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Recently a linearized perturbation theory has been formulated for soliton sectors of quantum field
theories. While it is more economical than alternative formalisms, such as collective coordinates, it is
currently limited to solitons which stay close to a base point about which the theory is linearized. As a
result, so far this formalism has only been applied to stationary solitons. In spite of this limitation, we
construct kink states with fixed nonzero momenta and also moving, normalizable kink wave packets. The
former are non-normalizable coherent superpositions of kinks at all spatial positions and are simultaneous
eigenstates of the Hamiltonian and the momentum operator. The latter are localized about a single, moving
classical solution. To understand the wave packets we calculate several simple matrix elements.
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I. INTRODUCTION

A. Motivation

Linearized soliton perturbation theory [1] allows the
efficient1 calculation of states [3], masses, [4] and instanta-
neous accelerations [5] of solitons in nontrivial back-
grounds. However, so far it has one major limitation; the
solitons cannot move. As a result, the trajectory of a soliton
in a nontrivial background cannot be found as once it
begins to move the corresponding state is no longer known.
Also form factors cannot be calculated, as these involve
states with nonvanishing momentum. Finally, in models
without Poincaré invariance, such as those with impurities
[6], it has not yet been possible to include quantum
corrections into Hamiltonians for moduli space truncated
models [7,8] because the energy dependence on the soliton
velocity is not known.
This limitation may seem inevitable as the method

begins with a unitary transformation of the Hilbert space
which is determined by the choice of a single point in the
soliton’s moduli space. In this note we provide two distinct
solutions to this problem. More precisely, we present two
constructions of states corresponding to solitons with
nonzero momentum. The first construction is simply a
boost of the construction of a stationary soliton. Although

the boosted soliton has momentum, it is a momentum
eigenstate and so is translation invariant up to a phase. This
implies that the kink state includes a uniform superposition
of kink positions over the entire space. Therefore it does not
move and there is no contradiction with the above intuition.
The second construction uses a normalizable wave packet
of solitons localized about some point in moduli space.
This is not an exact eigenstate of the momentum nor of the
Hamiltonian, and so it does move. The wave packet
construction described below is applied to the physical
problem of computing quantum corrections to spectral
walls in the companion paper Ref. [5].
These two constructions correspond to two distinct

physical configurations, both of which are realized in
nature. In QCD, in the large N approximation, baryons
are described by skyrmions [9–11]. Baryon scattering is
described by the scattering of solitons in wave packets
which are nearly momentum eigenstates, and so are well
described by plane waves. In particular, their wave packet
size is much large than their Fermi-scale radius. This
corresponds to our first construction. On the other hand,
often a soliton position is constrained to greater precision
than the soliton size itself. Such semiclassical solitons have
a quantum profile that resembles the corresponding
classical field theory solution. This second case includes
solitonic dark matter [12,13] as well as many examples in
condensed matter physics, beginning historically with
Abrikosov vortices [14] on an observed lattice and also
many solitons in quantum optics, such as [15].

B. Background

A quantum theory is defined by a Hamiltonian operator
H and a Hilbert space on which it acts. The stationary states
are eigenvectors of H. Let us consider a Schrödinger
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1The leading quantum corrections can be computed efficiently
in great generality using spectral methods, recently reviewed in
Ref. [2].
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picture quantum field theory of a single scalar field ϕðxÞ,
where x is a point in space. In this case, the operators ϕðxÞ
at each x and their conjugate momenta πðxÞ are a basis of
the space of all operators in the theory. In particular, the
Hamiltonian is constructed from these operators.
In the quantum field theory, the operators satisfy

the canonical commutation relations ½ϕðxÞ;πðxÞ�¼iℏδðxÞ.
We will generally set ℏ ¼ 1. However, setting ℏ ¼ 0
one arrives at the corresponding classical field theory.
If the classical equations of motion derived from this
Hamiltonian have a nontrivial, stable, stationary solution
ϕðx; tÞ ¼ fðxÞ, then one may ask what state jKi in the
quantum theory corresponds to this classical configuration.
More generally, one may consider small perturbations
about this classical solution and wonder to which quantum
states they correspond. We will refer to such states as the
fðxÞ sector.
Old fashioned perturbation theory expands the field ϕðxÞ

about zero and so does not yield states in the fðxÞ sector if
fðxÞ is not identically zero. Therefore the usual approach
[16] to studying the fðxÞ sector is to decompose the field
into a classical part and a quantum part ϕðxÞ − fðxÞ, rewrite
the defining Hamiltonian as a kink Hamiltonian for this
quantum part and try to diagonalize the kink Hamiltonian.
The potential problem with this approach is that quantum
field theories generally have divergences that require
regularization, and simple regularization schemes such as
an energy cutoff do not commute with the transition from
the defining to the kink Hamiltonian [17].
Recently this problem has been solved in Ref. [18] in a

rederivation of the manifestly finite kink Hamiltonian of
Ref. [19]. The regularized defining Hamiltonian H defines
the theory, and so the regularized kink Hamiltonian H0 is
defined to be similar; in fact, unitarily equivalent to the
regularized defining Hamiltonian. This guarantees that they
will have the same spectrum and so one may first
perturbatively solve the H0 eigenvalue problem and then
use the unitary map to create H eigenvectors from H0
eigenvectors.
Concretely, one defines the unitary displacement

operator

Df ¼ exp

�
−i

Z
dx fðxÞπðxÞ

�
; ð1:1Þ

which commutes with πðxÞ but shifts ϕðxÞ

ϕðxÞDf ¼ DfðϕðxÞ þ fðxÞÞ: ð1:2Þ

Then the kink Hamiltonian H0 and even the kink momen-
tum P0 are defined by

H0 ¼ D†
fHDf; P0 ¼ D†

fPDf; ð1:3Þ

where P is the momentum operator. Intuitively, this unitary
equivalence reexpresses the operators in terms of the

quantum field ϕðxÞ − fðxÞ as in the traditional approach,
but unlike the traditional approach it never changes the
spectrum as H0 and H are related by a similarity trans-
formation (1.3). We remind the reader that H is already
regularized, and so H0 will be automatically regularized.
The strategy then is to use perturbation theory to obtain

the desired eigenstate jψi ofH0 and then to act on it withDf
to obtain to corresponding eigenstate Dfjψi of H. In other
words, one first performs D†

f on the original Hilbert space
yielding the kink Hilbert space. Next, one diagonalizes the
kink Hamiltonian perturbatively in the kink Hilbert space.
Finally one performs Df to return to the original defining
Hilbert space.
This application of perturbation theory is somewhat

complicated in a Poincaré-invariant theory because trans-
lation invariance leads to an infinity of soliton solutions,
and therefore a gapless spectrum, leading to the usual
infrared divergences in the perturbative expansion. These
divergences are usually eliminated using the collective
coordinate approach [20], which consists of a nonlinear
canonical transformation which disentangles the problem-
atic zero mode.
Recently, a much more economical approach has been

proposed [1] in which one instead first solves the P0
eigenvalue equation in perturbation theory. Once this is
done, the problematic degeneracy is removed and one then
imposes the H0 eigenvalue equation. This avoids nonlinear
transformations and in fact simplifies the problem, as P0 is
simpler than H0 and its form is independent of the
interactions.
However, the price of solving the P0 eigenvalue equation

only perturbatively is that one is effectively expanding
about a base point in the moduli space, and so the series
found does not converge, even in the sense of an asymptotic
series, far from this base point. To be able to construct states
near that base point one may conclude that the kink cannot
move, and so all previous studies of this formalism have
restricted attention to stationary kinks.

C. Outline

In Sec. III, we will find that one can nonetheless
construct a kink state with nonvanishing momentum, an
eigenvector of the momentum operator. This is reasonable
as such kink plane waves are, up to a phase, time
independent. This is because although they have nonzero
velocity they are everywhere, and so they do not move.
This is potentially useful for calculating energy spectra

but still not sufficient for problems such as scattering, for
which one wants a localized soliton corresponding to a
normalizable state with finite matrix elements. Such local-
ized, normalizable states have not yet been constructed
even for solitons with vanishing momentum. In Sec. IV we
construct such normalizable kink wave packets. They
indeed do move, and so they are not exact Hamiltonian

JARAH EVSLIN PHYS. REV. D 105, 105001 (2022)

105001-2



eigenstates, which are necessarily time independent.
However, as they are normalizable, they allow us to
compute matrix elements for the first time using linearized
perturbation theory.

II. THE KINK HAMILTONIAN EIGENVALUE
PROBLEM

In this section we review the solution of the
eigenvalue problem for the kink Hamiltonian in the case
of a Schrödinger-picture scalar field theory in (1þ 1)
dimensions.

A. The plane wave decomposition

Small perturbations about the vacuum of the free
classical field theory are plane waves. Correspondingly,
the Hamiltonian of the free quantum free theory of a scalar
field of mass m is diagonalized by a decomposition of the
Schrödinger field ϕðxÞ and its conjugate momentum πðxÞ
in the plane wave basis

ϕp ¼
Z

dxϕðxÞeipx; πp ¼
Z

dxπðxÞeipx; ð2:1Þ

which can be arranged into a basis of annihilation and
creation operators

A†
p ¼ ϕp

2
− i

πp
2ωp

;
A−p

2ωp
¼ ϕp

2
þ i

πp
2ωp

;

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; ð2:2Þ

where the Hermitian conjugate of Ap is 2ωpA
†
p.

One can define a plane wave normal ordering ∶∶a which
places all A on the right of A†. We remind the reader that in
(1þ 1)-dimensional scalar field theories, normal ordering
is sufficient to remove all ultraviolet divergences. In the
Schrödinger picture, as fields are independent of time, such
a decomposition makes no reference to the Hamiltonian
and so may be performed even in an interacting theory,
although it will no longer diagonalize the Hamiltonian.

B. The kink Hamiltonian

If the defining Hamiltonian is

H½πðxÞ;ϕðxÞ� ¼
Z

dx∶HðπðxÞ;ϕðxÞÞ∶a;

HðπðxÞ;ϕðxÞÞ ¼ 1

2
ðπ2ðxÞ þ ð∂xϕðxÞÞ2Þ þ

1

g2
VðgϕðxÞÞ;

ð2:3Þ

for a coupling constant g, then the kink Hamiltonian is

H0½πðxÞ;ϕðxÞ� ¼
Z

dx∶H0ðπðxÞ;ϕðxÞÞ∶a;

H0ðπðxÞ;ϕðxÞÞ ¼ HðπðxÞ;ϕðxÞ þ fðxÞÞ: ð2:4Þ

We decompose the kink Hamiltonian into terms Hn ¼R
dxHn with n factors of the fields when plane wave

normal ordered and
P

n Hn ≕H0∶a. In particular

H0 ¼ Q0 ð2:5Þ

is the mass of the classical kink configuration Q0, H1

vanishes by the classical equations of motion, and the free
Hamiltonian density is

H2ðxÞ ¼
1

2
½∶π2ðxÞ∶a þ ∶ð∂xϕðxÞÞ2∶a

þ Vð2ÞðgfðxÞÞ∶ϕ2ðxÞ∶a�; ð2:6Þ

where

VðnÞðgfðxÞÞ ¼ ∂n

∂ðgϕðxÞÞn VðgϕðxÞÞjϕðxÞ¼fðxÞ: ð2:7Þ

The higher-order terms are simply

Hn>2ðxÞ ¼
gn−2

n!
VðnÞðgfðxÞÞ∶ϕnðxÞ∶a: ð2:8Þ

C. The normal mode decomposition

Substituting the constant-frequency ansatz

ϕðx; tÞ ¼ e−iωtgðxÞ; ð2:9Þ

into the classical equations of motion derived from H2

yields the wave equation

Vð2ÞðgfðxÞÞgðxÞ ¼ ω2gðxÞ þ g00ðxÞ; ð2:10Þ

for the normal modes gðxÞ.
There are three kinds of solutions. First, there is always a

zero mode gBðxÞ with ωB ¼ 0. Second, for all real k there
are continuum solutions gkðxÞ with ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
where

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð2ÞðgfðxÞÞð�∞Þ

q
. We note that if these two limits

do not agree, then the kink will accelerate [21,22] due to a
difference in the one-loop energies of the vacua on the two
sides [23], and so it will not correspond to any Hamiltonian
eigenstate. Finally, there may also be discrete solutions,
called shape modes, gSðxÞ with 0 < ωS < m.
For the continuum modes, we impose g−kðxÞ ¼ g�kðxÞ

and we impose that the discrete modes are real. We impose
that all modes are orthonormal
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Z
dxjgBðxÞj2¼1;

Z
dxgk1ðxÞg�k2ðxÞ¼2πδðk1−k2Þ;Z

dxgS1ðxÞgS2ðxÞ¼δS1S2 : ð2:11Þ

Then, as Eq. (2.10) is a Sturm-Liouville equation, the
normal modes are complete

gBðxÞgBðyÞ þ
XZ dk

2π
gkðxÞg�kðyÞ ¼ δðx − yÞ; ð2:12Þ

where the condensed notation
PR

is an integral over
continuum modes plus the sum over discrete nonzero
normal modes

XZ dk
2π

¼
Z

dk
2π

þ
X
S

: ð2:13Þ

As a result of this completeness, any operator in the
theory may be expanded in the normal mode basis

ϕk ¼
Z

dxϕðxÞg�kðxÞ; πk ¼
Z

dxπðxÞg�kðxÞ; ð2:14Þ

where k runs over all normal modes. In the case of the zero
mode, instead of ϕB and πB we write ϕ0 and π0. The
nonzero modes, continuous and discrete, may alternately be
reexpressed in terms of Heisenberg creation and annihila-
tion operators

B†
k ¼

ϕk

2
− i

πk
2ωk

;
B−k

2ωk
¼ ϕk

2
þ i

πk
2ωk

; ð2:15Þ

where the adjoint of Bk is 2ωkB
†
k. Thus any operator may be

expanded in the normal mode basis ϕ0; π0; Bk and B†
k. One

can define normal mode normal ordering ∶∶b by expanding
any operator in this basis and then placing all π0 and Bk on
the right.
We will assume that fðxÞ is a Bogomol’nyi-Prasad-

Sommerfield soliton, so that

Z
dxð∂xfðxÞÞ2 ¼ Q0 ¼ Q0

Z
dxgBðxÞ2: ð2:16Þ

The zero mode gBðxÞ is proportional to ∂xfðxÞ and so,
fixing the sign of gBðxÞ, we conclude that

∂xfðxÞ ¼
ffiffiffiffiffiffi
Q0

p
gBðxÞ: ð2:17Þ

D. Changing bases

We have seen that any Schrödinger picture operator can
be decomposed in two bases. The first is a plane wave basis
defined by

½Ap; A
†
q� ¼ 2πδðp − qÞ: ð2:18Þ

The second is a normal-mode basis defined by

½Bk1 ;B
†
k2
� ¼ 2πδðk1−k2Þ; ½BS;B

†
S� ¼ 1; ½ϕ0;π0� ¼ i;

ð2:19Þ

where for simplicity we have considered a single
shape mode.
As these bases are complete, and linear in the fields, they

are related by linear Bogoliubov transformations [24]. The
defining Hamiltonian is plane wave normal ordered, as is
the expression for the kink Hamiltonian in (2.4). Thus it is
defined in terms of Ap and A−p. However, it will be
convenient to first transform it into the ϕ0, π0, B, and B†

basis using the Bogoliubov transform, and then normal
mode normal order it.
Normal mode normal ordering the free kink

Hamiltonian, one finds [18,19]

H2 ¼ Q1 þ
π20
2
þ ωSB

†
SBS þ

XZ dk
2π

ωkB
†
kBk; ð2:20Þ

where the scalar Q1 is the one-loop correction to the kink
mass. Thus we find that at one loop the center-of-mass
motion is described by a free quantum-mechanical particle
with momentum (more precisely, momentum divided by
the square root of the mass

ffiffiffiffiffiffi
Q0

p
), π0, and position (more

precisely, position times
ffiffiffiffiffiffi
Q0

p
) ϕ0, whereas the normal

modes k are described by quantum harmonic oscillators
with creation and annihilation operators B†

k and Bk. The
ground state j0i0 of this free Hamiltonian is the solution of

π0j0i0 ¼ Bkj0i0 ¼ BSj0i0 ¼ 0; ð2:21Þ

while normal modes can be excited using B†. Higher-order
corrections to stationary states can be found [1] by first
imposing that states are annihilated by P0 and then using
old fashioned perturbation theory with the interacting part
of the kink Hamiltonian (2.8).

III. BOOSTING A STATIONARY KINK

A. Copies of the Poincaré algebra

The (1þ 1)-dimensional Poincaré algebra is generated
by the Hamiltonian

H½πðxÞ;ϕðxÞ� ¼
Z

dx∶HðπðxÞ;ϕðxÞÞ∶a; ð3:1Þ

where the momentum operator is

P½πðxÞ;ϕðxÞ� ¼ −
Z

dx∶πðxÞ∂xϕðxÞ∶a; ð3:2Þ
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and the boost generator is

Λ½πðxÞ;ϕðxÞ�¼−tP½πðxÞ;ϕðxÞ�þ
Z

dxx∶HðπðxÞ;ϕðxÞÞ∶a:

ð3:3Þ

These generators satisfy the Poincaré algebra

½H;P� ¼ 0; ½Λ; H� ¼ iP; ½Λ; P� ¼ iH: ð3:4Þ

Although we are in the Schrödinger picture, so that the
fields do not depend on time, the boost operator has explicit
time dependence when acting on a state which is not
annihilated by the momentum operator P. However, we will
work at time t ¼ 0 and we will consider active trans-
formations of the field so that t ¼ 0, even after a time
translation or boost. As a result, the −tP term in (3.3) will
always vanish.
Consider a state jE; 0i such that

HjE; 0i ¼ EjE; 0i; PjE; 0i ¼ 0: ð3:5Þ

Then a boosted state

jE; αi ¼ eiαΛjE; 0i ð3:6Þ

is also an eigenvector

HjE;αi¼EcoshαjE;αi; PjE;αi¼EsinhαjE;αi; ð3:7Þ

identifying α as the rapidity of jE; αi. In particular, for a
nonrelativistic α, the momentum of the boosted state is Eα.
In the defining Hilbert space, the time-independent states

are eigenstates of H and those that have fixed momentum
are also eigenstates of P. We have seen that these states are
constructed as Dfjψi where jψi is an eigenstate of H0 and
P0. Here jψi is found in perturbation theory. In particular,
eigenstates of P with nonzero momentum are constructed
by actingDf on eigenstates of P0 with nonzero eigenvalues.
These in turn can always be constructed from eigenstates
of P0 with zero eigenvalues by acting with a boost Λ0
defined by

Λ0 ¼ D†
fΛDf; ð3:8Þ

as the kink operators satisfy another copy of the Poincaré
algebra

½H0;P0� ¼ 0; ½Λ0;H0� ¼ iP0; ½Λ0;P0� ¼ iH0: ð3:9Þ

If

H0jE; 0i ¼ EjE; 0i; P0jE; 0i ¼ 0; ð3:10Þ

then

H0eiαΛ0 jE; 0i ¼ E coshαeiαΛ
0 jE; 0i;

P0eiαΛ0 jE; 0i ¼ E sinh αeiαΛ
0 jE; 0i; ð3:11Þ

and so e−iαΛ
0
boosts a state annihilated by P0 to one with

eigenvalue Eα if α ≪ 1.
Therefore, our strategy will be as follows. We begin with

an eigenstate jΨi of H0 which is annihilated by P0,
constructed as described in Sec. II. This corresponds, in
the defining Hilbert space to a state DfjΨi which is
annihilated by P, a stationary kink. Then

eiαΛDfjΨi ¼ DfeiαΛ
0 jΨi ð3:12Þ

is our desired eigenstate ofH with rapidity α. Thus, we will
have constructed a kink state with nonzero momentum. The
right-hand side of Eq. (3.12) is our first construction of a
boosted-kink state. We will spend the rest of this section
trying to understand it.

B. The kink boost operator

In this subsection we will calculate Λ0, and expand it
order by order in our semiclassical expansion.
For any functional ∶F½πðxÞ;ϕðxÞ�∶ with any normal-

ordering prescription [18]

∶F½πðxÞ;ϕðxÞ�∶Df ¼ Df∶F½πðxÞ;ϕðxÞ þ fðxÞ�∶: ð3:13Þ

Therefore the kink momentum is

P0½πðxÞ;ϕðxÞ� ¼P½πðxÞ;ϕðxÞþfðxÞ�

¼−
Z

dx∶πðxÞ∂xϕðxÞ∶a−
Z

dxπðxÞ∂xfðxÞ

¼P½πðxÞ;ϕðxÞ�−
ffiffiffiffiffiffi
Q0

p
π0; ð3:14Þ

where in the last step we have used Eq. (2.17). Similarly the
kink boost operator is

Λ0½πðxÞ;ϕðxÞ� ¼D†
fΛ½πðxÞ;ϕðxÞ�Df ¼Λ½πðxÞ;ϕðxÞþfðxÞ�

¼
Z

dxx∶HðπðxÞ;ϕðxÞþfðxÞÞ∶a

¼
Z

dxx∶H0ðπðxÞ;ϕðxÞÞ∶a

¼
Z

dxx

�
1

2
ð∶π2ðxÞ∶aþ∶ð∂xðϕðxÞ

þfðxÞÞÞ2∶aÞþ
1

g2
∶VðgϕðxÞþgfðxÞÞ∶a

�
:

ð3:15Þ

Let us expand this order by order in the fields ϕðxÞ
and πðxÞ
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Λ0 ¼
X
n

Λ0
n: ð3:16Þ

At zeroth order, for symmetric solutions jfðxÞj ¼ jfð−xÞj,
one obtains

Λ0
0 ¼

Z
dxx

�
1

2
ð∂xfðxÞÞ2 þ

1

g2
VðgfðxÞÞ

�
¼ 0; ð3:17Þ

which vanishes as x is odd and the term in parenthesis is
even. Here, we ignore the linear divergence at large jxj,
which can be eliminated by shifting the potential by a
constant so that V vanishes at the vacua gfð�∞Þ. This is
anyway achieved by the infrared counterterms included in
this approach [25].
At first order

Λ0
1 ¼

Z
dxx

�
ð∂xϕðxÞÞð∂xfðxÞÞ þ

ϕðxÞ
g

V 0ðgfðxÞÞ
�

¼
Z

dxϕðxÞ
�
−∂xðx∂xfðxÞÞ þ

x
g
Vð1ÞðgfðxÞÞ

�

¼ −
Z

dxϕðxÞ∂xf ¼ −
ffiffiffiffiffiffi
Q0

p
ϕ0; ð3:18Þ

where, going from the second to the third line, we used the
classical equations of motion satisfied by fðxÞ and on the
last line we used (2.17). The classical kink mass Q0 is of
order m=g2 and so the coefficient

ffiffiffiffiffiffi
Q0

p
is of order

ffiffiffiffi
m

p
=g.

The quadratic terms are

Λ0
2¼

Z
dx

x
2
∶½π2ðxÞþð∂xϕðxÞÞ2þϕ2ðxÞVð2ÞðgfðxÞÞ�∶a

¼
Z
dx

x
2
∶½π2ðxÞþϕðxÞð−∂2

xϕðxÞþVð2ÞðgfðxÞÞϕðxÞÞ�∶a

−
1

2

Z
dx∶ϕðxÞ∂xϕðxÞ∶a; ð3:19Þ

where the last term is a total derivative which vanishes if
ϕ2ð∞Þ ¼ ϕ2ð−∞Þ which we will impose, thus dropping
the boundary terms from our boost operator. Using the
decompositions

ϕðxÞ ¼ ϕ0gBðxÞ þ
XZ dk

2π
ϕkgkðxÞ;

πðxÞ ¼ π0gBðxÞ þ
XZ dk

2π
πkgkðxÞ; ð3:20Þ

and (2.10) one can simplify the term in parenthesis

Λ0
2¼

Z
dx

x
2
∶
�
π2ðxÞþϕðxÞ

XZ dk
2π

ϕkω
2
kgkðxÞ

�
∶a: ð3:21Þ

In terms of Δ symbols, defined in (A1), this is

Λ0
2 ¼

XZ d2k
ð2πÞ2

Δ100
k1k2

2
∶ðπk1πk2 þ ω2

k1
ϕk1ϕk2Þ∶a

þ
XZ dk

2π
Δ100

Bk ∶
�
π0πk þ

ω2
k

2
ϕ0ϕk

�
∶a

¼
XZ d2k

ð2πÞ2
Δ001

k1k2

ω2
k2
− ω2

k1

∶ðπk1πk2 þ ω2
k1
ϕk1ϕk2Þ∶a

þ
XZ dk

2π
Δ001

Bk ∶
�

2

ω2
k

π0πk þ ϕ0ϕk

�
∶a; ð3:22Þ

where we used the fact that for a symmetric kink Δ100
BB

vanishes and (A4). To simplify things later, we will change
plane wave normal ordering to normal mode normal
ordering. This shifts Λ0

2 by a real number, and so it shifts
the translation operator e−iαΛ

0
by a phase. As the total phase

of the state is not measurable, we simply drop this constant,
leaving

Λ0
2 ¼

XZ d2k
ð2πÞ2

Δ001
k1k2

ω2
k2
− ω2

k1

∶ðπk1πk2 þ ω2
k1
ϕk1ϕk2Þ∶b

þ
XZ dk

2π
Δ001

Bk

�
2

ω2
k

π0πk þ ϕ0ϕk

�
: ð3:23Þ

Note that no normal ordering is needed on the last term as
ϕ0 and π0 both commute with B† and B, so the normal
mode normal ordering does nothing.
The higher-order terms are

Λ0
n>2 ¼

gn−2

n!

Z
dxx∶ϕnðxÞ∶aVðnÞðgfðxÞÞ: ð3:24Þ

Again these may be expanded into ϕ0, π0, ϕk and πk
using (3.20).

C. The moduli space coordinate

Recall that a rapidity α boost is achieved with the
operator e−iαΛ

0
. For concreteness, let us consider the kink

ground state j0i written, in the kink Hilbert space, as an
eigenvector ofH0 withH0j0i ¼ Qj0i. Then the correspond-
ing boosted state, still working in the kink Hilbert space,2 is

jαi ¼ eiαΛ
0 j0i: ð3:25Þ

In the rest of this section we will evaluate (3.25) one
order at a time. In Sec. III D we will truncate the kink
ground state j0i to the one-loop kink ground state j0i0
which satisfies (2.21).
Our first task is to write this state in a convenient basis.

Recall from (2.19) that our operator algebra is the product

2Recall that the action of Df takes this state to the defining
Hilbert space.
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of a commuting quantum mechanical canonical algebra
generated by π0 and ϕ0 with an infinite set of Heisenberg
algebras Bk and B†

k, with k running over all real numbers
and possibly some discrete values corresponding to shape
modes. Therefore the Hilbert space factorizes into the
product of the Harmonic oscillator Fock spaces for each
k with the space of quantum mechanical wave functions
which form a representation of π0 and ϕ0. These wave
functions are defined by

jψi ¼
Z

dyψðyÞjyi; ϕ0jψi ¼
Z

dyyψðyÞjyi;

π0jψi ¼ −i
Z

dy
∂ψðyÞ
∂y jyi: ð3:26Þ

So to describe a state, for each element of the harmonic
oscillator Fock space, one needs a complex wave func-
tion ψðyÞ.
The one-loop ground state, which solves (2.21), is easy

to write in this basis. Let jyi0 be the Fock space element
annihilated by all operators Bk

Bkjyi0 ¼ 0; ϕ0jyi0 ¼ yjyi0; ð3:27Þ

and choose the function ψðyÞ to be a constant

j0i0 ¼
Z

dyjyi0: ð3:28Þ

The choice of constant is just a normalization convention,
although these states are non-normalizable.
We will systematically investigate all of the perturbative

expansions involved in our construction. Let us begin with
the unboosted one-loop ground state j0i0 itself. This is
found using perturbation theory, which produces correc-
tions of the form mgϕ2

0 in the semiclassical expansion.
Acting on our basis, the semiclassical expansion is
therefore a series in mgy2. Therefore the one-loop ground
state j0i0 itself is only a good approximation to the ground
state at

y ≪
1ffiffiffiffiffiffi
mg

p : ð3:29Þ

Of course since ψðyÞ is a constant, the wave function is
supported at all values of y, including those not satisfying
(3.29). Thus one should not trust the perturbative expansion
on that part of the wave function.
The situation is similar to solving for a bound wave

function in quantum mechanics as a power series in the
space coordinate x. The wave function in that case is
reliable only for small x.
What is y physically? Let us compute the scalar field

profile corresponding to the state jyi0, shifted back to the
defining Hilbert space using Df

0hyjD†
fϕðxÞDfjyi0

0hyjD†
fDfjyi0

¼ 0hyjϕðxÞ þ fðxÞjyi0
0hyjyi0

¼ fðxÞ þ 0hyjϕ0gBðxÞjyi0
0hyjyi0

¼ fðxÞ þ ygBðxÞ ¼ fðxÞ þ yffiffiffiffiffiffi
Q0

p ∂xfðxÞ

¼ f

�
xþ yffiffiffiffiffiffi

Q0

p
�
þOðy2Þ: ð3:30Þ

Recall that there is a moduli space of kink solutions fðx −
x0Þ related by a spatial translation x0. The parameter y is a
coordinate on this moduli space, and

x0 ¼ −y=
ffiffiffiffiffiffi
Q0

p
ð3:31Þ

is the translation. It is thus reasonable that a zero-momen-
tum kink has a wave function ψðyÞ which is independent of
y, as it is translation invariant.
Now we may interpret the expansion in mgy2. As Q0 ∼

m=g2 and y is proportional to the kink position x0 timesffiffiffiffiffiffi
Q0

p
, this is an expansion in mgQ0x20 ∼m2x20=g. So this is

an expansion in the distance x0 to the center of mass of the
kink, with convergence in the sense of an asymptotic series
when the kink position x0 varies by less than

ffiffiffi
g

p
=m. Here

1=m is the size of the classical kink solution itself. This
condition is physically reasonable, the semiclassical
approximation implies that the kink is, by at least a factor
of

ffiffiffi
g

p
, more localized than the size of the solution itself, so

that the solution is not too smeared by quantum effects.

D. Boosting the one-loop kink

In this subsection we will boost the one-loop kink
ground state, evaluating

eiαΛ
0 j0i0 ð3:32Þ

in perturbation theory. We start with the leading-order
contribution

jαi0 ¼ eiαΛ
0
1 j0i0 ¼ e−i

ffiffiffiffiffi
Q0

p
αϕ0 j0i0 ¼

Z
dye−i

ffiffiffiffiffi
Q0

p
αyjyi0:

ð3:33Þ

Alternately this state may be defined by

Bkjαi0 ¼ 0; π0jαi0 ¼ −
ffiffiffiffiffiffi
Q0

p
αjαi0: ð3:34Þ

Using (3.31), the phase in the wave function (3.33) may
be written

e−i
ffiffiffiffiffi
Q0

p
αy ¼ eiQ0αx0 : ð3:35Þ
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This phase is of the usual plane wave form eipx0 where the
momentum p is identified with Q0α. At low rapidity, α is
simply the velocity v and at leading order in the semi-
classical expansion,Q0 is the massM and so this is just the
Newtonian formula p ¼ Mv for the momentum.
Now let us try to include the next order correction to the

boost operator Λ. Consider

eiαðΛ0
1
þΛ0

2
Þj0i0 ¼ eiαð−

ffiffiffiffiffi
Q0

p
ϕ0þΛ0

2
Þj0i0; ð3:36Þ

where Λ0
2 is given in (3.23). The exponential consists of

quadratic and linear terms in the fields, and so it acts as a
Bogoliubov transformation. Physically, it ensures that the
boosted state at this order, is annihilated not by the normal
mode annihilation operators Bk, but rather by the annihi-
lation operators corresponding to boosted normal modes.

In practice, finding these boosted normal modes suffices
for calculating the action of various operators on the
boosted state.
On the other hand, expressing this state in terms of

j0i0 is quite complicated. The problem is that Λ0
1 and Λ0

2

do not commute, and their commutator does not com-
mute with Λ0

2. This series of commutators does not
truncate.
The first term in the series consists of terms in which Λ0

2

does not appear. This is the state jαi0 given in (3.33). We
will now calculate the subleading correction, in which Λ0

2

appears once in the exponential. First, note that the only
term in Λ0

2 which does not commute with Λ0
1 is

π0
PR dk

2πΔ
001
Bk

2
ω2
k
πk. So first let us include only that term,

using the Baker-Campbell-Hausdorff formula

exp
�
iα
�
−

ffiffiffiffiffiffi
Q0

p
ϕ0 þ π0

XZ dk
2π

Δ001
Bk

2

ω2
k

πk

��
j0i0

¼ expð−iα
ffiffiffiffiffiffi
Q0

p
ϕ0Þ exp

�
iαπ0

XZ dk
2π

Δ001
Bk

2

ω2
k

πk

�
exp

�
−
1

2

�
−iα

ffiffiffiffiffiffi
Q0

p
ϕ0; iαπ0

XZ dk
2π

Δ001
Bk

2

ω2
k

πk

��
j0i0

¼ expð−iα
ffiffiffiffiffiffi
Q0

p
ϕ0Þ exp

�
−
�
−iα

ffiffiffiffiffiffi
Q0

p
ϕ0; iαπ0

XZ dk
2π

Δ001
Bk

1

ω2
k

πk

��
j0i0

¼ expð−iα
ffiffiffiffiffiffi
Q0

p
ϕ0Þ exp

�
−iα2

ffiffiffiffiffiffi
Q0

p XZ dk
2π

Δ001
Bk

ω2
k

πk

�
j0i0

¼ exp

�
α2

ffiffiffiffiffiffi
Q0

p XZ dk
2π

Δ001
Bk

ωk
B†
k

�
jαi0

¼
�
1þ α2

ffiffiffiffiffiffi
Q0

p XZ dk
2π

Δ001
Bk

ωk
B†
k þO

�
α4

g2

��
jαi0: ð3:37Þ

This is an expansion in α2=g, and so it is expected to
converge when α2 ≪ g. This means for example that the
kink kinetic energy, which nonrelativistically is of order
Qα2 ∼mα2=g2, should be less than Qg ∼m=g. The kink
kinetic energy may be much larger than the meson mass m,

but still this expansion is only valid in the deep non-
relativistic regime. Similarly the kink momentum Qα ∼
mα=g2 should be less than m=g3=2.
Including the other terms in (3.23), again at linear order

in Λ0
2, the boosted state (3.36) becomes

�
1þ α2

ffiffiffiffiffiffi
Q0

p XZ dk
2π

Δ001
Bk

ωk
B†
kþiα

�XZ d2k
ð2πÞ2

Δ001
k1k2

ω2
k2
− ω2

k1

∶
�
πk1πk2 þ

ω2
k1
þ ω2

k2

2
ϕk1ϕk2

�
∶b −

XZ dk
2π

Δ001
Bk ϕ0ϕk

��
jαi0

¼
�
1þ α2

ffiffiffiffiffiffi
Q0

p XZ dk
2π

Δ001
Bk

ωk
B†
k − iα

�XZ d2k
ð2πÞ2

Δ001
k1k2

2

ωk1 − ωk2

ωk1 þ ωk2

B†
k1
B†
k2
− ϕ0

XZ dk
2π

Δ001
Bk B

†
k

��
jαi0:

The additional terms are the first terms in a series in α,
which is convergent whenever α ≪ 1. Thus this requires
the kink to be nonrelativistic. As g ≪ 1, this bound is
weaker than the bound required for the convergence of the
series in Eq. (3.37), and so it does not represent a new
constraint on the validity of our approximation.

The interaction terms Λ0
n>2 all commute with Λ0

1 but not
with Λ0

2, and so they can also be pulled out of the
expression (3.33) for α0. The plane wave normal ordering
of these terms is easily converted to normal mode normal
ordering using the Wick’s theorem of Ref. [26]. They
therefore simply add terms to the left hand side of (3.38)
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that are cubic and higher in ϕ0 and B†. For example, the
cubic term yields a factor of

i
αg
6

Z
dxxVðnÞðgfðxÞÞð∶ϕ3ðxÞ∶b þ 6IðxÞϕðxÞÞ; ð3:38Þ

where IðxÞ is

IðxÞ ¼
Z

dk
2π

jgkðxÞj2 − 1

2ωk
þ
X
S

jgSðxÞj2
2ωk

: ð3:39Þ

Acting on jαi0 one may drop the annihilation operators,
leaving the contribution

jαi⊃ iαg
XZ dk

2π

�Z
dxxVðnÞðgfðxÞÞIðxÞgkðxÞ

�
B†
kjαi0i

αg
6

XZ d3k
ð2πÞ2

�Z
dxxVðnÞðgfðxÞÞgk1ðxÞgk2ðxÞgk3ðxÞ

�
B†
k1
B†
k2
B†
k3
jαi0;

ð3:40Þ

plus terms where each subset of the k is replaced by zero
modes, so that the corresponding gk all become gB and B†

k
become ϕ0.

E. Boosting the next-order kink

At next order in g, the vacuum j0i1 consists of four terms,
proportional to ϕ2

0B
†
k1
j0i0, ϕ0B

†
k1
B†
k2
j0i0, B†

k1
j0i0, and

B†
k1
B†
k2
B†
k3
j0i0. The first two are universal in the sense that

they are entirely fixed by the translation invariance of
Dfj0i. The other two depend on the precise form of the
potential V. Let us consider here only the universal terms

j0i1 ¼
Q−1=2

0

2

XZ dk1
2π

ωk1Δ
001
k1B

ϕ2
0B

†
k1
j0i0

þQ−1=2
0

XZ d2k
ð2πÞ2 ωk1Δ

001
k1k2

ϕ0B
†
k1
B†
k2
j0i0: ð3:41Þ

The leading-order boost is

eiαΛ
0
1 j0i1¼

Q−1=2
0

2

XZ dk1
2π

ωk1Δ
001
k1B

ϕ2
0B

†
k1

Z
dyy2ei

ffiffiffiffiffi
Q0

p
αyjyi0

þQ−1=2
0

XZ d2k
ð2πÞ2ωk1Δ

001
k1k2

B†
k1
B†
k2

×
Z

dyye−i
ffiffiffiffiffi
Q0

p
αyjyi0: ð3:42Þ

Including the one-loop ground state this is

eiαΛ
0
1ðj0i0þj0i1Þ¼

Z
dy

�
1þy2

Q−1=2
0

2

XZ dk1
2π

ωk1Δ
001
k1B

B†
k1

þyQ−1=2
0

XZ d2k
ð2πÞ2ωk1Δ

001
k1k2

B†
k1
B†
k2

�

×e−i
ffiffiffiffiffi
Q0

p
αyjyi0: ð3:43Þ

We cannot yet calculate form factors, because our states
are non-normalizable, being momentum eigenstates. In

Sec. IV we will introduce wave packets states, whose
form factors will be calculated in a companion paper.
However, ignoring this problem for a moment, one leading
contribution to the naive form factor h0jD†

fϕðxÞDfjαi, after
the classical contribution equal to fðxÞ times the normali-
zation of the state, arises from 0h0jD†

fϕðxÞDf acting on the
last term in (3.43)

eiαðΛ0
1
þΛ0

2
Þj0i1 ⊃ iαΛ0

2e
iαΛ0

1 j0i1
⊃ iαΛ0

2

XZ dk0

2π
Δ001

Bk0
2

ω2
k0
π0πk0

Z
dyϕ0Q

−1=2
0

×
XZ d2k

ð2πÞ2
ωk1 − ωk2

2
Δ001

k1k2
B†
k1
B†
k2
e−i

ffiffiffiffiffi
Q0

p
αyjyi0

⊃
αffiffiffiffiffiffi
Q0

p
XZ d2k

ð2πÞ2 ðωk1 − ωk2Þ
Δ001

B−k2
ω2
k2

Δ001
k1k2

B†
k1
jαi0

¼ α

2
ffiffiffiffiffiffi
Q0

p
XZ d2k

ð2πÞ2 ðωk1 − ωk2ÞΔ100
B−k2Δ

001
k1k2

B†
k1
jαi0:

ð3:44Þ

The other contributions, arising from 1h0jD†
fϕðxÞDfjαi0

and from the Λ0
3 term in 0h0jD†

fϕðxÞDfjαi0, can be
computed similarly.

IV. A NORMALIZABLE WAVE PACKET

A. Two kinds of wave packets

Section III describes momentum eigenstates. These are
solitons whose wave packets are very delocalized with
respect to their size and so are effectively plane waves. In
this section we turn our attention to soliton wave packets
that are narrower than the soliton size, so that the quantum
profile is well approximated by the classical profile. In
particular, since the solitons are spatially limited, the
soliton states themselves will be normalizable. This will
allow us to define and to calculate, for the first time using
linearized-soliton perturbation theory, matrix elements of
soliton states.
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B. The simplest wave packet

Unlike the momentum eigenstates of Sec. III, localized
wave packets are not unique, not even after specifying a
finite number of quantum numbers. Also, unlike those, they
will be neither Hamiltonian nor momentum eigenstates.
Thus this construction is somewhat arbitrary. One may try
to make the states as close to Hamiltonian eigenstates as
possible, but whether that corresponds to the physical state
describing some specific soliton depends on its history.
We will therefore choose two somewhat arbitrary criteria

for our states. First, they should be as simple as possible.
Second, they should be sufficiently localized that our
perturbation theory converges in the sense of an asymptotic
series. In other words, the eigenvalue y of ϕ0 should be
supported in a region satisfying (3.29), which implies in
particular that the wave packet width should be smaller than
the inverse-meson width, which itself is roughly the size of
the classical soliton solution.
This motivates the following choice

jα; σi ¼ 1

ð2πÞ1=4 ffiffiffi
σ

p e−
ϕ2
0

4σ2 jαi0: ð4:1Þ

Of course, one may replace jαi0 by a better approximation
to jαi to obtain something closer to a momentum or
Hamiltonian eigenstate. For example one could include
more quantum corrections but we will not do this here.
Intuitively, the fact that we use j0i0 and drop j0i1 in our
construction, implies that the kink center of mass has
momentum but it is not correlated to that of its normal
mode cloud.
Here we are, as always, working in the kink Hilbert space

obtained by acting on the defining Hilbert space with D†
f.

Thus, in the defining Hilbert space, our wave packet is

Dfjα; σi: ð4:2Þ

We will fix our normalization using the convention

0hy1jy2i0 ¼ δðy1 − y2Þ: ð4:3Þ

Inserting (3.33) into (4.1) one finds

jα; σi ¼ 1

ð2πÞ1=4 ffiffiffi
σ

p
Z

dy exp

�
−

y2

4σ2
− i

ffiffiffiffiffiffi
Q0

p
αy

�
jyi0:

ð4:4Þ

In particular, the wave packet is normalized to unity

hα; σjD†
fDfjα; σi ¼ hα; σj1jα; σi

¼ 1

σ
ffiffiffiffiffiffi
2π

p
Z

dy exp

�
−

y2

2σ2

�
¼ 1: ð4:5Þ

C. Matrix elements

The main result of the present note is that matrix
elements of kink wave packets are easy to compute using
our formalism. Such matrix elements have applications to
many physical processes of interest, such as calculating the
probability to excite a shape mode during kink-meson
scattering, the calculation of form factors, kink-impurity
scattering, etc. In the present note we will calculate only
those matrix elements which are necessary to understand
the wave packet itself and to show which range of σ and α is
simultaneously compatible with the perturbative expansion
(3.29) and also allows the kink rapidity to be localized near
α. We will not consider applications to specific physical
processes.

1. The kink position

First, let us try to understand the meaning of σ by
computing matrix elements of ϕ0. Note that

hα; σjϕ0jα; σi ¼
1

σ
ffiffiffiffiffiffi
2π

p
Z

dy exp
�
−

y2

2σ2

�
y ¼ 0; ð4:6Þ

and so this wave packet is centered at y ¼ 0. Recalling
(3.31), this implies that the kink is centered at the base point
x0 ¼ 0. To evaluate its smearing, one calculates

hα; σjϕ2
0jα; σi ¼

1

σ
ffiffiffiffiffiffi
2π

p
Z

dy exp
�
−

y2

2σ2

�
y2 ¼ σ2: ð4:7Þ

Thus one sees that y has a variance of σ2 and a standard
deviation of σ. Using (3.31) one sees that x0 has a standard
deviation of

σx0 ¼
σffiffiffiffiffiffi
Q0

p : ð4:8Þ

Thus σ characterizes the coherent spatial smearing of the
kink wave packet. Recalling that the classical solution has a
width of 1=m, the semiclassical condition σx0 ≪ 1=m that
the quantum smearing is smaller than the classical length
scale is equivalent to

σ ≪
ffiffiffiffiffiffi
Q0

p
m

∼
1ffiffiffiffi
m

p
g
: ð4:9Þ

Note that this is weaker than the condition (3.29) that our
perturbation series converges. The perturbation series is an
expansion in, among other things,mgϕ2

0 and so it converges
when

σ ≪
1ffiffiffiffiffiffi
mg

p : ð4:10Þ
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2. The kink momentum

Let us begin with

hα;σjπ0jα;σi¼
−i

σ
ffiffiffiffiffiffi
2π

p
Z

dyexp

�
−

y2

2σ2

��
−

y
2σ2

− i
ffiffiffiffiffiffi
Q0

p
α

�

¼−
ffiffiffiffiffiffi
Q0

p
α: ð4:11Þ

Thus the expected momentum contained in the kink center
of mass is

hα; σj −
ffiffiffiffiffiffi
Q0

p
π0jα; σi ¼ Q0α: ð4:12Þ

This is just the leading order product of the mass times the
velocity, as expected for the nonrelativistic momentum.
The momentum contained in the normal modes is

described by the momentum operator [1]

P ¼ −
Z

dx∶πðxÞ∂xϕðxÞ∶a

¼
XZ d2k

ð2πÞ2 ∶ϕk1πk2∶bΔ
001
k1k2

þ π0
XZ dk

2π
ϕkΔ001

kB

− ϕ0

XZ dk
2π

πkΔ001
kB : ð4:13Þ

As a result of the normal mode normal ordering in the last
expression,

0hy1jPjy2i0 ¼ 0; ð4:14Þ

and so

hα; σjPjα; σi ¼ 0: ð4:15Þ
Physically, this means that the normal modes do not carry
any momentum in the state jσi. Similarly, as a result of the
B and B† in each term in Eq. (4.13),

hα; σjPπ0jα; σi ¼ hα; σjπ0Pjα; σi ¼ 0: ð4:16Þ

The total momentum carried by the wave packet is

hα; σjD†
fPDfjα; σi ¼ hα; σjðP −

ffiffiffiffiffiffi
Q0

p
π0Þjα; σi ¼ Q0α

ð4:17Þ

which again agrees with the nonrelativistic expression. So
the wave packet state Dfjα; σi indeed has its momentum
peaked about the desired value.

3. The kink momentum spread

The variance of the momentum is

hα; σjD†
fP

2Dfjα; σi − ðhα; σjD†
fPDfjα; σiÞ2

¼ hα; σjðP −
ffiffiffiffiffiffi
Q0

p
π0Þ2jα; σi −Q2

0α
2: ð4:18Þ

To claim that Dfjα; σi is a good approximation to a
momentum eigenstate, at least for some range of α and σ,
the standard deviation of the momentum should be less than
its expectation value. Let us next check this. First, note that

hα;σjQ0π
2
0jα;σi

¼−Q0σ
ffiffiffiffiffiffi
2π

p Z
dyexp

�
−

y2

2σ2

���
−

y
2σ2

− i
ffiffiffiffiffiffi
Q0

p
α

�
2

−
1

2σ2

�

¼ Q0

4σ2
þQ2

0α
2: ð4:19Þ

The last term cancels the last term in (4.18), leaving a
contribution to the variance of Q0=ð4σ2Þ.
Let us check this result against the uncertainty principle.

The kink center of mass has been localized to a spatial
distance of σ=

ffiffiffiffiffiffi
Q0

p
, leading to a momentum standard

deviation of order Oð ffiffiffiffiffiffi
Q0

p
=σÞ. This indeed is the square

root of the above contribution to the variance.
When the semiclassical approximation (4.9) holds, the

corresponding momentum uncertainty is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hα; σjQ0π

2
0jα; σi

q
¼

ffiffiffiffiffiffiffi
Q0

4σ2

r
≫

m
2
: ð4:20Þ

In other words, the kink center-of-mass momentum spread
is at least the meson mass. This means that our wave packet
will only be useful for processes involving relativistic
mesons.
There is one more contribution to the momentum spread,

arising from the kink’s normal mode cloud

hα; σjP2jα; σi ¼
XZ d4k

ð2πÞ2Δ
001
k1k2

Δ001
k3k4

hα; σj∶ϕk1πk2∶b∶ϕk3πk4∶bjα; σi þ
XZ d2k

ð2πÞ2 Δ
001
k1B

Δ001
k2B

hα; σjϕ2
0πk1πk2 jα; σi

−
XZ d2k

ð2πÞ2 Δ
001
k1B

Δ001
k2B

ðhα; σjϕ0π0ϕk1πk2 jα; σi þ hα; σjπ0ϕ0πk1ϕk2 jα; σiÞ

þ
XZ d2k

ð2πÞ2Δ
001
k1B

Δ001
k2B

hα; σjπ20ϕk1ϕk2 jα; σi: ð4:21Þ
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Note that

iþ hα; σjπ0ϕ0jα; σi
¼ hα; σjϕ0π0jα; σi

¼ −i
σ

ffiffiffiffiffiffi
2π

p
Z

dy exp

�
−

y2

2σ2

�
y

�
−

y
2σ2

− i
ffiffiffiffiffiffi
Q0

p
α

�
¼ i

2
:

ð4:22Þ

Therefore the matrix elements are

hα; σj∶ϕk1πk2∶b∶ϕk3πk4∶bjα; σi

¼ hα; σjB−k1
2ωk1

B−k2
2

B†
k3
ωk4B

†
k4
jα; σi

¼ ωk4

4ωk1

ð2πÞ2ðδðk1 þ k3Þδðk2 þ k4Þ

þ δðk1 þ k4Þδðk2 þ k3ÞÞ; ð4:23Þ

and

hα;σjϕ2
0πk1πk2 jα;σi¼

ωk2

2
hα;σjϕ2

0B−k1B
†
k2
jα;σi

¼ωk2σ
2πδðk1þk2Þ

hα;σjπ20ϕk1ϕk2 jα;σi¼
1

2ωk1

hα;σjπ20B−k1B
†
k2
jα;σi

¼
�

1

4σ2
þQ0α

2

�
πδðk1þk2Þ

ωk1

; ð4:24Þ

and finally

hα; σjϕ0π0ϕk1πk2 jα; σi ¼
iωk2

2

i
2ωk1

hα; σjBk1B
†
k2
jα; σi

¼ −
πδðk1 þ k2Þ

2

hα; σjπ0ϕ0πk1ϕk2 jα; σi ¼
�
−i
2

��
−i
2

�
hα; σjBk1B

†
k2
jα; σi

¼ −
πδðk1 þ k2Þ

2
: ð4:25Þ

Inserting these back into (4.21), one finds

hα; σjP2jα; σi

¼ 1

4

XZ d2k
ð2πÞ2 jΔ

001
k1k2

j2 ωk2 − ωk1

ωk1

þ 1

2

XZ dk
2π

jΔ001
kB j2

�
σ2ωk þ 1þ 1

4σ2ωk
þQ0α

2

ωk

�

¼ 1

8

XZ d2k
ð2πÞ2 jΔ

001
k1k2

j2 ðωk2 − ωk1Þ2
ωk1ωk2

þ 1

2

XZ dk
2π

jΔ001
kB j2

��
σ

ffiffiffiffiffiffi
ωk

p þ 1

2σ
ffiffiffiffiffiffi
ωk

p
�

2

þQ0α
2

ωk

�
:

ð4:26Þ
The symbolΔ is independent of g and σ. Therefore the first

term is of order m2. This means that this term, like
the kink center of mass, yields a contribution to the
momentum smearing of order the meson mass m. But are
these integrals finite? For a gappedmodel, gBðxÞ falls to zero
exponentially, and so the integrals with Δ001

kB converge. In
general, Δ001

k1k2
contains a ðk1 − k2Þδðk1 þ k2Þ term arising

from the high jxj tail ofgkðxÞ, where it becomes a planewave.
The δ function in eachΔ is canceled by a factor ofωk2 − ωk1
in (4.26). In the ϕ4 [25] and Sine-Gordon models [1], Δ001

k1k2
also contains a term of the form ðk2 − k1Þ2cschðπðk1þ
k2Þ=mÞ=ðωk1ωk2Þ. The second-order pole at k1 ¼ −k2 is
removed by the second-order zero in ðωk2 − ωk1Þ2 in (4.26).
Δ2 falls exponentially as jk1 þ k2j increases, and so any
divergencemust occur along the strip at finite k1 þ k2 as jk1j
goes to∞. However here there are four powers of ωk in the
denominator, and also ωk2 − ωk1 shrinks, and so this con-
tribution to the integral is also quite convergent. Thus we
conclude that, at least in the Sine-Gordon and ϕ4 models,
these integrals are convergent and so can, up to a constant of
order unity, be estimated by the corresponding power of m
obtained from dimensional analysis.
What about the last line of (4.26)? As σ has dimensions

of mass−1=2, the terms are of order m3σ2, m=σ2, and m2.
The bound (4.9) implies that the first is less than mQ0 ∼
m2=g2 while the second is greater than m2g2. Thus, the
standard deviation of the momentum is bounded from
below by mg for wave packets of the form (4.1).
The total variance is

hα; σjD†
fP

2Dfjα; σi −Q2
0α

2

¼ hα; σjðP −
ffiffiffiffiffiffi
Q0

p
π0Þ2jα; σi −Q2

0α
2

¼ Q0

4σ2
þ 1

8

XZ d2k
ð2πÞ2 jΔ

001
k1k2

j2 ðωk2 − ωk1Þ2
ωk1ωk2

þ 1

2

XZ dk
2π

jΔ001
kB j2

��
σ

ffiffiffiffiffiffi
ωk

p þ 1

2σ
ffiffiffiffiffiffi
ωk

p
�

2

þQ0α
2

ωk

�

∼O

�
m

g2σ2

�
þOðm2Þ þOðm3σ2Þ þO

�
m
σ2

�
: ð4:27Þ
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TheOðm2Þ term never dominates and, as g ≪ 1, there is no
range of parameters for which the Oðm=σ2Þ term domi-
nates. The minimum of the variance is Oðm2=gÞ which
occurs when σ ∼ 1=

ffiffiffiffiffiffi
mg

p
corresponding to σx0 ∼

ffiffiffi
g

p
=m.

This corresponds to a spatial smearing which is smaller
than the classical solution by of order

ffiffiffi
g

p
. It is just at the

edge of the regime of validity (4.10) of our perturbative
expansion in gϕ2

0, but well within the semiclassical
regime (4.9).

4. When is the smearing less than the momentum?

This limits the kink rapidities to which our wave packets
may be applied. Clearly the rapidity must be much less than
unity for the nonrelativistic approximation, which is
implied by the semiclassical expansion, to apply.
However in the nonrelativistic regime the momentum is
Q0α ∼mα=g2. The condition Q0α ≫ m=

ffiffiffi
g

p
, that the

momentum exceeds the momentum spread, then yields

1 ≫ α ≫ g3=2: ð4:28Þ

Had this interval been empty, our choice of wave packet
jα; σi would have needed to be revisited. In particular, the
momentum and kinetic energy satisfy

m
g2

≫ Q0α ≫
mffiffiffi
g

p ;
m
g2

≫ Q0

α2

2
≫ mg: ð4:29Þ

Note that this lower bound on the energy from smearing is
smaller than the one-loop contribution to the energy Q1,
which is of order m, but it is larger than the two-loop
contribution mg2. Thus, for a wave packet of the form
(4.27), it is not useful to consider two-loop corrections to
energies, as these are subdominant to the smearing caused
by the wave packet.
For smaller rapidities the momentum width will exceed

its central value for any semiclassical kink wave packet.
Note that there is no such lower bound on α using the
nonnormalizable construction of Sec. III, where semi-
classical expansion converges, in the usual sense, to
momentum eigenstates.
It is plausible that if we improved the wave packet jα; σi

definition in (4.1), for example by using a higher-order
approximation to jαi than jαi0, the hP2i term in (4.27)
would not be present or would be smaller. This may allow
us to extend the wave packet approach down to lower
rapidities nearing the bound of α ∼ g2 from (4.20) where
the kink momentum is of order the meson mass. In this case
the contribution of the wave packet smearing to the energy
would be of the same order mg2 as the two-loop
corrections.

V. REMARKS

Linearized soliton perturbation theory allows for
fast and reliable calculations of quantities in soliton
sectors of quantum field theories. The limitation is that
it is obtained via a linear expansion about a single base
point in moduli space. A Hamiltonian eigenstate is a
superposition of solitons over the entire moduli space,
and so this state necessarily extends beyond the validity
of the expansion. As a result, the applications of this
method have been limited to expansions of states near
the base point and quantities, like the energy spectrum,
that are uniquely determined by the solution in any
small region.
In this paper we extended linearized soliton perturba-

tion theory to soliton states with momentum. We did this
both for Hamiltonian eigenstates, which are spread over
the entire moduli space, and also for localized wave
packets. Our wave packets are normalizable, which means
that, for a sufficiently small size, the linearized perturba-
tion theory converges in the sense of an asymptotic series.
Furthermore, for the first time it allows us to compute
matrix elements.
Now that we have both finite momentum and also

normalizable states, our next task will be to compute form
factors. These will be unrelated to the form factors that are
well known in the Sine-Gordon model [27–29], which
apply to Hamiltonian eigenstates. Instead they will be form
factors for solitons whose smearing is smaller than their
classical size, which is arguably a more common situation
in Nature than infinitely-extended Hamiltonian eigenstates.
It will, to our knowledge, be the first time that soliton form
factors have been calculated in this strongly semiclassical
regime.
Beyond form factors, this formalism allows for a fast

calculation of various matrix elements of interest. For
example, by including a B† on one side of a form factor,
one arrives at a matrix element for the excitation of a
normal mode during meson-kink scattering. One can
similarly calculate all of the matrix elements necessary
to describe a number of aspects of meson-kink scattering,
kink excitation, kink deexcitation, or even the effects of
quantum quenches on kinks. However, the intrinsic smear-
ing of our wave packets (4.1) implies that we will only be
able to treat the scattering of nonrelativistic kinks
with ultrarelativistic mesons. In contrast, progress towards
form factors of relativistic kinks has recently appeared
in Ref. [30].
Another application is the construction of an effective

moduli space Hamiltonians in models without Poincaré
invariance, such as kinks in backgrounds with impurities
[7]. These depend on both the position and also the velocity
in moduli space, and so can be derived by calculating the
energies of moving kinks.
The extension of linearized soliton perturbation theory to

states with momentum is a necessary step on the road to a
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treatment of explicitly time-dependent solitons. A first
quantum treatment of such solutions has recently been
presented in Ref. [31]. Similarly, one could attempt to apply
this formalism to theories with noncanonical kinetic terms.
Here the form of H0

2 may differ. Quantum corrections to
kinks in such theories have recently been considered in
Ref. [32] with normal modes systematically investigated in
Refs. [33,34].
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APPENDIX: DELTA SYMBOLS

We will introduce some notation

Δlmn
ij ¼

Z
dxxl∂m

x giðxÞ∂n
xgjðxÞ: ðA1Þ

Not all of these are independent. For example, integrating
by parts

Δ001
ij ¼ −Δ001

ji ; ðA2Þ

and one easily sees that all Δlmm are symmetric, and
that the symbol is symmetric under the interchange of
fm; ig with fn; jg. Using the wave equation (2.10) one can
show

∂xðgiðxÞ∂xgjðxÞ − gjðxÞ∂xgiðxÞÞ
¼ giðxÞ∂2

xgjðxÞ − gjðxÞ∂2
xgiðxÞ

¼ ðω2
i − ω2

jÞgiðxÞgjðxÞ; ðA3Þ

and so, integrating by parts3

Δ100
ij ¼

Z
dxxgiðxÞgjðxÞ

¼−
Z

dx
ðgiðxÞ∂xgjðxÞ−gjðxÞ∂xgiðxÞÞ

ðω2
i −ω2

jÞ
¼ 2Δ001

ij

ðω2
j −ω2

i Þ
:

ðA4Þ

Using the completeness (2.12) of the normal modes, one
can prove a number of identities for bilinears of Δ symbols
such as

XZ dk0

2π
Δ100

Bk0Δ
001
B−k0 ¼

1

2
;

Δ100
BBΔ001

Bk þ
XZ dk0

2π
ðΔ100

Bk0Δ
001
−k0kþΔ100

k0k Δ
001
−k0BÞ¼ 0;

Δ100
Bðk1Δ

001
k2ÞBþ

XZ dk0

2π
Δ100

ðk1k0Δ
001
k2Þ−k0 ¼ πδðk1þk2Þ;

ðA5Þ
where we remind the reader that

PR
includes a sum over all

shape modes and the parenthesis on indices represent
symmetrization with a factor of 1=2. Similarly one can show

XZ dk0

2π
Δ111

Bk0Δ
001
B−k0 ¼

Δ011
BB

2
;

Δ111
BBΔ001

Bk þ
XZ dk0

2π
ðΔ111

Bk0Δ
001
−k0kþΔ111

k0k Δ
001
−k0BÞ¼Δ011

Bk ;

Δ111
Bðk1Δ

001
k2ÞBþ

XZ dk0

2π
Δ111

ðk1k0Δ
001
k2Þ−k0 ¼

Δ011
k1k2

2
: ðA6Þ
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