going beyond the radius of convergence, but it
breaks down at Rew ≈�2. By comparison, the
Uniformized-Padé approximation matches very accurately
the exact result for z1ðwÞ all the way out to Rew ¼ �20,
well beyond the Lee-Yang radius of convergence.
Furthermore, this uniformized-Padé approximation was
implemented using half the number of input terms. This
higher precision shown in Fig. 12 is along the Rew axis,
which does not encounter any singularities or cross any
cuts. The improvement is even more dramatic along the
imaginary w axis, where Padé fails already at the radius of
convergence, where it first encounters the branch points.
Note that the construction of the uniformizing map in

(33) uses knowledge of the location of the Lee-Yang
singularities. As discussed in Sec. III, if these locations
are unknown they can be found numerically to high
precision by iteration [13,14]. The fact that the uniformiz-
ing map (33) leads to an exact uniformization of the
function relies on the underlying Riemann surface being

that associated with the hypergeometric functions, which
solve the equation of state (8). However, even if it were not
the exact Riemann surface, the use of this uniformizing
map produces significantly higher precision than other
methods for any problem with a pair of leading singularities
[13,14], which is a common occurrence in a wide range of
physical applications.

2. Analytic continuation from the high temperature
sheet to the low temperature sheets

In addition to improved accuracy on the first sheet, a
distinguishing feature of the uniformized-Padé approxima-
tion is its ability to reconstruct the underlying function
globally, making it possible to pass to higher Riemann
sheets, even when starting from a finite-order truncated
approximation [13,14]. This can be seen already in the
behavior of the approximation along the imaginary w axis,
which encounters the Lee-Yang singularities at w̃ ¼ �i,
and the associated branch cuts that need to be crossed in
order to pass from the high temperature sheet to the low
temperature sheets.
The transition from one sheet to another works as

follows. Consider the physical problem of trying to
evaluate the low temperature equation of state starting
from a truncated expansion of the high temperature
equation of state. This (truncated) high temperature expan-
sion is generated on the first sheet, but we want the solution
on the second (low T) sheet. As shown in Fig. 13, the
uniformizing map takes the first sheet to a circular
quadrilateral inside the unit disk, for the ζ variable.
Suppose we cross to the low T branch by crossing the
upper branch cut (shown in red). The low T sheet in this
case is represented in the unit disk as a region obtained by
performing a Schwartz reflection with respect to the image
of the branch cut in the unit circle i.e., the upper right red
circle in Fig. 13 (right). The image of the low T sheet
obtained this way is shown in Fig. 14 (right). In the modular
plane this corresponds to a particular Mobius transforma-
tion which maps the image of the first sheet in Fig. 13
(center) inside the region bounded by the semicircle [see
Fig. 14 (center)]. Notice that in this low T sheet (where
h < 0), there is only one branch cut, shown in solid red. As
opposed to the high T sheet, the line segment Imw <
−2=ð3 ffiffiffi

3
p Þ is not a branch cut and is therefore shown as a

dashed blue line in Fig. 14. In fact this is the region where
the physical equation of state for T < Tc and h > 0 is
defined, namely the magnetization M ∝ −Imw
with Imw < −2=ð3 ffiffiffi

3
p Þ.

This is illustrated in Fig. 15, which shows how the
continuation from the high temperature sheet to the low
temperature sheet appears in the unit disk. An illustrative
trajectory in the w plane that goes from the high T branch to
the low T branch and its image on the unit disk are shown in
Fig. 15. This trajectory, in the w plane, starts from the
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origin, crosses the upper branch cut to the low T sheet and
finally ends at some point on the negative imaginary axis
with Imw < −2=3

ffiffiffi
3

p
, which is proportional to some value

of the magnetization with T < Tc and h > 0 in the stable
branch of the equation of state. In the unit disk, this
trajectory is a line segment shown in Fig. 15 (top). The
main point we emphasize is that even though in the w plane
the trajectory goes through different sheets, in the unit disk
it is completely regular. Similarly, it is also possible to
analytically continue to the h < 0 sheet by going through
the lower branch cut (blue line in Fig. 13, left) as shown in
Fig. 15 (bottom).
Figures 16 and 17 show how the low temperature

equation of state can be reconstructed from just 20 input
terms of the Taylor expansion of the high temperature
equation of state. In Fig. 16 (left) we compare the exact
result with the result obtained from the uniformized-Padé
approximation. Similar to the high T expansion in Fig. 12,

the numerical accuracy in the low T region is also
remarkable and extends to large values jwj ≈ 20. We stress
that this result is obtained from the Taylor expansion of
z1ðwÞ for T > Tc and analytically continued via the
uniformizing map. It is not the expansion of z2ðwÞ or
z3ðwÞ. Nevertheless it captures the low T behavior of the
equation of state remarkably well in a region where neither
the truncated Taylor series nor the Padé approximant has
any applicability whatsoever.

V. SUMMARY AND CONCLUSIONS

In this paper we described a robust framework to
reconstruct efficiently the equation of state of a thermo-
dynamic system near a critical point Tc, μc, using only a
finite number of coefficients from a local expansion at
μ ¼ 0. We first showed that pairing the usual Padé
resummation with a conformal map significantly improves

FIG. 17. The trajectory that captures the low T equation of stateMðhÞ in the scaling variables in the unit disk (left) and in the w plane
(right). The trajectory goes through three different Riemann sheets (right) in the w plane but is smooth and entirely contained in the unit
disk (left).

FIG. 16. The low T equation of state, in terms of the scaled variables z and w, reconstructed from the high T expansion using
uniformed Padé, compared with the exact result (left). Note that with just 20 input terms for the expansion of z1ðwÞ on the high T sheet
we can reconstruct the solution on other sheets with high precision. The right-hand panel shows a zoomed-in view, highlighting the
trajectory in the w plane and in the unit disk, as shown in Fig. 17.
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the approximation to the underlying equation of state,
compared to simply summing the truncated Taylor series or
performing a regular Padé approximation. The most
important improvement is the extension of the range of
the approximation. The applicability of the Taylor series is
limited by its radius of convergence. Ordinary Padé
resummation allows one to go pass beyond the radius of
convergence but produces unphysical singularities which
limit the improvement in physically important regions.
Conformal Padé eliminates these unphysical singularities
which leads to a dramatic improvement in the range of the
approximation. In particular we showed (see Fig. 8) that it
captures the characteristic features of the susceptibilities in
the vicinity of the critical point which play a significant role
in the search for the QCD critical point.
We also showed that it is even possible to analytically

continue to higher Riemann sheets by pairing Padé resum-
mation with a suitably engineered map, namely a unifor-
mizing map. We demonstrated this procedure in the Ising
model. Physically, this makes it possible to analytically
continue an expansion obtained in the high T crossover
region (r > 0) to the low T first-order region (r < 0). The
only input we needed was the Taylor coefficients and the
location of the Lee-Yang singularity whose value can be
approximated by the same iteration procedure explained in
Sec. III.
There are various future directions left for future work.

An important extension is to go beyond the mean field
limit. For the Ising model, in the crossover region (r > 0),
which corresponds to the first sheet, the two-cut nature of
the w plane is universal [17] albeit with different branch
point singularities determined by the critical exponents, βδ.
Given that the r < 0 region has more structure, such as the

Langer cut [22–24], it would be interesting to extend this
machinery beyond the mean field. Beyond the mean field
approximation, even though in general the equation of state
does not have an analytic representation, knowledge of the
universality class and/or the critical exponents can help to
construct an approximate uniformizing map that enables
improved analytic continuation. Another interesting aspect
of beyond the mean field case is that the equation of state,
w ¼ FðzÞ, can be expressed as an ϵ expansion which is
asymptotic. Related conformal Padé techniques are well
known in the study of the ϵ expansion [47,52]. One could
construct a hybrid resummation scheme that involves
uniformizing and conformal Padé both in z and the
Borel plane of ϵ. Alternatively one could used the para-
metric representation of the equation of state [53]. Another
possible direction is to incorporate the analytical continu-
ation scheme introduced in this paper with the expansions
obtained with pure imaginary chemical potential, as for
QCD it is very challenging to compute beyond the first few
terms of the Taylor expansion with real μ. Finally it is also
necessary to address the issue of noise in the Taylor
coefficients as they are typically computed via stochastic
methods which unavoidably introduces noise. It is therefore
important to ensure the stability of these resummation
methods with noisy data.
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1953), https://authors.library.caltech.edu/43491/.

[46] W. Abikoff, The uniformization theorem, Am. Math. Mon.
88, 574 (1981).

[47] J. Zinn-Justin, Quantum field theory and critical phenom-
ena, Int. Ser. Monogr. Phys. 113, 1 (2002).

[48] O. Costin, Interactive realization of uniformization map
trajectories, 2021, https://people.math.osu.edu/costin.9/
classes.html.

[49] NIST Digital Library of Mathematical Functions, release
1.1.3 of 2021-09-15, edited by F.W. J. Olver, A. B. Olde
Daalhuis, D.W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and
M. A. McClain, http://dlmf.nist.gov/.

GÖKÇE BAŞAR, GERALD V. DUNNE, and ZELONG YIN PHYS. REV. D 105, 105002 (2022)

105002-18

https://arXiv.org/abs/2111.06241
https://doi.org/10.1143/PTPS.153.139
https://doi.org/10.1103/PhysRevLett.127.171603
https://arXiv.org/abs/2009.01962
https://doi.org/10.1140/epjs/s11734-021-00267-x
https://doi.org/10.1140/epjs/s11734-021-00267-x
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.100.056003
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1016/S0370-2693(97)00015-4
https://doi.org/10.1016/S0370-2693(97)00015-4
https://doi.org/10.1103/PhysRevD.73.094508
https://doi.org/10.1103/PhysRevD.103.L071501
https://doi.org/10.1103/PhysRevD.103.L071501
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1007/JHEP07(2016)041
https://doi.org/10.1088/1742-5468/aaac4a
https://doi.org/10.1088/1742-5468/aaac4a
https://doi.org/10.1016/0550-3213(93)90526-U
https://doi.org/10.1103/PhysRevD.73.054502
https://doi.org/10.1016/j.physletb.2019.04.040
https://doi.org/10.1016/j.physletb.2019.04.040
https://doi.org/10.1016/j.nuclphysa.2020.121834
https://doi.org/10.1016/j.nuclphysa.2020.121834
https://doi.org/10.5506/APhysPolBSupp.14.241
https://doi.org/10.5506/APhysPolBSupp.14.241
https://doi.org/10.1088/0034-4885/30/2/306
https://doi.org/10.1006/jath.1997.3141
https://doi.org/10.1006/jath.1997.3141
https://doi.org/10.1070/RM2011v066n06ABEH004770
https://doi.org/10.1070/RM2011v066n06ABEH004770
https://doi.org/10.1016/j.physrep.2007.03.003
https://arXiv.org/abs/1711.04445
https://doi.org/10.1016/j.physletb.2020.135627
https://doi.org/10.1103/PhysRevLett.121.130405
https://doi.org/10.1103/PhysRevLett.121.130405
https://doi.org/10.1007/JHEP05(2019)047
https://doi.org/10.1007/JHEP05(2019)047
https://doi.org/10.1103/PhysRevX.9.041008
https://doi.org/10.1103/PhysRevX.9.041008
https://authors.library.caltech.edu/43491/
https://authors.library.caltech.edu/43491/
https://authors.library.caltech.edu/43491/
https://authors.library.caltech.edu/43491/
https://doi.org/10.1080/00029890.1981.11995320
https://doi.org/10.1080/00029890.1981.11995320
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
https://people.math.osu.edu/costin.9/classes.html
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/


[50] W. Florkowski, M. P. Heller, and M. Spalinski, New theories
of relativistic hydrodynamics in the LHC era, Rep. Prog.
Phys. 81, 046001 (2018).

[51] I. Aniceto, B. Meiring, J. Jankowski, and M. Spaliński, The
large proper-time expansion of Yang-Mills plasma as a
resurgent transseries, J. High Energy Phys. 02 (2019) 073.

[52] R. Guida and J. Zinn-Justin, Critical exponents of the N
vector model, J. Phys. A 31, 8103 (1998).

[53] D. J. Wallace and R. K. P. Zia, Parametric models and the
Ising equation of state at order epsilon3, J. Phys. C 7, 3480
(1974).

UNIFORMIZING LEE-YANG SINGULARITIES PHYS. REV. D 105, 105002 (2022)

105002-19

https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1088/1361-6633/aaa091
https://doi.org/10.1007/JHEP02(2019)073
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1088/0022-3719/7/19/008
https://doi.org/10.1088/0022-3719/7/19/008

