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We investigate the power of a collisional Penrose process with an unbound energy extraction from an
extreme Reissner-Nordström black hole. This process takes infinite time in a time coordinate at a constant
radial coordinate outside of the black hole. For black holes as a power plant, the power of the process for an
observer far away from the black hole can be useful. We define the power as energy gain from the extreme
Reissner-Nordström black hole divided by the time interval of the process in a coordinate time; we estimate
the upper bound of the power in a near-horizon limit, while the efficiency of the process can be arbitrary
large in that limit. Thus, we conclude that there is no trade-off relation between the efficiency and power in
the collisional Penrose process in extreme Reissner-Nordström spacetime.
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I. INTRODUCTION

In 1969, Penrose suggested a process, called the Penrose
process, to extract rotational energy from a Kerr black hole
by dropping a particle with negative energy in the black
hole [1]. Denardo and Ruffini pointed out that the electro-
magnetic counterpart of the Penrose process occurs in
Reissner-Nordström spacetime [2], and Blandford and
Znajek considered the electromagnetic extraction of rota-
tional energy from the Kerr black hole in an astrophysical
situation [3]. It is considered that the electromagnetic
extraction of energy from the black holes can explain high
energy jets near them.
Piran, Shaham, and Katz [4] and T. Piran and J. Shaham

[5] investigated a particle collision near the Kerr black hole.
They pointed out that the center-of-mass energy of two
particles can be arbitrarily high if the Kerr black hole has an
extreme event horizon and one of two particles has a critical
angular momentum. Particle collision with infinite center-
of-mass energy is called the Bañados-Silk-West process
since it was rediscovered by Bañados, Silk, and West in
2009 [6].
After rediscovering the BSW process, several authors

critically investigated the process with arbitrarily high
center-of-mass energy: (i) The Kerr black hole cannot
have an extreme rotation in an astrophysical situation [7],
(ii) gravitational radiation and its backreaction constrain
the center-of-mass energy for the particle collision [7],
(iii) to obtain the unbounded center-of-mass energy, an
infinite proper time of a falling particle to reach the
extreme event horizon is required [8], and (iv) self-gravity

of falling objects constrains the center-of-mass energy for
the collision [9,10].
Reference [6] inspired several authors to investigate the

details of the collisional Penrose process [5]. The upper
limit of energy extraction by the collision Penrose process
after the BSW collision near the extreme Kerr black hole is
very modest [11,12]. Schnittman found that a collisional
Penrose process with energy gain can be more than 10
times the energy of incident particles [13–17]. A collisional
Penrose process after the head-on collision of two particles
near an extreme Kerr black hole [18–21], collisional
Penrose processes with spinning particles [22,23], and
collisional Penrose processes in wormhole spacetimes
[24,25] and in an overspinning Kerr spacetime [26] were
investigated.
Zaslavskii found the electromagnetic counterpart of

BSW collision near an extreme, charged Reissner-
Nordström black hole [27]. Zaslavskii pointed out that
energy extraction from an extreme Reissner-Nordström
black hole in a collisional Penrose process after the BSW
collision can be unbound [28,29] while the energy extrac-
tion from the extreme Kerr black hole is very modest.1 The
Reissner-Nordström spacetime is more tractable than the
Kerr black hole due to spherical symmetry of the space-
time. A finite center-of-mass energy of BSW collisions of
two shells including their self-gravity was shown in
Ref. [9], and an upper bound of energy extraction from
the extreme Reissner-Nordström black hole, by fully taking
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1Bhat, Dhurandhar, and Dadhich found no upper limit on the
efficiency of a Penrose process with electromagnetic interaction
in a Kerr-Newman black hole spacetime in Ref. [30].
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into account the self-gravity of the colliding shells, was
obtained in Ref. [31].2

In this paper, inspired by a trade-off relation between
efficiency and power of a heat engine by Shiraishi, Saito,
and Tasaki [35], we consider the power of the collisional
Penrose process, which gives infinite efficiency in the
extreme Reissner-Nordström spacetime after the BSW
collision. Is there a trade-off relation between efficiency
and power of the collisional Penrose process? To answer
this question, we define the power of the collisional
Penrose process as the energy extraction divided by a
coordinate time, and we discuss the maximum of the power
in the process.
This paper is organized as follows. In Sec. II, we review

the motion of a charged particle in an extreme Reissner-
Nordström spacetime. In Sec. III, we review the energy
extraction from the extreme Reissner-Nordström black hole
in a collision Penrose process, and we investigate the power
of the process. In Sec. IV, we conclude with our results. In
this paper, we use geometrical units in which the light speed
and Newton’s constant are unity.

II. MOTION OF A CHARGED PARTICLE IN A
REISSNER-NORDSTRÖM SPACETIME

A line element and a vector potential in a Reissner-
Nordström spacetime are expressed by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2:1Þ

Aμdxμ ¼ −
Q
r
dt; ð2:2Þ

where fðrÞ is given by

fðrÞ≡ 1 −
2M
r

þQ2

r2
; ð2:3Þ

and Q and M are electrical charge and mass, respectively.
We find a black hole spacetime with an event horizon at

r ¼ rH ≡M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
for jQj ≤ M and a spacetime

with naked singularity for jQj > M. We assume an extreme
charge Q ¼ M > 0 since we are interested in a collisional
Penrose process with an unbound energy extraction [28,29].
From the Hamiltonian equation, the four-momentum pμ

of a particle with an electrical charge q is expressed as

pμ ¼ ∂H
∂πμ

¼ πμ − qAμ; ð2:4Þ

whereH is the Hamiltonian of the charged particle given by

H ≡ 1

2
gμνðπμ − qAμÞðπν − qAνÞ; ð2:5Þ

and πμ is the canonical momentum of the charged particle
conjugate to the coordinates xμ. We assume that charged
particles have vanishing angular momentum L≡ πϕ ¼ 0

and that they only move in a radial direction on an
equatorial plane θ ¼ π=2.
From the t component of the four-momentum

pμ ¼ dxμ=dλ, where λ is an affine parameter, and from
Eq. (2.4), we get

dt
dλ

¼ 1

f

�
E −

qM
r

�
; ð2:6Þ

where E≡ −πt is the conserved energy of the charged
particle. The particle should satisfy a forward-in-time
condition dt=dλ ≥ 0. The condition is expressed by

E −
qM
r

≥ 0; ð2:7Þ

and it yields, for r ¼ rH ¼ M,

E ¼ q: ð2:8Þ

We call a charged particle with E ¼ q a critical particle.
From gμνpμpν ¼ −m2, where m is the mass of the

charged particle, we obtain�
dr
dλ

�
2

þ VðrÞ ¼ 0; ð2:9Þ

where VðrÞ is the effective potential of the radial motion of
the charged particle given by

VðrÞ≡ −
�
E −

qM
r

�
2

þm2f: ð2:10Þ

The charged particle can exist only in a region where the
effective potential VðrÞ is nonpositive. The radial compo-
nent of the four-momentum of a particle can be written as
pr ¼ σ

ffiffiffiffiffiffiffi
−V

p
, where σ ¼ −1 (σ ¼ 1) for an ingoing (out-

going) particle.

III. PARTICLE COLLISION AND ENERGY
EXTRACTION FROM A BLACK HOLE

In this section, we review energy extraction from the
extreme Reissner-Nordström black hole in a collision

2Multiple BSW collisions and multiple Penrose processes in
Reissner-Nordström spacetime [32,33] and a BSW collision in
higher-dimensional Reissner-Nordström spacetime [34] were
also investigated.
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Penrose process [28,29] as well as investigate power in this
process. We consider that particles 1 and 2 collide at
r ¼ rc ≡Mð1þ ϵÞ, where 0 < ϵ ≪ 1, and particles 3 and
4 are produced after the collision. We set σ1 ¼ σ2 ¼ −1.
Here and hereinafter, physical values with subscripts 1, 2,
3, and 4 denote physical values of particles 1, 2, 3, and 4,
respectively. The center-of-mass energy ECM of particles 1
and 2 at the collision is given by

E2
CM ≡ −gμνðpμ

1 þ pμ
2Þðpν

1 þ pν
2Þ

¼ m2
1 þm2

2 þ
2

fðrcÞ
��

E1 −
q1M
rc

��
E2 −

q2M
rc

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V1ðrcÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V2ðrcÞ

p �
: ð3:1Þ

If one of the particles is critical and the other is not critical,
the center-of-mass energy diverges in a near-horizon limit
ϵ → 0 [27]. For simplicity, we assume that particle 1 is
critical, E1 ¼ q1, and particle 2 has no charge, q2 ¼ 0. The
center-of-mass energy is obtained as

E2
CM ¼ m2

1 þm2
2 þ

2ð1þ ϵÞ
ϵ

�
E1E2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 −m2

2

�
ϵ

1þ ϵ

�
2

s �

∼
2A1E2

ϵ
; ð3:2Þ

where A1 is defined by A1 ≡ E1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

1

p
.

The conservation law of the charges before and after the
particle collision is expressed by

q1 þ q2 ¼ q3 þ q4: ð3:3Þ

The conservation law of the four-momentum of the
particles at the moment of the collision is expressed by

pμ
1 þ pμ

2 ¼ pμ
3 þ pμ

4: ð3:4Þ

The t component of the conservation laws of the four-
momentum (3.4) and the charges (3.3) gives the conserva-
tion laws of conserved energy,

E1 þ E2 ¼ E3 þ E4: ð3:5Þ

We assume that particle 3 is a near-critical particle with
q3 ¼ E3ð1þ δ3ϵÞ, where 0 < δ3 < 1, and that particles 3
and 4 are ingoing particles with σ3 ¼ σ4 ¼ −1 immediately
after the creation of the particles [28,29]. From the radial
component of Eq. (3.4), we obtain

A1 þ E3ðδ3 − 1Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð1 − δ3Þ2 −m2

3

q
: ð3:6Þ

From the square of Eq. (3.6), we get

δ3 ¼ 1 −
m2

3 þ A2
1

2A1E3

: ð3:7Þ

We assume that particle 3 is reflected at a turning point
r ¼ r−, and we assume that E3 > m3 so that particle 3 goes
to spatial infinity. For simplicity, we also assume that
particle 4 does not interact with particle 3 after particle
production and particle 4 falls into the event horizon of the
black hole.3 From V3ðr−Þ ¼ 0, we obtain the turning point
r ¼ r− as

r− ¼ M

�
1þ E3δ3ϵ

E3 −m3

�
: ð3:8Þ

From r− ≤ rc, the condition

E3ð1 − δ3Þ ≥ m3 ð3:9Þ

must be satisfied. If the inequality (3.9) holds, the inside of
the square root in (3.6) is positive, and the lower bound of
the mass of particle 3,

m3 ≥ A1; ð3:10Þ

must hold so that the left-hand side of Eq. (3.6) is
negative. For simplicity, we assume m0 ≡m1 ¼ m2 and
E1 ¼ E2 ≳m0. As discussed in Ref. [29], the mass and
conserved energy of particle 3 can be m3 ∼ ECM ∼m0=

ffiffiffi
ϵ

p
and E3 ∼m0=ϵ, respectively.
The collisional Penrose process is expressed in Fig. 1:

Particle 1 at an initial position r ¼ ri falls toward the
extreme charged black hole, and it collides with particle 2 at
r ¼ rc after the coordinate time ofΔt1. Particles 3 and 4 are
produced from the collision. Particle 3 is reflected at
r ¼ r−, and it escapes to r ¼ ri after the coordinate time
of Δt3. On the other hand, particle 4 reaches the extreme
event horizon at r ¼ rH. The time intervals Δt1 and Δt3 in
the coordinate time are given by

Δt1 ¼ −
E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
1 −m2

0

p Z
rc

ri

dr
ð1 − M

r Þ2

∼
E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
1 −m2

0

p �
M
ϵ
þ ri

�
ð3:11Þ

and

3One may be concerned that particle 4 collides with particle 3.
By taking nonzero conserved angular momenta of particles 3 and
4 into account, the collision can be avoided.
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Δt3 ¼ −
Z

r−

rc

E3 −
q3M
r

ð1 − M
r Þ2

ffiffiffiffiffiffiffiffiffi
−V3

p dr

þ
Z

ri

r−

E3 −
q3M
r

ð1 − M
r Þ2

ffiffiffiffiffiffiffiffiffi
−V3

p dr

∼
�
2

δ3
− 2

�
M
ϵ
þ ri; ð3:12Þ

respectively.
We define the power of the collisional Penrose process

as ΔE=Δt, where ΔE and Δt are defined by ΔE≡ E3 −
E1 − E2 ∼m0=ϵ and Δt≡ Δt1 þ Δt3, respectively. From
Eqs. (3.11) and (3.12), the power of the collisional Penrose
process is given by

ΔE
Δt

∼
m0

ð E1ffiffiffiffiffiffiffiffiffiffi
E2
1
−m2

0

p þ 2
δ3
− 2ÞM þ ð E1ffiffiffiffiffiffiffiffiffiffi

E2
1
−m2

0

p þ 1Þriϵ
: ð3:13Þ

The power is plotted in Fig. 2. If ϵ ≪ M=ri < 1 is satisfied,
by using E3 ∼m0=ϵ, m3 ∼m0=

ffiffiffi
ϵ

p
, and Eq. (3.7), we get

δ3 ∼ 1 −m0=ð2A1Þ ∼ 1 − ðe1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 − 1

p
Þ=2, where e1 is a

specific conserved energy e1 ≡ E1=m0 of particle 1, and
the power is given by

ΔE
Δt

∼
1 − e21 þ ð2 − e1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 − 1

p
e21 þ 2e1 − 2þ e1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 − 1

p m0

M
: ð3:14Þ

We notice that the collisional Penrose process has the upper
bound of the power, the value of which is estimated to be as
given in Eq. (3.14) in the near-horizon limit ϵ → 0.

IV. CONCLUSION

We have defined the power of the collisional Penrose
process as the energy gain from the extreme Reissner-
Nordström black hole divided by the time interval of the
process in a coordinate time. The upper bound of the power
can be estimated as given in Eq. (3.14) in the near-horizon
limit ϵ → 0. On the other hand, the efficiency of the
collisional Penrose process defined by η≡ E3=ðE1 þ E2Þ
has an arbitrarily high value η ∼ 1=ð2ϵÞ in the near-horizon
limit ϵ → 0 under our assumptions as discussed in
Ref. [29]. Therefore, we conclude that there is no trade-
off relation between efficiency and power in the collisional
Penrose process in the extreme Reissner-Nordström space-
time under our treatment. One may, however, find a trade-
off relation between efficiency and power if the effect of the
self-gravity of falling particles is taken into account. The
power of the collisional Penrose process including self-
gravity of the particles is left for future work.
We now comment on the upper bound of the power in the

collisional Penrose process. Zaslavskii categorized the
scenarios of the collisional Penrose process with a single
collision in the vicinity of the extreme event horizon to find
unbounded energy extraction [28]. All the scenarios, except
for the one shown on Fig. 1, give vanishing power of the
process in the near-horizon limit. However, one may find
greater power than Eq. (3.13) if some of the conditions on
the extreme charge of the black hole, the critical charge of
particles, and the near-horizon collision are violated. Notice
also that the upper bound of the power (3.13) is not exact
due to approximations and simplifications. In addition, the
power of the collisional Penrose processes can be enhanced
if we consider the collision of spinning particles [22,23,36].

FIG. 1. Collisional Penrose process. Particle 1 with the critical
condition E1 ¼ q1 at an initial position r ¼ ri moves toward the
extreme Reissner-Nordström black hole with M ¼ Q to collide
with particle 2 with no charge, q2 ¼ 0, at r ¼ rc ¼ Mð1þ ϵÞ
after the coordinate time of Δt1. The collision between particles 1
and 2 produces particle 3, with mass m3 ∼m0=

ffiffiffi
ϵ

p
and conserved

energy E3 ∼m0=ϵ, and particle 4. Particle 3 is reflected at
r ¼ r− ¼ M½1þ E3δ3ϵ=ðE3 −m3Þ�, and it reaches r ¼ ri after
the coordinate time of Δt3. Particle 4 falls into the extreme event
horizon at r ¼ rH ¼ M.

FIG. 2. Power of the collisional Penrose process given by
Eq. (3.13). We setM ¼ 10 km,m0 ¼ 10−8 km, E1 ¼ 1.1m0, and
ri ¼ 107 km.
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On the other hand, if the self-gravity of falling objects is
taken into account, the power would be suppressed [31].
The secondary collisional Penrose process of a head-on

collision [5,37,38] between particle 3, which is reflected
near the black hole, and an additional falling particle may
increase the power of the total process even though the self-
gravity of particles 3 and 4 would decrease the power in the
secondary collision. Investigating the details of multiple
collisional processes [32,33] can also be an interesting
future work to find a larger power than Eq. (3.13).

One may consider that the definition of the power of
the process using the proper time of the particles is more
desirable than one using the coordinate time. The effect of
the difference of the definitions on the upper limit of the
power is also left to future work.
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