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Gravitational wave (GW) measurements of physical effects such as spin-induced quadrupole moments
can distinguish binaries consisting of black holes from nonblack hole binaries. While these effects may be
poorly constrained for single-event inferences with the second-generation detectors, combining informa-
tion from multiple detections can help uncover features of nonblack hole binaries. The spin-induced
quadrupole moment has specific predictions for different types of compact objects, and a generalized
formalism must consider a population where different types of compact objects co-exist. In this study, we
introduce a hierarchical mixture-likelihood formalism to estimate the fraction of nonbinary black holes in
the population. We demonstrate the applicability of this method using simulated GW signals injected into
Gaussian noise following the design sensitivities of the Advanced LIGO Advanced Virgo detectors. We
compare the performance of this method with a traditionally-followed hierarchical inference approach.
Both the methods are equally effective to hint at inhomogeneous populations, however, we find the
mixture-likelihood approach to be more natural for mixture populations comprising compact objects of
diverse classes. We also discuss the possible systematics in the mixture-likelihood approach, caused by
several reasons, including the limited sensitivity of the second-generation detectors, specific features of the
astrophysical population distributions, and the limitations posed by the waveform models employed.
Finally, we apply this method to the LIGO-Virgo detections published in the second GW transient catalog
(GWTC-2) and find them consistent with a binary black hole population with fnbh estimated to be ≤ 0.29 at
90% credibility.

DOI: 10.1103/PhysRevD.105.104066

I. INTRODUCTION

Gravitational-wave (GW) observations are slated to
unravel a plethora of compact binaries in the coming years.
The LIGO-Virgo-KAGRA Collaboration has already
reported more than ninety significant detections includ-
ing binary black holes (BBHs) [1–11], binary neutron
stars [12,13] and neutron star–black hole mergers [14],

moreover, this catalogue of events have been updated by
several other groups [15–18]. However, one may wonder if
there are compact objects other than black holes (BHs) and
neutron stars (NSs) that are made of exotic matter or
described by some unknown physics.1 There are theoretical
predictions of exotic compact objects which can mimic
properties of BHs and are referred as BHmimickers [19,20]
(also known as non-BH compact objects). Some examples
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1White dwarfs, whose sizes are larger than their gravitational
radii, are not considered as compact objects in current gravita-
tional wave astronomy.
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include boson stars [21–29], fermionic stars [30–35],
multicomponent stars [36,37], dark energy stars [38–43]
and dark matter stars [36,44–48]. The unknown intrinsic
properties of these objects are expected to be imprinted in
the GWs they emit and hence GW observations of such
objects provide a unique way to probe their presence
[49–52].
The compact binary mergers observed by the advanced

LIGO [53,54] and the advanced Virgo detectors [55] in the
first three observing runs are all consistent with mergers
composed of BHs and NSs [2–13,56]. The current sensi-
tivity of detectors is insufficient to rule out the presence of
signals from exotic compact objects in the data. With more
of such detections in the future [53,57–65], one of the
important science goals would be to look for the existence
of exotic compact objects in the data [66]. These obser-
vations may allow us to constrain what fraction of the
detected events could be exotic compact objects. In turn,
this can shed light on some of the unexplored physics
realms concerning exotic particles and dark matter physics
[39,50–52,67–91].
There have been remarkable progress in the modeling of

BBH waveforms in the inspiral [92–108], merger [109] and
ringdown [110,111] regimes in general relativity (GR).
There has also been much progress in modeling binaries
containing neutron stars [112–114]. But the same is not true
for binaries of BH mimickers, where the progress has been
slow, primarily due to the mathematical complications
these objects pose in the modeling [51,115–118].
Therefore, looking for the exact imprints of the BH
mimicker models in the observed GW signals is difficult.
In the post-Newtonian (PN) formalism, the effects dis-

tinguishingBHs fromBHmimickers arewell studied. These
effects include the deformations of the compact objects due
to the tidal field of the companion [50,52], or its spinning
motion and the effects of tidal heating [84–87]. A number of
tests have been proposed to distinguish BH mimickers
from BHs using parametrizations of such physical effects.
Examples include the tests based on the tidal deformability
measurements [12,50–52,71–73,78–83,119–121], tidal
heating parameter estimations [84–87,122], etc. There are
also methods based on the inference of the late-ringdown
echo parameters [123].
In this work, we follow a method that uses spin-induced

quadrupole moment parameter to distinguish BBHs from
binaries of BH mimickers, as outlined in [49,124]. The
spin-induced quadrupole moment parameter has a unique
value, unity, for Kerr BH according to the no-hair con-
jecture [125–127], whereas, for any other compact object,
its value can be different from unity. A Bayesian framework
to measure this parameter has been comprehensively
demonstrated in a previous study [66] using simulated
GW signals. Moreover, the constraints on the spin-induced
quadrupole moment parameters from the GWTC-2 events
are reported in [128]. In this work, our focus is on methods

to combine their measurements from multiple GW detec-
tions, which would be key in enhancing statistical evidence
in favor of or against BH mimickers. In particular, the fact
that BHs and BH mimickers can co-exist in the universe,
points to the need for having a generic framework that can
unravel how various compact objects are distributed in the
universe.
We discuss two methods to combine measurements from

multiple detections. The first is a so-called hierarchical
combining approach in which the spin-induced quadrupole
moment parameters of the detected population are assumed
to follow a Gaussian distribution and use a hierarchical
framework to infer the moments of the distribution. A
Gaussian is among the simplest choices that can approxi-
mate a unimodal distribution with just the statistical mean
and standard deviation. This approach is similar to the one
proposed in [129] and has been used in [130] to infer the
distribution of spin-induced quadrupole moment parame-
ters for the LIGO-Virgo detected events. The second
method, namely the mixture-likelihood approach, explic-
itly assumes the population to be a mixture of BBH and
non-BBH mergers by parametrizing the fraction of events
in the respective categories. Specifically, we use a param-
eter fnbh to quantify the fraction of non-BBHmergers in the
detected population. Note that the mixture-likelihood
approach is also hierarchical in nature, however, for the
sake of name distinction, the notion of hierarchical is
henceforth used only for the former method.
The applicability of the two approaches are demon-

strated using simulated GW signals from binaries of
compact objects of diverse classes. The hyperparameters
that are used in both the methods can effeciently signal at
the non-BH subpopulations that are present in the detected
population. Furthermore, the mixture-likelihood approach
captures the complexity in the population powerfully and
can capture the fraction of events that are from non-BH
subpopulations. However, some systematics are noticed
with the mixture-likelihood approach, which could be
attributed to the limitations posed by the current detector
sensitivities and some of the intrinsic properties of the
astrophysical population.
The rest of this paper is organized as follows. We review

the GW measurements of spin-induced quadrupole
moment parameters in Sec. II. Section III describes the
statistical methods employed in this study, including
the hierarchical and the mixture-likelihood approaches.
In Sec. IV, we detail the properties of simulated population
of compact binary mergers used to for this analysis.
We discuss the main findings in Sec. V and discuss the
systematic effects in Sec. VI. We conclude the study in
Sec. VII with a discussion on the future aspects. We also
provide an Appendix on how the mixture-likelihood
approach would benefit by including astrophysical
models of spin-induced quadrupole moments into the
framework.
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II. REVIEW: GRAVITATIONAL-WAVE
MEASUREMENTS OF SPIN-INDUCED

MULTIPOLE MOMENTS

The spin-induced multipole moments arise due to the
spinning motion of the compact objects in the binary
and these effects appear in the gravitational waveform
along with the self-spin terms. The leading order effect
[49,98,131] at the second post-Newtonian (2PN) order can
be schematically represented in the following form,

Q ¼ −κχ2m3; ð1Þ

whereQ is the spin-induced quadrupole moment scalar, κ is
the spin-induced quadrupole moment parameter, m is the
mass and χ is the dimensionless spin parameter, defined as
χ⃗ ¼ S⃗=m2 where S⃗ is the spin angular momentum of the
compact object.
The spin-induced quadrupole moment parameter κ has a

unique value, unity, for Kerr BH according to the no-hair
conjecture [125–127], whereas, for any other compact object,
its value can be different from unity. For example, for
spinningNSs, thevalue of κ varies between∼2–14depending
upon the internal structure of the star [88–90]. Also, calcu-
lations show that the value of κ can vary roughly between 10
to 150 for boson stars [28] while for gravastars [132] κ can
be negative as well [133,134]. In Fig. 1 we compare
gravitational waveforms of BBHs (i.e., κ ¼ 1) and non-
BBHs (κ ≠ 1) for two different values of spin parameters.

Both the binaries have same masses ðm1; m2Þ ¼
ð20; 10Þ M⊙ while non-BBHs have ðκ1; κ2Þ ¼ ð40; 25Þ.
Highly spinning binaries have ðχ1; χ2Þ ¼ ð0.6; 0.5Þ while
slowly spinning binaries have ðχ1; χ2Þ ¼ ð0.15; 0.1Þ, assum-
ing the spins aligned to the orbital angular momentum
axis. We used IMRPhenomPv2 [135–137] waveform
model to simulate the time-domainGWsignal.We see that as
the spins of the binary components increase, the dephasing
between the BBH and non-BBH waveforms increases.
A Bayesian framework to measure the κ parameters

was demonstrated in [66], to constrain the nature of the
stellar mass compact binaries detected by Advanced
LIGO and Advanced Virgo detectors. It was shown that
the spin-induced quadrupole moment measurements can be
used to distinguish the observed BBHs from non-BBHs
for inspiral dominated systems with moderate to high
spins [66].
In this framework, one uses BBHwaveformswhich allow

the spin-induced quadrupole moment coefficient κ to vary
around the expected Kerr value as κ ¼ 1þ δκ depending
upon the black hole mimicker model assumptions. Here the
parametrized deformations (labeled as δκ) represents the
deviations from the BH nature. It is pointed out in [66] that
the simultaneousmeasurement of δκ1 and δκ2 is difficult due
to strong correlations between binary parameters in the
gravitational waveform. In order to capture the deviation
from the BBH nature Ref. [66] proposed to measure their
symmetric combination δκs ¼ ðδκ1 þ δκ2Þ=2, assuming the
antisymmetric combination δκa ¼ ðδκ1 − δκ2Þ=2 vanishes

FIG. 1. Time-domain gravitational waveforms for a fast-spinning (top) and slowly-spinning (bottom) compact binary mergers with
component masses ðm1; m2Þ ¼ ð20; 10Þ M⊙. The spins are aligned with the orbital angular momentum vectors (no precession
modulations) and have the dimensionless spin magnitudes ðχ1; χ2Þ ¼ ð0.6; 0.5Þ for the top and ðχ1; χ2Þ ¼ ð0.15; 0.1Þ for the bottom
panels. The black (dash-dot) traces are BBH waveforms, and the red (solid) traces are non-BBH waveforms with spin-induced
quadrupole moment parameters assuming δκ1 ¼ 40 and δκ2 ¼ 25 for component compact objects. The time-domain waveforms are
generated using backward fast Fourier transform (FFT) of the frequency-domain waveform model, IMRPhenomPv2. For each
waveform, the time t (x axis) is set to zero at a point when the instantaneous frequency of the waveform is 40 Hz, and the waveforms are
also aligned to be in phase at that point.
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for a BBH signal. The δκa ¼ 0 assumption also implies that
the individual compact objects in the binary systemare of the
same nature. For caseswith any violation of this assumption,
we would expect an offset in δκs posterior distribution, and
such cases need more investigations keeping δκ1 and δκ2 as
separate parameters. (See [124] for a more detailed dis-
cussion). The applicability of this test has been further
explored in the context of expected detections from the third
generation GW detectors [138].

III. FORMALISM

In a universe where all the massive compact objects are
BBHs, δκs assumes the unique and universal value δκs ¼ 0.
However, if we admit the possibility that compact objects
come in many flavors, this universality assumption would
be wrong, and the inference on δκs obtained by naively
multiplying each observation’s likelihood would lead to
erroneous conclusions. Even for the binaries that are made
up of some specific class of exotic compact objects with a
unique equation of state, the value of δκs could vary
depending on the intrinsic properties such as masses and
spins as is found to be the case for boson stars [28]. In such
a case where the value of δκs can vary from event to event,
one would aim to infer the underlying distribution of δκs
associated with the compact binary population. This is the
context in which we discuss the two combining approaches
and their applicability.
Below, we introduce our notations for the Bayesian

inference variables, followed by the formalisms for hier-
archical combining and mixture-likelihood approach.

A. Bayesian inference: Basic notations

The first step in our formalism is to perform the Bayesian
parameter estimation of all the detected GW events. Here,
we briefly overview the Bayesian inference method
employed to estimate the spin-induced quadrupole moment
parameter, δκs. We define θ⃗ as the vector representing the
set of parameters that describes a BBH merger on quasi-
circular orbits. This includes masses, spins, luminosity
distance, time and phase of arrival, and the angles describ-
ing the sky-location and binary orientation. The data from
the jth event is labeled as dj, and the set of data from N

events together is denoted as d⃗.H is our hypothesis that the
data dj carries a signal hjðθ⃗; δκsÞ plus colored Gaussian
random noise. Under this hypothesis, the posterior for the
binary parameters can be written as,

pðθ⃗; δκsjdj;HÞ ¼ πðθ⃗; δκsjHÞLðdjjθ⃗; δκs;HÞ
Znbh

j

; ð2Þ

where Lðdjjθ⃗; δκs;HÞ is the likelihood of dj being the data

given the parameters fθ⃗; δκsg, and πðθ⃗; δκsjHÞ is the
prior probability of parameters fθ⃗ · δκsg. The evidence

Znbh
j ¼ PðdjjHÞ is obtained by marginalizing the like-

lihood over the prior,

Znbh
j ¼

Z
πðθ⃗; δκsÞLðdjjθ⃗; δκsÞdθ⃗dδκs; ð3Þ

where, the superscript nbh stands for the non-BBH
hypothesis and we have dropped H for brevity. The
BBH hypothesis is a special case obtained by fixing
δκs ¼ 0 in the likelihoodLðdjjθ⃗; δκs ¼ 0Þwhich we simply

write as Lðdjjθ⃗Þ and the corresponding evidence can be
expressed as,

Zbh
j ¼

Z
πðθ⃗ÞLðdjjθ⃗Þdθ⃗: ð4Þ

The posterior on δκs can be obtained by marginalizing
Eq. (2) over the BBH parameters as

pðδκsjdj;HÞ ¼
Z

pðθ⃗; δκsjdj;HÞdθ⃗: ð5Þ

The IMRPhenomPv2 signal model [135–137] used for
the Bayesian analysis includes δκs as a free parameter along
with the BBH parameters θ⃗. We assume a uniform prior on
δκs in ½−500; 500�. For the component masses, we consider
uniform priors on in the range ½4; 100� M⊙. The priors on
component spin-magnitudes are uniform in [0,1] and their
orientations assumed to be isotropic. We choose the
luminosity distance prior to be uniform in comoving
volume ranging between ½10; 5000� Mpc. The parameter
estimation is performed using the lalinference_nest
sampler available in the LALInference library package
[139]. The posterior samples as well as the Bayesian
evidences in Eq. (3) and (4) are obtained as raw outputs
from lalinference_nest.
Below, we discuss the two different approaches for

combining δκs measurements from the Bayesian analysis
of individual events.

B. Hierarchical combining approach: Population
distribution of δκs

In this approach, we assume that δκs follows some
underlying distribution governed by a set of hyperpara-
meters α⃗, similar to the method demonstrated in [129]. The
posterior on α⃗ given the data d⃗ can be written as

pðα⃗jd⃗Þ ∝ Lðd⃗jα⃗Þpðα⃗Þ; ð6Þ

where the proportionality becomes equality by normalizing
the right-hand side to unity. The prior pðα⃗Þ is taken to be
flat assuming no prior knowledge of the underlying
distribution of the hyperparameters α⃗. Here Lðd⃗jα⃗Þ is the
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likelihood function which can be obtained as a product of
likelihoods of α⃗ from individual events, as

Lðd⃗jα⃗Þ ¼
YN
j¼1

Lðdjjα⃗Þ: ð7Þ

which can be further expanded by rewriting the likelihood
for the jth event as a marginalization over the δκs parameter,

Lðd⃗jα⃗Þ ¼
YN
j¼1

�Z
LðdjjδκsÞpðδκsjα⃗Þdδκs�: ð8Þ

In the above equation, the term LðdjjδκsÞ in the integral is
the likelihood of δκs for the jth event, marginalized over the
BBH parameters. Since we use a uniform prior on δκs in the
single-event analyses, this likelihood will be the same as
the posterior given in Eq. (5). The other term in the integral
of Eq. (8), pðδκsjα⃗Þ is the predicted distribution of δκs
given the hyperparameters α⃗. In this study, as mentioned
earlier, we assume a Gaussian distribution with hyper-
parameters α⃗ ¼ fμ; σg which implies to,

pðδκsjα⃗Þ ¼ N ðμ; σ2Þ: ð9Þ

In this study, we assume μ and σ to have uniform priors in
the ranges ½−150; 150� and [0, 300] respectively and we use
the Dynesty sampler from Bilby to sample over μ and σ
as per the likelihood given in Eq. (8).
Once the posterior of μ and σ (or α⃗ in general) is

computed, the population distribution of δκs can be
obtained as,

pðδκsjd⃗Þ ¼
Z

pðδκsjα⃗Þpðα⃗jd⃗Þdα⃗; ð10Þ

where we have marginalized δκs over the inferred
distributions of the hyperparameters α⃗.

C. Mixture-likelihood approach: Estimating the
fraction of non-BBH events

Unlike the hierarchical approach in the preceding sec-
tion, here we ask a more generic question “what fraction of
the detected population are from non-BBH events?”. We try
to answer this with amixture-likelihoodwhich parametrizes
the presence of non-BBH events as fnbh, defined as the
fraction of total detected signals that are from non-BBH
events. Mixture likelihoods have been used in literature for
various problems, see e.g., Ref. [140].
Let us start with the single-event likelihood expression

for the non-BBH model,

Lðdjjθ⃗; δκsÞ ∝ exp

�
−
1

2
ðdj − hjðθ⃗; δκsÞjdj − hjðθ⃗; δκsÞÞ

�
:

ð11Þ

Here ðjÞ represents the noise-weighted inner product,
defined as ðxjyÞ ¼ 4ℜ

R∞
0 xðfÞ�yðfÞ=SnðfÞdf, where the

� indicates complex conjugate and SnðfÞ is the one-sided
power spectral density (PSD) of the noise. Suppose a
fraction fnbh of the overall detectable signals are from non-
BBH events, then the probability of any single event being
a non-BBH will be equal to fnbh. On the complementary
side, the probability of any event being a BBHwill be equal
to (1 − fnbh), as BBH and non-BBH are two mutually
exclusive and exhaustive2 cases. To take into account these
possibilities, we can rewrite the likelihood as a sum of the
BBH and non-BBH likelihoods weighted by their respec-
tive probabilities as

Lðdjjθ⃗; δκs; fnbhÞ ¼ ð1 − fnbhÞLðdjjθ⃗Þ þ fnbhLðdjjθ⃗; δκsÞ:
ð12Þ

Equation (12) is the single-event mixture-likelihood.
Marginalizing over θ⃗ and δκs, the above expression
becomes,

LðdjjfnbhÞ¼ ð1−fnbhÞ×
Z

πðθ⃗ÞLðdjjθ⃗Þdθ⃗

þfnbh ×
Z

πðθ⃗;δκsÞLðdjjθ⃗;δκsÞdθ⃗dδκs; ð13Þ

where the integrals on the rhs are the evidences for the BBH
and non-BBH models, defined in Eq. (4) and (3).
Equation (12) then becomes,

LðdjjfnbhÞ ¼ ð1 − fnbhÞZbh
j þ fnbhZnbh

j : ð14Þ

Note that in going from Eq. (13) to Eq. (14), we have used a
uniform prior on δκs as described in Sec. III A. In Sec. VI,
we will investigate how the prior choices would affect the
results.
For a population of N detected events, the combined

likelihood can be written as,

Lpopðd⃗jfnbhÞ ¼
YN
j¼1

ðð1 − fnbhÞZbh
j þ fnbhZnbh

j Þ: ð15Þ

Equation (15) is themixture-likelihood for a population and
can be evaluated for any value of fnbh, by only knowing the

2Alternatively, one can consider specific non-BH models such
as boson stars and/or gravastars. However, these models, together
with the BH model, would still be nonexhaustive as yet unknown
non-BH models could possibly exist.
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evidences of BBH and non-BBH models for all the events
in the population. With the above likelihood evaluated, we
can express the posterior on fnbh as,

pðfnbhjd⃗Þ ∝ πðfnbhÞLpopðd⃗jfnbhÞ; ð16Þ

where the prior on fnbh can be taken as uniform, Uð0; 1Þ
owing to the most generic and uninformative case.
Additionally, one can also define three mutually exclu-

sive population-hypotheses based on the fnbh values.
(1) fnbh ¼ 0: “all the events are BBHs,”
(2) 0 < fnbh < 1: “the population is a mixture of BBH

and non-BBH events,”
(3) fnbh ¼ 1: “all the events are non-BBHs.”

It is straightforward to compute the Bayes factors between
any of these two hypotheses. The Bayes factor between “all
are BBH” and “mixture of BBH and non-BBH events” can
be obtained as

BBBH
mix ¼ Lpopðd⃗jfnbh ¼ 0ÞR

0<fnbh<1
Lpopðd⃗jfnbhÞπðfnbhÞdfnbh

; ð17Þ

where the denominator included marginalizing the like-
lihood in Eq. (15) over the relevant range of fnbh. Similarly,
the Bayes factor between “all are BBH” and “all are non-
BBH” events can be obtained as,

BBBH
non−BBH ¼ Lpopðd⃗jfnbh ¼ 0Þ

Lpopðd⃗jfnbh ¼ 1Þ
: ð18Þ

IV. SIMULATED COMPACT
BINARY POPULATION

To demonstrate the performance of different combining
approaches, we simulate a set of compact binary popula-
tions that include only BBH signals, only non-BBH
signals, and different types of mixtures that include
BBH and non-BBH signals at different proportions. In
the subsections below, we describe the steps we followed to
construct the populations.

A. Masses and spins

(1) We first choose a representative mass model from
which we draw the component masses. The primary
masses (m1) follow a distribution what is referred to
as Model-C in [141] which is a power-law function
smoothed at the lower mass end and embedded with
a Gaussian peak toward the higher mass end. The
secondary masses (m2) are drawn from a smoothed
power-law conditional on the primary masses such
that m1 ≥ m2.

(2) For each binary, the magnitudes of the two compo-
nent-spins are drawn according to the Default
Model as named in [142]. In this model, the spin

magnitudes ai (i ¼ 1; 2) are drawn from a beta
distribution

pðaijαa; βaÞ ∝ aαa−1i ð1 − aβa−1i Þ; ð19Þ

where αa and βa are shape parameters. We choose
αa ¼ 2.75 and βa ¼ 6.00 to make sure that we do
not have sources with ai ∼ 0, as nonspinning com-
pact objects do not carry imprints of spin-induced
multipole moments.

(3) The spin orientations are randomly drawn from a
mixture of isotropic and aligned-to-orbital-angular-
momentum orientations. In other words, the popu-
lations include binaries with precessing spins and
binaries with nonprecessing spins.

Note that there are several mass and spin models in
literature [142] which can explain the current GW data, and
our choice here is arbitrary since they do not affect the
conclusions of this study.

B. Source selection based on signal-to-noise-ratio

The sources with masses and spins as described above
are distributed uniformly in comoving volume up to a
redshift of 0.5 [8,142]. The inclination and polarization
angles are chosen so that the binary orientations are
isotropically distributed with respect to detectors.
We construct our populations from sources that pass the

following two criteria:

SNR ≥ 10;

SNRinsp ≥ 2 SNRpost-insp; ð20Þ

where, SNR is the optimal network signal-to-noise ratio
with the HLV network, assuming all of them at their
designed sensitivity [55,143–145]. SNRinsp and SNRpost-insp
are the signal-to-noise ratio in the inspiral and post-inspiral
(merger-ringdown) regimes of the signal, respectively,
determined by an inspiral cutoff frequency given by the
inspiral to intermediate transition frequency of phenom-
enological waveform models. This cut-off frequency is
calculated, given the total mass of the binary (M) as,
fcut ¼ 0.018=M [135–137].
The second criterion imposes the inspiral SNR to be at

least twice the postinspiral SNR, which makes sure that
there are enough number of waveform cycles in the inspiral
phase. This is because the spin-induced quadrupole
moment effects predominantly affect the inspiral phase,
as modeled in the current waveform models. However, with
the advancements in numerical relativity simulations,
future waveform models might accurately account for their
evolution in the post-inspiral phase, which in turn would
allow us to test higher-mass binaries whose SNR domi-
nates in the post-inspiral phase.
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C. Distribution of spin-induced quadrupole
moment parameters

We simulate six random instances of the BBH popula-
tions with parameters as described in the preceding sections
and apply the SNR criterion of Eq. (20). We keep the first of
these as a BBH population but turn the other five into either
a non-BBH or a mixture population by associating spin-
induced quadrupole moment parameters (δκ1 and δκ2) to
each of them. Addition of these parameters would in
principle change the SNR of the signals, however, the
changes in our case are small3 (≤3%) and all the signals still
survive the SNR criterion.
The δκ1 and δκ2 distributions for every populations are

made by mixing three components: a uniform distribution
Uð−40; 40Þ (Uniform), a positive Gaussian with a mean
value 25 and standard deviation of 5, N ð25; 52Þ
(GausPos), and a similar Gaussian with a negative mean,
N ð−25; 52Þ (GausNeg). We chose a few representative
values for the mixing proportions and the total number of
sources for the various populations. The boundaries of the
uniform distribution or the mean and variance of the two
Gaussian distributions do not carry any direct physical
significance, rather these are chosen for the sake of
diversity in the non-BBH signals.
All the six populations and their δκ1 and δκ2 distributions

are summarized in Table I. Note that we do not impose
δκ1 ¼ δκ2 (or δκa ¼ 0) for the simulated signals, to keep
them as generic as possible, though our analysis framework
makes this assumption. In general, the compact binary
distribution in the universe could be diverse, characterized
by different values of δκs and δκa. We create various
population models to mimic such scenarios by allowing the
fraction of non-BBH systems to differ from model to
model. We list all the six population below. You may refer
to Table I for the details of their ingredients.
(1) BBH: A fully BBH population.
(2) NonBBH: A fully non-BBH population with δκ1

and δκ2 drawn from Uniform, GausPos and
GausNeg.

(3) NonBBHPos: A fully non-BBH population with
δκ1 and δκ2 taking only positive values, i.e., from
GausPos and Uniform with a restriction that
δκ1;2 > 10.

(4) NonBBHNeg: A fully non-BBH population with δκ1
and δκ2 taking only negative values, i.e., from
GausNeg and Uniform with a restriction that
δκ1;2 < −10.

(5) MixtureAll: A population containing 50% BBH
signals and 50% non-BBH signals whose δκ1 and
δκ2 are drawn from Uniform, GausPos and
GausNeg.

(6) MixturePos: A population containing 50% BBH
signals and 50% non-BBH signals whose δκ1 and
δκ2 are taking only positive values, from GausPos,
and Uniform with a restriction that δκ1;2 > 10.

We use the IMRPhenomPv2 waveform model
[135–137,146] for simulating all the signals, which is
the same as the model used for the Bayesian analysis as
well, as mentioned before.

V. RESULTS

A. Hierarchical combining approach

We apply the method described in Sec. III B on all the six
simulated populations described in Table I. The results are
shown as violin plots in Fig. 2. The top two rows (silver)
show the posterior distributions of the hyperparameters μ
and σ for each population and the bottom panel shows the
δκs distributions reconstructed from μ and σ according to
Eq. (10). For BBH, the distributions of both μ and σ peak at
their true values (i.e., zero) with narrow error bars and so is
the δκs distribution which is constrained to [−10.7, 8.8] at
90% credibility. However, this is not the case with the rest
of the populations, as we discuss below.
For the NonBBH, the μ posterior is consistent with zero

which is expected because it has equal number of sources
from both sides of δκs ¼ 0. The σ posterior has increasing
support toward the higher end of the prior and there is little
to no support for σ ¼ 0. This implies that the population
could not be fit with a simple Gaussian and can be taken as
an indication to the presence of one or more of sub-
population with different values of δκs. The marginalized
δκs distribution for this case is a wide distribution with no
insight, which results from the behavior of the σ posterior.
For the NonBBHPos and NonBBHNeg, the μ tends to

peak at their true values again but the σ posteriors do not

TABLE I. Details of the simulated compact-binary populations
used in this study. Our six populations are labelled as written in
the left-most column. The second column provides the fraction
(fnbh) of non-BBH signals contained in each population. The
third column provides the number of BBH signals in each
population. The δκ1 and δκ2 values of the non-BBH signals in
each population are distributed as a mixture of three statistical
models: a uniform distribution Uð−40; 40Þ (Uniform), a pos-
itive Gaussian N ð25; 52Þ (GausPos), and a negative Gaussian
N ð−25; 52Þ (GausNeg). The columns 4-6 describes respective
numbers drawn from each of these model. Finally, the right-most
column gives the total size of the population (Ntot).

Model fnbh BBH Uniform GausPos GausNeg Ntot

BBH 0.0 50 0 0 0 50
NonBBH 1.0 0 20 15 15 50
NonBBHPos 1.0 0 10 15 0 25
NonBBHNeg 1.0 0 10 0 15 25
MixtureAll 0.5 30 10 10 10 60
MixturePos 0.5 20 10 10 0 40

3Due to the moderate to low spin values of the sources in our
populations, we do not expect the power in the signals to change
significantly, which is also apparent in the bottom panel of Fig. 1.
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exclude zero. This is because the injected distributions of
δκs are one-sided for these two (∼½0; 40� and ∼½−40; 0�)
unlike NonBBH (∼½−40; 40�) and hence are relatively better
candidates for finite-width Gaussians. Furthermore, we see
that the peaks of the δκs distributions are shifted to positive
and negative values respectively for NonBBHPos and
NonBBHNeg, as one would expect, though they do not
exclude zero.
For the mixture populations (MixtureAll and

MixturePos), the σ posteriors completely excludes zero
and peaks at the highest value allowed by the prior. This
again shows that a Gaussian of finite width could not be
used to represent the underlying δκs distribution and hence
one could conclude the population to have complex
components. The reconstructed δκs distributions are, as
expected, uninformative.
In summary, the hierarchical combining approach

provides reasonably good estimates when we have only
BBH signals or only non-BBH signals with all of them
belonging to similar nature, i.e., δκs having only positive/
negative values in a small range of values like the ones we
considered. For mixture population containing both BBH
and non-BBH signals, the method can indicate to the
complexity of the underlying distributions however can not
realize whether it is full of non-BBH or a mixture of both
BBH and non-BBH.

B. Mixture likelihood approach

Now, we apply theMixture likelihoodmethod (Sec. III C)
on all the six simulated populations of Table I. Figure 3
shows the posteriors on fnbh, the fraction of non-BBH

events in the population. We see that, for the BBH-only
population (BBH), the fnbh distribution peaks at zero,
as expected. For the non-BBH populations with no BBH
sources at all (NonBBH, NonBBHPos and NonBBHNeg),
we expect fnbh to peak at unity. However, the peaks occur
between 0.1 and 0.5. Similarly, for the mixture populations
with an equal number of BBH and non-BBH sources
(MixtureAll and MixturePos), the peaks are expected
to be at 0.5, but we obtain the peaks between 0.2 and 0.4.

FIG. 2. Violin plots showing the results from hierarchical combining formalism applied on the six simulated populations as labeled on
the x-axis. The top two rows (silver) are the posterior densities of the hyper parameters μ and σ characterising the Gaussian that models
the population distribution δκs (see Sec. III B and Eq. (9) for details). The bottom row (blue) shows the δκs distributions obtained by
marginalizing over the μ and σ posteriors [as per Eq. (10)]. We assumed μ and σ to have uniform priors in the ranges ½−150; 150� and [0,
300] respectively and sampled using the Dynesty sampler from Bilby.

FIG. 3. Posterior distributions of the fnbh parameter—the
fraction of non-BBH signals in the population—estimated using
the mixture-likelihood approach. For a population with only BBH
signals, the posterior is expected to peak at zero. A peak at unity
would imply to a population with only non-BBH signals while a
peak in between indicating a mixture population with BBH and
non-BBH signals. The posteriors shown here are for the six
simulated compact binary populations described in Table I. The
vertical dashed lines represent the 90% credible intervals.
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This shows that there is an overall tendency for fnbh to lean
toward the BBH value. These offsets can be understood as
systematics due to multiple reasons and have been discussed
in detail in Sec. VI. Nevertheless, for all the non-BBH
populations we have chosen, the fnbh posteriors exclude
zero at 90% credibility.
In Fig. 4, we show the loge Bayes factor between the “All

BBH” vs the “Mixture of BBH and non-BBH” hypotheses
as derived in Eq. (17), as a function of the injected value of
fnbh. Note that we do not use any of the populations in
Table I for this plot. Rather, we follow an averaging
procedure using the sources in all those populations. We
first construct two pools of BBH and non-BBH sources by
collecting all the available sources from the six populations
in Table I. Now, for a given value of fnbh on the x-axis, for
example, fnbh ¼ 0.4, we randomly pick 12 BBH and 18
non-BBH sources from the respective pools, with a total of
30 sources. By repeating this 500 times, we compute loge
Bayes factor for all these 500 cases and then compute the
median and 68% credible levels which are shown on the
y-axis of Fig. 4. The averaging helps remove the fluctua-
tions due to any statistical outliers when considering a
population size as small as 30.
The loge Bayes factor favors the “only BBH” hypothesis

when we inject only BBH signals (at fnbh ¼ 0), whereas it
rules out the “only BBH” model for all the populations that
included non-BBH signals (as we move toward larger
values of fnbh). The error bars show that the populations
with higher values of fnbh (say > 0.8) can be distinguished

from populations with lower values such as fnbh < 0.1 at
68% credibility. For most of the intermediate values of fnbh,
there are huge and overlapping error bars on Bayes factors
which would be expected for the current population-size
and would definitely shrink with the addition of more
sources into the population.

C. Estimation of fraction of non-BBH signals
from real LIGO-Virgo observations

The first bounds on spin-induced quadrupole moment
parameter from observed gravitational wave events are
reported in [66]. Furthermore, Ref. [130] provided the
combined posterior distributions on δκs obtained from the
O1, O2, and the first half of O3 observing runs of LIGO-
Virgo detectors along with the individual bounds. In [130],
the combined bounds and Bayes factors are calculated
following two methods: multiplying likelihoods (univer-
sality assumption on δκs) and hierarchical combining. Here
we demonstrate the applicability of the mixture likelihood
approach on all the events considered in [130] and infer
fnbh for this population. We use the public data available
from [147]. The result is shown in Fig. 5. Our analysis
confirms that the detections reported in GWTC-2 [128] are
consistent with a BBH population.

VI. UNDERSTANDING THE
SYSTEMATIC BIASES

The bias in the fnbh posterior toward the BBH value
(fnbh ¼ 0) as discussed above and shown in Fig. 3 could be
a sum of various effects in play. We discuss these effects in
the present section.

A. Biased single-event inferences

One of the possible reasons for the systematic bias in the
inference of fnbh is the choices of spins and SNRs of the

FIG. 4. Figure showing how the loge Bayes factor between the
population-hypotheses “All are BBH” and “A mixture of BBH
and non-BBH” [as derived in Eq. (17)] varies as a function of the
true value of the fnbh of the population. At each fnbh on the
x-axis, the y-axis shows the median and 68% error-bars on the log
Bayes factor distribution which, in turn, is obtained from 500
population instances, each having Ntot ¼ 30. The 500 instances
are constructed by collecting the simulated events across the six
populations of Table I. The ensembles are not mutually exclusive
as we have a limited number of sources in the population but help
reduce the outlier effects. Furthermore, the huge error bars are a
consequence of the population-size being as small as 30 and
would definitely improve with the increasing number of sources.

FIG. 5. Same as Fig. 3 but the posterior of fnbh for the compact
binary detections of Advanced LIGO and Advanced Virgo
reported in the GWTC-2 considered for testing GR analysis
[130]. The peak of the posterior, as obtained here, is consistent
with a population of only BBH signals.
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individual events in the populations. It has been shown that
the single-event δκs inferences are better when the spins are
higher, and of course, improves further with higher SNR
[124] while our populations include many events with low
SNRs and low spins.
To investigate this, we collect events from our simu-

lations that have effective spins jχeff j ≥ 0.15 and the
network SNRinsp ≥ 20.4 Out of all the BBH and non-
BBH simulations that span over six populations, we obtain
16 BBH and 8 non-BBH events satisfying the above
criterion. We construct two populations out of them:
(1) All the 8 non-BBH events together, with a true value
of fnbh ¼ 1, and (2) all the 16 BBH and 8 non-BBH events
together, with fnbh ¼ 0.33.
We estimate fnbh for these two populations using the

mixture-likelihood approach and find that the posteriors are
consistent with the true values at very high confidences, as
illustrated on the left panel of Fig. 6. The fact that we only
had 8 and 24 events for these two populations has been
reflective in the respective statistical uncertainties in Fig. 6
(left panel). This finding indicates that the bias in fnbh
primarily arises because our population contains many low-
spin-low-SNR events.

B. Prior effects

Throughout the Bayesian inference, we have assumed
the prior on δκs as uniform in ½−500; 500�. The injected
populations, on the other hand, have δκs drawn from
narrower ranges with nonuniform distributions. Prior
ranges that are wider than required will be penalized by
Ocaam’s factor. Below, we show that our prior choices can

partly account for the bias in fnbh estimates. The right panel
of Fig. 6 shows how the fnbh posterior would change if we
were to perform the analysis with the same prior as that of
the injected δκs distribution. In order to achieve this, we did
a prior reweighting as described in Appendix. We have
taken an example from our populations with fnbh ¼ 1 and
find that the posterior on fnbh after prior reweighting
(dashed curves) is closer to the true values.
Of course, in reality, we can not preacquire the knowl-

edge of the underlying distribution. However, we can
always assume a hyperparametrized prior model character-
izing the underlying distribution and marginalize the like-
lihood over the hyperparameters to obtain the posteriors on
fnbh. In Appendix, we have derived the formalism of
performing this hyperparameter-marginalization though
its detailed demonstration is differed for a future work.

C. Nonidentical nature of the binary components

Another possible, though minor, reason is our
assumption of δκa ¼ 0 (i.e., δκ1 ¼ δκ2) in the analysis
while our injections did not assume this. In other words, we
have injected different values for δκ1 and δκ2 while in the
Bayesian sampling, we assumed them to have equal values.
This can lead to a bias in the estimated δκs and the Bayes
factor. Indeed, this is a prospect to explore in detail in a
future study. Regardless of the δκa ¼ 0 assumption, the
posterior could capture the true value of fnbh, if the SNR
and spins are high enough, as shown in the left panel
of Fig. 6.
At higher detector sensitivity and with better waveform

models such as those with higher modes [148–153], some
further correlations between binary parameters are
expected to break, leading to improved estimates of κ
parameters and improved Bayes factors, for the individual
events. This will eventually improve the measurement
of fnbh.

FIG. 6. Left: posterior distribution of fnbh for populations that include simulated sources with jχeff j ≥ 0.15 and network SNRinsp ≥ 20.
These populations are constructed by collecting sources from all the six populations that satisfy the SNR and spin criterion. Right: the
posterior distribution on the fraction fnbh with and without prior-reweighting discussed in Sec. VI and Appendix. On both the panels the
dashed vertical lines indicate the injected value of fnbh.

4χeff is the effective inspiral spin parameter captures the spin
effects of nonprecessing binary system which is defined in terms
of component masses mi and dimensionless spins χi ¼ S⃗i · L̂=m2

i
as, χeff ¼ m1χ1þm2χ2

m1þm2
[135].
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VII. CONCLUSION AND FURTHER REMARKS

We have discussed how to effectively combine gravita-
tional-wave data from multiple detections to probe sub-
populations that include non-BH compact binaries. Our
method is based on using spin-induced quadrupole moment
as a physical parameter that distinguishes BBH from non-
BBHs. We first analyzed the efficacy of the previously-
employed hierarchical combining approach that relies on a
Gaussian assumption for the population distribution of the
spin-induced quadrupole moment parameter. Next, we
introduced a mixture-likelihood approach (Sec. III C) that
estimates the fraction (fnbh) of non-BBH signals present in
the observed population.
We simulated various populations that included BBH

and non-BBH signals at different proportions. Our results
show that both approaches are good for homogeneous
populations like a BBH-only population. Also, both the
approaches would signal if the population has complex
nature with subpopulations being present. The mixture-
likelihood approach is a natural choice to capture such
complex distributions of non-BBH sub-populations. We
applied the method on the LIGO-Virgo detected GWevents
from the GWTC-2 catalog and found them consistent with
a BBH population.
Though the mixture-likelihood approach effectively

rules out the BBH population hypothesis for the simulated
populations that included some fraction of non-BBH
signals, we notice that the method suffers from systematics
in measuring the fraction of non-BBH signals precisely. We
investigated possible reasons for these biases in Sec. VI.
We find that the low values of the signal-to-noise ratios and
intrinsic spins of the events in our population, and certain
assumptions we made in the analysis prior (including the
prior on δκs parameter and the constraint that δκa ¼ 0)
could lead to the observed bias.
In the future, with more realistic astrophysical popu-

lation models, our estimates may improve. This is antici-
pated primarily because the spin-induced quadrupole
moment estimates from individual events and, hence,
the population can change according to the intrinsic
mass-spin distributions. Also, with more accurate wave-
form models being available, our measurements could
further improve as they could help break some of the
degeneracies that lead to the systematics in this study.
We would also include the effect of selection bias in
the inference of fnbh which would allow redefining the
fraction fnbh as the fraction of non-BBH signals in the
universe, rather than the fraction in the observed signals,
in the future.
Finally, though we have demonstrated the mixture-

likelihood approach using the measurement of spin-
induced quadrupole moment parameters, the method is
generic enough to include in or to be applied for the other
physical parametrizations that distinguish BBH from non-
BBH signals (as mentioned in Sec. I).
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APPENDIX: MARGINALIZING THE MIXTURE
LIKELIHOOD OVER THE HYPERPARAMETERS

OF δκs DISTRIBUTION

In Eq. (16), we have considered a uniform prior on δκs in
estimating the evidence Znbh. In a more generic treatment,
we should hyperparametrize this prior and marginalize
over, as the underlying δκs distribution in the universe is
unknown (See Ref. [155] for a comprehensive treatment of
marginalizing over the prior hyperparameters, though in a
different context). Thus, we first rewrite Eq. (16) with a
generic prior on δκs, labeled as Λ. That means, Eq. (15)
takes the form,

Lpopðd⃗jfnbh;ΛÞ¼
YN
i¼1

½ð1−fnbhÞZbh
i þfnbhZnbh

i ðΛÞ�; ðA1Þ

where Znbh
i ðΛÞ is the generalized version of Eq. (3),

ZnbhðΛÞ ¼
Z

πðθ⃗; δκsjΛÞLðdjθ⃗; δκsÞdθ⃗dδκs: ðA2Þ

The only difference being that the prior on δκs is now
informed by the hyperparameters Λ. Also, this hyper-
parameter space Λ could in general be a complex multi-
dimensional parameter space. Perhaps, the simplest case
one could consider is a zero-centered top-hat function, with
only one parameter, namely λ. This would be a prior pretty
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much like the one we have used in our analysis,
πðδκsjλÞ ∼Uð−λ; λÞ. Alternatively, if one assumes that
all the non-BBH signals are from a certain class of exotic
compact objects and have their δκs distribution coming
from a localized distribution, then a Gaussian with
unknown mean and width would be a good representation,
i.e., Λ ¼ fμ; σ2g Given a hyperparameter model, the
corresponding evidence ZnbhðΛÞ at any given point in
the Λ-space can be evaluated by re-weighting the prior, as
discussed in Appendix A 1).
Once we have the tools to evaluate the likelihood, we can

sample from the likelihood using any sampler, over the
parameters, ffnbh;Λg. This would give us the posterior
probability density function as,

pðfnbh;ΛjdjÞ ¼
Z

Lpopðdjjfnbh;ΛÞπðfnbhÞπðΛÞ
Zpop

Λ
; ðA3Þ

with

Zpop
Λ ¼

Z
Lpopðdjjfnbh;ΛÞπðfnbhÞπðΛÞdfnbhdΛ: ðA4Þ

Now we can obtain the posterior on fnbh marginalized over
Λ as,

pðfnbhjdjÞ ¼
Z

pðfnbh;ΛjdjÞdΛ: ðA5Þ

Employing a nested sampling algorithm for the sampling,
from the likelihood given in Eq. (A2) the output will by
default provide the probability of fraction defined in
Eq. (A3). The priors on fnbh and Λ can be taken as
uniform. Given the posterior distribution on δκs, we can
also reconstruct the population distribution of δκs as,

pðδκsjdjÞ ¼
Z

pðδκsjΛÞpðΛjdjÞdΛ: ðA6Þ

Equation (A6) is identical to Eq. (10) with the only visible
difference being the hyperparameter vector α⃗ replaced by
Λ. The different notions of hyperparameters in Eq. (A6)
and Eq. (10) are purposeful, while α⃗ represents the
distribution of δκs from the entire population, Λ by
definition represents the distribution of fnbh, the fraction

of non-BBHs in the population. The remaining ð1 − fnbhÞ
fraction of sources have a delta function prior, given
by δðδκs − 0Þ.

1. Evidence estimation by prior reweighting

Suppose we have the evidence estimated already assum-
ing one prior, in our case a prior on δκs assuming
U½−500; 500�. Let us call this prior as Φ. Now the evidence
for this prior ZnbhðΦÞ, according to the Bayes theorem, can
be written as,

ZnbhðΦÞpðθ⃗; δκsjdj;ΦÞ ¼ πðθ⃗; δκsjΦÞLðdjjθ⃗; δκsÞ; ðA7Þ

With the prior Λ, the new evidence will be as given by
Eq. (A2). Plugging Eq. (A7) to Eq. (A2), we get

ZnbhðΛÞ ¼ ZnbhðΦÞ
Z

πðθ⃗; δκsjΛÞ
πðθ⃗; δκsjΦÞ

pðθ⃗; δκsjdj;ΦÞdθ⃗dδκs;

ðA8Þ

where the probability distribution pðθ⃗; δκsjdj;ΦÞ is known
and the above integral can be approximated as a Monte-
Carlo average over the posterior samples, i.e.,

ZnbhðΛÞ ¼ ZnbhðΦÞ ×
�
1

n

Xn
k¼1

πðθ⃗; δκsjΛÞ
πðθ⃗; δκsjΦÞ

�
; ðA9Þ

where n is the number of samples in the δκs posterior
distribution. Both πðθ⃗; δκsjΛÞ and πðθ⃗; δκsjΦÞ must be
normalized distributions. Throughout the analysis, we
assume that the priors on δκs and θ⃗ are uncorrelated and
hence we can decouple πðθ⃗Þ from both numerator and
denominator so that they cancel each other. This leaves,

ZnbhðΛÞ ¼ ZnbhðΦÞ ×
�
1

n

Xn
k¼1

πðδκsjΛÞ
πðδκsjΦÞ

�
; ðA10Þ

Equation (A10) makes it easier to compute the likelihood
in Eq. (A1) for any instance of Λ. The reader may refer to
Ref. [156] for a detailed treatment of the prior reweighting
procedure.

[1] R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams,
N. Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal
et al., arXiv:2111.03606 [Phys. Rev. X (to be published)].

[2] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[3] B. P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016).

[4] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 11, 021053 (2021).

[5] B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017).
[6] B. P. Abbott et al., Astrophys. J. 851, L35 (2017).
[7] B. P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017).

MUHAMMED SALEEM et al. PHYS. REV. D 105, 104066 (2022)

104066-12

https://arXiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101


[8] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. X 9, 031040 (2019).

[9] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. D 102, 043015 (2020).

[10] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 896, L44 (2020).

[11] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 125, 101102 (2020).

[12] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Phys. Rev. Lett. 119, 161101 (2017).

[13] B. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Astrophys. J. Lett. 892, L3 (2020).

[14] R. Abbott et al. (LIGO Scientific, KAGRA, Virgo Col-
laborations), Astrophys. J. Lett. 915, L5 (2021).

[15] A. H. Nitz, C. D. Capano, S. Kumar, Y.-F. Wang, S.
Kastha, M. Schäfer, R. Dhurkunde, and M. Cabero,
Astrophys. J. 922, 76 (2021).

[16] A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano,
I. Harry, S. Mozzon, L. Nuttall, A. Lundgren, and M.
Tápai, Astrophys. J. 891, 123 (2020).

[17] S. Olsen, T. Venumadhav, J. Mushkin, J. Roulet, B.
Zackay, and M. Zaldarriaga, arXiv:2201.02252 [Phys.
Rev. D (to be published)].

[18] J. Roulet, T. Venumadhav, B. Zackay, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 102, 123022 (2020).

[19] V. Cardoso and P. Pani, arXiv:1904.05363.
[20] G. F. Giudice, M. McCullough, and A. Urbano, J. Cosmol.

Astropart. Phys. 10 (2016) 001.
[21] P. Jetzer, Phys. Rep. 220, 163 (1992).
[22] A. R. Liddle and M. S. Madsen, Int. J. Mod. Phys. D 01,

101 (1992).
[23] F. E. Schunck and E. W. Mielke, Classical Quantum

Gravity 20, R301 (2003).
[24] S. L. Liebling and C. Palenzuela, Living Rev. Relativity

20, 5 (2017).
[25] R. Brito, V. Cardoso, C. A. R. Herdeiro, and E. Radu,

Phys. Lett. B 752, 291 (2016).
[26] R. Friedberg, T. Lee, and Y. Pang, Phys. Rev. D 35, 3640

(1987).
[27] R. Friedberg, T. Lee, and Y. Pang, Phys. Rev. D 35, 3658

(1987).
[28] F. D. Ryan, Phys. Rev. D 55, 6081 (1997).
[29] L. Visinelli and P. Gondolo, Phys. Rev. Lett. 113, 011802

(2014).
[30] A. Bauswein, R. Oechslin, and H.-T. Janka, Phys. Rev. D

81, 024012 (2010).
[31] D. Gondek-Rosinska and F. Limousin, arXiv:0801.4829.
[32] F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005).
[33] J. Madsen, Lect. Notes Phys. 516, 162 (1999).
[34] C. Alcock, E. Farhi, and A. Olinto, Astrophys. J. 310, 261

(1986).
[35] M. G. Alford, Annu. Rev. Nucl. Part. Sci. 51, 131 (2001).
[36] C. Kouvaris and N. G. Nielsen, Phys. Rev. D 92, 063526

(2015).
[37] K. Freese, T. Rindler-Daller, D. Spolyar, and M. Valluri,

Rep. Prog. Phys. 79, 066902 (2016).
[38] C. Chirenti and L. Rezzolla, Phys. Rev. D 94, 084016

(2016).
[39] C. B. M. H. Chirenti and L. Rezzolla, Classical Quantum

Gravity 24, 4191 (2007).

[40] F. S. Lobo, Classical Quantum Gravity 23, 1525
(2006).

[41] B. M. Carter, Classical Quantum Gravity 22, 4551
(2005).

[42] M. Visser and D. L. Wiltshire, Classical Quantum Gravity
21, 1135 (2004).

[43] P. O. Mazur and E. Mottola, arXiv:gr-qc/0109035.
[44] S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D 87,

115007 (2013).
[45] G. Bertone et al., SciPost Phys. Core 3, 007 (2020).
[46] L. Barack et al., Classical Quantum Gravity 36, 143001

(2019).
[47] F. Ferrer, A. M. da Rosa, and C. M. Will, Phys. Rev. D 96,

083014 (2017).
[48] D. Spolyar, K. Freese, and P. Gondolo, Phys. Rev. Lett.

100, 051101 (2008).
[49] N. V. Krishnendu, K. G. Arun, and C. K. Mishra, Phys.

Rev. Lett. 119, 091101 (2017).
[50] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo,

Phys. Rev. D 95, 084014 (2017); 95, 089901(A)
(2017).

[51] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, and S.
Ossokine, Phys. Rev. D 96, 024002 (2017).

[52] N. K. Johnson-Mcdaniel, A. Mukherjee, R. Kashyap, P.
Ajith, W. Del Pozzo, and S. Vitale, Phys. Rev. D 102,
123010 (2020).

[53] B. Abbott et al. (KAGRA, LIGO Scientific, Virgo Col-
laborations), Living Rev. Relativity 21, 3 (2018).

[54] J. Aasi et al. (The LIGO Scientific Collaboration),
Classical Quantum Gravity 32, 074001 (2015).

[55] F. Acernese et al. (Virgo Collaboration), Classical Quan-
tum Gravity 32, 024001 (2015).

[56] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[57] B. Sathyaprakash et al., in Proceedings, 46th Rencontres
de Moriond on Gravitational Waves and Experimental
Gravity: La Thuile, Italy, March 20-27, 2011 (2011),
pp. 127–136, arXiv:1108.1423.

[58] T. Regimbau et al., Phys. Rev. D 86, 122001 (2012).
[59] S. Hild et al., Classical Quantum Gravity 28, 094013

(2011).
[60] S. Hild, S. Chelkowski, and A. Freise, arXiv:0810.0604.
[61] B. P. Abbott et al. (LIGO Scientific Collaboration),

Classical Quantum Gravity 34, 044001 (2017).
[62] M. Ando et al., Classical Quantum Gravity 26, 094019

(2009).
[63] LISA Pathfinder Collaboration, J. Phys. 840, 012001

(2017).
[64] M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016).
[65] M. Armano et al., arXiv:1903.08924.
[66] N. V. Krishnendu, M. Saleem, A. Samajdar, K. G. Arun,

W. Del Pozzo, and C. K. Mishra, Phys. Rev. D 100,
104019 (2019).

[67] F. D. Ryan, Phys. Rev. D 52, 5707 (1995).
[68] N. A. Collins and S. A. Hughes, Phys. Rev. D 69, 124022

(2004).
[69] S. J. Vigeland and S. A. Hughes, Phys. Rev. D 81, 024030

(2010).
[70] K. Glampedakis and S. Babak, Classical Quantum Gravity

23, 4167 (2006).

POPULATION INFERENCE OF SPIN-INDUCED QUADRUPOLE … PHYS. REV. D 105, 104066 (2022)

104066-13

https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.3847/1538-4357/ac1c03
https://doi.org/10.3847/1538-4357/ab733f
https://arXiv.org/abs/2201.02252
https://doi.org/10.1103/PhysRevD.102.123022
https://arXiv.org/abs/1904.05363
https://doi.org/10.1088/1475-7516/2016/10/001
https://doi.org/10.1088/1475-7516/2016/10/001
https://doi.org/10.1016/0370-1573(92)90123-H
https://doi.org/10.1142/S0218271892000057
https://doi.org/10.1142/S0218271892000057
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1016/j.physletb.2015.11.051
https://doi.org/10.1103/PhysRevD.35.3640
https://doi.org/10.1103/PhysRevD.35.3640
https://doi.org/10.1103/PhysRevD.35.3658
https://doi.org/10.1103/PhysRevD.35.3658
https://doi.org/10.1103/PhysRevD.55.6081
https://doi.org/10.1103/PhysRevLett.113.011802
https://doi.org/10.1103/PhysRevLett.113.011802
https://doi.org/10.1103/PhysRevD.81.024012
https://doi.org/10.1103/PhysRevD.81.024012
https://arXiv.org/abs/0801.4829
https://doi.org/10.1016/j.ppnp.2004.07.001
https://doi.org/10.1007/BFb0107308
https://doi.org/10.1086/164679
https://doi.org/10.1086/164679
https://doi.org/10.1146/annurev.nucl.51.101701.132449
https://doi.org/10.1103/PhysRevD.92.063526
https://doi.org/10.1103/PhysRevD.92.063526
https://doi.org/10.1088/0034-4885/79/6/066902
https://doi.org/10.1103/PhysRevD.94.084016
https://doi.org/10.1103/PhysRevD.94.084016
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1088/0264-9381/24/16/013
https://doi.org/10.1088/0264-9381/23/5/006
https://doi.org/10.1088/0264-9381/23/5/006
https://doi.org/10.1088/0264-9381/22/21/007
https://doi.org/10.1088/0264-9381/22/21/007
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1088/0264-9381/21/4/027
https://arXiv.org/abs/gr-qc/0109035
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.1103/PhysRevD.87.115007
https://doi.org/10.21468/SciPostPhysCore.3.2.007
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1103/PhysRevD.96.083014
https://doi.org/10.1103/PhysRevD.96.083014
https://doi.org/10.1103/PhysRevLett.100.051101
https://doi.org/10.1103/PhysRevLett.100.051101
https://doi.org/10.1103/PhysRevLett.119.091101
https://doi.org/10.1103/PhysRevLett.119.091101
https://doi.org/10.1103/PhysRevD.95.084014
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1103/PhysRevD.96.024002
https://doi.org/10.1103/PhysRevD.102.123010
https://doi.org/10.1103/PhysRevD.102.123010
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevD.101.083030
https://arXiv.org/abs/1108.1423
https://doi.org/10.1103/PhysRevD.86.122001
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013
https://arXiv.org/abs/0810.0604
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/0264-9381/26/9/094019
https://doi.org/10.1088/0264-9381/26/9/094019
https://doi.org/10.1088/1742-6596/840/1/012001
https://doi.org/10.1088/1742-6596/840/1/012001
https://doi.org/10.1103/PhysRevLett.116.231101
https://arXiv.org/abs/1903.08924
https://doi.org/10.1103/PhysRevD.100.104019
https://doi.org/10.1103/PhysRevD.100.104019
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1103/PhysRevD.69.124022
https://doi.org/10.1103/PhysRevD.69.124022
https://doi.org/10.1103/PhysRevD.81.024030
https://doi.org/10.1103/PhysRevD.81.024030
https://doi.org/10.1088/0264-9381/23/12/013
https://doi.org/10.1088/0264-9381/23/12/013
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